DIGITAL ACCESS 10 —
SCHOLARSHIP s HARVARD e for Scnolry Communicaton

DASH.HARVARD.EDU

A Collaborative Approach to Newspaper Layout

Citation
Lubin, Benjamin. 1999. A Collaborative Approach to Newspaper Layout. Harvard Computer
Science Group Technical Report TR-04-99.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853808

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853808
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Collaborative%20Approach%20to%20Newspaper%20Layout&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=d8d861a774a5ed9ab625e4fa5251ab97&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

A Collaborative Approach to Newspaper Layout

Benjamin Lubin

TR-04-99

May 10, 1999

Acknowledgements

| would like o thark thefollowing peoplefor their kindness and sipport, withou
which this project would not have been possible: my advisor, Professor Stuart Sheber,
Professor Barbara Grosz, Elisa Cheng, Mat Glatthorn, B.J. Trac , Steve, Wendy and
Nathanel Lubin. This project isan exp@nsion of the principlesin the GLIDE syste
created by KathleenRyall, Stuart Sheber and Joe Marks, and could nat have been
realized without ther tremendaus effort. | would like to thark Eric Fagin for reading a
draft and generating such insightful commentsand to thark Ingrid, Gus and Augustafor
al their help. Thismaterid is based in part upon work suppated by the Nationa Science
Foundition unde Grant No.IR1-9618848 to Stua M. Sheber.

© 1999Benjamn Lubin
All Rights Reserved.

Table of contents

ACKNOWIEAGEMENT ..o e ees e e e e e e e e, aaeeeees 1
Ta@ Of CONMENE ... e cee e e e e e e e e e e s s 2
(O gF=T ¢ 1= g I g (0o [U oA o] o PSR PR .4
I R I 0T o 0] o T o PP 4
1.2 OU SOIULION.....ciiiiieiiieiiitiiie s ettt e e e e e e e e e e e e eeiee oeeeaaeaaaeeeeeesseesnnnaaaes ceeennes 4
Chaper 2: ReE@EAWOIK oot e et e e e e e e eeees 8
2.1 EXSiNg COMMENCIal SOftWAIEccoeeiieiieiiiieeiiiiiiiiit ceeeeeeeeeiet e s 8
2.1.1 Approach of existing commercial SOftware...............uvvviiiiiiiinnes iiiiieeeeennn 8
2.1.2 Limitations of existing commercid SOftWwarecccooeeeeeiiiiiiiiins veveeieineen, 8
2.2 EXSINGreSearCh SOftWAIEcoiiiiiiiiiiiiiiiiii ettt e e ees arreeaaaaaaaaeeees 8
2.2 1 JUNO...eiiieeeeiette et e e e ee —eeeeeeta e aaaeera e aaeans teeraaaaaas 9
2.2.2 GLIDE ..ooiiiie it ces e rera e e e e s, 1aaaas 9
Chagper 3: A new paradigm for single-user layout 00lccooovviiiiiiiiiiiiiiiis i, 11
3.1 Thelayout NIErarChy..........uuuieiiii s s ceee e 11
3.1.1 A description of thenodeelements............oooeviiiiiiiiiiiins ceviiii e 11
3.1.2 A description of the layout CONStraiNtS...........evveeeiiiiiiieieieees i 13
3.12.1 Low-level layout constraints and syntactic requirements...............coeee.... 13
3.12.2 Mid-level layout CONSLIaINScovviiiiiiiiiiiiiiies ceveiiierr e e e eeee e 14
3.12.3 High-level CONSIraiNtouveeiiiiiieie et e ceeeeeennnnes 14
3.2 Thecontent NierarChyooooiiiiii e ceeee e e 15
3.3 Relating the two higrarchies: dud COMBraintScceeiiiiiiiiiiiiies e, 16
Chapier 4: TheLILT USEr INTEITaCEccuiiiiiiiiiiiiie e eee i eeeeeeeeeenees 17
Chaper 5: AnexampleinteractionWith LILToouuuiiiiiiiies e 19
Chaper 6: AlGOItRMS ..ot e ceeeerere e e e e eaaaas .37
6.1 Theoverall document MOGE!oooiiiiiiiiiiiiiiiis s ceeeeaeaeeee 37
6.2 Specificsof the [ayout MOdeloooiiiiiiii e 38
6.2.1 Nodedement algorithms..........cooiiiiiiiiiiiiiiiis e e 38
6.21.1 The ApplyUpdates fUNCLT N......ccooeiiiiiiiiiiiiiiiiiiit e e 39
6.21.2 The ApplyConstraintSFUNCLT ..oeeeeiiiiiiiiiieee s e 39
6.21.3 The FreshermNOodeS fUNCLIONooiiiiiiiiiiiiiiiins e eeeee e 39

6.21.4 Required nock dtributes and behaviors.............oooeviiiiiiiiiiins ceviiiviiinn, 40

6.2.2 Congtraint and Updde element algorithms............coooeviiiiiiiiiinns cevvvviiiennnn. 40
6.22.1 |oOW-leVEl CONSLIAINS......ccoiiiieiieeeiiiiiiiiiiiit e creeeeees 41
6.22.2 Mid-1evel CONSLIAINTuuueiiiiiiiee e eeiee e ceeeeeeeaennes 42

6.22.2.1 Width and HeIight.........covviiiiiiiiiies e ceeeeeeens 42
6.22.2.2 Horizontal and Vertical Alignmentooooiiiiiiiiiiiiinn cevveeeeiiiiinnnns 43
6.3 Specificsof the content MOE]coooi i i e 43
6.4 Specificsof the connecting dUCTS..........oooiiiiiiiiiii e e 43
Chagier 7: Implementalion ISSUBSu it e ceernnennenes 46
Chagper 8: Possible future improvements for the layout paradgm...........cccoeeeeeeeeeennene. 47
Chagper 9: The multi-user case: concurrent editing within the workflow 48
1S 0 R 1 0 S o 0] o [o BT TPUURPRT 48
0.2 CUTENt QDPIOBCNES. ... it e e e 49
0.3 TOWAASASOIULION ... ettt e e e ees aaraeeeeaeaaaeeeeeeeeeaaannn 49
Chaper 10: CONCUSIOooviiiiiiiiiiiiiiiae e e i e e e e e e e ee et eiies oeeeaeeeeeeeerrrrnnn e aeas 51
(O gF=T ¢ 1< g] (01 PP 52
Chaper 12: REFEIENCESuuiiiiie et e eeetrrr e e e e e e e aeaee s 54

Chapter 1: Introduction

Originally, newspapers were typeset by hand. Every letter on every page was
formed by anindividud metal stamp tret was carefully fitted into a tightly packed frame.
Pictures were includedusing e'ther wood-block carvings or stock metd stamps that could
be placed into the frameswith the text. With the invention of photo-reproductive
processes it became possible notonly to useadual pictures, bu to avoid using individual
characters of typeaswdl. Thetext wastyped upandthen "cut and pasted' into place on
large layout boards These boards were reproduced b make the pages. With the adven
of computers, high-end systems appeared for fully-automated layout, thoughthese
systems had severe limitations. Then, with therise d persond computers, theage o
ubiquitous "desktop publishing” began. But even the current crop o desktop publishing
programsdo little mare than enable the user to cut and paste text and graphicsin a digita
form, almost exactly asit used to be done with pager and glue.

1.1 The Problem

Theaim of thisthessis o charge the paradigm used in layout software, making
the task of layout easer and far more enjoyable. Inaccomplishing this, the presen
project empoys two related means. Thefirg is to invent an engine that can automate
portionsof the layout processin anintelligent mamer. The secondis 0 create auser
interface that facilitates collaboration betweenthisengine ard theuser. The plannng o
sweh aninterface is a complex problem, because newspaper productionis almost always a
group activity requiring a hgh degee of collaboration. ldealy, the software should
mediate this goupinteraction. But before this canbe accomplished, a ®und single-user
interfaceisrequired. The presert project focuses onthis necessary first step in lving
the more general multi-user case.

1.2 Our Solution

In order to address theseisaues, aprogram caled LILT (ELastic Interactive
Layout Tool) has been developed It provides aframework for semi-automated layout in
the newspaper domain and the means for humans and computeasto co@eiatein the
endeavor. It introducesmore intelligence into the software, letting the software handle
the low-level details and allowingthe wser to concentrate on the larger aesthetic issues.
Furthermore, LILT bypasses the cut-and paste problemby beng dyramically oriented to
the newspaper as awhole, rather thanto singe pages.

In formulating this novel solution, our firg task is to create aformdism that can
represent the newspaer domain within a wnstraint satisfaction framework. In dang
thiswe first divide the problem space into two interrelated hierarchies: layout and
content. The layout higarchy iscomprised of al the information pertaining © the look
of the document — bath the elementsto be laid out and the constraints that relate them.
The content hierarchy containsall the information in the newspaper: text and pictures.
Creating this division has two main advantages. First, it alowsfor modificationof each
hierarchy predominantly indeperdently of theother. Second, it gves explicit control to
the wser over theimplicit hierarchical structure whichis present inthe domain. Butin
order for the division to work, there must be communi cation between thetwo parts, since

they are clearly not entirely independent. The task of binding these hierarchies together
within the automation framework represents an important part of the present study.

A solution to the newspape doman problem requires a methodfor the machine
to satisfy the constraints the user hasspecified in the layou hierarchy, either overtly or
indirectly. The methodemployedinthis pojectisamass-spring simulation based upon
the oneused in the GLIDE graph editor,’ as describedin section 2.2.2 However, the
appoach taken in GLIDE hasbeengreatly extenced in numerous ways. Among these
are, first, that in developingLIL T, we have made ssible the gplicationof constraints
to amuch more complicated set of objects. Also we have introduced an explicit update
stepinto the simulation. By considering each portion of the layout as an indvidud mass
and casting each of the constraintsinto alanguae of ether springs orcodable heuristic
rules (updates), the machine can attempt to satisfy the use’ s specifications for the layout.
For example, if the user specifiesthat two oljects should ke adjacent, the software would
interpret this constraint asasinge spring, asillustrated in the foll owing figure:

AN

> <«

Figure I A spring-medated constraint

The spring is attached to the right side of the left object and tothe left side of the right
object. Itisgiven arest length of zero, which causes it to apply an inward forceto both
objects as the smulation progresses. Thiswill terd to causethe twoaobjectsto move
towards each other whenever they are sparated, and away from each other whenever
they overlap (at least in the x-axis).

It isworthwhile examining a short example of how thistype of automationworks.
Suppse the wser instructs the system to createthree newBlocks Blocksare areas for
displaying some type of content (note thet all thewordsinBold type are included in a
glossary on page 52hat describestheir specific meaningwithinthe LILT framework).
The user can then click and drag these blocksto new locationsand end up with
something like the following partia screen capture:

! SeeRyall et a. "An Interactive Constraint-Based System for Drawing Graphs”

Figure 2 Layout after creaing three Blocks

The next thing the user is likely to want to dois specify how theseBlocksrelate to one
anather in order to produce an elegant layout. For example, the user might specify the
following congraints:

The battom two Blocks should have the same widths

The combinad width of theseBlocks should be the same as the width of the top
Block

The left edge of the top Block and the left edge of the left-bottom Block should
be co-linear inthe y-axis.

After the wser has applied these constraints, the system will movetheblocks in
order to satisfy them, producing the following:

<D

Figure 3 Layout after applying constr aints

Because these constraints are updated dynamicaly, if theusea drags the topBlock's left
edge to widen the top Block (asindcated by the arrow in Figure 3, the system will
adjust the aher Blocksto maintain the indicatedrelationships. Thus after the mouse-
drag the layout will look like this:

Figure 4 Layout after mouse-drag maneuver

Althoudh this example has shown only atiny fraction of theLILT system, it is
already clear that mass-spring-update constraint satisfaction canbevery effective in the
newspaer domain. Other constraint satisfaction methods can produce layouts by
employing some limited, rigidly defined aesthetic evaluationfunction, bu in the
newspager domain, where flexibility is essentid, it is all but impossible © define an
aesthetic evaluation function, which strongly selects for LILT’ sappoach. In thissyste
thereisnoneedfor such an evaluation function, asthe user him- or hersalf acts asthe
evaluator. Inthissense, thelayout process becomesatrue collabaration between the
machine and the wser: the machinedoesits part by satisfying the constraints to the best o
itsahlity, and the user views the results and modifies the constraintsto better match the
desiredlayout. The mass-spring-updite model provides an excellent medium for this
communication, asits physica naure and real-time evaluation create anintuitive user
interface. Theuser can anticipate how the computer will be likdy to react to new input,
an important agoect of any collaboration. Further, themode is agood choice because it
gracefully handesboth under- and over- constrained layouts, condtions that arise
frequently. Thismass-spring-update approach should scale well tothe nulti-user case
also, for reasons that will be explored further on.

Thecodefor LILT hasbeenwrittenin such away that it should be &le to
provide abasefor deve oping programs based onthe same technology, bu for very
different applications. (One such gpplication might be the placement of objects in
architecturd models, which would be arather close three-dimersional analogto this
project.)

Chapter 2: Related work

2.1 Existing commercial software

Inlight of our goal of ease of use, we target the lower end of newspaper
production software. We are concerned withlayouts that go beyond smpleword-
processing, but ae not as particular as layout for TheNew York Times, where one can
afford to doeverything by hand and ease of useisnot anisaie. Currently there are two
major commercial productsfor doing this type of layout: PageMaker and Quark X Press.

2.1.1 Approach of existing commercial software

Both PageMaker and Quak provide tremendous flexibility inwhat they canlay
out, but this cmes at the price of requiring very tedious manual placement and
arrangement of al the graphic elements. There are ways of making sure tings line up
relative to each other, but for the mog part these are ‘guides’ and ‘rulers’ — rather stric
analogs to ways of lining thingsup in a traditional, non-compute, cut-and-paste layout
This provides an important sense of cortinuity for layout professionalsused to the
tradtional methods, and isavery intuitive interface in its own right.

2.1.2 Limitations of existing commercial software

However, the insistence on wsing atradtiona cut-and-paste paradigm daces
severe restrictionsonthe utility of the program by piohibiting any typeof collaborative
appoach. Theseprograms are incapdle of cafguring auser'sintentions. For instance,
al relative positioning is done statically. That is, if one tells themachne to aligntwo
blocks of text in some given way, and then the sizes of the docks change, there is no
provision for retaining the ecified relationship between the docks.

Moreover, these programsdo little to sdve the issues of multi-user collaboration.
Since newspapers must be createdunder grict ime deadlines, it is desirableto do as
much of the process in parallel as possible. Extensionsto theseprograms, such as the
Quark Pubishing System, do provide centralized storage and accesslocking for sourc
materials. Thisenablesusers o enaure that they are not destroying each other'swork and
facilitates the transfer of content from one person (or machine) to another. But it also
serializes much of the workflow, asfinal layout cannot be executed until the content that
it isbaseduponis”checkel in." Moreover, none of these programshas any means of
enalding anumber of people to work on the same section of layout at the sametime. In
these programs, only completely isolated layouts, storedin seperate files, can be modified
concurrently.

2.2 Existing research software

LILT isbasedprimarily upontwo pieces of previous research: Greg Nelsan's
Juno (and mare recently Juno-2) ? drawing program, and the GLIDE netwak graph
program.® Short descriptions of these rogramsand of how they relateto LILT follow.

2 See Nelson and Heydon. "Juno-2 Corstraint Based Drawing Editor"

2.2.1 Juno

Junoenables auser to aeatepictures by ecifying wntrol pointsand corstraints
that determine relative positions of thesepoints. PostSaipt style dawing primitives can
then be addedo paint an image using these control points. Specifiable constraints can be
non-linear, bu there are severe restrictions: inequaities and discontinuous functions (like
modulo, floor or ceiling) are not supported. The system keeps track of thelayou
information (points, constraints and drawing instructions) in apowerful deription
language. Thislanguage s hierarchicd in nature, letting the user empoy system-defined
primitivesto buid larger constructs. Theselarge constructs canthemsdves beused as
primitivesin even larger constructs.

The system has atwo-pane user interface: one pane shows the currently rendered
picture and the other showsthe Junolanguage pogram that producesit. The user can
edit in either pare. This provides ameans o manipulate directly the constraintsin the
system withou relying on hevisual representation. This wo-paneinterfaceisa
powerful feature whichLILT usesasamodd inits three paneinterface. In Juo, the
complexity of the constraint languag makes the system difficult to use —it isa gaphcs
packaye for aprogrammer, not an artist. Still, thelanguage letsthe user defi ne macros
(through Junofunctions and procedues) enabling the re-cycling of graphic dements.
Adding asimilar feature toLILT would certainly enhance it.

Juno's onstraint satisfaction dgorithmis useful, bu it can make counter-intuitive
assignments, particularly if the “hints’ the user provides 1o aid in these assgnments are
off the mark. Thismakesit harder for auser to anticipate what the matine will do when
the dawing stateischanged Butin genera, the "hints' are sufficient to keep the
congtraint satisfaction eng ne from producing wildly unexpected reaults.

To summarize,Juno has limitationsin its condraint satisfaction algorithm, and it
user interface requires leaming a cryptic programming language. But there are rea
strengths to the system: it does use constraint satisfaction effectively to create attractive
graphcs. Also, its goproachof creating adrawing framework isvery extensible. The
macro fedure prevents thisflexibility from coming & the price of an inability to describe
high-level objects, and alleviates the tedium of constantly dealing with minutiae.

2.2.2 GLIDE

GLIDE isa program for drawing network graphsthat are either directed or
undrected. The system was created ecificdly with the goal of produang a more
collaborative interface in this domain. It doesthisthrough a constraint satisfaction
system based upon a mass-spring simulation. Each noce inthe gaphismodeledasa
massin this simulation. Any of aset of constraints can be applied between these nodes in
order to pasition them inthe desred arangement. Typica constraintsinclude dignment
ordering, clustering, equal-spacing, symmetry and creation of atree-shgpe. Each of these
congraints isrepresented in the system by aset of springsthat cause the nodes t© move
into the gpropriate arrangement.

3 SeeRyall et al. "An Interactive Constraint-Based System for Drawing Graphs”

The constraints are set up inamanrer allowing the use to specfy reationships
among the nodesthat are maintained through time. For instance, if the user statesthat
spece betweentwo pairs d nodes shailld beequd and then moves ore of thenodes at a
later time, the other nodes will moveto mantain therelationship. Thispesistenceisa
tremendouws advantage when oneistrying to dign elements appropriately inagraph.

The system anmates the movement of the nodes in real-time, which provides
excellent feedleack for the user. It isthe spring-model itself that createsthis feedback: the
moving of the nodesin the graph by the model isdue o a force generated by a process
with adirect physica andogy, one that the user can easily intuit.

The collaborative approach that GLI DE uses has the very important consequence
of decreasngthe precision required in the user’s mouse movements. Most commercia
graph-drawing programs limit the level of required mouse precision by usinga grid tha
objects will "snapto.” Anyone who has used sich a system knowsthat in practice gids
do nd work well: ether they are o coarse to permit objects to be placed where the
need b be, or so fine that they do not really lower the precision requiredto place them.
GLIDE'sappoachisatremendas improvement, in that it letsthe user place thenodefar
fromthe desiredlocation, trusting that it will be moved to the appopriate place.

Most newspapr layout programs (such as Quark and Pagemeker) allow the user
to specify guidelines which objectstend to snap to. Clearly thisis a generalizationof the
grid appoach that we seein mos commercial drawing programs But these guides are
sulject to mary of the same problemsthat afflict grids. Firstof al, they do not alow for
maintaining relationships between e ements dynamically. Also, they require very precise
mouse movements to st up and to make an object snap to a pecific guiddineamong
several. LILT usesan goproach similar to GLIDE in order to overcome this problem.

GLIDE letsthe wser specify the constraints--that is, the high-level conceptual look
of the gaph diagam--whileit takes care of satisfying the details. A truly effective
collaboration results, one thatLILT strivesto emulate initsown domain.

10

Chapter 3: A new paradigm for single-user layout tools

Since aur am is redesgnthe low-level details of the layout process by creating
a set of collaborative semi-automatic tools, we neel the aility to gecify the layou
congraints to the machine Here, the work on GLIDE for semi-automated graph layou
provides a good guie (seeRyall et al.). The types of structurd relationshps that can be
specifiedin GLIDE are similar to those that are needel in the newspaer domain.
However, newspapes are far mare complex, since theindividud e ements (text, pictures
or graphc elements like boxes) take uparea, unlike the nodesof a graph. Further, these
elements are chainad together and have exceedingly complex interrdations that must be
maintained Moreover, newspapées have muti ple pages, and content often must flow
across morethan one pge. As mentioned above, the goproach taken here divides the
newspager domain into two separate but related hierarchies--layout and content--each o
which will now be discussedin detail.

3.1 The layout hierarchy

The layout information in anewspape seems naturally to form atree structure,
whichishow it isrepresented inLILT. There arethree different typesof elementsinthe
tree: Node elements, Constraint elements and Update elements. Node elements are, for
the most part, physcal layout objectsthat have avisua form. Constraint and Update
elements bath represent entities that can modify these Node elements (that is, they act as
congtraints in the more general sense). The dstinction between Constraint and Update
elements is transparent to the wser, andis asubject to which we dhdl return in Chapter 6:
Algorithms.

3.1.1 A description of the node elements

Inthis sectionwe will examine thefundamental part of the layout higarchy: the
Nodeelementsinthetree. Nodes have five subtypes. Papers, Pages, Blocks, Edges and
Clusters. Nodeelements are either visual objects, such as Pages, Blocksor Edges, or
they are elementsthat represent a goupng of these objects caled Clusters. All these
different subtypes o Nodeelements sare certain attributes in common, as desaibed in
section 6.2.14. All but Edges (which are always leaves) maintain three sparate lists o
children, onefor each of the threeelement types,Nodes, Constraints and Updates We
will only deal wit Node child-listshere, leaving the disaussion o Constraints for
section 3.1.2. The discussion of Updatesisintroduced in section 3.1.2and dedt with
extersively in section 6.2.2.

Since the Node elements define the structure of the tree, it isworthwhile
examining each Node subtype in ddail

11

r == o
! i ey
: [Page Cluster (Section) J*
I :
*A— ———————
[Page
r

—
-~ -
-
-
—

Block
—— Required child
- — — Optional child
Edge

Figure 5 The Nodehierarchy

Figure 5shows all of theNode subtypes within the herarchical structure they form. The
roct of the layout treeis aways anodeof subtype Paper, which containsall of the layou
information. Only two Node subtypes are permittedin the Node child-list of a Paper
Node PageNodesand PageCluster Nodes. The Paper Node maintains the correct
page numbering for all of thePageNodes amongitschildren. The PageNodes contain
information about a page inthe paper sich asitswidth and height. The PageCluster
Nodes have Node child-liststhat cortain only other Page-Cluster Nodes or PageNodes.
We can think o these Page-Cluster as Sectionswithinthe pagr, thoudh they are
allowedto nest beyondonelevel for morecomplex organizaion. For example, one could
have a lierarchy withtwo nested Cluster layers such as: Paper - Cluster - Cluster
- Pageto represent astructure likebook - chapter - section - page. Thusa pagr is
made upof sections, and these sections are made upof either other sections or pages.

Eac PageNodecontainsthe elements to belaid ou onthat page, ad followsa
similar pattern to that just described for the Paper Node PageNodecan only have
Block-Clustersor Blocksin its Node child-list. These Block-Cluster sare differen
from the PageCluster described above inthat they can only have Blocks(or other
Block-Clusters) intheir Node child-lists.

Blocks are the fundamental unitsof theNodehierarchy. They are rectangular
areas containing text or graphcs and are the elements within this framework that most
closely resemble the aut-andypastetext churks that we seein Quark and PagMaker. As
inthese programs, Blocks have apositionon the page awidth and aheight. However, in
contrast to what happensin these programs, theBlocks themselves do not mediate this
information. Each Block is definedto have an Edge Nodefor itstop, bottom, right and
left sides. Thesefour Edge Nodesindrectly specify this position information. Each
Edgehasasingle, one-dimensional position onthe page,either vertica or horizontal.

12

In order to usethe herarchy just described it is necessary to be able to impose a
complex set of constraints on various Node elements; these constraints are described
below.

3.1.2 A description of the layout constraints

When thinking abou speafying layout constraints, it is important to consider the
layout asa dynamic entity. Only by ersuring that sdutions to dl the constraints are
congtantly being sought will the system be &le t react to changing datain such a wa
that our secondary god of multi-use editing/layout can be attained. We candivide the
layout constraints roughly into low-level, mid-level and high-level congtraints. The low-
level congtraints are largdy syntactic in naure and, whil e configurable, will usualy be
maintained ly the machine aitomatically. The mid-level constraints have defaults letting
typical configurations be made quckly, while allowing fine cortrol when necessary
Finally, thehigh-level constraints will needto be extensively set upby theuser and then
renderedby the machne.

All constraints present in the system are represented either by Constraint
elements or by Update elements. These dements ad upon some subset of the ather
elementsin the layout hierarchy. In this system there are two different waystha
congtraints can be cnfiguredto determine the set of elements that they affect: an explicit
and animplicit set definition.

Using an explicit definition, the use simply gecifies al the elements the
congraint should act upon, and the congtraint mantansthislist. In this case, the
constraint will reside on the appropriate child-list Constraint or Update) of the Node
that isthe common ancestor of all of the Nodes in thisexplicit list, uness thislis
containsonly onenode, in which case the constraint will hang from that Node's parent.
Becauseof this rule, the constraint is dways the child of an ancestor for every nodethat i
controls.

The implicit definitionis based upon thefollowing domain-specific heuristic:
very often constraints will be goplied to dl of theNode-type dildren of a givenNode
element, and tonoothers. Asaconsequeance, constraints can be assgnedto hangon the
appopriate child-list of a givenNoden, andthento act on al of the Node elements that
are chidren o n. When this gproach is used, the constraint will begin to act on any
Nodethat isaddedas a diild to the node without anexplicit command to do so.

Let usnow corsider each of the different kinds of constraints in turn.

3.1.2.1 Low-level layout constraints and syntactic requirements

There are only threelow-level constraints. The lowest of these isthe syntactic
condition that all the content musgt remain onthe page. The system mustalso maintain a
second, related corstraint that notwo Blockson a Pagemay overlap. Fundamentally,
thisisasyntactic constraint aswell, but it is also configurable: each Block hasitsown
margin settings. Provisionisalso made to allow the user to specify that certain elements
can, or should,overlap. For ingance, there are timeswhen text needsto flow over a
picture or shadedbox. Thelast low-level constraint isthe option to anchor certain
elementsin place, preventing the system from modifyingthem (notethat thiscanbe a
ary level of the layout hierarchy). Overuse of this constraint will decrease the

13

effectiveness of the system, bu this user-specified constraint can still be useful in man
Cases.

3.1.2.2 Mid-level layout constraints

The system must also be ale © organize the relationshp among the d ements
close to the leaves of the layout hierarchy forming the complex structures mediated b
elements closer to the base of the tree. The mid-level constraints are resporsible for
estaldishing tisreationship. Assuch, they act only on Block-Clusters and Blocks, and
asaresult hang from either Pages or other Block-Clusters. In some sense we can think
of these constraints as rulesthat Node elements high inthetree wseto control the
placement of and relationshps between their children. The mid-level constraintsinclude:

Controlling thewidth of al the attachedNodes.

Controlling theheight of all the attachedNodes.

Horizontally digning dl attached Nodes, referring to eachNode as awhole, or to
itsright- or left-most edges

Vertically digning dl attached\odes, referring to eachNode as awhde, or to it
top or bottom-most edges

When combined these constraints are sufficient to group the Blocks and create
complex layouts. But thereisacriticad piece missing: the layout of newspapers revolves
aroundthe information (i.e. thetext and pictures) that needs to belaid out, and our
system neals to understandthis gructure (@ndin particular it needsto know theamoun
of space necessary to render this information), atopic to which we will returnin section
3.2, The content hierarchy.

3.1.2.3 High-level constraints

There are many high-level constraints thet would be advantageousto implement
inthis domain. Implementing them isbeyond the scope of this project; but the current
work does provide asourd fourdation for future effortsin thisarea. Fundamentaly, high
level constraints require atight integrationbetween the two higarchies: they congst of
imposing layout constraints thet use the content hierarchy to didate aesthetic alterations
inthe layout hierarchy. Often the analysis of the content hierarchy will have to occur at a
very high level, possibly even requiri ng retural language pocessing and, certainly,
importance ranking. Thefollowing isalist of some of the most important constraints that
fall into this category and would be excellent additions to this paradigm:

Continuations should be near the top of a pa@.

There shodd be more text in the firgt and last pagesof a sectionand more adsin
the center.

Ads usually shauld be at the bottom of the pae.
Smaller ads shodd came first.

Conflicts between ads should be avoided (i.e., two ads for the same product or
service shodd not be on the same page).

Allocation of spare white space should be improved.

14

Placement of thelayou Node elements should be accordng to the relative
importance of their related elementsin the contert hierarchy (described in section
3.2). If inthe content articles are given arank of importance within sections, then
the computer could place articles in different locaions based onthisinformation.
More specifically, Pageelements containing theTracks of important Bundles
(sections) would gravitate toward the front of thePaper, while on indvidud
Pages important storieswould gravitate toward thetop right and unmportant
stories would move cbwn and to the left.

The corollary of this constraint: ordering articles to ensure optimum packing.

These last constraints warrant some additional comments. Whilewhite space is
handed well already by individualized margins onBlock elements and by the aklity to
spaceBlocksand Clusters, there are sgnificant improvements that could be made. |
would be hdpful if a constraint coud be applied that would all ocate the white space
according to a heuri gic thattook some Gestat approach, bu ill allowedthe user to
overide its decisions. Further, the machine might want to request to insert a cdlout to
take yp addtiona space if it deemsit necessary

Thereisalso the guestion of figuring ou the best overal order for sories,
according to importance and space considerations. Idedly, the machine could provide
suggestionsasto passible article ordering and jump lacationsin order to optimize the
paper's look and length, corrdating this with the contrasting goal of keeping related
content together and impartant stories in certain locations.

3.2 The content hierarchy

The content information aso formsa hierarchy gructure: each paer is comprised
of Articles (which for practical purposes could also be als, bamers or isolated graphics).
Eac Articleiscomprisedof aset of distinct pieces of information, or Tracks. A typical
article might have the following Tracks, bu there are several others that might appear as
well:

Title

Byline

Body Text

Graphc

Caption

Jump (continuation) text
ContinuationTitle

Eac Track containsaspecific amount of informationthat requires a certain
amount of spaceto lay out. Most of these Tracksare laid out withinasingle dock, bu
some of them, notably Body Text, will almost certainly exist in multiple bocksthat need
to be chained together.

Articles can be grouped together further to form sections, chapters a other
divisions. Articlesare then a ecia case of amore generd type, aBundle, that can
contain either otherBundlesor Tracks. Thuswe have atree stricture with two types.

15

Theroot of thetreeis aBundle that containsall of the content inthe pape. Thi Bundle
containsan arbitrarily deep tree d otheBundles (oftentwo layers de@: sections and
Articles). These Bundlesultimately contain Tracks that housethe constraint
information itself.

3.3 Relating the two hierarchies: duct constraints

We have avery complicated interrelationshp between the structure of the conten
and the structure of the layout. Furdamentally, we have two hierarchical structures
describing the same data. From roct to leaf they are, reectively:

Content: Bundle = ...=» Track

Layou: Paper - PageCluster - ... > Page—> Block-Cluster -2 ... 2
Block - Edge

However, there is some overlap in the two structures. Trackswill be laid out using a set
of Blocks. Thereneedsto be a means d speciying what content data shoudl flow into
each of theBlocksinthe layout. Becausethis involvesthe “flowing” of datafrom the
content hierarchy into the layout higarchy, these constraints are called Ducts. Ducts are
mid-level syntactic constraints, and they must mediate another important factor aswell:
the Blocksassignedto lay out agiven Track must have the exact anount of area
necessary to lay out the material inthis Track. Because d thiscontrol over layou
Nodes, Ducts, like the other constraints, are clearly part of thelayout tree. However, we
can aso seeDucts as being part of the content hierarchy, as they in effed divide Tracks
into the pieces that are placed in the variousBlocks AlthoughDucts do bdong to bot
trees to his extent, practical considerationsarguefor Ducts hangng from the layout tree
alonejud likethe aher constraints. Still, eachr rack in the content tree remenbers
which Ducts are mediating its data flow in order to properly supervise this flow.

16

Chapter 4. The LILT user interface

The wser interfacein LILT attemptsto use the strongest features of Juno-2 and
GLIDE and to suplement these with some new and powerful elements. Thefollowing
screenshat isatypical view of the system

ESLILT vo5 IS[=] E3
File Edit View Tools Layrout Content Format Help
)] zeomizs [~]E [W] [<]DVIPIL] (@
: -Layout
@ @ Faper =~
i @ 0 Cluster
o D Fage 1 =

[Page Bounder
I:F Mon-Cwverlap Laye

= setwidth
T ot width

@ [0 Cluster
I:F Mon-Overlap L |

:|r Content
@ 44 crimson =
1l 9 48 aicien
5: 2 Title u
1 BTG 2 Body Text -
—LCIuster Cluster % §
Ready | Energy i@ 702 cps |

Figure 6 A typical view of the system

Like the aher programsdiscussed, LILT hasa WY SIWYG (What YouSee s
What Y ou Get) interface that displaysthe aurrent layout. Thisresidesin the panel tha
takes upthe left portion of the screen. Like GLIDE, LILT provides kuttons for addng
objects to the system, but it plces these huttons on two separatetoolbars (right sde). one
for layout elements and the aher for content elements. It provides athird toolbar (top)
with many wseful controls, including the button for deeting dements from the sysem
and the button for bringng upLILT's"Properties” window.

LILT s"Properties’ window is separate from the main GUI and shows cetails
abou the currently selected e ement, letting the user modify these properties. For

17

instance, when anEdge Node s selected, the window enables the editing of the Edge
Node'stwo properties. whether or notitis Anchor , anditscurrent position:
Eg;"; Left Edge Properties [_ O]
[_ Anchored
Position: [1.2] |

Figure 7. The" Properties’ window with an Edge ®lected

Other elementsin the system have different and much more complicated sets o
propertiesthat appear in this window when they are selected.

Juno-2 uses a dual-view interface to let the user more effectively manipulate the
model datathat represent the picture being drawn. Oneview isthe WY SIWYG view 0
the pctureitself, which does nat show the constraintsinvolved. The second is atext
control that lets the user see, and explicitly modify, the ino-2 Language pogram that
produces this picture. The user can modify either view, while the other onerefreshes to
reflect these changes. LILT also usesthe document-view user-interface nodel to alow
multiple views of the same data (in this case, information abou a newspaper). In
addition to theWYSIWYG paneontheleft LILT has the two tree controls onthe right
Each presents ameans for editing its portion of the newspger modd: the layout and
content hierarchies respectively. By manpulating the e ementsin these trees, the user
can charge the underlying model and watch these changes reflected in the WY SIWYG
view. Conversely, changesin the WY SIWY G view will causethe tree-viewstorefresh.
The tree cortrols provide an intuitive mears of visualizing nat only bah the layout and
content data, btialso the constraintsthemselves, asthe constraint language LILT uses
(describedin section 3.1.3 inserts these constraints into the herarchy. Thepand at the
battom of the screen displays status information. On the left, astring provides feedback
to the wser abou the state of the system, including changesto either of the hierarchies and
ary errors that occur. On the right, a meter shows theamount of energy inthe mass-
spring-updite model (discussedin section 6.7). Inside the meter, astring isdisplayed
that ind cates the number of "cps' or "cycles per second” the modd is performing, a
measure of how fast the smulation will converge ona solutiontothe constraint problem.

18

Chapter 5. An example interaction with LILT

Inorder to better understand the system, it is useful to examine an extendeal and
detailed example of atypica interactionwithin it. The goa hereis not b specify evey
aspect of the system, but ratler to show what a typical “hands-on” experience with the
program islike, and how it behaves asthe user interacts withiit.

Let us suppose that a user has just started up the system and wants to begin tolay
out a new paper. In order to produce the paper, the user will need to add new elements to
both of the hierarchies in the system: layout and content. Let us assume the user adds to the
layout hierarchy first. Tn this case, the user selects the root element of the layout hierarchy (a
Paper node), and clicks the "new page" button in the toolbar below the layout-tree (second
trom the left. See Figure 8, below). This introduces not only a new page into the layout but
also adds both a page-bounding and a non-overlap constraint below the newPage Node.
Because these constraints are defined with the implicit attachment rule, they will affect any
other Nodes that are added beneath the newly added Page. This placement for these
constraints is consistent with a rule that LILT imposes: all constraints live in the hierarchy
below the common ancestor of all theNodes they affect. Usually this has the result of a
given constraint being a sibling of the Nodes it affects.

After adding the Page Node, the user proceeds to add a Cluster element to the new
Page, by clicking on "Page 1" in the layout tree, and then clicking on the "New Cluster™
button in the toolbar below the layout tree. This adds the newCluster Node, and its
associated non-overlap constraint. In a similar manner, the user adds aBlock Node and a
Cluster Node below this new Cluster Node, and then adds two Block Nodes beneath this
second Cluster Node. After all of this is done, the system will look as follows:

19

EELILT vo5 IS[=] E3

File Edit View Tools Layout Content Format Help
[Hen]er] zoomps [~ | [W [P [S] [@
: -Layout
= @ Faper
@ D Fage 1

N Page Bounder
I:F mlon-Cwerlap Layer
@ OO Cluster
I:F Mon-Cverlap Layer
@ [Block
® [Cluster
I:FI Mlon-Cwverlap Lay
@ [Block
@ [Block

:3:::§:§| |]

: % Content
o |®ls

Ready | Energy @ 3468 cps

Figure 8 Step 1

The next step in creating the layout is to specify constraints between these nodes that
enforce a desirable arrangement. Tn order to do this, the user first selects the nodes in the
hierarchy that he or she wants a new constraint to apply to, and then clicks the button in the
layout-toolbar corresponding to the new constraint type that he or she wants. This will
create the new constraint and place it at the appropriate place in the hierarchy. The user may
then want to tweak the parameters of this constraint (if it has any). This is done by selecting
the constraint in question and then using the "Properties” window to change these
parameters. For example, by default, width constraints try to make all of theNodes they
apply to have a fixed, absolute width. But, often a situation may instead call for a width
constraint that attempts to make all of its attached Nodes have thesaze width, a change we
see illustrated below:

20

E;g Set Width Properties

(¥ Affects all Sibling Modes

Select Attached Hodes

(1 Width is absolute
i® Width is equal
(1 Width is relative

Current Width: 2

Figure 9 Step 2, Sample Property Panel

Step two is for the user to employ this technique to add three new constraints

between the last two Blocks added: a Horizontal Alignment constraint, set to align TOP; a
Vertical Alignment Constraint, set to align the RIGHT of the leftBlock, and the LEFT of

the right Block; and lastly an equal-width constraint. The system will now look like this:

21

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
: m3 Mon-Overlap Layer sl

% 0o Cluster
g~ Mon-Overlap Layer =
& [Block
@ 0 Cluster
I:F Hon-Cwverlap Layer
+— Haorizontal Align

| vertical Align
T ot wyidth
- . Block o
@ [Block -
i
Content

: % Content
U] |[#s

Ready l Energy i@ 2270 cps
Figure 1Q Step 2

The third step is for the user to apply a set of constraints between the remaining
Block and the low-level Cluster containing the Nodes and Constraints described in step 2.
By using the same technique as used in step 2, three additional constraints are added: a
Vertical Alignment constraint that aligns the Block and sub-Cluster's LEFT sides; another
equal-width constraint; and finally a Horizontal Alignment constraint between the bottom of
the Block and the top of the sub-Cluster. After these constraints are added, the system
looks as follows:

22

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
A e @ Paper
§ [Page

[Page Bounder
I:F mlon-Cwerlap Layer
¢ 0o [Cluster
I:F Mon-Cverlap Layer
| wertical Align

+— Haorizantal Align
= getwidth

@ [l Block

© foj Cluster

: % Content
U] |[®s

Ready | Energy i@ 2195 cps
Figure 11 Step 3

For each of the alignment constraints that act on the differentEdges on each of its
attached Nodes, it is necessary to specify explicitly the atfected Edge for each Node. Tn
order to accomplish this, the user first selects the constraint in question, which loads it into
the "Properties" window, which we can see below in Figure 12. Next one needs to ensure
that the constraint is being applied to a specific set of nodes, rather than all of theNodes
that are its siblings in the hierarchy (in other words that it uses an explicit attachment
definition). This is done by deselecting the check-box at the top of the "Properties"
window. Tt is then possible to select individually each of the attached Nodes in the list box
at the bottom of the window, and then to select the correspondingEdge that should be
affected by choosing among the radio buttons in the middle.

23

E;g Horizontal Align Properties

[_] Affects all Sibling Nodes

Select Attached Hodes

Attach Selected Hodes

Top Center Bottom

Block
Cluster

Figure 12 Step 3, Sample Property Panel

The fourth step is to provide a constraint for the width of our entire high-level
Cluster (remember that both the width constraints specified above were of the "equal” type,
and thus the actual width of all of the blocks is still unconstrained -- only their widths with
respect to each other are constrained). This new constraint could be added in exactly the
same way, but it is useful to note that LILT supports an important shortcut for adding
width and height constraints. First, the user selects the Node that the new constraint should
control, in this case the Cluster in question. Next, the user clicks (likely a right click, which
will not affect the selection) and drags the Edge of the Node that he or she wants to
constrain. In this case, this should be either of the right-most or left-mostEdges. This will
cause LILT to determine if there already exists an absolute width constraint that applies to
this node, and add a new one if there is not. The drag motion is then used to set the size
parameter of this constraint. After completing this process, the system should look like this:

24

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
A e @ Paper
§ [Page

B Page Bounder
.':F. mlon-Cwerlap Layer
= setwidth

® [l Cluster

: % Content
U] |[#s

Ready | Energy i@ 2249 cps |
Figure 13 Step 4

Atfter step four, the user has produced an attractive layout for three blocks, in a style
that is typically used for a single Article's worth of text. This structure is so typical that it is
useful to coin a term for it: a Clump. The next step in this example is to add some content
to this document, which can then be directed in a later step into theClump that has just
been added.

Adding content elements to the content hierarchy is very similar to adding layout
elements to the layout hierarchy. By selecting an element already present in the tree, and
then clicking either the "add Bundle" or "add Track" buttons on the bottom right of the
screen, the user can build up an arbitrary hierarchy. In our example, the user has added a
Bundle (an element that contains other Bundles and/or Tracks) for a new lead story.
Then he or she has added two Tracks (the basic element of the content tree which
represents a linear flow of information, be it text or a graphic) beneath thisBundle. After
these additions, each element is selected in turn and its parameters are edited in the
"Properties" window.

The Track properties look like this:

25

E;g Track Properties [_ (O]

Hame Body Text
Layout Area (.12 (150

Figure 14 Step 5, Sample Property Panel

On this panel, there is a space to edit the name of theTrack and to specify the
amount of content this Track has. Tn a real working system, this second parameter would
instead be the actual content to display (or some reference to it, like a filename). Tt is worth
noting that this value is integral, which stems from the fact that most content is of an
integral nature -- there are only a fixed number of characters in a given story, for example.
LILT currently makes the assumption that each additional character takes exactly .1 more
square inches to lay out. But the exact size is not as important as that the algorithms used
within the system be capable of dealing with the granularity these integral values impose.

After adding the content and editing its parameters the system should look like this:

26

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
A e @ Paper
§ [Page

B Page Bounder
.':F. mlon-Cwerlap Layer
= setwidth

® [l Cluster

o % Crirnson, April 5
@ % 5 Majors Finish Theses
1 Title

' Body Text

T B
Ready | Energy @ 2033 cps
Figure 15 Step 5

The 6" step in the example is to connect theArticle's amount of content that was
added in step 5 to the Clump that was created in the first 4 steps. Tn order to do this, each
block that is going to recetve content needs to have aDuct constraint applied to it. In this
example, two Ducts are added, one for the Block on top to receive the title content, and
one for the other two Blocks to receive the Body Text. These constraints are added just
like the others: by selecting the nodes they should be attached to, and then clicking the "add
Duct" button. After the selecting of a newly added Duct, the "Properties" window looks
like this:

27

Eg,iFrunt Pack Duct Properties

[_] Affects all Sibling Nodes

Select Attached Hodes

Attach Selected Hodes

Connect To Selected Track

Figure 16 Step 6, Sample Property Panel

The user can then select a Track in the content tree and click the "Connect to
Selected Track" button, and the content will flow into the attachedBlocks. After this

process has been used to connect the title Track with the Block on top, the system will look

like this:

28

EELILT vo5 IS[=] E3

File Edit View Tools Layout Content Format Help
[erfer] zoomfs [~ [» W [€]MV]P]L] [@
: -Layout

o Mon-Cwerlap Layer -
LI oot wyidth
@ 0O Cluster

m Mon-Overlap Layer [23

| Vertical Align

—— Haorizontal Align

= setwidth

ﬁ Frant Pack Duct
- . Block i)
& O Cluster =

m| D m|— |2 e
- Content

@ % Crimsan, April 9
Lo % S Majors Finish Theses
» # Title

»1F Body Text

g |7
Ready l Energy @ 1726 cps
Figure 17 Step 6

Note that the little red stop sign on the icon for the titleTrack in the content tree has
disappeared (as shown by the upper arrow), indicating that the content for this track has

been laid out, and that the system was able to find enough space to lay out all the content.

The stop sign is still present in the Body Text Track (as shown by the lower arrow), as a
Duct has not yet been added for it as of figure 17.

The 7" step of the example is to reposition ourClump to its appropriate place on
the page. Selecting the Clump and dragging it with a right mouse click does this (again, a

right click does not change the selection state). The following figure shows the repositioned

Clump and an additional block that is Anchored in place in order to simulate additional
content that would be placed on the page:

29

EELILT vo5 IS[=] E3

File Edit View Tools Layout Content Format Help
[erfer] zoomfs [~ [» W [€]MV]P]L] [@
: -Layout
= @ Paper
@ D Fage 1

[Page Bounder
I:F mlon-Cwerlap Layer
B getwidth

@ 00 Cluster

@ [Block

@ % Crimsan, April 9
Lo % S Majors Finish Theses
Z Title

Z Body Text

@ |91
Ready | Energy @@ 1207 cps
Figure 18 Step 7
For the 8" step, let us examine what would happen if this story were suddenly
determined to be of paramount importance and lengthened considerably. We can simulate
this condition simply by bringing up the Track properties for the Body TextTrack (as seen

in Figure 14), and increasing the content length (or area). Following this procedure, LILT
will resize the blocks in order to lay out the additional material:

30

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
A e @ Paper
§ [Page

[Page Bounder
I:F mlon-Cwerlap Layer
B getwidth

@ 00 Cluster

@ [Block

@ % Crimsan, April 9
Lo % S Majors Finish Theses
Z Title

Z Body Text

T |7
Ready | Energy @ 1255 cps
Figure 18 Step 8

But let us suppose that the user is unwilling to devote this much space to the story
on the front page. His or her 9" step, then, is to add a Jump in order to place some of this
story on a back page. The first step in this process is to add the necessary layout elements.
For the sake of simplicity, let us just add a second page with a single Block that we want to
contain the rest of the story:

31

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
[erfer] zoomfs [~ [» W [€]MV]P]L] [@
: -Layout
= @ Paper
@ D Fage 1

[Page Bounder
I:F mlon-Cwerlap Layer
B getwidth

@ 00 Cluster

@ [Block

¢ [Pagez

[Page Bounder
I:F Man-Owerlap Layer

@ [Block

0 DhD=EEE

Ready | Energy @ 1342 cps |
Figure 19 Step 9

Consequently, the 10" step is to redefine which Nodes are attached to the Duct that
is mediating the layout of the Body Text Track. This is accomplished by using the two
remaining buttons at the top of theDuct "Property" window shown in Figure 16. The two
remaining buttons, "Select Attached Nodes" and "Attach Selected Nodes," provide a means
for the user to determine what Nodes are being affected by the constraint (by having them
selected) and a means for altering which nodes are atfected respectively. After clicking on
the Duct in question, and then hitting the "Select Attached Nodes" button, the two Blocks
that are already attached will be selected. Next the "Affects All Siblings" check box needs to
be deselected, in order to allow a Block that is on a distant branch of the tree to be
connected. Then a new Block s selected, giving us the figure below:

32

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
: I catywidth =
ﬁ Frant Pack Duct
@ [l Block

@ o Cluster
IIF MHon-Owverlap La
= Harizantal Align
| ertical Align
O et width
g Front Pack Duct
@ [Block
& [Block
@ M Block
@ [Page 2
(4 Page Bounder
I:F MHon-Cwverlap Layer

@ [l Black
M

:§:|
m| 0| ||| 0=

11]2] ——

Ready | Energy @ 1303 cps |
Figure 2Q In the middle d Step 10

Next, the "Attach Selected Nodes" button is pressed. This causes theDuct constraint to be
moved to the appropriate place in the hierarchy, and the newBlock to be included in the
Body Text content flow:

| ¥

33

EEELILT v0.5 _Tox]

File Edit View Tools Layout Content Format Help
[)] zoomiss [~ |2 [W] [N VIPIL] [@
: -Layout
Al ¢ @ Paper
g FrontPack Duct
% [Page1

[Page Bounder
|-_-F' MHon-Cwerlap Layer
= getwidth

@ o Cluster

@ [Block

¢ [Page 2

B Page Bounder
I:FI Mlon-Cwerlap Layer

@ [l Block
WL EE
12l _—
Ready . Energy @ 1063 cps |

Figure 21 After Step10

This does not cause a very noticeable change until a force that would tend to shrink
the large Block on page 1 is applied. But such a force would be generated by the other
content on page 1 (the reason we are creating this jump in the first place). In order to
simulate this, in step 11, we simply move the Block on the lower left so that it is pushing
against both of the Body Text Blocks, like this:

34

EELILT vo5 IS[=] E3

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
Al ¢ @ Paper
g FrontPack Duct
@ [Page1

[Page Bounder
|-_-F' MHon-Cwerlap Layer
= getwidth
@ o Cluster
@ [Block
o D Fage 2

@ % Crimsan, April 9
Lo % S Majors Finish Theses
Z Title

Z Body Text

112 8]z

Ready l Energy @@ 1261 cps

Figure 22 After Step11,page 1

Because the Block on the back page has been linked into the text flow, it will grow as a
consequence of step 11:

35

EELILT vo5 IS[=] E3

File Edit View Tools Layout Content Format Help
 [e]er] zoomfs: [~ & [» W €[[V]P]S] [@
: -Layout
= @ Paper
g FrontPack Duct
&= D Fage 1
@ D Fage 2

B Page Bounder

I:F mlon-Cwerlap Layer
@ [l Block

@ % Crimsan, April 9
Lo % S Majors Finish Theses
Z Title

Z Body Text

2] |[#]s

Ready l Energy @ 1369 cps
Figure 23 After Step 11, page 2

Thisbrings our extendedexampleto aclose. The example has shown how an
Article/Clump-level content and layout can behandled Clearly, higher leve
orgarizationis also necessary to generatea complete layout. But the process for
generating higher-leve constraintsis very similarto that of this example, the major
difference being that al the constraints apply to Clusters. Thisbeing thecase, letus twurn
to amore comprehensive look at the components of theL ILT system.

36

Chapter 6: Algorithms

There area number of unique algorithms that have beendeve oped for this
projec , the most important of which is the constraint satisfaction scheme. In creatingthis
scheme, the goal was to produce asystem that providesfor asmany of the constraints
describedabove as possible in asemi-automaed layout framework. Toward this end, a
system based on the mass-spring-updde maodd in GLIDE wasused. A mass-spring-
updete model providesthe recessary semi-automated qualitiesallowing the user to
anticipate the motion of objects in the simulation, much as one might predict the motion
of billiard balls. However, significant modifications fad to be made in order to render
such a scheme compatible with the newspaper layout domain, and it isthese
modifications that are described below.

It isimportant to nde that the dozens of constantsin the algorithms describedin
this sectionmust be chosen very carefully. Asin GLIDE, it isvital for thevarious
spring-congtraints inthe system to have the appropriate relative strengths in order for the
system to behave as expected. Itis even more vital for the constants affecting the
simulationitself to be correct if the smulaionisto convergequickly withoutintrodudng
unacceptable levels of numericd instability.

6.1 The overall document model

Asin GLIDE, the mass-spring model here is based upona modified Euler method
for numerically solving for the positions of the masses. However, the algorithm in
GLIDE has been modified to accommodate the duel -tree data structure described above.
Instead of maintaining simple listsof nodes and spings, we usthetree dructure itself t
find the nodesand springsto update. Further, the simulation needsto be &le to opekte
on both the layout and the content hierarchies, and it needs to be able to enforce
constraints thet do notconform tothe mass-spring mald (such asthose that modify the
attributes of other congtraints in the system), or update. Basedon these criteria, the
high-level algorithm for the constraint satisfaction algorithm is as follows:

Let us dfine the foll owing variables:

Theroot noce of the layout treetoben

Theroot noce of the content tree to be c,

The erergy in the system on a logarithmic scale to be E (has arange from 0 to 1),
Thetimein the simulaton tobe T,

Thechangeintimetob dT,

The damping constant to be Damp, and

The minimum energy for the simulation to continue tobe 1,

Various constants k;

T=E=0
Initialize both trees gpropriately.

Repeat
{
dar = k]_ + k2 *E
Damp = (2 - E/k3) * Sgrt(the maximum spring constant)

37

Call ApplyUpdatesonn.
Call ApplyConstraints on n, and note the maximum spring constart applied.
Call FreshrenNodes an n, ard note the maximum squared-momentum engendered.
Call UpdateCortent onc.
Update the Bergy:
E =log(25* the maximum sgquared-momentum / number d Edgesin N)
if(E>1)
E=1

if(E < Kin)
pause the simulation until the wser changes something

Each of thefour function callsin this codeisdiscussal in detail below, but tre
other code aserves some explanation first. Getting the mass mass-spring simulationto
work inthe newspapr domain is much more dfficult than itis in graphlayout, sncethe
model must be diven harder. The numerical methods $sedin GLIDE have been
carefully twedked in order to overcome the severe numerical instability that can appear
when mary of the springs in the model are strongly pressed a@inst each other, asituation
that occurs constantly in the rewspager domain. Thekey improvement that redices the
amount of numerical instahility is to calculate a scded value for the anount of energy in
the system and then to vary dT and the damping constant based upon thevaue of thi
energy. Thisalowsthe simulation to proceed quickly when thereis high energy, bu as
the energy falls off, the simulation slows and gainsprecisonin order to reduwce the
numerical ingability that occursasit appoachesits equilibrium stae. This enables the
simulationto converge quickly, while still maintaining numericd stability in all but the
most unuswal circumstances.

6.2 Specifics of the layout model

Theadua behavior of the layout model isdictated by how thethree calls on the
roat element (which isawaysa Paper Node) mace in the algorithm above are
implemented. It istherefore necessary to describe the attributes of each of the elements
inthe tree, and how they work together to make the model operate.

6.2.1 Node element algorithm

All Node elements are expected D provide a setof behaviorsthat can be called
upon by aher pats of the sysem. First, there are the three functionsused in the listing
above: ApplyUpdates, ApplyConstraints and FreshenNodes. In general, these are
functions called by a parent on each of the elementsinits Node child-list in order to
upckte a specific agect of the simulation and constraint solver (notethat the root node
represents aspecial case, asthe functionsare insteadcalled by the hgh-level code shown
above). Nodeelements provide at least aminimal set of attributesand behaviors that can
be wsed by Constraint or Update elements when doing their calculations. EachNode

38

element also has certain vaues associated withit for use in the mass-spring simulation
which include: Momentum, Position and Force (Masses are assumed to be unit sized).

6.2.1.1 The ApplyUpdates function

This function providesa means for all the Update elementsinthe Tree o perfor
their task. Each Node element in the treeperforms thefollowing dgorithm when
ApplyUpdatesis called:

Perform any gre-processing this Node-type requires.

Call ApplyUpdateson evely elementinthe Node child-list.
Call Update on each of the dements in th Update child-list.
Perform any post-processing this Node-type requires.

For efficiency reasons, some of the Node attributes are actudly calculatedduring the pre-
and post-processing steps in this function, and then cached in the nodefor one smul ati
cycle.

6.2.1.2 The ApplyConstraints function

The ApplyConstraints function isvery similar to the above, bu operates on
Constraint elements instead. As part of the smulation algorithm above, it isimportant
to track thelargest spring constant seen, so ApplyConstraints doesthis aswell:

Perform any gre-processing this Node-type requires.

Initializ maximumSpringConstantSeento 0.

Call ApplyConstraints on every element in th Node child-list, updating maximumConstantSeen
after every call.

Call ApplyForces aneach of the elementsin th Constraints child-list, updati
maximumConstantSeen after every call.

Perform any post-processing this Node-type requires.

Return maximumConstantSeen.

6.2.1.3 The FreshenNodes function

Most Node elements implement thisfunction to do arecursive descent similar to
the previous functions:

If this Node is Anchored
Return 0.
Perform any gre-processing this Node-type requires.
Initializ maximumM omentumSquaredSeen to 0.
Let F bethe Forcethat has leen gpplied to this node during the last ApplyConstraints call.
For each Node elementn in the Node child-list
Apply theforce of F * (Number of Edgesin n/ Number of Edgesin this Node) to n.
Call FreshenNodes mevery elemert in th Node child-list, updating
maximumMomentumSquaredSeen after every call.
Set FtoO.
Perform any post-processing this Node-type requires.
Return maximumM omentumSquaredSeen.

39

However, Edge Nodes, which are the base case, use a very different algorithm for
this function:

If this Node is Anchored
Return 0.
Set Momentum +=dT * (Force - Damp * Momertum)
Set Position += Momentum * dT
Set Forceto 0.
Return Momentum squared.

6.2.1.4 Required node attributes and behaviors

Node d ements nust provide awhole haost of attributes and behaviors to mekethe
system robustand workable But there are certainvital ones that are worth enumerating
(nate thet values like Force a Position are two-dimensiord vectors in most Nodes, but
are one-dimensional scalars for Edges):

Enumeration of all child element

Enumeration of each child-list indvidudly (Nodes, Constraints or Updateg
Accessing childrenby index
Inserting/removing chidren

Obtaining the aurrent Position

Moving the Node to a new Position

Offsetting the Nodeto anew Position
Obtaining the aurrently applied Force
Applying anew Force

Obtaining the aurrent Momertu

Obtaining the total number of Edges
Obtaining the left/right/top/bottom-mos Edge
Obtaining a boundingredangle for this Node

These last three attributes are requested so oftenthat it isvery inefficientto
calculate them each time, and as areault they are calculated once in the AplyUpdates
function, and cached for later use.

6.2.2 Constraint and Update element algorithms

Both Constraint and Update elements are responsible for changing the state of
the simulation, bu they act in different ways. Constraint Nodes act asSprings within
the simulationand act by caculating and then goplyingforces to their attachedNode
elements. Updat Nodes (which are nat present inthe GLIDE system) differ in that they
arenot part of the mass-spring simulation. Instead they are rules that are evaluated once
every simulation cycle (throughacall to the Update function) that can madify the state of
other elementsin the layout hierarchy (including creating or destroying other elementsin
the tree).

40

Constraints (or Springs) have mary attributes and behaviors, bu the mast
important isthe ApplyForce method. This method calculates Forces for each of its
attached Nodes from the aurrent state of theseNodes and the Constraint itself and
appliesit. Most of theConstraintsimplemen Springsthat calculatether forces based
upon Hooke's Law: F = k*(length - rest length); however someof the springsact in non-
physicd ways in order to effectively produce alayout. Most of these non-physica
springs addto the numerical instahility problembecause they are non-linear in nature,
requiring the algorithm that performsthe simulationto be asforgiving aspossible.

Clearly in order to calculate the Force based on Hooke, a Constraint must have attributes
for the spring constant, current length and rest length.

6.2.2.1 low-level constraints

Aswe have seen, thelowest level constraint, Ancho ing, isaspecial caseard is
accomplished by theaddition of aspecia flag in Nodeelements. Thisis equivalent to
defining an Ancho as havingan infinite mass, and attaching his mass to the appropriate
Node. Thenextlow-level constraint, Pagebounding, senforced by an Update element
that can beapplied only to PageNodes and whase Updéae function usesthe following
reaursive algorithm, first called onthe PageNodeitself:

If thisis aBlock Node
If any of th child Edges are outside of the Page, move their Positions to be at the extremity
of the Page.
Else
For each Node child element d this current Node do the foll owing:
If the child'sboundirg rectandeis outside the page
make a recursive call onthat Child Node.

Thisalgorithm ensuesthat all Nodes below a pag are bounded g it, since every
descendent, na just the immediate chidren, will eventually be checked.

The non-overlap corstraint isenforced by a Constraint element that sets yp a
new Layer and puts each of its attached nodeson this Layer. Layersareinvisible sheets
that exist abovethe parent Node upon which aset of child Nodes cansit. Layerswork in
amamer very similartothat of layersin traditiond desktop publishing systems: the
enalle obects o overlapeach other, and confer control over which object isontop of
which. However, in contrast to what happes in traditional approaches, the ordering o
the layersis easily observed and modified: it isdefined by the ordering of the non-
overlapConstraint Nodesinthe layout tree.

The non-overlap Constraint only appliesto itsdirectly attached nodes, bu in
order to dothis, it effectively maintains a gring among all the Blocks within each
attachedNodeand all theBlocksin every other attachedNode (but not anongthe
Blockswithin each of these sub-trees). Thesenon-overlap Springs are non-physical in
nature: the spring constant dropsto zero when the docks d nat overlap, bu is
exceedingly highwhenthey do. They are arranged in such a way that they always force
blocksto move apart from each other and in such away that they typically will seek the
shortest route to a state where they no longer overlap. Also, becausethis nonphysicd
situation promates numerical ingability, it is useful to have the springs reman active for
avery small distance past where the Hocks are nolonger overlapping. These principals

41

are put to work inthe following algorithm that is used for the ApplyForces function of
the non-overlap Constraint elements:

Call the following recursive fundion between every pair of atachedNodes ard return the
nonOverlapSpingConstant.

ApplyNonOwapForceRecursor(Nodel, Node?)

{

if(the boundingredanglesof Nodel andNode2 do ot intersect)
return
else

if(Nodel isof subtype Block)
if(Node? isof subtype Block)
Calculate the forces between Nodeland Node2 ad gply them.
else Node? is a Block-Cluste
Make a recursive call for each Node child of Node2 specifying Nockel asth
other argument.
else Nodel is a Block-Cluste
Make arecursive call for each Node child of Nodel specifying Node2 asthe other
argument.
}
}

6.2.2.2 Mid-level constraints

Each of the md-level constraints can berepresented as a&onstraint element in
the layout Tree. Each actsasaset 0 Springsthat apgy forces tother attachedNodesin
swch away asto erforce the constraint. There are fou differen Constraint element
subtypes (nat includng nan-overlap and Duct constraints), and each gopliesits springs in
adifferent way, asdescribed be ow:

6.2.2.2.1 Width and Height

Both these constraints simulate a set of physically accurateSpringsthat are
connected between the appropriate paradle Edges of each of the attachedNodes and
apply forces that tend to gve these Nodesthe gppropriate dmensons. Cluster Node
can be attached to a width or height constraint just aseasily as aBlock can. In this case,
the forceis always goplied between the extreme Edges of the Cluster inthe gpropriate
directions. For example, when a width constraint isappliedto a Cluster, it will ac
between the rightmost and leftmaost Edges of the Cluster asillustratedin Figure 24.

s S

Figure 24 A Width constraint appliedto a Cluster

42

The gpropriate Szeis attained by giving theSprings appliedin this mamer arest length
that isequal to the desiredwidth/height of the Node a dstance that is determined in one
of the following three ways:

A fixedvalue specified by the user

The averagecurrent width/height of all of the attachedNodes
The distance betweenany two perallel edgesin the system.

6.2.2.2.2 Horizontal and Vertical Alignment

These constraints dso wse Springsthat directly follow Hooke's law. However,
instead of attaching thesesprings within the sasmeNode, alignment constraints apply
them acrosstheir attachedNodes. These constraints canbe applied to one of three
locations in each direction. For horizontd alignment these are TOP, BOTTOM and
CENTER. Center redlly means novingthe entirety of the Nodeitself. For vertica
alignment, we similarly have LEFT, RIGHT and CENTER. By default, these constraints
apply to the same locationon dl of ther attachedNodes. Thatis, they apply to al of the
left Edges or all of theright Edges, or to the Nodes themselves. However, they can be
set up toexplicitly use a givenlocaion oneachindividua attachedNode In orcer to
obtain the appropriate behavior, the average of the positions of the locations of all of the
attachedNodesistaken. (Clusterscalculate their CENTER location by taking the
weighted average of all of therr sub-Nodes' positions). A forceis then caculated and
applied to theappropriate locationof eachNode This caculation wsesarest length that
isthe difference between the previously calculated average position and the position of
the aurren Node's appropriate location.

6.3 Specifics of the content model

The call tothe UpdateContent functioninthe high-level algorithm gven in
section 6.1 provides an opportunity for the content treeto updete itself, and to modify
corresponding dements in the layout tree if necessary. In practice, this means handling
the content side of Duct congtraints, and the rendering associated with the actual flow o
content into the layout

Thisisaccomplished by asimple depth-first descent down the tree, where each
tree element evaluates all of the elements beneath. Whenever a Track isreached (and
Tracksare aways leaf eements), it callsthe UpdateRange functionfor each Duct tha
has been comected toit, which in turn mediates the data flow, asdescribed in the nex
sulbsection.

6.4 Specifics of the connecting ducts

The connecting Ducts are adually updaed twice, once as Congraints within the
Layout Hierarchy, and once through their association with the Content Hierarchy. Asa
result, they must maintain some state between each of these different update callsin order
to dotheir job correctly. First, the Duct keeps track of the amount of content (as an
integer) that it was ale tolay out in thelast modd-cycle. Secondly, the Duct maintains
arecodfor eachBlock for which the Duct isresponsible. The record hastwofields: a
rest length for sizing the Block, and an integal offset for how many charactersthe Block
will contain. As mentioned in Chapter 5: An example interactionwith LILT, it is

43

important that the data for the amount of content that has been laid ou be integral. Ducts
must be abde to hand e the fact that content comesin dscrete units(usualy characters,
but it could really be anything).

The Duct'sroleas aConstraint isreally rather straightforward, and like all
Constraintsis mediatedby a call to the updteForcesfunction:

For each attached Block

{
Obtain the record for this Block

Calculate and apdy forces to this Block exactly like a height constraint, but wsing the rest
lengthintherecordin Hooke's Law.

Thereal work ina Duct is performedwhen the content treeupdatesit. This
occurs when an attachedTrack calls the Duct's updateRange function, which takesas a
parameter the length of the content to try to lay out (endPosition) and returnsthe actua
length that it wasaleto lay out:

First it caculates the difference ketweenthis position and the amount it laid out last time:
If there are no attachedBlocks, just return O.
Integer Diff := erdPosition - endPasitionLastCycle.
If(diff 1= 0)
Dif += the number of attached Blocks.
Integer BlockContribution := Diff/ the number of attachedBlocks.
Integer FirstBlockExtraContribution := the remainder of Diff/ the number of attached Blocks.
StartPos:=0
For each attached Block:
{
Get the ecord for this Block.
Set record.OffsetField +=BlockContribution
If(Thisis the first Block)
Set record.Off setField += FirstBlockExtraContribution
If(record.OffsetField < 0)
record.OffsetField = 0
Now call rendrer.getNeeda@Siz (Block, attached Track, StartPos, record.Off setField)
Which returns the size neede to lay out al this material.
Set record.HeightRestLength := K * (this needed size - record.HeightRestL ength)
StartPos += record.OffsetField

}

Integer ActualOffset := 0
For each attached Block:
{
Get the ecord for this Block.
Call renderer.render(Block, attached Track, Actual Offset, record.Off setField) Which shaild
render the content into the block, and return the amount of content that acualy fit.
Set record.Off setField := the length returned by this function.
Set ActualOffset += the length returned by this function.

}
return Actual Offset.

44

This algorithm requiresthe two sugporting furctions
renderer.getNeedelSize(Block, attachedTrack, StartPos, record.OffsetField) and
renderer.render(Block, attachedTrack, ActualOffset, record.OffsetField). InLILT these
functions are a simple calculation based on the assumptionthat each unit of content takes
.linchesto lay out. Butinared system, thesefunctionswould be very involved and
would take careof actualy laying out thedata. For suchasystemto berunin a
reasonale time, it will bevita for these functionsto exeaute quckly. Thusthese
functions will probably haveto use cachingwith some form of incremental update in
order to produce areasoreble execution speed (and consequently model convergence
sped).

45

Chapter 7. Implementation Issues

LILT hasbeen developedasaJava goplication, and as such canrun inany Java
1.2 environment witha JIT compiler, providedthat the machine the environmentis
runningon isfast enough. Dueto Java's slow nature and the use of red-time smulation,
the system only runsadequaely ona fast Pentium Il machine a better.

Throughout LILT's development, an attempt has been madeto draw adistinction
between the code that is used for creating the mass-spring-update nodel and the code tha
uses that model to encode the newspaper domain. This shoud erable other collaborative
applications based on mass-spring-update mode's © be deve oped usngthe same code
base. This distinctionwas d-awn very clearly in early versons of the program where
each of theseportions of the codeexisted in its own Javapackage bu these packags
were eventudly merged for efficiency reaons. Still, changngthe specificsof the mode
(by changing the properties of individud Node elements, or even by creating a different,
non-hierarchical data structure) isvery feasible.

It isimportant for aprogram that uses this framework to be multi-threadel. It is
vital for the user to be ale to manipulatethe user-interface effectively, while the CPU-
intensive simulation isrunning oncurrently. This can only be accomplished if the mode
isrunningon asepaate threadthat can synchronize changesinits statewiththe Ul. In
practice, this requiresthe nodel thread b accept changesto the state from the Ul thread
(causd by the user), and for the Ul thread to periodically refresh its information from the
model in order to make sure that the user is seeing the current date.

In order to facilitate bath the reuse of codein other domains and the effective
maintenance of the two threads and their associated timers, the currentversiono LILT
has two packages.

- The Document package, whichisnow resporsible for both the mass-spring-
upcete model itself, and the two tree structuresused to represent the newspaer
domain.

The Ul package which containsall of the codeused to createtheL ILT graphical
user interface.

46

Chapter 8: Possible future improvements for the layout
paradigm

LILT isna apiece of commercia software, and the system is nat capble o
coming close toredly producing anewspaer right now. For anobvious example: it is
currently not possible to place actual content into Tracks, but only to goecify a parameter
that ind cates a hypathetical amount of content. It would nd be hard to addthe capalblity
of accepting actua content, and thecgpability of renceringthis data bu it ill needs to
be cbne. Additionally, the aurrentimplementation of Ducts only modifies the height of
attached Blocks. It will beanimportart but relatively easy extension to thiswork to
generalize the Duct constraint to work in bath directions. As aur focushereisnot
primarily practical, however, letus turn to the numerous additional improvements that
could be made that are of more theoretical interest.

The aurrent system provides nomeans to ald acomplex layout sub-tree all a
once. Chapter 5: An example interactionwith LILT shows aprime example of this. The
user needed to dd anew layout sub-tree (a Clump) that would contain al the Hocks for
anew Articleinthe newspaper. But instead of beingable to adda generic Clump sub-
tree, eechindvidud eement had to be adeéd oneat atime. In order to fecilitate this, a
macro language coud be developed that might let awhde new sub-tree be aded easily
with default layout characteristics. Such a £heme cauld work in amanner similar to the
way that Juno-2 lets users create libraries of drawings that can be ddedand bult uponto
create new and more complicaedimages. Inthis endeavor it could prove useful to have
Articles contain aminimum set of standard trads, such as the oneslisted on page 15.
These standard tracks could be specified in amacro thataddsa new Bundle to the
content hierarchy representing asingle Article that includesa Track for each of the
standard tradks. Macros for addng layout e ements cauld then expect to find these
Tracksinthe Article level Bundles Ideally, the macros themselves waild be
configuralde, so the wser could create his or her own buttonsin the user interface for
precisely adding oljects he or she uses most, asin Juno-2 (see Nelson).

Anather very dgnificant improvement would be to implement some or all of the
high-level congraints described nsecti 3.1.2.3. Tlswill require more informationto
be gleaned from the cortent hierarchy and will call for afar tighter integration between
the content and the layout, sothat automatic inferences can bedrawn. Such relationships
should be possible, bu are very difficult to work out. Further, within this process, the
more information that can be implicitly gathered from the existing content hierarchy the
better, since the suplying of additional information will only take upthe use's ime.

It would also be highly beneficial to addthe cability for the program to column-
or page-breek text only in specific places chasen either by theuser orby some sort o
natural-language pocessing. Usually thereisa fixed set of locations in thetext where a
page or column break isdesirable. It would be advantageous if thelayout cauld be
congtrained by suich restrictions, but only if they could beeasily overridden.

47

Chapter 9: The multi-user case: concurrent editing
within the workflow

Now that we have consideredthe layout problem in depth, it is time we turned our
attention to the question of how to get multiple humans to callaborate on the shared god
of producing asinge newspape.

9.1 The problem

In order to understand the problem, it is useful to see how a sndl newspaper
(using one of the commercid packages) handes the inherent difficulty in tryingto get so
many people to coerate onasingegoal: areadalbe, attractive rewspaper. Using the
Harvard Independent and Bronx Science's ScienceSuvey as appropriate models,
generally thefollowing flow is wsed:

Writers on “beats” Editors-in- Layout editor, with Ad. Editor/staff

determine Chief/Editors input from Editors-in- get adstogether

available stories. determine Chief sets overall look and assign themto
paper size. for paper. sections/pages

IWriter F>lEditor > Layout-person F>lEd-i y(Chi ef —

Text (MS Word) Rough idea of Rough layout of éevi ews section Photo editor / photo
specific section section in and makes staff and Art editor /
layout (on paper PageMaker. corrections art staff providethe

graphics
%Writer H Editor H L ayout-person l\%iEd-i n-Chief |7

May rework text Editstext / Putsthese Reviews section

following editors Layout changesinto and makes

suggestions PageMaker. \ corrections

Must have all
text and graphics
by here--
Bottleneck

ﬁi Editor _ H Lavout-person H Ed-i n-Chi ef HLavout-t_aditor

Reworkstext etc Puts these Final Check — Combines

following chief's changesinto Make sure sections and

corrections PageMaker everything ok. graphicsinto ong
file on zip-disk
for printer.

Figure 25 An idedized newspaper production work flow

Thisisthe ideal workflow that people strive for. Itisnever adually attained for a
million reasons But if the software were @leto handle multiple users more effectively,

48

perhaps orchestrating and displaying different people’ s contributions in a visual manner,
avery smooth flow could be achieved.

The goa isto have all the text, ads and graphics complete by the first row and
thento do carections, breaking stories, bylines, titles and @ptionsinthe second The
third row isthenfor afinal clean-up. However, what often hgpens is that some conten
isnat availlade until theflow has dready hit the secondrow. Then that section of the
paper hitsabattleneck, as ind cated.

When this happens, only one person can be working onthat section's layout at a
time. This meansthat the editors and writers who are working on the text, notthe layout
cannot modify the text whilethe layout is going on. It aso meansthat each section can
only be laid out by ore person a atime, and that a combining step mustbe includeda
the end in order to put all the sections (in separatefiles) into one dacument in Pag@Maker
(or Bookfile, as Quark calsit). These and other limitations suggest that thefollowing
scenarios might be hand ed far better:

A breaking story arrives soonbefore thepaper goes to pressand potentially the

entire pa@r hasto be laid out afresh. We want automation in thislayout and the

capadoility for mutiple people to collaborate onvarious aspects of thelayout in
paralld.

Stories, ads, phdos, graphics arrive very late in the process. We want everything
elseto proceed smoothly until theseitems arrive. Wewart to be able to
shrink/expand other stories or in ather ways cope if these items db not materiali ze.

9.2 Current approaches

There are commercia systems currently available that will do source-file
monitoring on publishing data similar to the ones commonly used for computer source
code. Onegoodoneisthe Quark Pubishing System. These systems dlow thedata of a
pager, including layout information, to be stored ona centralized server. Different users
can then check out portions of the data and modify it, later checking it back in. Systems
like these enalde the editors and writers to make their corrections right into the layout
packaye instead of wasting the layou people stime by retypingall the corrections.

They suceedin kegoing thelayout and thetext distinct so that thelayout and the editing
cangoonin parallel. However, thereisanimportant limitation o this: these systems
require that when text is edited, care be taken not to charnge the area it takestolay it out.
If this areachanges, then the layou person hasto do an explicit and manual re-layout.

9.3 Towards a solution

Ideally, asystem could be developed that updates thelayout information
dynamically as text lenghs change, and that lets multiple people work onthe same layout
at once. The layout paradgm presented here provides agoad founddion for attempting
to produce a muti-user newspaper production environment that has theseimportant new
collaboration-promating festures. LILT providesa goodbasis for such an ambitious
godl for the following reasons:

The strong separation between the data madd and the user interface should allow

for an easy transition to a client-server type environment.

49

LILT usesrdative constraints rather than asolute positioningto create alayout.
This providesthe automationnecessary to have thelayout update based on
dynamic changesto the content

The dynamic nature of the system, where the effectsof a change ae expressed
immediately, is animportant first dep for letting mutiple users (or computers)
affect the layout simultaneously.

In the mass-spring-updite model, the effect of a given loca change tendsto fal
off with the squere of the dstance from that change. Thisisan importan
property in a multi-user envronment, where people will be making changes
simultanecusly: one wants the changesusers make t be as local as possible to
prevent them from ruining each others work, or rendering it obsolete.

This last property isimportant, asit addesses themost fundamental problem of creating
systemsthat promote collaboration: making the agents involved aware of each ahers
intentions. Clearly, thefall off of the spring model isa very useful property, althoudh it
does nat yet come close to solving thisimportant problem—a great deal of additional
work isrequired.

50

Chapter 10: Conclusion

Newspapr production isavery compicated dfair with many, often corflicting,
requirements that need o be resolved within a short timeframe. Traditiona layou
techniques ssimply do not provide robug methodsfor adinguseasin solving these
congraint problems. A systemthat can enforcethe low, middle and highleve
constraints and harness the dual herarchical nature of the doman should be ableto
increase the productivity of its usersimmensely. This constraint satisfactionis a form of
human-compute cdlaboration in which the compute assists the human in an informed
way, by taking on the more tedious aspects of the layout problem, allowing the human
user to concentrate on more aesthetic decisions. LILT isalso astep towards an even
more comprehensive system that is caableof letting multiple users work on the same
newspage in paralld, asit solvesmany of the problems such a scenario engenders.

51

Chapter 11: Glossar

Anchor.......... The constraint that agiven Node shodd notbe moved by the constraint
satisfactionengne.

Article........... All the content information pertaining to a single story in the paper
including bath graphics and text. That is, aBundle that containsonly
Trackspertaining b asingle story.

Block............ A box containing ether text or a graphic. Itisdefined by its4Edges,
whichindirectly specify its location and size. It dso maintains
information about its desired margins.

Block-Cluster. A Cluster that isa descendent of PageNode and thus has only Blocks
and other Block-Cluster on its Node child-list. Therefore, aBlock-
Cluster camat cortain anather PageNode

Body Text Thetext inan Articlethat isthe adual story itsdf, not including any of
the aher details such astitle, Byline, or Callouts.

Byline............ Thetext inan Articlethat attributes the pieceto its author.

Callout Short, usualy striking, phrase that is singled outfrom the body text and
placed inalarger font, often asameans of wasting gace.

Clump........... Any Cluster inthe layout hierarchy that is comprisedentirely of Blocks
that are from the same Article, bu whose parent cluster contains Blocks
from multiple articles. Clumpsaretypically second a third level Block-
Clusters.

Clugter........... A Nodeinthe layout tree that represents agroup of sub-unitswhose
layout is congtrained with respect to each other in one of severd ways.
Although Clusters are general organizational elements, at any giventime
they must either be PageCluster or Block-Clusters

Corstraint......1) {generally} A condition that is specifiedeither by the problem domain
or by the wser, which the machine must attempt to satisfy.
2) {specificaly} Anelement of the layout tree that acts as Spring inthe
mass-spring-update s mulaion and thereby modifiesthe Nodes in the
layout.

Edge............ A Nodeinthe layout tree that represents one side of a Block and is
definedby its position either horizontally or verticaly.

Duct............... The constraint that is reponsible for ensuring that the same amount o

spece beresened inthe layout asis required by the content, and dictates
what content flows into its attached layout Nodes.

52

Jump............

JIT Compler.

Node............

Package.......

Page............

Page-Cluger..

Newspapr-spek for what happenswhen an article begnson one page
and is continued on ancther.

A virtual plane above each paye, uponwhich bocks can be placed. All
blocks on agiven layer are forced to nd overlap.

ELastic Interactive Layout Tool: The name of the program that has been
developedin this study.

Just InTime Compiler: A compiler used by some Java environments to
compile Java bytecodes into native machine code onthe fly, often
resulting in aterfold sped improvement.

Any element inthe layout hierarchy that representsa dsplayable objec
and nat acorstraint. Suchelementsinclude Papers, Pages, Clusters,
Blocksand Edges.

The Javaterm for a collection of related code that works together as a
cohesive whole and which can be reused in different programs.

A Nodeinthe layout tree that represents a single pag of the pagr. Pages
can cortain either Blocksor Block-Cluster sand are cefined by their
width and height and color.

A Cluster that isonly a descendent of other Page Cluster s and the roct
noce Whichisaways a Paper Node). PageClustersony have dher
PageClustersor Pagesonthei Node child-list and thus cannot contain
Blocksor Edges.

Paper............. A Nodeinthe layout tree that representsthe pgper asawhole. Paper

nock is dways the roat of the layout tree and can exist nowhere else inthe
tree. Paper Nodes can contain either Pagesor PageClustersand hande
the assgnment of page numbersto these pags.

Any element of the layout hierarchy that acts as a spring in the mass-
spring-updite simulation. That is, it is has a ring-constant and acts on
attached Nodes by the application of force.

One piece of nformation about a gven article, ustally a single sequence
of text, or asinge graphic e ement.

An element in the mass-spring-update mode that modifies other elements
inthe model in away that does nat conform to the mass-spring metaphor.
More specifically, in LILT, thisisany element of the layout hierarchy that
modifies the stae of ancther element in the layout hierarchy but does no
act as aSpring. These are oftenused for syntactic constraints, but can be
usedto modify the parameters of any dher objectin the simulation (or to
addand remove other elements).

53

Chapter 12: References

AdobeInc. Adobe PagMaker 6.5

Armstrong, Eric, Tom Santos and Steve Wilson. "Understandingthe[Swing]
TreeModd." Available at
http://java. sun. conf products/jfc/tsc/tech_topics/treem
odel /treenodel . ht m . 1999

"G & SHouse Style." Unpublished Guide by G & S Typestters, Inc. Austin, Texas,
1997.

Johari, Ramesh, Joe Marks, Ali Patovi, and Stuait Shieber. "Automatic Y ellow-Pages
Paginationand Layout.” Journal of Heuristics. 1997 : 321-342.

Nelson, Greg. "Juno, acorstraint based graphics system.” Compuer Graphics
(Proceedimgs of $3GGRAPH '85), 193):325-248, Juy

Nelson, Greg, and Allan Heydon. "Juno-2 Corstraint Based Drawing Editor." Digitd
Systems Research Center: SRC Research Report 19%-131a.December, 1994.

Nelson, Greg, and Allan Heydon. "Juno-2 LanguageDefinition." Digitd Systems
Research Center: SRC Technical Note 1997-009. Jue 30, 1997.

Ryall, Kathleen. "Computer Human collaboration in the Design of Graphics."
Unpulisheddoctord dissertation, Harvard Unverdty. 1997 : 15-33, 71-76

Ryall, Kathleen, Joe Marks, and Stuart Shieber. "An Interactive Constraint-Based
System for Drawing Graphs." Harvard University, 1997.

Sun Microsystems Inc. "The Java Tutorial: A practical guidefor programmers.”
Avallabea
http://java. sun. com docs/ books/tutorial/index. htm .1999

Quark Inc. QuarkXPress 4.0

Quark Inc. "QuarkXPress Brochure." Availabde a
http://ww. quar k. com pdf/ br ochures/ gxpbroch_us. pdf.
1999.

Quark Inc. "Quark Pubishing System Brochure." Availabe a
http://ww. quar k. com pdf/ br ochures/ gpsbroch_us. pdf.
1999.

54

