
A Collaborative Approach to Newspaper Layout

Citation
Lubin, Benjamin. 1999. A Collaborative Approach to Newspaper Layout. Harvard Computer 
Science Group Technical Report TR-04-99.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853808

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853808
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Collaborative%20Approach%20to%20Newspaper%20Layout&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=d8d861a774a5ed9ab625e4fa5251ab97&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


A Collaborative Approach to Newspaper Layout

Benjamin Lubin

TR-04-99

May 10, 1999



1

Acknowledgements
I would like to thank the following people for their kindness and support, withou

which this project would not have been possible: my advisor, Professor Stuart Shieber,
 Professor Barbara Grosz, Elisa Cheng, Mat Glatthorn, B.J. Trac , Steve, Wendy and
Nathaniel Lubin.  This project is an expansion of the principles in the GLIDE syste
created by Kathleen Ryall, Stuart Shieber and Joe Marks, and could not have been
realized without their tremendous effort.  I would like to thank Eric Feigin for reading a
draft and generating such insightful comments and to thank Ingrid, Gus and Augusta for
all their help.  This material is based in part upon work supported by the National Science
Foundation under Grant No. IRI-9618848 to Stuart M. Shieber.

© 1999 Benjamin Lubin
Al l Rights Reserved.



2

Table of contents
Acknowledgement ................................ ................................ ................................ ........ 1

Table of content ................................ ................................ ................................ ............ 2

Chapter 1: Introduction................................ ................................ ................................ . 4

1.1 The Problem................................ ................................ ................................ ........ 4

1.2 Our Solution................................ ................................ ................................ ........ 4

Chapter 2: Related work ................................ ................................ ............................... 8

2.1 Existing commercial software ................................ ................................ ............. 8

2.1.1 Approach of existing commercial software................................ .................. 8

2.1.2 Limitations of existing commercial software ................................ ............... 8

2.2 Existing research software................................ ................................ ................... 8

2.2.1 Juno................................ ................................ ................................ ............. 9

2.2.2 GLIDE ................................ ................................ ................................ ........ 9

Chapter 3: A new paradigm for single-user layout tool ................................ ............... 11

3.1 The layout hierarchy................................ ................................ ........................... 11

3.1.1 A description of the node elements ................................ ............................. 11

3.1.2 A description of the layout constraints................................ ........................ 13

3.1.2.1 Low-level layout constraints and syntactic requirements......................... 13

3.1.2.2 Mid-level layout constraints................................ ................................ ....14

3.1.2.3 High-level constraint ................................ ................................ ............. 14

3.2 The content hierarchy................................ ................................ ......................... 15

3.3 Relating the two hierarchies: duct constraints ................................ ..................... 16

Chapter 4: The LILT user interface................................ ................................ .............. 17

Chapter 5: An example interaction with LILT ................................ .............................. 19

Chapter 6: Algorithms ................................ ................................ ................................ .37

6.1 The overall document model ................................ ................................ .............. 37

6.2 Specifics of the layout model ................................ ................................ ............. 38

6.2.1 Node element algorithms................................ ................................ ............38

6.2.1.1 The ApplyUpdates functi n................................ ................................ ....39

6.2.1.2 The ApplyConstraints functi ................................ ............................... 39

6.2.1.3 The FreshenNodes function ................................ ................................ ....39



3

6.2.1.4 Required node attributes and behaviors ................................ ................... 40

6.2.2 Constraint and Update element algorithms................................ .................. 40

6.2.2.1 low-level constraints................................ ................................ ............... 41

6.2.2.2 Mid-level constraint ................................ ................................ .............. 42

6.2.2.2.1 Width and Height................................ ................................ ............42

6.2.2.2.2 Horizontal and Vertical Al ignment ................................ .................. 43

6.3 Specifics of the content model ................................ ................................ ............43

6.4 Specifics of the connecting ducts................................ ................................ ........43

Chapter 7: Implementation Issues................................ ................................ ................ 46

Chapter 8: Possible future improvements for the layout paradigm................................ 47

Chapter 9: The multi-user case: concurrent edi ting within the workflow ...................... 48

9.1 The problem................................ ................................ ................................ .......48

9.2 Current approaches................................ ................................ ............................. 49

9.3 Towards a solution ................................ ................................ ............................. 49

Chapter 10: Conclusio ................................ ................................ ................................ .51

Chapter 11: Glossary ................................ ................................ ................................ .....52

Chapter 12: References................................ ................................ ................................ ..54



4

Chapter 1: Introduction
Originally, newspapers were typeset by hand.  Every letter on every page was

formed by an individual metal stamp that was carefully fitted into a tightly packed frame.
Pictures were included using ei ther wood-block carvings or stock metal stamps that could
be placed into the frames with the text.  With the invention of photo-reproductive
processes it became possible not only to use actual pictures, but to avoid using individual
characters of type as well.  The text was typed up and then "cut and pasted" into place on
large layout boards.  These boards were reproduced to make the pages.  With the adven
of computers, high-end systems appeared for fully-automated layout, though these
systems had severe limitations.  Then, with the rise of personal computers, the age o
ubiquitous "desktop publishing" began.  But even the current crop of desktop publishing
programs do little more than enable the user to cut and paste text and graphics in a digita
form, almost exactly as it used to be done with paper and glue.

1.1 The Problem
The aim of this thesis is to change the paradigm used in layout software, making

the task of layout easier and far more enjoyable.  In accomplishing this, the presen
project employs two related means.  The first is to invent an engine that can automate
portions of the layout process in an intelligent manner.  The second is to create a user
interface that facili tates collaboration between this engine and the user.  The planning o
such an interface is a complex problem, because newspaper production is almost always a
group activity requiring a high degree of collaboration.  Ideally, the software should
mediate this group interaction.  But before this can be accomplished, a sound single-user
interface is required.  The present project focuses on this necessary first step in solving
the more general multi-user case.

1.2 Our Solution
In order to address these issues, a program called LILT  (ELastic Interactive

Layout Tool) has been developed.  It provides a framework for semi-automated layout in
the newspaper domain and the means for humans and computers to cooperate in the
endeavor.  It introduces more intelligence into the software, letting the software handle
the low-level details and allowing the user to concentrate on the larger aesthetic issues.
Furthermore, LILT bypasses the cut-and-paste problem by being dynamically oriented to
the newspaper as a whole, rather than to single pages.

In formulating this novel solution, our fi rst task is to create a formalism that can
represent the newspaper domain within a constraint satisfaction framework.   In doing
this we first divide the problem space into two interrelated hierarchies: layout and
content.  The layout hierarchy is comprised of all the information pertaining to the look
of the document — both the elements to be laid out and the constraints that relate them.
The content hierarchy contains all the information in the newspaper: text and pictures.
Creating this division has two main advantages.  First, it allows for modification of each
hierarchy predominantly independently of the other.  Second, it gives explicit control to
the user over the implicit hierarchical structure which is present in the domain.  But in
order for the division to work, there must be communication between the two parts, since



5

they are clearly not entirely independent.  The task of binding these hierarchies together
within the automation framework represents an important part of the present study.

A solution to the newspaper domain problem requires a method for the machine
to satisfy the constraints the user has specified in the layout hierarchy, either overtly or
indirectly.  The method employed in this project is a mass-spring simulation based upon
the one used in the GLIDE graph editor,1 as described in section 2.2.2.  However, the
approach taken in GLIDE has been greatly extended in numerous ways.  Among these
are, first, that in developing LILT, we have made possible the application of constraints
to a much more complicated set of objects.  Also we have introduced an explicit update
step into the simulation.  By considering each portion of the layout as an individual mass
and casting each of the constraints into a language of ei ther springs or codable heuristic
rules (updates), the machine can attempt to satisfy the user’ s speci fications for the layout.
For example, if the user specifies that two objects should be adjacent, the software would
interpret this constraint as a single spring, as illustrated in the following figure:

Figure 1: A spring-mediated constraint

The spring is attached to the right side of the left object and to the left side of the right
object.  It is given a rest length of zero, which causes it to apply an inward force to both
objects as the simulation progresses.  This will tend to cause the two objects to move
towards each other whenever they are separated, and away from each other whenever
they overlap (at least in the x-axis).

It is worthwhile examining a short example of how this type of automation works.
Suppose the user instructs the system to create three new Blocks.  Blocks are areas for
displaying some type of content (note that all the words in Bold type are included in a
glossary on page 52 that describes their specific meaning within the LILT  framework).
The user can then click and drag these blocks to new locations and end up with
something like the following partial screen capture:

                                               

1 See Ryall et al. "An Interactive Constraint-Based System for Drawing Graphs"



6

Figure 2: Layout after creating three Blocks

The next thing the user is likely to want to do is specify how these Blocks relate to one
another in order to produce an elegant layout.  For example, the user might specify the
following constraints:

• The bottom two Blocks should have the same widths

•  The combined width of these Blocks should be the same as the width of the top
Block

• The left edge of the top Block and the left edge of the left-bottom Block should
be co-linear in the y-axis.

After the user has applied these constraints, the system wil l move the blocks in
order to satisfy them, producing the following:

Figure 3: Layout after applying constr aints

Because these constraints are updated dynamically, if the user drags the top Block's left
edge to widen the top Block (as indicated by the arrow in Figure 3), the system will
adjust the other Blocks to maintain the indicated relationships.  Thus after the mouse-
drag, the layout will look like this:



7

Figure 4: Layout after mouse-drag maneuver

Although this example has shown only a tiny fraction of the LILT system, it is
already clear that mass-spring-update constraint satisfaction can be very effective in the
newspaper domain.  Other constraint satisfaction methods can produce layouts by
employing some limited, rigidly defined aesthetic evaluation function, but in the
newspaper domain, where flexibili ty is essential, it is all but impossible to define an
aesthetic evaluation function, which strongly selects for LILT’ s approach.  In this syste
there is no need for such an evaluation function, as the user him- or herself acts as the
evaluator.  In this sense, the layout process becomes a true collaboration between the
machine and the user: the machine does its part by satisfying the constraints to the best o
its abili ty, and the user views the results and modifies the constraints to better match the
desired layout.  The mass-spring-update model provides an excellent medium for this
communication, as its physical nature and real-time evaluation create an intuitive user
interface.   The user can anticipate how the computer will be likely to react to new input,
an important aspect of any collaboration.  Further, the model is a good choice because it
gracefully handles both under- and over- constrained layouts, conditions that arise
frequently.  This mass-spring-update approach should scale well to the multi-user case
also, for reasons that will be explored further on.

The code for LILT  has been written in such a way that it should be able to
provide a base for developing programs based on the same technology, but for very
different applications.  (One such application might be the placement of objects in
architectural models, which would be a rather close three-dimensional analog to this
project.)



8

Chapter 2: Related work

2.1 Existing commercial software
In light of our goal of ease of use, we target the lower end of newspaper

production software.  We are concerned with layouts that go beyond simple word-
processing, but are not as particular as layout for The New York Times, where one can
afford to do everything by hand and ease of use is not an issue.  Currently there are two
major commercial products for doing this type of layout: PageMaker and Quark XPress.

2.1.1 Approach of existing commercial software
Both PageMaker and Quark provide tremendous flexibility in what they can lay

out, but this comes at the price of requiring very tedious manual placement and
arrangement of all the graphic elements.  There are ways of making sure things line up
relative to each other, but for the most part these are ‘guides’ and ‘rulers’ — rather stric
analogs to ways of lining things up in a traditional, non-computer, cut-and-paste layout
This provides an important sense of continuity for layout professionals used to the
traditional methods, and is a very intuitive interface in its own right.

2.1.2 Limitations of existing commercial software
However, the insistence on using a traditional cut-and-paste paradigm places

severe restrictions on the util ity of the program by prohibiting any type of collaborative
approach.  These programs are incapable of capturing a user's intentions.  For instance,
all relative positioning is done statically.  That is, if one tells the machine to align two
blocks of text in some given way, and then the sizes of the blocks change, there is no
provision for retaining the specified relationship between the blocks.

Moreover, these programs do little to solve the issues of multi-user collaboration.
Since newspapers must be created under strict time deadlines, it is desirable to do as
much of the process in parallel as possible.  Extensions to these programs, such as the
Quark Publishing System, do provide centralized storage and access locking for sourc
materials.  This enables users to ensure that they are not destroying each other's work and
facilitates the transfer of content from one person (or machine) to another.  But it also
serializes much of the workflow, as final layout cannot be executed until the content that
it is based upon is "checked in."  Moreover, none of these programs has any means of
enabling a number of people to work on the same section of layout at the same time.  In
these programs, only completely isolated layouts, stored in separate files, can be modified
concurrently.

2.2 Existing research software
LILT  is based primarily upon two pieces of previous research: Greg Nelson's

Juno (and more recently Juno-2) 2 drawing program, and the GLIDE network graph
program.3  Short descriptions of these programs and of how they relate to LILT  follow.

                                               

2 See Nelson and Heydon. "Juno-2 Constraint Based Drawing Editor"



9

2.2.1 Juno
Juno enables a user to create pictures by specifying control points and constraints

that determine relative positions of these points.  PostScript style drawing primitives can
then be added to paint an image using these control points.  Specifiable constraints can be
non-linear, but there are severe restrictions: inequalities and discontinuous functions (like
modulo, floor or ceil ing) are not supported.  The system keeps track of the layou
information (points, constraints and drawing instructions) in a powerful description
language.  This language is hierarchical in nature, letting the user employ system-defined
primitives to build larger constructs.  These large constructs can themselves be used as
primitives in even larger constructs.

The system has a two-pane user interface: one pane shows the currently rendered
picture and the other shows the Juno-language program that produces it.  The user can
edit in either pane.  This provides a means to manipulate directly the constraints in the
system without relying on the visual representation.  This two-pane interface is a
powerful feature which LILT  uses as a model in its three-pane interface.  In Juno, the
complexity of the constraint language makes the system difficult to use — it is a graphics
package for a programmer, not an artist.  Still, the language lets the user define macros
(through Juno functions and procedures) enabling the re-cycling of graphic elements.
Adding a similar feature to LILT  would certainly enhance it.

Juno's constraint satisfaction algorithm is useful, but it can make counter-intuitive
assignments, particularly if the “hints” the user provides to aid in these assignments are
off the mark.  This makes it harder for a user to anticipate what the machine wil l do when
the drawing state is changed.  But in general, the "hints" are sufficient to keep the
constraint satisfaction engine from producing wildly unexpected results.

To summarize, Juno has limitations in its constraint satisfaction algorithm, and it
user interface requires learning a cryptic programming language.  But there are rea
strengths to the system: it does use constraint satisfaction effectively to create attractive
graphics.  Also, its approach of creating a drawing framework is very extensible.  The
macro feature prevents this flexibi lity from coming at the price of an inabil ity to describe
high-level objects, and alleviates the tedium of constantly dealing with minutiae.

2.2.2 GLIDE
GLIDE is a program for drawing network graphs that are either directed or

undirected.  The system was created specifically with the goal of producing a more
collaborative interface in this domain.  It does this through a constraint satisfaction
system based upon a mass-spring simulation.  Each node in the graph is modeled as a
mass in this simulation.  Any of a set of constraints can be applied between these nodes in
order to position them in the desired arrangement.  Typical constraints include alignment
ordering, clustering, equal-spacing, symmetry and creation of a tree-shape.  Each of these
constraints is represented in the system by a set of springs that cause the nodes to move
into the appropriate arrangement.

                                                                                                                                           

3 See Ryall et al. "An Interactive Constraint-Based System for Drawing Graphs"



10

The constraints are set up in a manner allowing the user to specify relationships
among the nodes that are maintained through time.  For instance, if the user states that
space between two pairs of nodes should be equal and then moves one of the nodes at a
later time, the other nodes will move to maintain the relationship.  This persistence is a
tremendous advantage when one is trying to align elements appropriately in a graph.

The system animates the movement of the nodes in real-time, which provides
excellent feedback for the user. It is the spring-model i tself that creates this feedback: the
moving of the nodes in the graph by the model is due to a force generated by a process
with a direct physical analogy, one that the user can easily intuit.

The collaborative approach that GLIDE uses has the very important consequence
of decreasing the precision required in the user’s mouse movements.  Most commercia
graph-drawing programs limit the level of required mouse-precision by using a grid tha
objects will "snap to."  Anyone who has used such a system knows that in practice grids
do not work well: ei ther they are too coarse to permit objects to be placed where the
need to be, or so fine that they do not really lower the precision required to place them.
GLIDE's approach is a tremendous improvement, in that it lets the user place the node far
from the desired location, trusting that it will be moved to the appropriate place.

Most newspaper layout programs (such as Quark and Pagemaker) allow the user
to specify guidelines which objects tend to snap to.  Clearly this is a generalization of the
grid approach that we see in mos commercial drawing programs.  But these guides are
subject to many of the same problems that afflict grids.  First of all, they do not allow for
maintaining relationships between elements dynamically.  Also, they require very precise
mouse movements to set up and to make an object snap to a specific guideline among
several.  LILT uses an approach similar to GLIDE in order to overcome this problem.

GLIDE lets the user specify the constraints--that is, the high-level conceptual look
of the graph diagram--while it takes care of satisfying the details.  A truly effective
collaboration results, one that LILT  strives to emulate in its own domain.



11

Chapter 3: A new paradigm for single-user layout tools
Since our aim is to redesign the low-level details of the layout process by creating

a set of collaborative semi-automatic tools, we need the abili ty to specify the layou
constraints to the machine.  Here, the work on GLIDE for semi-automated graph layou
provides a good guide (see Ryall et al.).   The types of structural relationships that can be
specified in GLIDE are similar to those that are needed in the newspaper domain.
However, newspapers are far more complex, since the individual elements (text, pictures
or graphic elements like boxes) take up area, unlike the nodes of a graph.  Further, these
elements are chained together and have exceedingly complex interrelations that must be
maintained.  Moreover, newspapers have multi ple pages, and content often must flow
across more than one page.  As mentioned above, the approach taken here divides the
newspaper domain into two separate but related hierarchies--layout and content--each o
which will now be discussed in detail.

3.1 The layout hierarchy
The layout information in a newspaper seems naturally to form a tree structure,

which is how it is represented in LILT .  There are three different types of elements in the
tree: Node elements, Constraint elements and Update elements.  Node elements are, for
the most part, physical layout objects that have a visual form.  Constraint and Update
elements both represent entities that can modify these Node elements (that is, they act as
constraints in the more general sense).  The distinction between Constraint and Update
elements is transparent to the user, and is a subject to which we shall return in Chapter 6:
Algorithms.

3.1.1 A description of the node elements
In this section we will examine the fundamental part of the layout hierarchy: the

Node elements in the tree.  Nodes have five subtypes: Papers, Pages, Blocks, Edges and
Clusters.  Node elements are either visual objects, such as Pages, Blocks or Edges, or
they are elements that represent a grouping of these objects called Clusters.  Al l these
different subtypes o Node elements share certain attributes in common, as described in
section 6.2.1.4.  All but Edges (which are always leaves) maintain three separate lists o
children, one for each of the three element types, Nodes, Constraints and Updates.  We
will only deal wit Node child-lists here, leaving the discussion o Constraints for
section 3.1.2.  The discussion of Updates is introduced in section 3.1.2 and dealt with
extensively in section 6.2.2.

Since the Node elements define the structure of the tree, it is worthwhile
examining each Node subtype in detail



12

Paper

Page

Block

Edge

Required child

[ Page Cluster (Section) ]*…

[ Block Cluster (Article) ]*…

Optional child

Figure 5: The Node hierarchy

Figure 5 shows all of the Node subtypes within the hierarchical structure they form.  The
root of the layout tree is always a node of subtype Paper, which contains all of the layou
information.  Only two Node subtypes are permitted in the Node child-list of a Paper
Node: Page Nodes and Page-Cluster  Nodes.  The Paper Node maintains the correct
page numbering for all of the Page Nodes among its children.  The Page Nodes contain
information about a page in the paper such as its width and height.  The Page-Cluster
Nodes have Node child-lists that contain only other Page-Cluster Nodes or Page Nodes.
We can think o these Page-Cluster  as Sections within the paper, though they are
allowed to nest beyond one level for more complex organization.  For example, one could
have a hierarchy with two nested Cluster  layers such as: Paper 

�
 Cluster  

�
 Cluster�

 Page to represent a structure like book 
�

 chapter 
�

 section 
�

 page.   Thus a paper is
made up of sections, and these sections are made up of either other sections or pages.

Eac Page Node contains the elements to be laid out on that page, and follows a
similar pattern to that just described for the Paper Node.  Page Node can only have
Block-Clusters or Blocks in its Node child-list.  These Block-Clusters are differen
from the Page-Cluster  described above in that they can only have Blocks (or other
Block-Clusters) in their Node child-lists.

Blocks are the fundamental units of the Node hierarchy.  They are rectangular
areas containing text or graphics and are the elements within this framework that most
closely resemble the cut-and-paste text chunks that we see in Quark and PageMaker.  As
in these programs, Blocks have a position on the page, a width and a height.  However, in
contrast to what happens in these programs, the Blocks themselves do not mediate this
information. Each Block is defined to have an Edge Node for its top, bottom, right and
left sides.  These four Edge Nodes indirectly specify this position information.  Each
Edge has a single, one-dimensional position on the page, either vertical or horizontal.



13

In order to use the hierarchy just described, it is necessary to be able to impose a
complex set of constraints on various Node elements; these constraints are described
below.

3.1.2 A description of the layout constraints
When thinking about specifying layout constraints, it is important to consider the

layout as a dynamic entity.  Only by ensuring that solutions to all the constraints are
constantly being sought will the system be able to react to changing data in such a wa
that our secondary goal of multi-user editing/layout can be attained.  We can divide the
layout constraints roughly into low-level, mid-level and high-level constraints.  The low-
level constraints are largely syntactic in nature and, while configurable, will usually be
maintained by the machine automatically.  The mid-level constraints have defaults letting
typical configurations be made quickly, while allowing fine control when necessary
Finally, the high-level constraints will need to be extensively set up by the user and then
rendered by the machine.

Al l constraints present in the system are represented either by Constraint
elements or by Update elements.  These elements act upon some subset of the other
elements in the layout hierarchy.  In this system there are two different ways tha
constraints can be configured to determine the set of elements that they affect: an explicit
and an implicit set definition.

Using an explicit definition, the user simply specifies all the elements the
constraint should act upon, and the constraint maintains this list.  In this case, the
constraint will reside on the appropriate child-list (Constraint or Update) of the Node
that is the common ancestor of all of the Nodes in this explicit l ist, unless this lis
contains only one node, in which case the constraint will hang from that Node's parent.
Because of this rule, the constraint is always the child of an ancestor for every node that i
controls.

The implicit definition is based upon the following domain-specific heuristic:
very often constraints will be applied to all of the Node-type children of a given Node
element, and to no others.  As a consequence, constraints can be assigned to hang on the
appropriate child-list of a given Node n, and then to act on all of the Node elements that
are children o n.  When this approach is used, the constraint will begin to act on any
Node that is added as a child to the node, without an explicit command to do so.

Let us now consider each of the different kinds of constraints in turn.

3.1.2.1 Low-level layout constraints and syntactic requirements

There are only three low-level constraints.  The lowest of these is the syntactic
condition that all the content must remain on the page.  The system must also maintain a
second, related constraint that no two Blocks on a Page may overlap.  Fundamentally,
this is a syntactic constraint as well , but it is also configurable: each Block has its own
margin settings.  Provision is also made to allow the user to specify that certain elements
can, or should, overlap.  For instance, there are times when text needs to flow over a
picture or shaded box.  The last low-level constraint is the option to anchor certain
elements in place, preventing the system from modifying them (note that this can be a
any level of the layout hierarchy).  Overuse of this constraint will decrease the



14

effectiveness of the system, but this user-specified constraint can still be useful in man
cases.

3.1.2.2 Mid-level layout constraints

The system must also be able to organize the relationship among the elements
close to the leaves of the layout hierarchy forming the complex structures mediated b
elements closer to the base of the tree.  The mid-level constraints are responsible for
establishing this relationship.  As such, they act only on Block-Clusters and Blocks, and
as a result hang from either Pages or other Block-Clusters.  In some sense we can think
of these constraints as rules that Node elements high in the tree use to control the
placement of and relationships between their children.  The mid-level constraints include:

• Controlling the width of all the attached Nodes.

• Controlling the height of all the attached Nodes.

• Horizontally aligning all attached Nodes, referring to each Node as a whole, or to
its right- or left-most edges

• Vertically aligning all attached Nodes, referring to each Node as a whole, or to it
top or bottom-most edges

When combined, these constraints are sufficient to group the Blocks and create
complex layouts.  But there is a critical piece missing: the layout of newspapers revolves
around the information (i.e. the text and pictures) that needs to be laid out, and our
system needs to understand this structure (and in particular it needs to know the amoun
of space necessary to render this information), a topic to which we will return in section
3.2, The content hierarchy.

3.1.2.3 High-level constraints

There are many high-level constraints that would be advantageous to implement
in this domain.  Implementing them is beyond the scope of this project; but the current
work does provide a sound foundation for future efforts in this area.  Fundamentally, high
level constraints require a tight integration between the two hierarchies: they consist of
imposing layout constraints that use the content hierarchy to dictate aesthetic alterations
in the layout hierarchy.  Often the analysis of the content hierarchy will have to occur at a
very high level, possibly even requiri ng natural language processing and, certainly,
importance ranking.  The following is a list of some of the most important constraints that
fall into this category and would be excellent additions to this paradigm:

• Continuations should be near the top of a page.

• There should be more text in the first and last pages of a section and more ads in
the center.

• Ads usually should be at the bottom of the page.

• Smaller ads should come first.

• Conflicts between ads should be avoided (i.e., two ads for the same product or
service should not be on the same page).

• Al location of spare white space should be improved.



15

• Placement of the layou Node elements should be according to the relative
importance of their related elements in the content hierarchy (described in section
3.2).  If in the content articles are given a rank of importance within sections, then
the computer could place articles in different locations based on this information.
More specifically, Page elements containing the Tracks of important Bundles
(sections) would gravitate toward the front of the Paper, while on individual
Pages important stories would gravitate toward the top right and unimportant
stories would move down and to the left.

• The corollary of this constraint: ordering articles to ensure optimum packing.

These last constraints warrant some additional comments.  While white space is
handled well already by individualized margins on Block elements and by the ability to
space Blocks and Clusters, there are significant improvements that could be made.  I
would be helpful if a constraint could be applied that would allocate the white space
according to a heuristic that took some Gestalt approach, but still allowed the user to
override its decisions.  Further, the machine might want to request to insert a callout to
take up additional space if it deems it necessary

There is also the question of figuring out the best overall order for stories,
according to importance and space considerations.  Ideally, the machine could provide
suggestions as to possible article ordering and jump locations in order to optimize the
paper's look and length, correlating this with the contrasting goal of keeping related
content together and important stories in certain locations.

3.2 The content hierarchy
The content information also forms a hierarchy structure: each paper is comprised

of Articles (which for practical purposes could also be ads, banners or isolated graphics).
Eac Article is comprised of a set of distinct pieces of information, or Tracks.  A typical
article might have the following Tracks, but there are several others that might appear as
well:

• Title

• Byline

• Body Text

• Graphic

• Caption

• Jump (continuation) text

• Continuation Title

Eac Track contains a specific amount of information that requires a certain
amount of space to lay out.  Most of these Tracks are laid out within a single block, bu
some of them, notably Body Text, will almost certainly exist in multiple blocks that need
to be chained together.

Articles can be grouped together further to form sections, chapters or other
divisions.  Articles are then a special case of a more general type, a Bundle, that can
contain either other Bundles or Tracks.  Thus we have a tree structure with two types.



16

The root of the tree is a Bundle that contains all of the content in the paper.  Thi Bundle
contains an arbitrari ly deep tree of other Bundles (often two layers deep: sections and
Articles).  These Bundles ultimately contain Tracks that house the constraint
information itself.

3.3 Relating the two hierarchies: duct constraints
We have a very complicated interrelationship between the structure of the conten

and the structure of the layout.  Fundamentally, we have two hierarchical structures
describing the same data.  From root to leaf they are, respectively:

Content:  Bundle 
�

 …
�

 Track

Layout: Paper 
�

 Page-Cluster  
�

 … 
�

 Page 
�

 Block-Cluster  
�

 … 
�

Block 
�

 Edge

However, there is some overlap in the two structures.  Tracks will be laid out using a set
of Blocks.  There needs to be a means of specifying what content data should flow into
each of the Blocks in the layout.  Because this involves the “flowing” of data from the
content hierarchy into the layout hierarchy, these constraints are called Ducts.  Ducts are
mid-level syntactic constraints, and they must mediate another important factor as well:
the Blocks assigned to lay out a given Track must have the exact amount of area
necessary to lay out the material in this Track.  Because of this control over layou
Nodes, Ducts, li ke the other constraints, are clearly part of the layout tree.  However, we
can also see Ducts as being part of the content hierarchy, as they in effect divide Tracks
into the pieces that are placed in the various Blocks.  Al though Ducts do belong to bot
trees to this extent, practical considerations argue for Ducts hanging from the layout tree
alone just like the other constraints.  Still, each Track in the content tree remembers
which Ducts are mediating its data flow in order to properly supervise this flow.



17

Chapter 4: The LILT user interface
The user interface in LILT  attempts to use the strongest features of Juno-2 and

GLIDE and to supplement these with some new and powerful elements.  The following
screenshot is a typical view of the system

Figure 6: A typical view of the system

Like the other programs discussed, LILT  has a WYSIWYG (What You See Is
What You Get) interface that displays the current layout.  This resides in the panel tha
takes up the left portion of the screen.  Like GLIDE, LILT  provides buttons for adding
objects to the system, but it places these buttons on two separate toolbars (right side): one
for layout elements and the other for content elements.  It provides a third toolbar (top)
with many useful controls, including the button for deleting elements from the system
and the button for bringing up LILT's "Properties" window.

LILT’s "Properties" window is separate from the main GUI and shows details
about the currently selected element, letting the user modify these properties.  For



18

instance, when an Edge Node is selected, the window enables the editing of the Edge
Node's two properties: whether or not it is Anchor , and its current position:

Figure 7: The " Propert ies" window with an Edge selected

Other elements in the system have different and much more complicated sets o
properties that appear in this window when they are selected.

Juno-2 uses a dual-view interface to let the user more effectively manipulate the
model data that represent the picture being drawn.  One view is the WYSIWYG view o
the picture itself, which does not show the constraints involved.  The second is a text
control that lets the user see, and explicitly modify, the Juno-2 Language program that
produces this picture.  The user can modify either view, while the other one refreshes to
reflect these changes.  LILT  also uses the document-view user-interface model to allow
multiple views of the same data (in this case, information about a newspaper).  In
addition to the WYSIWYG pane on the left LILT  has the two tree controls on the right
Each presents a means for editing its portion of the newspaper model: the layout and
content hierarchies respectively.  By manipulating the elements in these trees, the user
can change the underlying model and watch these changes reflected in the WYSIWYG
view.  Conversely, changes in the WYSIWYG view will cause the tree-views to refresh.
The tree controls provide an intuitive means of visualizing not only both the layout and
content data, but also the constraints themselves, as the constraint language LILT  uses
(described in section 3.1.2) inserts these constraints into the hierarchy.  The panel at the
bottom of the screen displays status information.  On the left, a string provides feedback
to the user about the state of the system, including changes to either of the hierarchies and
any errors that occur.  On the right, a meter shows the amount of energy in the mass-
spring-update model (discussed in section 6.1).  Inside the meter, a string is displayed
that indicates the number of "cps" or "cycles per second" the model is performing, a
measure of how fast the simulation will converge on a solution to the constraint problem.



19

Chapter 5: An example interaction with LILT
In order to better understand the system, it is useful to examine an extended and

detailed example of a typical interaction within it.  The goal here is not to specify every
aspect of the system, but rather to show what a typical “hands-on” experience with the
program is like, and how it behaves as the user interacts with it.��� �� ������� �	
� 
 ���� 	
� ���� ��
���
 �� �	� ������ 
�
 �
��� �� ����� ���
���� 
 ��� �
���� �� ��
�� �� ���
��� �	� �
���� �	� ���� ���� ���
 �� 


 ��� �������� �����	 �� �	� 	���
��	��� �� �	� ������� �
���� 
�
 �������� ��� �� 
����� �	� ���� 


� �� �	��
���� 	���
��	� ������ �� �	�� �
��� �	� ���� ������� �	� ���� ������� �� �	� �
���� 	���
��	� �
��� ! ��
�"� 
�
 ����#� �	� $��� �
��$ ������ �� �	� �����
� ����� �	� �
����%���� ������
���� �	� ����� &�� '����� (� �����"� )	�� �����
���� ��� ���� 
 ��� �
�� ���� �	� �
���� ���
��� 


� ���	 
 �
��%����
��� 
�
 
 ���%�*���
� ������
��� ����� �	� �����+ ,-. �/��
��� �	��� ������
���� 
�� 
�����
 ���	 �	� �������� 
��
�	���� ����� �	�� ���� 
����� 
����	�� ,-. 0 �	
� 
�� 


�
 ����
�	 �	� ����� 


�
 1
��� )	�� ��
������ ��� �	���������
���� �� ���������� ���	 
 ���� �	
�2324 �������� 
�� ������
���� ��*� �� �	� 	���
��	������ �	� ������ 
������� �� 
�� �	�,-. 0 �	�� 
������ 5��
��� �	�� 	
� �	� ������ �� 
��*�� ������
��� ����� 
 ������� �� �	�,-. 0 �� 
�������6���� 


��� �	� ��+ ,-. � �	� ���� ������
� �� 


 
7890: ! ������� �� �	� �����+ � �� ����#��� �� $1
�� ;$ �� �	� �
���� ����� 
�
 �	�� ����#��� �� �	� $<�� =������$������ �� �	� �����
� ����� �	� �
���� ����� )	�� 


� �	� ���7890: ! ,-. � 
�
 ���
�����
��
 ���%�*���
� ������
���� �� 
 �����
� �
����� �	� ���� 


� 
>8-?@ ,-. 
�
 
7890: ! ,-. ����� �	�� ��� 7890: ! ,-. � 
�
 �	�� 


� ���>8-?@ ,-. 0 ����
�	 �	�������
 7890: ! ,-. � 6���� 
�� �� �	�� �� 
���� �	� ������ ���� ���# 
� ��������



20

Figure 8: Step 1ABC DCEF GFCH ID JKCLFIDM FBC NLOPQF IG FP GHCJIRO JPDGFKLIDFG SCFTCCD FBCGC DPUCG FBLFCDRPKJC L UCGIKLSNC LKKLDMCVCDFW XD PKUCK FP UP FBIGY FBC QGCK RIKGF GCNCJFG FBC DPUCG ID FBCBICKLKJBO FBLF BC PK GBC TLDFG L DCT JPDGFKLIDF FP LHHNO FPY LDU FBCD JNIJZG FBC SQFFPD ID FBCNLOPQF[FPPNSLK JPKKCGHPDUIDM FP FBC DCT JPDGFKLIDF FOHC FBLF BC PK GBC TLDFGW ABIG TINNJKCLFC FBC DCT JPDGFKLIDF LDU HNLJC IF LF FBC LHHKPHKILFC HNLJC ID FBC BICKLKJBOW ABC QGCK VLOFBCD TLDF FP FTCLZ FBC HLKLVCFCKG PR FBIG JPDGFKLIDF \IR IF BLG LDO]W ABIG IG UPDC SO GCNCJFIDMFBC JPDGFKLIDF ID ^QCGFIPD LDU FBCD QGIDM FBC _`KPHCKFICG_ TIDUPT FP JBLDMC FBCGCHLKLVCFCKGW aPK CELVHNCY SO UCRLQNFY TIUFB JPDGFKLIDFG FKO FP VLZC LNN PR FBCbcdef FBCOLHHNO FP BLgC L RIECUY LSGPNQFC TIUFBW hQFY PRFCD L GIFQLFIPD VLO IDGFCLU JLNN RPK L TIUFBJPDGFKLIDF FBLF LFFCVHFG FP VLZC LNN PR IFG LFFLJBCU iPUCG BLgC FBCjklm TIUFBY L JBLDMC TCGCC INNQGFKLFCU SCNPTn



21

Figure 9: Step 2, Sample Property Panelopqr pst uv wtx pyq zvqx pt q{r|t} pyuv pq~y�u�zq pt ��� pyxqq �qs ~t�vpx�u�pv�qpsqq� pyq |�vp pst������ ���q�� � �txu�t�p�| �|u��{q�p ~t�vpx�u�p� vqp pt �|u�� ���� ��qxpu~�| �|u��{q�p �t�vpx�u�p� vqp pt �|u�� pyq ����� tw pyq |qwp������ ��� pyq ���� twpyq xu�yp ������ ��� |�vp|} �� q�z�|�su�py ~t�vpx�u�p� �yq v}vpq{ su|| �ts |tt� |u�q pyuv�



22

Figure 10: Step 2� ¡ ¢ £¤¥ ¦¢¡§ £¦ ¨©¤ ¢ ¡ ª¦¡¤ ¢© «§§¬­ « ¦¡¢ ©¨ ®©¯¦¢¤«£¯¢¦ °¡¢±¡¡¯ ¢ ¡ ¤¡²«£¯£¯³´µ¶·¸ «¯¥ ¢ ¡ ¬©±¹¬¡º¡¬ »µ¼½¾¿À ®©¯¢«£¯£¯³ ¢ ¡ Á¶Â¿½ «¯¥ »¶Ã½¾ÀÄÅÃ¾½ ¥¡¦®¤£°¡¥ £¯ ¦¢¡§ ÆÇÈ­ ª¦£¯³ ¢ ¡ ¦«²¡ ¢¡® ¯£Éª¡ «¦ ª¦¡¥ £¯ ¦¢¡§ ÆÊ ¢ ¤¡¡ «¥¥£¢£©¯«¬ ®©¯¦¢¤«£¯¢¦ «¤¡ «¥¥¡¥Ë «Ì¡¤¢£®«¬ Í¬£³¯²¡¯¢ ®©¯¦¢¤«£¯¢ ¢ «¢ «¬£³¯¦ ¢ ¡´µ¶·¸ «¯¥ ¦ª°¹»µ¼½¾¿ÀÎ¦ ÏÐÑ� ¦£¥¡¦Ò «¯©¢ ¡¤¡Éª«¬¹±£¥¢  ®©¯¦¢¤«£¯¢Ò «¯¥ ¨£¯«¬¬­ « Ó©¤£Ô©¯¢«¬ Í¬£³¯²¡¯¢ ®©¯¦¢¤«£¯¢ °¡¢±¡¡¯ ¢ ¡ °©¢¢©² ©¨¢ ¡ ´µ¶·¸ «¯¥ ¢ ¡ ¢©§ ©¨ ¢ ¡ ¦ª°¹»µ¼½¾¿ÀÇ Í¨¢¡¤ ¢ ¡¦¡ ®©¯¦¢¤«£¯¢¦ «¤¡ «¥¥¡¥Ê ¢ ¡ ¦­¦¢¡²¬©©Õ¦ «¦ ¨©¬¬©±¦Ë



23

Figure 11: Step 3Ö×Ø ÙÚÛÜ ×Ý ÞÜÙ ÚßàáâãÙâÞ Û×âäÞØÚàâÞä ÞÜÚÞ ÚÛÞ ×â ÞÜÙ åàÝÝÙØÙâÞæçèéê ×â ÙÚÛÜ ×Ý àÞäÚÞÞÚÛÜÙå ëìçéêí àÞ àä âÙÛÙääÚØî Þ× äïÙÛàÝî ÙðïßàÛàÞßî ÞÜÙ ÚÝÝÙÛÞÙåæçèé Ý×Ø ÙÚÛÜ ëìçéñ òâ×ØåÙØ Þ× ÚÛÛ×ãïßàäÜ ÞÜàäí ÞÜÙ óäÙØ ÝàØäÞ äÙßÙÛÞä ÞÜÙ Û×âäÞØÚàâÞ àâ ôóÙäÞà×âí õÜàÛÜ ß×Úåä àÞ àâÞ×ÞÜÙ ö÷Ø×ïÙØÞàÙäö õàâå×õí õÜàÛÜ õÙ ÛÚâ äÙÙ øÙß×õ àâ ÖàáóØÙ ùúñ ûÙðÞ ×âÙ âÙÙåä Þ× ÙâäóØÙÞÜÚÞ ÞÜÙ Û×âäÞØÚàâÞ àä øÙàâá ÚïïßàÙå Þ× Ú äïÙÛàÝàÛ äÙÞ ×Ý â×åÙäí ØÚÞÜÙØ ÞÜÚâ Úßß ×Ý ÞÜÙëìçéêÞÜÚÞ ÚØÙ àÞä äàøßàâáä àâ ÞÜÙ ÜàÙØÚØÛÜî üàâ ×ÞÜÙØ õ×Øåä ÞÜÚÞ àÞ óäÙä Úâ ÙðïßàÛàÞ ÚÞÞÚÛÜãÙâÞåÙÝàâàÞà×âýñ þÜàä àä å×âÙ øî åÙäÙßÙÛÞàâá ÞÜÙ ÛÜÙÛÿ�ø×ð ÚÞ ÞÜÙ Þ×ï ×Ý ÞÜÙ ö÷Ø×ïÙØÞàÙäöõàâå×õñ òÞ àä ÞÜÙâ ï×ääàøßÙ Þ× äÙßÙÛÞ àâåà�àåóÚßßî ÙÚÛÜ ×Ý ÞÜÙ ÚÞÞÚÛÜÙåëìçéê àâ ÞÜÙ ßàäÞ ø×ðÚÞ ÞÜÙ ø×ÞÞ×ã ×Ý ÞÜÙ õàâå×õí Úâå ÞÜÙâ Þ× äÙßÙÛÞ ÞÜÙ Û×ØØÙäï×âåàâáæçèé ÞÜÚÞ äÜ×óßå øÙÚÝÝÙÛÞÙå øî ÛÜ××äàâá Úã×âá ÞÜÙ ØÚåà× øóÞÞ×âä àâ ÞÜÙ ãàååßÙñ



24

Figure 12: Step 3, Sample Property Panel$�� ������ ���� 	� �� ���
	�� � 
������	�� ��� ��� �	��� �� ��� ���	�� �	�����
��������� ��������� ���� ���� ��� �	��� 
������	��� ���
	�	�� ���
� ���� �� ��� �� ���� �!��"��� ���� ��� �
���� �	��� �� ��� �� ��� ���
#� 	� ��	�� ��
������	��� �� ���! ���	� �	���� �	�������
� �� ��
� ����� ��� 
������	���%& $�	� ��� 
������	�� 
���� �� ����� 	� �'�
��! ������� ��!" ��� 	� 	� ������ �� ���� ���� ()(* �������� �� 	�������� �����
�� ��� ���	���	��� ��� ��	��� 
������	���& +	���" ��� ���� ����
�� ���,-.� ���� ��� ��� 
������	�� ������
������" 	� ��	� 
��� ���������� 	�  ����	��& /�'�" ��� ���� 
�	
#� ��	#��! � �	��� 
�	
#" ��	
��	�� ��� ����
� ��� ����
�	��% ��� ����� ���0.1� �� ��� ,-.� ���� �� �� ��� ����� ��
������	�& 2� ��	� 
���" ��	� ������ �� �	���� �� ��� �	�������� �� ���������0.1��& $�	� �	��
���� ()(* �� ������	�� 	� ����� ������! �'	��� �� �������� �	��� 
������	�� ���� ����	�� ����	� ����" ��� ��� � ��� ��� 	� ����� 	� ���& $�� ���� ���	�� 	� ���� ���� �� ��� ��� �	3���������� �� ��	� 
������	��& 4���� 
������	�� ��	� ���
���" ��� �!���� ������ ���# �	#� ��	�5



25

Figure 13: Step 46789: ;89< 7=>:? 8@9 >;9: @A; <:=B>C9B AD A88:AC8EF9 GAH=>8 7=: 8@:99 IG=CJ;? ED A ;8HG98@A8 E; 8H<ECAGGH >;9B 7=: A ;EDKG9 LMNOPQRST U=:8@ =7 89V8W X@E; ;8:>C8>:9 E; ;= 8H<ECAG 8@A8 E8 E;>;97>G 8= C=ED A 89:Y 7=: E8Z A[Q\]^W X@9 D9V8 ;89< ED 8@E; 9VAY<G9 E; 8= ABB ;=Y9 C=D89D88= 8@E; B=C>Y9D8? U@EC@ CAD 8@9D I9 BE:9C89B ED A GA89: ;89< ED8= 8@9[Q\]^ 8@A8 @A; _>;8I99D ABB9BW6BBEDK C=D89D8 9G9Y9D8; 8= 8@9 C=D89D8 @E9:A:C@H E; F9:H ;EYEGA: 8= ABBEDK GAH=>89G9Y9D8; 8= 8@9 GAH=>8 @E9:A:C@HW `H ;9G9C8EDK AD 9G9Y9D8 AG:9ABH <:9;9D8 ED 8@9 8:99? ADB8@9D CGECJEDK 9E8@9: 8@9 aABB `>DBG9a =: aABB X:ACJa I>88=D; =D 8@9 I=88=Y :EK@8 =7 8@9;C:99D? 8@9 >;9: CAD I>EGB >< AD A:IE8:A:H @E9:A:C@HW bD =>: 9VAY<G9? 8@9 >;9: @A; ABB9B Ac\deQR fAD 9G9Y9D8 8@A8 C=D8AED; =8@9:c\deQRT ADBg=: hMiPjTk 7=: A D9U G9AB ;8=:HWX@9D @9 =: ;@9 @A; ABB9B 8U=hMiPjT f8@9 IA;EC 9G9Y9D8 =7 8@9 C=D89D8 8:99 U@EC@:9<:9;9D8; A GED9A: 7G=U =7 ED7=:YA8E=D? I9 E8 89V8 =: A K:A<@ECk I9D9A8@ 8@E;c\deQRW 6789:8@9;9 ABBE8E=D;? 9AC@ 9G9Y9D8 E; ;9G9C89B ED 8>:D ADB E8; <A:AY989:; A:9 9BE89B ED 8@9al:=<9:8E9;a UEDB=UWX@9 hMiPj <:=<9:8E9; G==J GEJ9 8@E;Z



26

Figure 14: Step 5, Sample Property Panelmn opqr stnuvw opuxu qr t rstyu oz u{qo opu nt|u z} opu~���� tn{ oz rsuyq}� oput|z�no z} yznouno opqr~���� ptr� �n t xutv �zx�qn� r�rou|w opqr ruyzn{ stxt|uoux �z�v{qnrout{ �u opu tyo�tv yznouno oz {qrsvt� �zx rz|u xu}uxunyu oz qow vq�u t }qvunt|u�� �o qr �zxopnzoqn� opto opqr �tv�u qr qnou�xtvw �pqyp rou|r }xz| opu }tyo opto |zro yznouno qr z} tnqnou�xtv nto�xu �� opuxu txu znv� t }q�u{ n�|�ux z} yptxtyouxr qn t �q�un rozx�w }zx u�t|svu����~ y�xxunov� |t�ur opu trr�|soqzn opto utyp t{{qoqzntv yptxtyoux ot�ur u�tyov� �� |zxur��txu qnypur oz vt� z�o� ��o opu u�tyo rq�u qr nzo tr q|szxotno tr opto opu tv�zxqop|r �ru{�qopqn opu r�rou| �u ytst�vu z} {utvqn� �qop opu �xtn�vtxqo� opuru qnou�xtv �tv�ur q|szru��}oux t{{qn� opu yznouno tn{ u{qoqn� qor stxt|uouxr opu r�rou| rpz�v{ vzz� vq�u opqr�



27

Figure 15: Step 5��� ��� ���  ¡¢ ��� �£¤¥ ¦� ¡� �§ ¨§¢¢�¨� ���©ª«¬­®¯°± ¤¥§²¢� §³ ¨§¢��¢� ��¤� ´¤�¤µµ�µ ¡¢ ���  ¶ �§ ���·®¸¹º ��¤� ´¤� ¨»�¤��µ ¡¢ ��� ³¡»�� ¼ ��� �½ ¾¢ §»µ�» �§ µ§ ��¡�¿ �¤¨�À¦§¨Á ��¤� ¡� Â§¡¢Â �§ »�¨�¡Ã� ¨§¢��¢� ¢��µ� �§ �¤Ã� ¤Ä¸­« ¨§¢��»¤¡¢� ¤  ¦¡�µ �§ ¡�½ ¾¢ ��¡��£¤¥ ¦�¿ �´§ Ä¸­«± ¤»� ¤µµ�µ¿ §¢� ³§» ���Å®Æ­Ç §¢ �§  �§ »�¨�¡Ã� ��� �¡�¦� ¨§¢��¢�¿ ¤¢µ§¢� ³§» ��� §���» �´§Å®Æ­Ç± �§ »�¨�¡Ã� ��� ÅÆÈÉ Ê¯Ë«½ ����� ¨§¢��»¤¡¢�� ¤»� ¤µµ�µ Ì²��¦¡Á� ��� §���»�Í ÀÎ ��¦�¨�¡¢Â ��� ¢§µ�� ���Î ��§²¦µ À� ¤��¤¨��µ �§¿ ¤¢µ ���¢ ¨¦¡¨Á¡¢Â ��� Ï¤µµÐ²¨�Ï À²��§¢½ Ñ³��» ��� ��¦�¨�¡¢Â §³ ¤ ¢�´¦Î ¤µµ�µÄ¸­«¿ ��� ÏÒ»§ �»�¡��Ï ´¡¢µ§´ ¦§§Á�¦¡Á� ��¡�Í



28

Figure 16: Step 6, Sample Property PanelÓÔÕ Ö×ÕØ ÙÚÛ ÜÔÕÛ ×ÕÝÕÙÜ Ú Þßàáâ ãÛ ÜÔÕ ÙäÛÜÕÛÜ ÜØÕÕ ÚÛå ÙÝãÙæ ÜÔÕ çèäÛÛÕÙÜ ÜäéÕÝÕÙÜÕå ÓØÚÙæç êÖÜÜäÛë ÚÛå ÜÔÕ ÙäÛÜÕÛÜ ìãÝÝ íÝäì ãÛÜä ÜÔÕ ÚÜÜÚÙÔÕåîïðáâñò óíÜÕØ ÜÔã×ôØäÙÕ×× ÔÚ× êÕÕÛ Ö×Õå Üä ÙäÛÛÕÙÜ ÜÔÕ ÜãÜÝÕÞßàáâ ìãÜÔ ÜÔÕ îïðáâ äÛ Üäôë ÜÔÕ ×õ×ÜÕö ìãÝÝ ÝääæÝãæÕ ÜÔã×÷



29

Figure 17: Step 6øùúû úüýú úüû þÿúúþû �û� �úù� �ÿ�� ù� úüû ÿ�ù� �ù� úüû úÿúþû
���	 ÿ� úüû �ù�úû�ú ú�ûû üý��ÿ�ý��ûý�û� 
ý� �üù�� �� úüû ���û� ý��ù��� ÿ��ÿ�ýúÿ�� úüýú úüû �ù�úû�ú �ù� úüÿ� ú�ý�� üý��ûû� þýÿ� ù�ú� ý�� úüýú úüû ���úû� �ý� ý�þû úù �ÿ�� û�ù��ü ��ý�û úù þý� ù�ú ýþþ úüû �ù�úû�ú�$üû �úù� �ÿ�� ÿ� �úÿþþ ��û�û�ú ÿ� úüû �ù�� $û�ú $�ý�� 
ý� �üù�� �� úüû þù�û� ý��ù��� ý� ý���� üý� �ùú �ûú �ûû� ý��û� �ù� ÿú ý� ù� �ÿ���û ���$üû ��� �úû� ù� úüû û�ý��þû ÿ� úù �û�ù�ÿúÿù� ù�� !�"# úù ÿú� ý���ù��ÿýúû �þý�û ù�úüû �ý�û� %ûþû�úÿ�� úüû !�"# ý�� ��ý��ÿ�� ÿú �ÿúü ý �ÿ�üú �ù��û �þÿ�� �ùû� úüÿ� 
ý�ýÿ�� ý�ÿ�üú �þÿ�� �ùû� �ùú �üý��û úüû �ûþû�úÿù� �úýúû�� $üû �ùþþù�ÿ�� �ÿ���û �üù�� úüû �û�ù�ÿúÿù�û� !�"# ý�� ý� ý��ÿúÿù�ýþ �þù�� úüýú ÿ� &'�()�*+ ÿ� �þý�û ÿ� ù��û� úù �ÿ��þýúû ý��ÿúÿù�ýþ�ù�úû�ú úüýú �ù�þ� �û �þý�û� ù� úüû �ý�û,



30

Figure 18: Step 7-./ 012 345 60278 920 :6 2;<=>?2 @1<0 @.:9A 1<772? >B 01>6 60./C @2/2 6:AA2?9CA202/=>?2A 0. D2 .B 7</<=.:?0 >=7./0<?E2 <?A 92?F012?2A E.?6>A2/<D9CG H2 E<? 6>=:9<0201>6 E.?A>0>.? 6>=79C DC D/>?F>?F :7 012IJKLM 7/.72/0>26 B./ 012 N.AC O2;0IJKLM P<6 622?>? ->F:/2 QRS8 <?A >?E/2<6>?F 012 E.?02?0 92?F01 P./ </2<SG -.99.@>?F 01>6 7/.E2A:/28TUTI@>99 /26>V2 012 D9.EW6 >? ./A2/ 0. 9<C .:0 012 <AA>0>.?<9 =<02/><9X



31

Figure 18: Step 8YZ[ \][ Z^ ^Z__`^] [ab[ [a] Z^]c d^ Zefd\\deg [` h]i`[] [ad^ jZka ^_bk] [` [a] ^[`cl`e [a] mc`e[ _bg]n od^ `c a]c pqr ^[]_s [a]es d^ [` bhh b tuvw de `ch]c [` _\bk] ^`j] `m [ad^^[`cl `e b xbky _bg]n za] mdc^[ ^[]_ de [ad^ _c`k]^^ d^ [` bhh [a] e]k]^^bcl \bl`Z[ ]\]j]e[^n{`c [a] ^by] `m ^dj_\dkd[ls \][ Z^ |Z^[ bhh b ^]k`eh _bg] fd[a b ^deg\]}~��� [ab[ f] fbe[ [`k`e[bde [a] c]^[ `m [a] ^[`cl�



32

Figure 19: Step 9������������� ��� ���� ���� �� �� �������� ���������� ��� �������� �� ��� ¡¢£ ������ ¤�������¥ ��� ������ �� ��� ¦��§ ¨�©£ ¨ª«¢¬­ ®��� �� ����¤������� ¯� ����¥ ��� �����¤�����¥ ¯������ �� ��� ��� �� ��� ¡¢£ °±�������° ������ ����� �� ²�¥��� �³´ ®�� �����¤�����¥ ¯������� °µ����� ¶������� ·����° ��� °¶����� µ������� ·�����° ���¸��� � ¤������� ��� ���� �� �����¤��� ��������� ��� ¯���¥ �������� ¯� ��� ���������� ¹¯� ��¸��¥ ���¤��������º ��� � ¤���� ��� �������¥ ����� ����� ��� �������� ��������¸���´ ¶���� ����»��¥ �����  ¡¢£ �� ��������� ��� ���� ������¥ ��� °µ����� ¶������� ·����° ¯������ ��� ��� ¼���»����� ��� ������� �������� ���� ¯� ��������´ ·�½� ��� °¶������ ¶�� µ�¯���¥�° ����» ¯�½ ����� ��¯� ����������� �� ����� �� ����� �¦¾�¢¬ ���� �� �� � ������� ¯����� �� ��� ���� �� ¯����������´ ®��� � ���¦¾�¢¬ �� ��������� ¥�¸��¥ �� ��� ��¥��� ¯����¿



33

Figure 20: In the middle of Step 10ÀÁÂÃÄ ÃÅÁ ÆÇÃÃÈÉÅ ÊÁËÁÉÃÁÌ ÀÍÌÁÎÆ ÏÐÃÃÍÑ ÒÎ ÓÔÁÎÎÁÌÕ ÖÅÒÎ ÉÈÐÎÁÎ ÃÅÁ×ØÙÚ ÉÍÑÎÃÔÈÒÑÃ ÃÍ ÏÁÛÍÜÁÌ ÃÍ ÃÅÁ ÈÓÓÔÍÓÔÒÈÃÁ ÓËÈÉÁ ÒÑ ÃÅÁ ÅÒÁÔÈÔÉÅÝÄ ÈÑÌ ÃÅÁ ÑÁÞßàáÙâ ÃÍ ÏÁ ÒÑÉËÐÌÁÌ ÒÑ ÃÅÁãÍÌÝ ÖÁÂÃ ÉÍÑÃÁÑÃ äËÍÞå



34

Figure 21: After Step 10æçèé êëìé íëî ïðñéì ð òìóô íëîèïìðõöì ïçðí÷ì ñíîèö ð øëóïì îçðî ùëñöê îìíê îë éçóèíúîçì öðó÷ì ûüýþÿ ëí �ð÷ì � èé ð��öèìê� �ñî éñïç ð øëóïì ùëñöê õì ÷ìíìóðîìê õô îçì ëîçìóïëíîìíî ëí �ð÷ì � �îçì óìðéëí ùì ðóì ïóìðîèí÷ îçèé 	ñ�� èí îçì øèóéî �öðïì�� �í ëóêìó îëéè�ñöðîì îçèé� èí éîì� ��� ùì éè��öô �ëòì îçìûüýþÿ ëí îçì öëùìó öìøî éë îçðî èî èé �ñéçèí÷ð÷ðèíéî õëîç ëø îçì ûý�� 
��
 ûüýþÿ�� öèúì îçèé�



35

Figure 22: After Step 11, page 1&������ ��� &���� �� ��� ���� ���� ��� ���� � ���!  ��� ��� ��"� #��$%  � $ �� �'�$ �� ������(����� �# ���� ))*



36

Figure 23: After Step 11, page 2

This brings our extended example to a close.  The example has shown how an
Article/Clump-level content and layout can be handled.  Clearly, higher leve
organization is also necessary to generate a complete layout.  But the process for
generating higher-level constraints is very similar to that of this example, the major
difference being that all the constraints apply to Clusters.  This being the case, let us turn
to a more comprehensive look at the components of the LILT  system.



37

Chapter 6: Algorithms
There are a number of unique algorithms that have been developed for this

projec , the most important of which is the constraint satisfaction scheme.  In creating this
scheme, the goal was to produce a system that provides for as many of the constraints
described above as possible in a semi-automated layout framework.  Toward this end, a
system based on the mass-spring-update model in GLIDE was used.  A mass-spring-
update model provides the necessary semi-automated qualities allowing the user to
anticipate the motion of objects in the simulation, much as one might predict the motion
of billiard balls.  However, significant modif ications had to be made in order to render
such a scheme compatible with the newspaper layout domain, and it is these
modifications that are described below.

It is important to note that the dozens of constants in the algorithms described in
this section must be chosen very carefully.  As in GLIDE, it is vital for the various
spring-constraints in the system to have the appropriate relative strengths in order for the
system to behave as expected.  It is even more vital for the constants affecting the
simulation itself to be correct if the simulation is to converge quickly without introducing
unacceptable levels of numerical instabil ity.

6.1 The overall document model
As in GLIDE, the mass-spring model here is based upon a modified Euler method

for numerically solving for the positions of the masses.  However, the algorithm in
GLIDE has been modified to accommodate the dual-tree data structure described above.
Instead of maintaining simple lists of nodes and springs, we use the tree structure itself t
find the nodes and springs to update.  Further, the simulation needs to be able to operate
on both the layout and the content hierarchies, and it needs to be able to enforce
constraints that do not conform to the mass-spring model (such as those that modify the
attributes of other constraints in the system), or updates.  Based on these criteria, the
high-level algorithm for the constraint satisfaction algorithm is as fol lows:

Let us define the following variables:

The root node of the layout tree to be n
The root node of the content tree to be c,
The energy in the system on a logarithmic scale to be E (has a range from 0 to 1),
The time in the simulation to be T,
The change in time to b dT,
The damping constant to be Damp, and
The minimum energy for the simulation to continue to be min

Various constants ki

T = E = 0
Initialize both trees appropriately.

Repeat
{

dT = k1 + k2 * E
Damp = (2 - E/k3) * Sqrt(the maximum spring constant)



38

Call ApplyUpdates on n.

Call ApplyConstraints on n, and note the maximum spring constant applied.

Call FreshenNodes on n, and note the maximum squared-momentum engendered.

Call UpdateContent on c.

Update the Energy:
E =log( 25 * the maximum squared-momentum / number of Edges in N)
if( E > 1)

E=1

if(E < Kmin)
pause the simulation until the user changes something

}

Each of the four function calls in this code is discussed in detail below, but the
other code deserves some explanation first.  Getting the mass mass-spring simulation to
work in the newspaper domain is much more difficult than it is in graph layout, since the
model must be driven harder.  The numerical methods used in GLIDE have been
carefully tweaked in order to overcome the severe numerical instabil ity that can appear
when many of the springs in the model are strongly pressed against each other, a situation
that occurs constantly in the newspaper domain.  The key improvement that reduces the
amount of numerical instabili ty is to calculate a scaled value for the amount of energy in
the system and then to vary dT and the damping constant based upon the value of thi
energy.  This allows the simulation to proceed quickly when there is high energy, but as
the energy falls off, the simulation slows and gains precision in order to reduce the
numerical instability that occurs as it approaches its equilibrium state.  This enables the
simulation to converge quickly, while still maintaining numerical stabil ity in all but the
most unusual circumstances.

6.2 Specifics of the layout model
The actual behavior of the layout model is dictated by how the three calls on the

root element (which is always a Paper Node) made in the algorithm above are
implemented.  It is therefore necessary to describe the attributes of each of the elements
in the tree, and how they work together to make the model operate.

6.2.1 Node element algorithm
Al l Node elements are expected to provide a set of behaviors that can be called

upon by other parts of the system.  First, there are the three functions used in the listing
above: ApplyUpdates, ApplyConstraints and FreshenNodes.  In general, these are
functions called by a parent on each of the elements in its Node child-list in order to
update a specific aspect of the simulation and constraint solver (note that the root node
represents a special case, as the functions are instead called by the high-level code shown
above).  Node elements provide at least a minimal set of attributes and behaviors that can
be used by Constraint or Update elements when doing their calculations.  Each Node



39

element also has certain values associated with it for use in the mass-spring simulation
which include: Momentum, Position and Force (Masses are assumed to be unit sized).

6.2.1.1 The ApplyUpdates function

This function provides a means for all the Update elements in the Tree to perfor
their task.  Each Node element in the tree performs the following algorithm when
ApplyUpdates is called:

Perform any pre-processing this Node-type requires.
Call ApplyUpdates on every element in the Node child-list.
Call Update on each of the elements in th Update child-list.
Perform any post-processing this Node-type requires.

For efficiency reasons, some of the Node attributes are actually calculated during the pre-
and post-processing steps in this function, and then cached in the node for one simulati
cycle.

6.2.1.2 The ApplyConstraints function

The ApplyConstraints function is very similar to the above, but operates on
Constraint elements instead.  As part of the simulation algorithm above, it is important
to track the largest spring constant seen, so ApplyConstraints does this as well:

Perform any pre-processing this Node-type requires.
Initializ maximumSpringConstantSeen to 0.
Call ApplyConstraints on every element in th Node child-list, updating maximumConstantSeen

after every call.
Call ApplyForces on each of the elements in th Constraints child-list, updati

maximumConstantSeen after every call.
Perform any post-processing this Node-type requires.
Return maximumConstantSeen.

6.2.1.3 The FreshenNodes function

Most Node elements implement this function to do a recursive descent similar to
the previous functions:

If this Node is Anchored
Return 0.

Perform any pre-processing this Node-type requires.
Initializ maximumMomentumSquaredSeen to 0.
Let F be the Force that has been applied to this node during the last ApplyConstraints call.
For each Node element n in the Node child-list

Apply the force of F * (Number of Edges in n / Number of Edges in this Node) to n.
Call FreshenNodes on every element in th Node child-list, updating

maximumMomentumSquaredSeen after every call.
Set F to 0.
Perform any post-processing this Node-type requires.
Return maximumMomentumSquaredSeen.



40

However, Edge Nodes, which are the base case, use a very different algorithm for
this function:

If this Node is Anchored
Return 0.

Set Momentum += dT * (Force - Damp * Momentum)
Set Position += Momentum * dT
Set Force to 0.
Return Momentum squared.

6.2.1.4 Required node attributes and behaviors

Node elements must provide a whole host of attributes and behaviors to make the
system robust and workable.  But there are certain vital ones that are worth enumerating
(note that values like Force or Position are two-dimensional vectors in most Nodes, but
are one-dimensional scalars for Edges):

• Enumeration of all child element

• Enumeration of each child-list individually (Nodes, Constraints or Updates)

• Accessing children by index

• Inserting/removing children

• Obtaining the current Position

• Moving the Node to a new Position

• Offsetting the Node to a new Position

• Obtaining the currently applied Force

• Applying a new Force

• Obtaining the current Momentu

• Obtaining the total number of Edges

• Obtaining the left/right/top/bottom-mos Edge

• Obtaining a bounding rectangle for this Node

These last three attributes are requested so often that it is very inefficient to
calculate them each time, and as a result they are calculated once in the ApplyUpdates
function, and cached for later use.

6.2.2 Constraint and Update element algorithms
Both Constraint and Update elements are responsible for changing the state of

the simulation, but they act in different ways.  Constraint Nodes act as Spr ings within
the simulation and act by calculating and then applying forces to their attached Node
elements.  Updat  Nodes (which are not present in the GLIDE system) differ in that they
are not part of the mass-spring simulation.  Instead they are rules that are evaluated once
every simulation cycle (through a call to the Update function) that can modify the state of
other elements in the layout hierarchy (including creating or destroying other elements in
the tree).



41

Constraints (or Spr ings) have many attributes and behaviors, but the most
important is the ApplyForce method.  This method calculates Forces for each of its
attached Nodes from the current state of these Nodes and the Constraint itself and
applies it.  Most of the Constraints implemen Spr ings that calculate their forces based
upon Hooke's Law: F = k*( length - rest length); however some of the springs act in non-
physical ways in order to effectively produce a layout.  Most of these non-physica
springs add to the numerical instabili ty problem because they are non-linear in nature,
requiring the algorithm that performs the simulation to be as forgiving as possible.
Clearly in order to calculate the Force based on Hooke, a Constraint must have attributes
for the spring constant, current length and rest length.

6.2.2.1 low-level constraints

As we have seen, the lowest level constraint, Ancho ing, is a special case and is
accomplished by the addition of a special f lag in Node elements.  This is equivalent to
defining an Ancho  as having an infinite mass, and attaching this mass to the appropriate
Node.   The next low-level constraint, Page bounding, is enforced by an Update element
that can be applied only to Page Nodes and whose Update function uses the following
recursive algorithm, first called on the Page Node itself:

If this is a Block Node
If any of th child Edges are outside of the Page, move their Positions to be at the extremity

of the Page.
Else
For each Node child element of this current Node do the following:

If the child's bounding rectangle is outside the page
make a recursive call on that Child Node.

This algorithm ensures that all Nodes below a page are bounded by it, since every
descendent, not just the immediate children, will eventually be checked.

The non-overlap constraint is enforced by a Constraint element that sets up a
new Layer and puts each of its attached nodes on this Layer .  Layers are invisible sheets
that exist above the parent Node upon which a set of child Nodes can sit.  Layers work in
a manner very similar to that of layers in traditional desktop publishing systems: the
enable objects to overlap each other, and confer control over which object is on top of
which.  However, in contrast to what happens in traditional approaches, the ordering o
the layers is easily observed and modif ied: it is defined by the ordering of the non-
overlap Constraint Nodes in the layout tree.

The non-overlap Constraint only applies to its directly attached nodes, but in
order to do this, it effectively maintains a spring among all the Blocks within each
attached Node and all the Blocks in every other attached Node (but not among the
Blocks within each of these sub-trees).  These non-overlap Spr ings are non-physical in
nature: the spring constant drops to zero when the blocks do not overlap, but is
exceedingly high when they do.  They are arranged in such a way that they always force
blocks to move apart from each other and in such a way that they typically will seek the
shortest route to a state where they no longer overlap.  Also, because this non-physical
situation promotes numerical instability, it is useful to have the springs remain active for
a very small distance past where the blocks are no longer overlapping.  These principals



42

are put to work in the following algorithm that is used for the ApplyForces function of
the non-overlap Constraint elements:

Call the following recursive function between every pair of attached Nodes and return the
nonOverlapSpringConstant.

ApplyNonOvelapForceRecursor(Node1, Node2)
{

if(the bounding rectangles of Node1 and Node2 do not intersect)
return

else
{

if(Node1 is of subtype Block)
if(Node2 is of subtype Block)

Calculate the forces between Node1 and Node2 and apply them.
else Node2 is a Block-Cluste

Make a recursive call for each Node child of Node2 specifying Node1 as th
other argument.

else Node1 is a Block-Cluste
Make a recursive call for each Node child of Node1 specifying Node2 as the other
argument.

}
}

6.2.2.2 Mid-level constraints

Each of the mid-level constraints can be represented as a Constraint element in
the layout Tree.  Each acts as a set o Spr ings that apply forces to their attached Nodes in
such a way as to enforce the constraint.  There are four differen Constraint element
subtypes (not including non-overlap and Duct constraints), and each applies its springs in
a different way, as described below:

6.2.2.2.1 Width and Height

Both these constraints simulate a set of physically accurate Spr ings that are
connected between the appropriate paralle Edges of each of the attached Nodes and
apply forces that tend to give these Nodes the appropriate dimensions.  Cluster  Node
can be attached to a width or height constraint just as easily as a Block can.  In this case,
the force is always applied between the extreme Edges of the Cluster  in the appropriate
directions.  For example, when a width constraint is applied to a Cluster , it will ac
between the rightmost and leftmost Edges of the Cluster  as illustrated in Figure 24.

Figure 24: A Width constraint applied to a Cluster



43

The appropriate size is attained by giving the Spr ings applied in this manner a rest length
that is equal to the desired width/height of the Node, a distance that is determined in one
of the following three ways:

• A fixed value specified by the user

• The average current width/height of all of the attached Nodes

• The distance between any two parallel edges in the system.

6.2.2.2.2 Horizontal and Vertical Alignment

These constraints also use Spr ings that directly follow Hooke's law.  However,
instead of attaching these springs within the same Node, alignment constraints apply
them across their attached Nodes.  These constraints can be applied to one of three
locations in each direction.  For horizontal alignment these are TOP, BOTTOM and
CENTER.  Center really means moving the entirety of the Node itself.  For vertica
alignment, we similarly have LEFT, RIGHT and CENTER.  By default, these constraints
apply to the same location on all of their attached Nodes.  That is, they apply to all of the
left Edges or all of the right Edges, or to the Nodes themselves.  However, they can be
set up to explicitly use a given location on each individual attached Node.  In order to
obtain the appropriate behavior, the average of the positions of the locations of all of the
attached Nodes is taken.  (Clusters calculate their CENTER location by taking the
weighted average of all of their sub-Nodes' positions).  A force is then calculated and
applied to the appropriate location of each Node.  This calculation uses a rest length that
is the difference between the previously calculated average position and the position of
the curren Node's appropriate location.

6.3 Specifics of the content model
The call to the UpdateContent function in the high-level algorithm given in

section 6.1 provides an opportunity for the content tree to update itself, and to modify
corresponding elements in the layout tree if necessary.  In practice, this means handling
the content side of Duct constraints, and the rendering associated with the actual flow o
content into the layout

This is accomplished by a simple depth-first descent down the tree, where each
tree element evaluates all of the elements beneath.  Whenever a Track is reached (and
Tracks are always leaf elements), it calls the UpdateRange function for each Duct tha
has been connected to it, which in turn mediates the data flow, as described in the nex
subsection.

6.4 Specifics of the connecting ducts
The connecting Ducts are actually updated twice, once as Constraints within the

Layout Hierarchy, and once through their association with the Content Hierarchy.  As a
result, they must maintain some state between each of these different update calls in order
to do their job correctly.  First, the Duct keeps track of the amount of content (as an
integer) that it was able to lay out in the last model-cycle.  Secondly, the Duct maintains
a record for each Block for which the Duct is responsible.  The record has two fields: a
rest length for sizing the Block, and an integral offset for how many characters the Block
will contain.  As mentioned in Chapter 5: An example interaction with LILT , it is



44

important that the data for the amount of content that has been laid out be integral.  Ducts
must be able to handle the fact that content comes in discrete units (usually characters,
but it could really be anything).

The Duct's role as a Constraint is really rather straightforward, and like all
Constraints is mediated by a call to the updateForces function:

For each attached Block
{

Obtain the record for this Block
Calculate and apply forces to this Block exactly like a height constraint, but using the rest

length in the record in Hooke's Law.
}

The real work in a Duct is performed when the content tree updates it.  This
occurs when an attached Track calls the Duct's updateRange function, which takes as a
parameter the length of the content to try to lay out (endPosition) and returns the actua
length that it was able to lay out:

First it calculates the difference between this position and the amount it laid out last time:
If there are no attached Blocks, just return 0.
Integer Diff := endPosition - endPositionLastCycle.
If( diff != 0)

Dif += the number of attached Blocks.
Integer BlockContribution := Diff/ the number of attached Blocks.
Integer FirstBlockExtraContribution := the remainder of Diff/ the number of attached Blocks.
StartPos:=0
For each attached Block:
{

Get the record for this Block.
Set record.OffsetField += BlockContribution
If(This is the first Block)

Set record.OffsetField += FirstBlockExtraContribution
If(record.OffsetField < 0)

record.OffsetField = 0
Now call renderer.getNeededSiz (Block, attached Track, StartPos, record.OffsetField)

Which returns the size needed  to lay out all this material.
Set record.HeightRestLength := K * (this needed size - record.HeightRestLength)
StartPos += record.OffsetField

}

Integer ActualOffset := 0
For each attached Block:
{

Get the record for this Block.
Call renderer.render(Block, attached Track, ActualOffset, record.OffsetField) Which should

render the content into the block, and return the amount of content that actually fit.
Set record.OffsetField := the length returned by this function.
Set ActualOffset += the length returned by this function.

}
return ActualOffset.



45

This algorithm requires the two supporting functions:
renderer.getNeededSize(Block, attached Track, StartPos, record.OffsetField) and
renderer.render(Block, attached Track, ActualOffset, record.OffsetField).  In LILT  these
functions are a simple calculation based on the assumption that each unit of content takes
.1 inches to lay out.  But in a real system, these functions would be very involved and
would take care of actually laying out the data.  For such a system to be run in a
reasonable time, it will be vital for these functions to execute quickly.  Thus these
functions will probably have to use caching with some form of incremental update in
order to produce a reasonable execution speed (and consequently model convergence
speed).



46

Chapter 7: Implementation Issues
LILT  has been developed as a Java application, and as such can run in any Java

1.2 environment with a JIT compiler, provided that the machine the environment is
running on is fast enough.  Due to Java's slow nature and the use of real-time simulation,
the system only runs adequately on a fast Pentium II machine or better.

Throughout LILT 's development, an attempt has been made to draw a distinction
between the code that is used for creating the mass-spring-update model and the code tha
uses that model to encode the newspaper domain. This should enable other collaborative
applications based on mass-spring-update models to be developed using the same code
base.  This distinction was drawn very clearly in early versions of the program where
each of these portions of the code existed in its own Java package, but these packages
were eventually merged for efficiency reasons.  Still, changing the specifics of the mode
(by changing the properties of individual Node elements, or even by creating a different,
non-hierarchical data structure) is very feasible.

It is important for a program that uses this framework to be multi-threaded.  It is
vital for the user to be able to manipulate the user-interface effectively, while the CPU-
intensive simulation is running concurrently.  This can only be accomplished if the mode
is running on a separate thread that can synchronize changes in its state with the UI.  In
practice, this requires the model thread to accept changes to the state from the UI thread
(caused by the user), and for the UI thread to periodically refresh its information from the
model in order to make sure that the user is seeing the current state.

In order to facilitate both the reuse of code in other domains and the effective
maintenance of the two threads and their associated timers, the current version o LILT
has two packages:

• The Document package, which is now responsible for both the mass-spring-
update model itself, and the two tree structures used to represent the newspaper
domain.

• The UI package, which contains all of the code used to create the LILT  graphical
user interface.



47

Chapter 8: Possible future improvements for the layout
paradigm

LILT  is not a piece of commercial software, and the system is not capable o
coming close to really producing a newspaper right now.  For an obvious example: it is
currently not possible to place actual content into Tracks, but only to specify a parameter
that indicates a hypothetical amount of content.  It would not be hard to add the capabili ty
of accepting actual content, and the capability of rendering this data, but it stil l needs to
be done.  Additionally, the current implementation of Ducts only modifies the height of
attached Blocks.  It will be an important but relatively easy extension to this work to
generalize the Duct constraint to work in both directions.  As our focus here is not
primarily practical, however, let us turn to the numerous additional improvements that
could be made that are of more theoretical interest.

The current system provides no means to add a complex layout sub-tree all a
once.  Chapter 5: An example interaction with LILT  shows a prime example of this.  The
user needed to add a new layout sub-tree (a Clump) that would contain all the blocks for
a new Article in the newspaper.  But instead of being able to add a generic Clump sub-
tree, each individual element had to be added one at a time.  In order to facil itate this, a
macro language could be developed that might let a whole new sub-tree be added easily
with default layout characteristics.  Such a scheme could work in a manner similar to the
way that Juno-2 lets users create libraries of drawings that can be added and buil t upon to
create new and more complicated images.  In this endeavor it could prove useful to have
Articles contain a minimum set of standard tracks, such as the ones listed on page 15.
These standard tracks could be specified in a macro that adds a new Bundle to the
content hierarchy representing a single Article that includes a Track for each of the
standard tracks.  Macros for adding layout elements could then expect to find these
Tracks in the Article level Bundles.  Ideally, the macros themselves would be
configurable, so the user could create his or her own buttons in the user interface for
precisely adding objects he or she uses most, as in Juno-2 (see Nelson).

Another very significant improvement would be to implement some or all of the
high-level constraints described in secti 3.1.2.3.  This will require more information to
be gleaned from the content hierarchy and will call for a far tighter integration between
the content and the layout, so that automatic inferences can be drawn.  Such relationships
should be possible, but are very difficult to work out.  Further, within this process, the
more information that can be implicitly gathered from the existing content hierarchy the
better, since the supplying of additional information will only take up the user's time.

It would also be highly beneficial to add the capabil ity for the program to column-
or page-break text only in specific places chosen either by the user or by some sort o
natural-language processing.  Usually there is a fixed set of locations in the text where a
page or column break is desirable.  It would be advantageous if the layout could be
constrained by such restrictions, but only if they could be easily overridden.



48

Chapter 9: The multi-user case: concurrent editing
within the workflow

Now that we have considered the layout problem in depth, it is time we turned our
attention to the question of how to get multiple humans to collaborate on the shared goal
of producing a single newspaper.

9.1 The problem
In order to understand the problem, it is useful to see how a small newspaper

(using one of the commercial packages) handles the inherent difficul ty in trying to get so
many people to cooperate on a single goal: a readable, attractive newspaper.  Using the
Harvard Independent and Bronx Science's Science Survey as appropriate models,
generally the following flow is used:

Writer Editor

Text (MS Word)

Editors-in-
Chief/Editors
determine
paper size.

Writers on “beats”
determine
available stories.

Layout editor, with
input from Editors-in-
Chief sets overall look
for paper.

Rough idea of
specific section
layout (on paper)

Layout-person

Rough layout of
section in
PageMaker.

Writer Editor

May rework text
following editors
suggestions

Edits text /
Layout

Layout-person

Puts these
changes into
PageMaker.

Ad. Editor/staff
get ads together
and assign them to
sections/pages

Ed-in-Chief

Reviews section
and makes
corrections

Ed-in-Chief

Reviews section
and makes
corrections

Photo editor / photo
staff and Art editor /
art staff provide the
graphics

Must have all
text and graphics
by  here--
Bottleneck

Editor Layout-person

Reworks text etc
following chief's
corrections

Puts these
changes into
PageMaker

Ed-in-Chief

Final Check –
Make sure
everything ok.

Layout-editor

Combines
sections and
graphics into one
file on zip-disk
for printer.

Figure 25: An idealized newspaper production work flow

This is the ideal workflow that people strive for.  It is never actually attained for a
mill ion reasons.  But if the software were able to handle multiple users more effectively,



49

perhaps orchestrating and displaying different people’s contributions in a visual manner,
a very smooth flow could be achieved.

The goal is to have all the text, ads and graphics complete by the first row and
then to do corrections, breaking stories, bylines, titles and captions in the second.  The
third row is then for a final clean-up.  However, what often happens is that some conten
is not available unti l the flow has already hit the second row.  Then that section of the
paper hits a bottleneck, as indicated.

When this happens, only one person can be working on that section's layout at a
time.  This means that the editors and writers who are working on the text, not the layout
cannot modify the text while the layout is going on.  It also means that each section can
only be laid out by one person at a time, and that a combining step must be included a
the end in order to put all the sections (in separate files) into one document in PageMaker
(or Book file, as Quark calls it).  These and other l imitations suggest that the following
scenarios might be handled far better:

• A breaking story arrives soon before the paper goes to press and potentially the
entire paper has to be laid out afresh.  We want automation in this layout and the
capabili ty for multiple people to collaborate on various aspects of the layout in
parallel.

• Stories, ads, photos, graphics arrive very late in the process.  We want everything
else to proceed smoothly until these items arrive.  We want to be able to
shrink/expand other stories or in other ways cope if these items do not materialize.

9.2 Current approaches
There are commercial systems currently available that will do source-file

monitoring on publishing data similar to the ones commonly used for computer source
code.  One good one is the Quark Publishing System.  These systems allow the data of a
paper, including layout information, to be stored on a centralized server.  Different users
can then check out portions of the data and modify it, later checking it back in.  Systems
like these enable the editors and writers to make their corrections right into the layout
package instead of wasting the layout people’ s time by retyping all the corrections.
They succeed in keeping the layout and the text distinct so that the layout and the editing
can go on in parallel.  However, there is an important limitation to this: these systems
require that when text is edited, care be taken not to change the area it takes to lay it out.
If this area changes, then the layout person has to do an explicit and manual re-layout.

9.3 Towards a solution
Ideally, a system could be developed that updates the layout information

dynamically as text lengths change, and that lets multiple people work on the same layout
at once.  The layout paradigm presented here provides a good foundation for attempting
to produce a multi-user newspaper production environment that has these important new
collaboration-promoting features.  LILT  provides a good basis for such an ambitious
goal for the following reasons:

• The strong separation between the data model and the user interface should allow
for an easy transition to a client-server type environment.



50

•  LILT  uses relative constraints rather than absolute positioning to create a layout.
This provides the automation necessary to have the layout update based on
dynamic changes to the content

• The dynamic nature of the system, where the effects of a change are expressed
immediately, is an important first step for letting multiple users (or computers)
affect the layout simultaneously.

• In the mass-spring-update model, the effect of a given local change tends to fal
off with the square of the distance from that change.  This is an importan
property in a multi-user environment, where people will be making changes
simultaneously: one wants the changes users make to be as local as possible to
prevent them from ruining each other's work, or rendering it obsolete.

This last property is important, as it addresses the most fundamental problem of creating
systems that promote collaboration: making the agents involved aware of each others'
intentions.  Clearly, the falloff of the spring model is a very useful property, although it
does not yet come close to solving this important problem—a great deal of additional
work is required.



51

Chapter 10: Conclusion
Newspaper production is a very complicated affair with many, often conflicting,

requirements that need to be resolved within a short timeframe.  Traditional layou
techniques simply do not provide robust methods for aiding users in solving these
constraint problems.  A system that can enforce the low, middle and high leve
constraints and harness the dual hierarchical nature of the domain should be able to
increase the productivity of its users immensely.  This constraint satisfaction is a form of
human-computer collaboration in which the computer assists the human in an informed
way, by taking on the more tedious aspects of the layout problem, allowing the human
user to concentrate on more aesthetic decisions.  LILT  is also a step towards an even
more comprehensive system that is capable of letting multiple users work on the same
newspaper in parallel, as it solves many of the problems such a scenario engenders.



52

Chapter 11: Glossar
Anchor...........The constraint that a given Node should not be moved by the constraint

satisfaction engine.

Article............Al l the content information pertaining to a single story in the paper
including both graphics and text.  That is, a Bundle that contains only
Tracks pertaining to a single story.

Block .............A box containing either text or a graphic.  It is defined by its 4 Edges,
which indirectly specify its location and size.  It also maintains
information about its desired margins.

Block-Cluster. A Cluster  that is a descendent of Page Node, and thus has only Blocks
and other Block-Cluster  on its Node child-list.  Therefore, a Block-
Cluster  cannot contain another Page Node.

Body Text ......The text in an Article that is the actual story itself, not including any of
the other details such as title, Byline, or Callouts.

Byline ............The text in an Article that attributes the piece to its author.

Callout ..........Short, usually striking, phrase that is singled out from the body text and
placed in a larger font, often as a means of wasting space.

Clump............Any Cluster  in the layout hierarchy that is comprised entirely of Blocks
that are from the same Article, but whose parent cluster contains Blocks
from multiple articles.  Clumps are typically second or third level Block-
Clusters.

Cluster...........A Node in the layout tree that represents a group of sub-units whose
layout is constrained with respect to each other in one of several ways.
Although Clusters are general organizational elements, at any given time
they must either be Page-Cluster  or Block-Clusters.

Constraint......1) {generally} A condition that is specified either by the problem domain
or by the user, which the machine must attempt to satisfy.
2) {specifically} An element of the layout tree that acts as Spr ing in the
mass-spring-update simulation and thereby modifies the Nodes in the
layout.

Edge ..............A Node in the layout tree that represents one side of a Block and is
defined by its position either horizontally or vertically.

Duct...............The constraint that is responsible for ensuring that the same amount o
space be reserved in the layout as is required by the content, and dictates
what content flows into its attached layout Nodes.



53

Jump..............Newspaper-speak for what happens when an article begins on one page
and is continued on another.

Layer .............A virtual plane above each page, upon which blocks can be placed.  All
blocks on a given layer are forced to not overlap.

LILT ..............ELastic Interactive Layout Tool: The name of the program that has been
developed in this study.

JIT Compiler .Just In Time Compiler: A compiler used by some Java environments to
compile Java byte codes into native machine code on the fly, often
resulting in a tenfold speed improvement.

Node..............Any element in the layout hierarchy that represents a displayable objec
and not a constraint.  Such elements include Papers, Pages, Clusters,
Blocks and Edges.

Package.........The Java term for a collection of related code that works together as a
cohesive whole and which can be reused in different programs.

Page ..............A Node in the layout tree that represents a single page of the paper.  Pages
can contain either Blocks or Block-Clusters and are defined by their
width and height and color.

Page-Cluster.. A Cluster  that is only a descendent of other Page-Clusters and the root
node (which is always a Paper Node).  Page-Clusters only have other
Page-Clusters or Pages on thei Node child-list and thus cannot contain
Blocks or Edges.

Paper.............A Node in the layout tree that represents the paper as a whole.  Paper
node is always the root of the layout tree and can exist nowhere else in the
tree.  Paper Nodes can contain either Pages or Page-Clusters and handle
the assignment of page numbers to these pages.

Spring............Any element of the layout hierarchy that acts as a spring in the mass-
spring-update simulation.  That is, it is has a spring-constant and acts on
attached Nodes by the appl ication of force.

Track .............One piece of information about a given article, usually a single sequence
of text, or a single graphic element.

Update...........An element in the mass-spring-update model that modifies other elements
in the model in a way that does not conform to the mass-spring metaphor.
More specifically, in LILT , this is any element of the layout hierarchy that
modifies the state of another element in the layout hierarchy but does no
act as a Spr ing.  These are often used for syntactic constraints, but can be
used to modify the parameters of any other object in the simulation (or to
add and remove other elements).



54

Chapter 12: References
Adobe Inc. Adobe PageMaker 6.5

Armstrong, Eric, Tom Santos and Steve Wilson. "Understanding the [Swing]

TreeModel." Available at

http://java.sun.com/products/jfc/tsc/tech_topics/treem

odel/treemodel.html. 1999

"G & S House Style." Unpublished Guide by G & S Typesetters, Inc. Austin, Texas,

1997.

Johari, Ramesh, Joe Marks, Ali Partovi, and Stuart Shieber. "Automatic Yellow-Pages

Pagination and Layout." Journal of Heuristics. 1997 : 321-342.

Nelson, Greg. "Juno, a constraint based graphics system." Computer Graphics

(Proceedings of SIGGRAPH '85), 19(3) :325-243, July

Nelson, Greg, and Allan Heydon. "Juno-2 Constraint Based Drawing Editor." Digital

Systems Research Center: SRC Research Report 1994-131a. December, 1994.

Nelson, Greg, and Allan Heydon. "Juno-2 Language Definition." Digital Systems

Research Center: SRC Technical Note 1997-009. June 30, 1997.

Ryall, Kathleen. "Computer Human collaboration in the Design of Graphics."

Unpublished doctoral dissertation, Harvard Universi ty.  1997 : 15-33, 71-76

Ryall, Kathleen, Joe Marks, and Stuart Shieber.  "An Interactive Constraint-Based

System for Drawing Graphs."  Harvard University, 1997.

Sun Microsystems Inc. "The Java Tutorial: A practical guide for programmers."

Available a

http://java.sun.com/docs/books/tutorial/index.html. 1999

Quark Inc. QuarkXPress 4.0

Quark Inc. "QuarkXPress Brochure." Available a

http://www.quark.com/pdf/brochures/qxpbroch_us.pdf.

1999.

Quark Inc. "Quark Publishing System Brochure." Available a

http://www.quark.com/pdf/brochures/qpsbroch_us.pdf.

1999.


