
A Retinal Circuit That Computes Object Motion

Citation
Baccus, Stephen A., Bence P. Ölveczky, Mihai Manu, and Markus Meister. 2008. A retinal circuit 
that computes object motion. The Journal of Neuroscience 28(27): 6807– 6817.

Published Version
http://dx.doi.org/10.1523/JNEUROSCI.4206-07.2008

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2424373

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2424373
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Retinal%20Circuit%20That%20Computes%20Object%20Motion&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=b8c970f0b11720cba442d9dcda823917&departmentMolecular%20and%20Cellular%20Biology
https://dash.harvard.edu/pages/accessibility


Behavioral/Systems/Cognitive

A Retinal Circuit That Computes Object Motion

Stephen A. Baccus,1,2 Bence P. Ölveczky,1 Mihai Manu,2 and Markus Meister1

1Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, and 2Department of
Neurobiology, Stanford University School of Medicine, Stanford, California 94305

Certain ganglion cells in the retina respond sensitively to differential motion between the receptive field center and surround, as produced
by an object moving over the background, but are strongly suppressed by global image motion, as produced by the observer’s head or eye
movements. We investigated the circuit basis for this object motion sensitive (OMS) response by recording intracellularly from all classes
of retinal interneurons while simultaneously recording the spiking output of many ganglion cells. Fast, transient bipolar cells respond
linearly to motion in the receptive field center. The synaptic output from their terminals is rectified and then pooled by the OMS ganglion
cell. A type of polyaxonal amacrine cell is driven by motion in the surround, again via pooling of rectified inputs, but from a different set
of bipolar cell terminals. By direct intracellular current injection, we found that these polyaxonal amacrine cells selectively suppress the
synaptic input of OMS ganglion cells. A quantitative model of these circuit elements and their interactions explains how an important
visual computation is accomplished by retinal neurons and synapses.
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Introduction
The retina has about a dozen types of output neurons. Each type
of retinal ganglion cell forms a complete array that covers the
visual field (Masland, 2001). Every such population represents a
specific computation on the raw visual image, and transmits the
resulting output image to various stations in the brain. To under-
stand the function of the retina, one would like to identify for
each ganglion cell type what image operation it reports. Then,
one needs to examine how that computation is performed by the
circuits of interneurons between photoreceptors and ganglion
cells. Recently we described a class of retinal ganglion cells in-
volved in an ecologically important visual computation: the de-
tection of moving objects (Ölveczky et al., 2003). Here we report
how this specific computation is accomplished through the inter-
actions of certain bipolar, amacrine, and ganglion cells.

Image motion on the retina has two components: one, of
course, is the movement of objects in the scene. The other is
observer-induced motion, resulting from translation of the ani-
mal, movements of the head, large gaze-shifting eye movements,
and the incessant small eye movements that persist even during
gaze fixations (Skavenski et al., 1979; Engbert and Kliegl, 2004).
As a result of observer or eye motion, even a static scene moves
across the retina continuously, with a motion trajectory that is
nearly uniform over large parts of the image. An object moving
relative to the background causes a patch of image on the retina to

move with a trajectory different from that in a large surrounding
region. A neuron designed to detect and flag a moving object in
the retinal image should therefore have the following desirable
properties: it should monitor a patch of image and fire when that
patch moves differently from the surrounding region. Further-
more, to allow the tagging of all kinds of objects, the neuron
should produce this response regardless of the visual pattern dis-
played in its image patch or in the surrounding region. Finally, to
accommodate all kinds of observer motion, the neuron’s re-
sponse should be independent of the direction of image motion.
Remarkably, these capabilities are found in certain types of reti-
nal ganglion cells (Ölveczky et al., 2003), termed “object motion
sensitive (OMS)” (see Fig. 1).

The OMS neurons meet two seemingly conflicting require-
ments: they are highly tuned to a condition of differential motion
between the receptive field center and the surround, but at the
same time remarkably insensitive to the actual visual pattern in
the center or the surround. Here we explore how this is accom-
plished, by recording directly from many interneurons in the
retina. This approach allowed us to trace the flow of signals dur-
ing the differential motion computation, identify which specific
retinal interneurons are involved, and verify their connectivity.

Materials and Methods
Electrophysiology. Simultaneous intracellular and multielectrode record-
ing was performed as described previously (Baccus and Meister, 2002).
The isolated retina of a tiger salamander was placed on a flat array of 61
extracellular electrodes and held in place under a layer of 0.6% agarose
(type III-A: High EEO; Sigma) of �100 �m thickness with a dialysis
membrane containing several 150 –300 �m holes. Sharp intracellular
microelectrodes were positioned over the retina under infrared illumi-
nation, viewed through an infrared-sensitive CCD camera, and guided
through the dialysis membrane and agarose into the retina. Electrodes
were filled with 2 M potassium acetate and 1% Alexa Fluor 488, with a
final impedance of 150 –250 M�.
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Intracellular recordings were made from a total of 22 bipolar cells
(resting membrane potential ranging between �45 and �55 mV), 4
horizontal cells (�40 to �50 mV), 12 OMS ganglion cells (�60 to �70
mV), 21 polyaxonal amacrine cells (�55 to �65 mV), and 14 amacrine
cells of other types, including slow ON–OFF cells, ON cells, and OFF cells
(�50 to �65 mV). Not all stimuli were presented to all cells. The soma of
each neuron was situated in the center of the “object region” of the
stimulus, which was more than twice as large as the receptive field centers
of the bipolar, amacrine, and ganglion cells from which we recorded. A
cell was identified during the experiment by its response to flashes and
global motion and differential motion stimuli. After the recording ses-
sion, the neuron was filled with dye iontophoretically, and the cell type
was confirmed by imaging in the live preparation using a 40� water-
immersion objective. Selected neurons were micrographed using a CCD
camera and their processes traced from three-dimensional image stacks.

Cell nomenclature. The five major classes of retinal neurons can be
recognized unambiguously. Within each class there exists a wide range of
cell shapes and physiological properties, and it is thought that these re-
flect discrete genetic types of neuron. In the salamander retina, the ana-
tomical and physiological properties of these cells tend to form a contin-
uum rather than breaking naturally into discrete clusters. Therefore the
type designations can vary according to the methods applied. For the
major neurons involved in the circuit described here, we provide ana-
tomical tracings, receptive fields, and light responses to standard stimuli
(see Figs. 2, 3, 6) by which they may be recognized. In addition we give
here some correspondence to type designations used previously. The
OMS ganglion cells are the “fast OFF” cell of Warland et al. (1997), the
“biphasic OFF” cell of Segev et al. (2006), and resemble the “small highly
complex” morphological type of Costa and Velte (1999). The OFF bipo-
lar cells with rapid kinetics (see Figs. 2– 4) resemble “type 5” of Wu et al.
(2000). The polyaxonal amacrine cells identified in this study are distinct
from other amacrines by having a field of axons that spreads laterally over
several millimeters, whereas the dendrites and consequently the receptive
field are constrained to a radius of �200 �m (see Fig. 2) (see also Ölvec-
zky et al., 2003). Their light response is OFF dominated. Their correspon-
dence to the literature is uncertain; many reports mention wide-field
amacrine cells in the salamander retina, but their images are mostly from
vertical sections, which obscures the distinctive morphology.

Visual stimulation. Visual stimuli were projected onto the retina from
a video monitor, at a photopic mean intensity of �8 mW/m 2. The cir-
cular object region was 800 �m in diameter, and the background region
measured 5900 � 4400 �m. The two regions were separated by a 92 �m
gray annulus, although this annulus is not required for differential mo-
tion selectivity (Ölveczky et al., 2003). The eye movement during fixa-
tional drift resembles a random walk (Skavenski et al., 1979; Engbert and
Kliegl, 2004), with horizontal and vertical motion occurring indepen-
dently. Statistics of these eye movements are qualitatively similar across
species, including humans and salamander (Manteuffel et al., 1977; En-
gbert and Kliegl, 2004). To approximate the trajectory of fixational drift,
grating stimuli consisting of black and white bars with a periodicity of
184 �m were jittered in one dimension. The trajectory was generated by
stepping the grating randomly every 15 ms with a step size of 9.2 �m. In
the global motion condition, the seeds for generating the random walk
were the same for the object and background regions, producing the
same motion trajectory in both regions. In the differential motion con-
dition, the seeds were different for the object and background regions. In
the local motion condition, the background region was gray. To map
receptive fields, the stimulus was a randomly flickering checkerboard,
with square fields 18 –92 �m in width, each modulated independently by
white noise (Meister et al., 1994).

Analysis and simulation. The spatiotemporal receptive field of a bipolar
cell was computed from the response to random checkerboard stimula-
tion by the standard method of reverse correlation:

F� x,y,�� � �
0

T

s� x,y,t � ��b�t�dt, (1)

where F(x, y, �) is the linear response kernel of the bipolar cell at position
(x, y) and delay �; s(x, y, t) is the stimulus intensity at position (x, y) and
time t, normalized to zero mean and unit variance; b(t) is the membrane
potential of the bipolar cell; and T is the duration of the recording. To
predict the bipolar cell response to a jittering grating, the spatiotemporal
filter, F(x, y, �), was convolved with the stimulus, yielding the predicted
response

b��t� � �
o

T

s�x,y,���F�x,y,t � ��dxdyd�, (2)

where � is a scaling factor set to yield the best prediction. To predict the
OMS ganglion cell response from measured bipolar cell responses, we
postulated a simple nonlinear transformation followed by integration
over many bipolar cells (see Fig. 4 D):

g��t� � �
�

N�b��t��, (3)

where g�(t) is the predicted membrane potential of the ganglion cell;
b�(t) is the membrane potential of a bipolar cell at phase � relative to the
grating; and N(b) is a nonlinear transformation of the bipolar cell output.

Bipolar cell responses b�(t) were recorded using at least four equally
spaced phases of the grating. The nonlinearity N(b) consisted of a piece-
wise linear fit through five points, adjusted so that the prediction g�(t)
most closely approximated the measured ganglion cell response.

To predict the OMS ganglion cell response to local motion (see Fig. 5)
or the polyaxonal amacrine response to background motion (see Fig. 9)
directly from the stimulus, the bipolar cell responses were predicted for
each spatial phase, passed through the nonlinearity, and then summed:

g��t� � �
�

N�b���t��

� �
�

N��
0

T

s� x,y,���F�� x,y,t � ��dxd yd�� . (4)

Judging from the receptive field sizes (see Fig. 2), an OMS ganglion cell
receives input from at least 20 bipolar cells. For the simulation of Equa-
tion 4, we therefore replicated the measured bipolar cell receptive field
F�(x, y, t � �) at 20 different spatial phases relative to the grating. Al-
though the actual number of contributing bipolar cells may well be
larger, a finer phase spacing makes little difference for the predicted OMS
response.

To characterize the speed tuning of a bipolar cell, we estimated its
linear response to a grating stimulus (184 �m period) moving at constant
speed, by filtering the stimulus with the cell’s spatiotemporal receptive
field (Eq. 2). This generated a periodic output, whose amplitude was
taken as the cell’s sensitivity at that speed. The high-speed cutoff was
defined as the speed at which the sensitivity fell to 90% of its peak value.
Fast, transient OFF-type bipolar cells were identified from their receptive
fields as those cells with a speed tuning cutoff of �300 �m/s for a 184 �m
period grating.

To predict the OMS ganglion cell response to differential motion, the
amacrine response was used to reduce the gain of the input to the recti-
fication stage in the ganglion cell receptive field center,

g��t� � �
�

N��0

T

s� x,y,���F�� x,y,t � ��dxd yd�

1 � �a��t�
� , (5)

where a�(t) is the amacrine cell potential scaled to range between a value
of zero and one, and � is an optimized gain factor. This best value of �
was found to be 1.04, meaning that at times of greatest inhibition, the
gain of the bipolar subunit input was reduced by a factor of 0.49. This
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divisive interaction of amacrine and bipolar input yielded a better fit than
a subtractive interaction.

To compute correlation coefficients between actual and model mem-
brane potential responses, spikes were removed by setting a threshold for
the derivative of the membrane potential, and then each response was
smoothed with a box filter of width 20 ms. The correlation coefficient r
between two responses x(t) and y(t) was then calculated as

r �

�
0

T

� x�t� � 	x
�� y�t� � 	y
�dt

��
0

T

� x�t� � 	x
�2dt��
0

T

� y�t� � 	y
�2dt

, (6)

where T is the duration of the experiment, and
�. . .� denotes the time average.

To measure the delay between amacrine and ganglion cell responses,
we computed the cross-correlation c(�) between two responses a(t) and
g(t) as follows:

c��� � �
0

T

a�t� g�t � ��dt. (7)

The time of the peak of c(�) was taken as the
average delay between the two cells.

The receptive fields of amacrine cells were
computed from random checkerboard stimula-
tion as for bipolar cells (Eq. 1). For OMS gan-
glion cells, we used the spike train as the re-
sponse variable instead of the membrane
potential. The receptive field profiles in Figure 2
show the response kernel F(x, y, �) at a time �
near the peak amplitude.

Averaged traces are computed across trials of
identical stimuli.

Results
We presented to the isolated salamander
retina visual stimuli with different combi-
nations of object and background motion
(Fig. 1). The display was divided into a cen-
tral circular object region and a surround-
ing background region. Stripe gratings in
each region were jittered in a random walk
with the characteristics of drifting fixa-
tional eye movements (Manteuffel et al.,
1977; Engbert and Kliegl, 2004), but lim-
ited to one dimension for simplicity. The
jitter trajectories were chosen to produce
three motion conditions (Fig. 1B–D):
global motion simulated the image of a
static scene scanned over the retina by fixa-
tional eye movements; differential motion
simulated an object moving over a static
background and scanned by eye move-
ments; local motion was an artificial stim-
ulus used to isolate the effects of the central
object region. The motion trajectory of the
object was identical in all three cases, and
we recorded from OMS ganglion cells
whose receptive field centers were con-
tained in this object region. These neurons
respond robustly to differential or local
motion, but are nearly silent during global

motion (Fig. 1B–D). Motion in the background has little effect
on the response to the object (Fig. 1, differential vs local), unless
its trajectory matches that of the object (Fig. 1, differential vs
global), in which case it suppresses firing almost completely.
Thus, the circuits of the retina must somehow compare the mo-
tion trajectories in the object and background regions, and the
main challenge lies in finding how this is implemented.

Working model of object motion circuitry
In previous work (Ölveczky et al., 2003), the spiking response of
OMS ganglion cells has been described by a computational model
with several layers (Fig. 1E). The stimulus is first processed by
linear subunits with a small receptive field and transient dynam-
ics. In the next layer, the output from these subunits is strongly
rectified and then summed within the object and within the back-
ground region. Finally, the output from the background inhibits
the response to the object region.

OMS ganglion cells respond with nearly the same firing se-
quence regardless of the specific spatial pattern of the moving

Figure 1. Stimuli and working model for studying the OMS circuit. A, Diagram of object and background regions in the
stimulus display. B–D, First row, Space–time plot of a vertical cross section through the center of the stimulus (line in A), showing
trajectories for global motion, differential motion, and local motion. Second row, Firing rate of a sample OMS ganglion cell in
response to 10 repeats of each stimulus sequence. Third row (D), Response to a local motion stimulus having the same trajectory
but reversed grating phase (180°), with black and white bars exchanged relative to 0° phase. E, Working model of the OMS circuit.
An OMS ganglion cell (G) receives excitatory input in the object region from multiple small subunits. Each subunit applies a linear
spatiotemporal filter to the stimulus in its receptive field. The result is then rectified and summed with the output of other
subunits. An inhibitory amacrine cell (A) in the background region receives input from a similar set of rectified subunits. The
output of the amacrine cell then inhibits the ganglion cell. Both inhibition and excitation are temporally sparse. Traces show the
excitatory and inhibitory components of the model’s response to global motion. Numbers identify the key circuit elements to be
identified, as listed in the text.
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object. An example of this insensitivity to visual pattern can be
observed by reversing the phase of the grating; swapping the black
and the white bars has almost no effect on firing (Fig. 1D). Sim-
ilarly, changing the period of the grating leaves the firing pattern
virtually unchanged (Ölveczky et al., 2003). Such invariance to
the spatial pattern of the stimulus can be understood as a direct
consequence of the postulated summation over rectified subunits
(Shapley and Victor, 1979; Ölveczky et al., 2003).

The second important computational property of the OMS
circuit, selectivity for differential motion, arises in this model
from the sparse nature of the neural signals (Fig. 1E). Both the
excitation from the object region and the inhibition from the
background region are delivered to the ganglion cell in a sparse
sequence of transient pulses. If the background trajectory
matches the object trajectory, then inhibition arrives coincident
with excitation, silencing the ganglion cell. However, when the
two trajectories are different, inhibition and excitation arrive at
different times, and the ganglion cell fires.

Although this block diagram describes the response of the
OMS ganglion cell accurately, it does not specify what neuronal
circuit implements the computation. To test whether the retina
indeed uses this algorithm and to flesh out the schematic with
actual neural elements, one needs to answer the following ques-
tions (Fig. 1E): (1) What is the cellular identity of the subunits?
(2) How is the output of these subunits integrated? (3) At what
level is the signal from background motion combined with that
from the object region? (4) What is the identity of the inhibitory
cell that reports on the background motion?

Basis of insensitivity to spatial pattern
A key feature of the working model in Figure 1E is the summation
over small receptive field subunits. Based on recordings from

mammalian ganglion cells, it has been proposed that these recti-
fied subunits correspond to individual bipolar cells (Victor and
Shapley, 1979; Demb et al., 2001).

The role of bipolar cells
To identify directly the subunits of the OMS ganglion cell, we
recorded intracellular light responses from bipolar cells. First, we
mapped each cell’s spatiotemporal receptive field (see Materials
and Methods). Bipolar cell spatial receptive fields measured 50 –
150 �m in diameter (Fig. 2A). They were considerably smaller
than those of OMS ganglion cells (�400 �m) (Fig. 2B) or of the
polyaxonal amacrine cells (�400 �m) (Fig. 2C), interneurons
that might mediate long-range inhibition (Ölveczky et al., 2003).
In both the receptive field center and the antagonistic surround
region, the bipolar cell’s temporal filter followed a biphasic time
course (Fig. 3A). The surround response was delayed and in-
verted in sign relative to the center.

When stimulated with a jittering grating, bipolar cells pro-
duced strong fluctuations in membrane potential, whose time
course could be predicted accurately by passing the visual stimu-
lus through each cell’s measured spatiotemporal receptive field
(Fig. 3B). The correlation coefficient between actual and pre-
dicted responses (see Materials and Methods) was r � 0.70 � 0.02
(4 cells), nearly as large as the correlation between repeats of the
identical stimulus (r � 0.78 � 0.05). Thus, in response to object
motion that can be discriminated by OMS ganglion cells, these
bipolar cells essentially applied a linear spatiotemporal filter to
the stimulus. In particular, the voltage response changed sign
when the phase of the jittering grating was reversed (Fig. 3B),
unlike what happens in OMS ganglion cells (Fig. 1D). Clearly the
characteristic of pattern invariance is not yet elaborated at the
level of bipolar cells.

Figure 2. Receptive fields and morphology of relevant neurons. A, Top, Spatial profile of the receptive field for two OFF bipolar cells; the same scale bar applies to receptive fields in B and C.
Bottom, Tracing of an OFF bipolar cell in tangential and radial views. Dotted lines indicate borders of the inner plexiform layer. The axon terminals ramify in the outer (OFF) sublamina. B, Top,
Receptive field of an OMS ganglion cell. Bottom, Tracing in tangential view. C, Top, Receptive field of a polyaxonal amacrine cell. Bottom, Tracing in tangential view showing ON dendrites (red), OFF
dendrites (blue), and axons (black). Dashed lines indicate missing image information. The axons were followed beyond the pictured region and extended �3 mm from the soma. Receptive fields
and tracings are from different cells.
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We further investigated whether the
transformation from bipolar response to
ganglion cell response conformed to the
rules of the OMS working model (Fig. 1E).
We obtained bipolar cell responses at mul-
tiple positions relative to the jittering grat-
ing by recording from a single cell while
repeating the grating’s motion trajectory at
different spatial positions, or phases (Fig.
4A). To predict the response of the OMS
ganglion cell, these different bipolar cell re-
sponses were then individually rectified
and summed (Fig. 4B). The shape of the
rectifier function was calculated to opti-
mally match the observed ganglion cell re-
sponse (Fig. 4C). This resulted in a steep
nonlinearity (Fig. 4D). The resulting sum
of rectified bipolar signals closely approxi-
mated the intracellular responses recorded
from OMS ganglion cells (Fig. 4C, see also
Fig. 5).

The OMS ganglion cell response was
found to be invariant to the spatial phase of
the grating stimulus, not only at the level of
spikes, but in its detailed subthreshold time
course (Fig. 4C). The sum of rectified bipo-
lar cell responses predicted many of those
subthreshold fluctuations correctly. Given

that the bipolar cell response still varies linearly with the stimulus
(Fig. 4A), this rectification must happen after the bipolar cell
soma, presumably in the process of transmission to the ganglion
cell. Although the mechanism for rectification is unknown, it
may involve the voltage dependence of calcium influx at the bi-
polar cell presynaptic terminal (Heidelberger and Matthews,
1992). If the mechanism is postsynaptic, it must be tightly local-
ized in the ganglion cell dendrite, before many bipolar cell signals
are summed across the dendritic tree.

A refined subunit model
By substituting concrete bipolar cells for the theoretical subunits,
one obtains a refined model of the OMS ganglion cell response
(Fig. 5) in which all parameters are derived from measurements.
The stimulus is passed through the bipolar cell spatiotemporal
receptive field, yielding predictions of responses in the popula-
tion of bipolar cells. These responses are then rectified according
to the measured bipolar-to-ganglion cell transformation, and the
result is summed within the ganglion cell (Fig. 5A). This model
matches the time course of the observed OMS ganglion cell re-
sponse with remarkable accuracy (Fig. 5B): the predicted and
observed response had a correlation coefficient of r � 0.65 (see
Materials and Methods), similar to the correlations between
measured responses on repeats of an identical stimulus (r �
0.71 � 0.02).

Not all bipolar cells produced a subunit model with this de-
gree of accuracy. Indeed, the bipolar cells in our sample varied
substantially in their spatiotemporal receptive fields. To charac-
terize the receptive field in the context of moving grating stimuli,
we computed for each bipolar cell the tuning curve for the speed
of a steadily moving grating (see Materials and Methods). These
tuning curves varied greatly in shape (Fig. 5C); in particular, the
highest speed a neuron could track ranged from 100 �m/s to
�400 �m/s. We inserted each of these response types into the
model of Figure 5A, and the resulting predictions for the OMS

Figure 3. Bipolar cells encode the spatial pattern. A, Bipolar cell spatiotemporal receptive field. Left, Spatial profile of a bipolar
cell receptive field with OFF center and ON surround. Right, Temporal profile of the receptive field, normalized to the peak
sensitivity, and summed over all pixels (total) or only pixels in the center or the surround. B, Bipolar cell response to a jittering local
motion stimulus. Top, Traces from two identical presentations of the same trajectory. Bottom, The same trajectory with the
grating reversed (180° spatial phase shift). Red line shows a prediction of the bipolar cell response generated from Equation 2,
using only the measured spatiotemporal receptive field and the stimulus trajectory.

Figure 4. The transformation from bipolar cells to OMS ganglion cell involves rectification
and summation. A, Intracellular recordings from a single bipolar cell responding to a jittering
local motion stimulus, with the grating positioned at four different phases. The top plot in-
cludes two traces for identical stimuli to illustrate reproducibility of the response. B, The
measured bipolar cell responses were each rectified (see D) and then summed to yield a
prediction for the ganglion cell response. C, Measured response of an OMS ganglion cell to four
phases of a jittering local motion stimulus. D, The nonlinear function used to rectify the bipolar
output. This shape was chosen to optimize the fit between the trace in B and the traces in C,
ignoring the action potentials. Vertical lines indicate action potentials of the ganglion cell.
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response varied greatly in accuracy: from r � �0.25 to r � 0.65.
A bipolar cell’s upper speed cutoff, in turn, was a very sensitive
indicator of whether it would generate a useful model (Fig. 5D).
Those cells sensitive to the highest speeds (cutoff above �300
�m/s) produced an accurate prediction (r � 0.61 � 0.02, 4 cells),
whereas the others did not (r � 0.1 � 0.09, 7 cells). This suggests
that the OMS circuitry makes selective use of the fastest bipolar
cell types.

Interestingly, in addition to OFF-type bipolar cells, an ON-
type bipolar cell was encountered with a receptive field appropri-

ate to predict the OMS ganglion cell re-
sponse (Fig. 5C,D). Although OMS
ganglion cells in the salamander are domi-
nated by OFF-type input (Ölveczky et al.,
2003), they also receive some input from
the ON pathway (Geffen et al., 2007). Thus,
ON bipolar cells may well contribute to the
response of OMS ganglion cells.

Suppression of responses by
background motion
To measure how object and background
motion are integrated at the level of gan-
glion cell synaptic input, we recorded
membrane potential responses from an
OMS ganglion cell while presenting either
differential motion or global motion (Fig.
6). As observed previously, spiking was al-
most completely suppressed by global mo-
tion. In addition, the subthreshold mem-
brane potential fluctuations were smaller
under global motion, decreasing to a frac-
tion of 0.45 � 0.08 (5 cells) of their value
during differential motion (Fig. 6B). How-
ever, there were no large IPSPs as might
result from strong hyperpolarizing inhibi-
tion, and the decrease in response was con-
sistent with either shunting or presynaptic
inhibition. OMS ganglion cell responses
were very homogeneous, in that each cell’s
intracellular recording was highly corre-
lated to the average OMS cell response (r �
0.78 � 0.03, 7 cells).

The effects of background motion
on interneurons
According to the working model of Figure
1E, when object and background regions
experience the same motion trajectory, the
ganglion cell receives inhibitory input from
amacrine cells in the background region
that is synchronous with excitatory input
from the central object region. Thus, we
inspected the responses of various inhibi-
tory interneurons to a jittering back-
ground, and compared their timing to the
responses of OMS ganglion cells under lo-
cal motion with the same trajectory (Fig.
6C–H). Among these recordings, the re-
sponse of a polyaxonal amacrine cell type
was appropriately timed to mediate sup-
pression from the background region: its
depolarizations were closely synchronized

to those of the OMS ganglion cell (Fig. 6D). The correlation
coefficient between a polyaxonal amacrine cell and an OMS gan-
glion cell responding to the same stimulus trajectory was 0.63 �
0.03 (7 cells), compared with 0.71 for repeats of an identical
stimulus to a ganglion cell. Like OMS ganglion cells, polyaxonal
amacrine cells were also very homogeneous; each cell’s response
was very similar to the average response (r � 0.65 � 0.01, 7 cells).
In contrast, a different amacrine cell type, characterized by a slow
ON–OFF response, produced depolarizations at the wrong times
(Fig. 6E). Its signal had a correlation coefficient of only 0.13 �

Figure 5. Model of the OMS ganglion cell excitatory input. A, Detailed structure of a subunit based on bipolar cell measure-
ments. The stimulus trajectory of the object region during local motion is filtered by the bipolar cell spatiotemporal receptive field,
yielding the bipolar cell response. Each bipolar response is then passed through the nonlinear transfer function from Figure 4 D
and summed, yielding the ganglion cell membrane potential. B, Comparison of ganglion cell membrane potential and model
output. C, Speed tuning curves of bipolar cells to a moving 184 �m period grating (see Materials and Methods). Each trace shows
the normalized sensitivity from a different bipolar cell, grouped into four types of tuning profile. Cells with faster responses are at
right. D, Each bipolar cell receptive field was used in a separate model of the OMS response (A). The quality of the model fit was
measured by the correlation coefficient between predicted and observed OMS ganglion cell response (B). The high speed cutoff
of the bipolar cell was measured by the speed at which the sensitivity falls to 90% of the peak value (C). Here, the model quality
is plotted against the high speed cutoff. The dotted line indicates the correlation coefficient calculated between ganglion cell
responses to repeated jittering stimuli.
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0.06 (6 cells) with the OMS cell depolarizations. Other amacrine
cell types (Fig. 6F,G) also produced unrelated signals with corre-
lations ranging from �0.10 to 0.29 (8 cells). Horizontal cells, of
which the salamander also has multiple types, showed virtually
no response to the jittering grating (Fig. 6H) (4 cells), and thus
are unlikely to contribute to suppression from the background
region.

Based on this survey, the polyaxonal amacrine cell (Fig. 6D)
appears to be a plausible candidate to transmit inhibition from
the background region. Indeed the detailed timing of its depolar-
izations would enable an effective suppression of excitatory input
to the OMS ganglion cell (Fig. 6 I). By computing the cross-
correlation between the polyaxonal amacrine cell response to
global motion and the OMS ganglion cell response to local mo-
tion of the same trajectory, we found that the amacrine cell pre-
ceded the ganglion cell by 26 � 7 ms (6 cell pairs; see Materials
and Methods). This fits well with previous results indicating that
the polyaxonal amacrine cell membrane potential precedes the
suppression of OMS ganglion cell spiking by �25 ms (Ölveczky
et al., 2003). Its broad output arborization would allow for rapid
inhibition over long distances. Judging from experience in other
species, there may well exist multiple kinds of amacrine cells with
polyaxonal morphology, but in our survey so far all such ama-
crines were correlated to the OMS ganglion cells. For brevity, we

will refer to these amacrines simply as “polyaxonal,” bearing in
mind that they are also identified by the time course of their
motion response.

To further understand the interaction of signals from bipolar,
amacrine, and ganglion cells, we used a different stimulus that
clearly separates the effects of the center and surround regions
(Fig. 7). Here the object grating and the background grating each
moved back and forth in short 40 �m steps every 1 s. In the global
motion condition, the two gratings stepped synchronously,
whereas under differential motion they stepped in alternation
(Fig. 7A). This stimulus distills the essential ingredients of the
random jitter stimulus: brief periods of acceleration whose tim-
ing was either identical or different between object and back-
ground region. We recorded the responses of bipolar, OMS gan-
glion, and polyaxonal amacrine cells in the region of the object
grating.

OMS ganglion cells produced a transient depolarization on
every step of the object grating (Fig. 7B). Under global motion,
this depolarization was considerably smaller than under differen-
tial motion, where the depolarizations led to spikes (amplitude
ratio global/differential � 0.52 � 0.03, 4 cells). Steps of the back-
ground region alone caused virtually no response, either depolar-
izing or hyperpolarizing (amplitude ratio background/object �
0.04 � 0.05, 4 cells).

We recorded from fast, transient OFF bipolar cells that yielded
an accurate prediction of the OMS ganglion cell response when
inserted into the model of Figure 5A (see Materials and Meth-
ods). The dynamics of these bipolar cells resemble those de-
scribed previously (Wu et al., 2000) for cells that arborize in the
OFF sublamina near the middle of the inner plexiform layer (Fig.
2A). Such a bipolar cell depolarized when a dark bar of the object
grating stepped into its receptive field center (Fig. 7C). These
depolarizations had very similar magnitude under global and
differential motion (ratio global/differential � 0.93 � 0.02, 7
cells). This shows that bipolar cell excitation, as measured at the
soma, is not suppressed by global motion. On the reverse step of
the object grating, bipolar cells hyperpolarized, with a somewhat
slower time course than in the preceding depolarization. This is
likely a result of light adaptation, which makes for more sluggish
responses at lower luminance (Naka et al., 1979). Finally, during
differential motion, bipolar cells incurred brief hyperpolariza-
tions on every step of the background grating (ratio background/
object � 0.34 � 0.05, 7 cells). This input was identical for steps of
either sign, and thus must derive from an inhibitory interneuron
with rectified responses. Horizontal cells are an unlikely source,
because they have largely linear properties and hardly respond at
all to these fine gratings (Fig. 6H). Alternatively, this signal may
derive from amacrine cells that inhibit the bipolar cell synaptic
terminal, close to the site of transmission but at some electrotonic
distance from the soma. This could help explain why the hyper-
polarizing signals in somatic recordings are small (Fig. 7C), espe-
cially in the global motion condition, whereas the synaptic input
to ganglion cells is strongly suppressed (Fig. 7B).

A typical polyaxonal amacrine cell with receptive field in the
object region was strongly depolarized by movement of the object
grating (Fig. 7D). Surprisingly, these amacrine cells showed a
substantial depolarizing response also to movement in the back-
ground region (amplitude ratio background/object � 0.45 �
0.08, 12 cells). The linear receptive field of these cells is relatively
small, consistent with a dendritic field of �200 �m radius (Fig.
2C), and is contained entirely within the object region. In addi-
tion, however, polyaxonal amacrine cells show extensive tracer
coupling, at least in mammalian retinas (Völgyi et al., 2001;

Figure 6. Signals of inhibitory interneurons during the OMS response. A, B, Intracellular
recording from an OMS ganglion cell responding to differential motion or global motion. C–H,
Response of an OMS ganglion cell and a panel of different inhibitory interneurons to the same
motion trajectory: local motion for the OMS ganglion cell, and global motion for the inhibitory
interneurons (different trajectory from panels A and B). Vertical lines indicate action potentials
of the OMS ganglion cell. Right, Response of the same neuron to a periodic stimulus, used to
characterize the cell type: a contrast-reversing grating in D and E, and a uniform field flash in
F–H. I, Expanded time scale comparing the polyaxonal amacrine cell response to global motion
with the OMS ganglion cell response to local motion. AC, Amacrine cell; GC, ganglion cell; HC,
horizontal cell.
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Wright and Vaney, 2004). Thus it is possible that a weak excita-
tory input arrives through electrical synapses from distant poly-
axonal amacrine cells, whose contribution is strong under global
motion, when the population in the entire background region is
driven in synchrony. Under differential motion, only the ama-
crines in the object region are synchronized with the OMS cell,
and their action alone is clearly not sufficient to silence OMS cell
firing (Fig. 7B, bottom).

The role of polyaxonal amacrine cells
The observed correlation of signals from polyaxonal amacrines
and OMS cells is suggestive, but does not demonstrate a func-
tional connection. To directly test for an inhibitory interaction,
we recorded from a polyaxonal amacrine cell intracellularly while
simultaneously recording from the ganglion cell population with
a multielectrode array. A contrast-reversing grating was used to
stimulate the ganglion cells. Simultaneously, we injected depolar-
izing current into the amacrine cell and measured whether that
suppressed the ganglion cell’s light response. By this measure,
polyaxonal amacrine cells clearly inhibited the light response of
OMS ganglion cells (by 17% on average), but not of other types of
ganglion cells (Fig. 8B,C). This effect was smaller than the com-
plete suppression that occurs during global motion, presumably
because it involved injection of just a single polyaxonal amacrine
cell.

Given the fine laminar organization of
the inner plexiform layer, one expects a pri-
ori that any given ganglion cell type should
interact with only a small fraction of ama-
crine cells. Thus the positive finding of a
connection between OMS ganglion cells
and polyaxonal amacrines is significant.
Nevertheless, we tested whether OMS gan-
glion cells are somehow particularly pro-
miscuous, by injecting current into a dif-
ferent type of amacrine with slow ON–OFF
responses (Fig. 6E). This amacrine cell type
inhibited certain non-OMS cells but had
no effect on OMS cells (Fig. 8D,E). This
demonstrates that the OMS ganglion cell
derives its inhibitory input with some se-
lectivity from polyaxonal amacrine cells.
Vice versa, the polyaxonal amacrine cell
targets its inhibitory output selectively to
OMS ganglion cells, perhaps directly or via
intervening neurons. This reinforces the
precision of wiring in the inner plexiform
layer, where many types of amacrine and
bipolar cells are connected in specific sub-
circuits to a dozen types of ganglion cells
(Roska and Werblin, 2001).

Model of object motion sensitivity
These results were assembled into a full
model of differential motion sensitivity
(Fig. 9). To predict the response of polyax-
onal amacrine cells in the background re-
gion, an identical subunit model was used
for the excitatory input of OMS ganglion
cells (Fig. 5). As expected from the obser-
vation that polyaxonal amacrine cells and
OMS ganglion cells have synchronous re-
sponses to identical motion trajectories

(Fig. 6C,D), this model predicted the amacrine response accu-
rately (Fig. 9B), yielding a correlation between the actual and
predicted response of r � 0.73.

To predict the response of an OMS ganglion cell to differential
motion, amacrine inhibition from the background was com-
bined with bipolar input from the object region before the stage
of rectification, representing inhibition as observed at the presyn-
aptic terminal (Fig. 7C). We used a divisive form of inhibition, in
which the depolarization of the amacrine cell scales down the
bipolar cell synaptic output (see Materials and Methods). This
model produced accurate predictions of the OMS cell’s response
to differential motion (Fig. 9C). The best fits (r � 0.65) were
obtained when the strength of inhibition was chosen to scale the
bipolar output by at most a factor of 0.49. This corresponds well
to the �50% reduction in depolarization seen in the OMS gan-
glion cell during global motion versus differential motion (Figs.
6A,B, 7B).

Discussion
This study provides a circuit explanation for a prominent com-
putation in the retina: the detection of differential motion. Tran-
sient responses, small spatial subunits, strong rectification, long
axonal projections, and specific functional connections combine
to emphasize object motion while rejecting background motion
resulting from eye movements. We subjected a basic working

Figure 7. Convergence of signals from object and background. Periodic jitter stimuli were composed of an object and back-
ground grating shifting back and forth 40 �m every 1 s. A, Space–time plot as in Figure 1 B. The two gratings were shifted in
synchrony for global motion and in alternation for differential motion. B–D, Membrane potential responses to periodic jitter. First
row, Global motion. Second row, Differential motion. Third row, Average of 15 responses under each condition. B, OMS ganglion
cell. The third row shows the average of the subthreshold potential after spikes were removed. C, Fast, transient OFF-type bipolar
cell. D, Polyaxonal amacrine cell. All these neurons had a receptive field center in the object region.
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hypothesis of the circuit (Fig. 1E) to many experimental tests,
and elaborated on this model as summarized in Figure 10. Prob-
ing the various interneurons intracellularly fleshed out the com-
ponents of the circuit and uncovered new aspects of processing.
The answers to the four questions posed at the outset are as
follows: (1) The small subunits are bipolar cells. Among bipolars,
there is a range of response kinetics, and only the fastest ones
account for the function of this circuit. (2) The excitatory gan-
glion cell input is rectified, whereas the bipolar cell response is
linear. This places the rectification at the bipolar-to-ganglion cell

synapse. (3) The inhibition is likely presynaptic on the bipolar
terminal. This implies that differential motion is computed one
neuron earlier and across a smaller spatial scale than previously
proposed (Ölveczky et al., 2003). (4) Among all the interneurons
tested, only the polyaxonal amacrine cells have the response
properties required to implement inhibition from global motion.
They integrate motion signals from beyond the dendritic tree,
perhaps via electrical coupling. Horizontal cells are not involved
in the computation. Furthermore, the polyaxonal amacrine cells
do indeed suppress the responses of OMS ganglion cells, but not
other ganglion cell types. In addition, we found the following: (5)
Because polyaxonal amacrine cells are not themselves sup-
pressed, they receive input from a different set of bipolar cell
terminals than the OMS cells. (6) Finally, a mathematical model
of the proposed circuit, when supplied with the measured signals
from interneurons, can predict the responses at each stage in the
circuit in a quantitative manner.

Summary of signal flow
An essential part of the computation is the nonlinear spatial sum-
mation over small subunits in the ganglion cell receptive field
center. Among all the interneurons sampled in our experiments,
bipolar cells are the only ones with receptive field properties that
match the requirements for this role. The retina contains many
kinds of bipolar cells, which differ both in morphology and in the
time course of the light response (Burkhardt and Fahey, 1998;
DeVries, 2000; Wu et al., 2000; Ghosh et al., 2004). The OMS
circuitry involves only certain of these neurons; in particular, the
dynamic properties of the OMS response are consistent only with
the fastest among the bipolar cells we sampled (Fig. 5).

Motion in the object region drives these bipolar cells, and their
outputs are rectified before summation by the ganglion cell. We
showed that this rectification occurs after the bipolar cell soma,
not at the photoreceptor– bipolar cell synapse, counter to a pro-
posal made for mammalian Y-cells (Demb et al., 2001).

Motion in the background region drives, among others, a
population of polyaxonal amacrine cells. The response of these
neurons matches almost perfectly that of the OMS ganglion cell
to the same trajectory (Fig. 6). It appears likely, therefore, that the
polyaxonal amacrines are driven by a similar network of rectified
bipolar cell inputs (Fig. 10). In addition, these amacrine cells may
be coupled electrically, because they receive excitatory input from
far beyond the dendritic field (Fig. 7). Furthermore, we showed
by direct single-neuron stimulation that polyaxonal amacrine
cells are wired to suppress the visual response of OMS ganglion
cells (Fig. 8). In principle, this may occur through a direct inhib-
itory synapse or through presynaptic inhibition of a bipolar ter-
minal (Cook and McReynolds, 1998). Our observations favor the
latter (Fig. 10), because the inhibition can be detected in the
bipolar cell signal, whereas ganglion cells show no overt inhibi-
tory potentials (Fig. 7). Further support for presynaptic inhibi-
tion comes from a recent study on adaptation in the OMS re-
sponse (Ölveczky et al., 2007). We found this effect from
polyaxonal amacrines to be specific to the OMS ganglion cell type
(Fig. 8). It is encouraging to find that a single amacrine cell has a
measurable effect on a nearby ganglion cell, and paired record-
ings of this type will be invaluable in unraveling the various sub-
circuits of the retina (Geffen et al., 2007). A further important
aspect of the polyaxonal amacrine network is the speed of prop-
agation of axon impulses, to ensure that the inhibition can arrive
fast enough to suppress excitatory input. It appears that propa-
gation and inhibitory synaptic transmission occur within �25 ms
(Fig. 6 I) (Ölveczky et al., 2003).

Figure 8. Polyaxonal amacrine cells selectively suppress OMS ganglion cells. A, Schematic
diagram of experiment. Contrast reversal of a grating was used to visually stimulate the retina
either alone or synchronous with a depolarizing current pulse (500 pA, 0.5 s) delivered intracel-
lularly to an amacrine cell. Spiking activity from OMS and non-OMS ganglion cells (G) was
recorded with a multielectrode array. Responses were analyzed from ganglion cells within 200
�m of the amacrine cell (A). B, C, Results from current injection into a polyaxonal amacrine cell
(AC). B, Left, Average firing rate over 30 trials of an OMS ganglion cell (GC) responding to the
visual stimulus with and without the current pulse. Trials for the two conditions were inter-
leaved. Right, Fractional inhibition of ganglion cell firing by the current pulse (mean � SEM, 10
GCs, 3 ACs). C, Left, Same as B for a non-OMS OFF-type ganglion cell. Right, Fractional inhibition
of non-OMS ganglion cells (13 GCs, 3 ACs). D, E, Results from current injection into a slow
ON–OFF amacrine cell, presented as in B and C. D, Left, OMS ganglion cell light response with
and without the current pulse. Right, Fractional inhibition of OMS ganglion cells (10 GCs, 3 ACs).
E, Left, Same as D for a non-OMS OFF-type ganglion cell. Right, Fractional inhibition of non-OMS
ganglion cells (10 GCs, 3 ACs).
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An algorithm for differential motion detection
At a basic level, the comparison of motion of the object and the
background is performed through the time domain (Fig. 1E).
The motion trajectories of both the object and background are
converted into a sequence of depolarizing pulses. Then the two
pulse sequences are compared. If the timing matches, the gan-
glion cell remains silent; otherwise, it fires.

This algorithm for computing differen-
tial motion owes its success to several spe-
cial constraints in the ecology of vision.
First, the global motion signal is driven by
fixational eye movements. The random-
walk nature of this image trajectory (Eng-
bert and Kliegl, 2004) includes frequent ac-
celerations, which, when filtered through
the biphasic temporal receptive field of bi-
polar cells, lead to a pulsatile output.
Transmission to the ganglion cell seems to
apply a high threshold (Fig. 5), resulting in
a sparse sequence of excitatory pulses,
which allows for a selective temporal com-
parison between the sequences derived
from the object and the background. Only
an object trajectory identical to that of the
background is silenced; others are encoded
faithfully, except for occasional coinci-
dences between eye motion and object mo-
tion. This would not be possible if the back-
ground image motion were smooth with
constant velocity.

Second, the algorithm compares only
the speed of motion of the object and the
background, not the direction. Indeed, we
showed that the OMS ganglion cells are
duly suppressed even when object and
background move in opposite direction

but with the same instantaneous speed (Ölveczky et al., 2003).
During natural vision, a measurement of speed is sufficient to
distinguish eye from object velocities, because it is highly unlikely
that the eye and the object conspire to produce an image speed
matching that of the background.

Thus ecological circumstances permit a differential motion
algorithm that never computes the direction of motion. A parallel
can be found in the jamming avoidance response of wave-type
electric fish, whose algorithm computes the difference in the fre-
quency of two signals without ever encoding either frequency
(Heiligenberg, 1989). Again, a combination of ecological con-
straints makes this a viable approximation. However, it should be
noted that differential motion is computed again at later stages of
the visual system, for example in the bird’s optic tectum (Frost
and Nakayama, 1983) and in area MT of visual cortex (Born and
Tootell, 1992). Those computations are indeed selective for di-
rection, and furthermore, they work well with smooth trajecto-
ries of global movement. Presumably they serve a different func-
tion, for example, the analysis of optic flow generated by observer
motion.

Selectivity and invariance
The object motion-sensitive neurons of the retina show a high
selectivity for differential motion, and at the same time almost
complete invariance with regard to the spatial pattern that is
moving. These are, of course, highly desirable properties for a
general detector of movement within the visual scene. From a
broader viewpoint, the combination of selectivity and invariance
is commonly regarded as a hallmark of sophisticated computa-
tion in higher stages of the brain, for example, in position-
invariant face-selective neurons (Hung et al., 2005). It is instruc-
tive to see how it comes about in the experimentally tractable
circuits of the retina.

Pattern invariance is computed early in the circuit. It arises

Figure 9. Model of object motion sensitivity. A, Amacrine and ganglion cells each sum the rectified output of many linear
bipolar cells. Amacrine inhibition is delivered to the output of the bipolar cell before rectification, for example, at the bipolar cell
presynaptic terminal. The output of the amacrine cell scales the bipolar output by a factor ranging between �0.5 and 1 (see
Materials and Methods). B, Comparison of actual and model amacrine cell membrane potential response to background motion.
C, Comparison of actual and model ganglion cell membrane potential response to differential motion. The motion trajectory is
different from that in B.

Figure 10. A circuit for object motion sensitivity. Proposed neural circuitry underlying the
OMS response, linking bipolar cells (B), polyaxonal amacrine cells (A), and OMS ganglion cells
(G). The bipolar cells have an OFF-type transient response, and their synapses are rectifying. The
polyaxonal amacrine cells have a restricted dendritic field that pools excitation from many
bipolars and are probably coupled electrically to more distant amacrines in the population. The
OMS ganglion cell also pools over many bipolars, but their terminals are inhibited by the poly-
axonal amacrine cells. Direct, shunting inhibition of the OMS ganglion cell may also exist. Note
that the bipolar cell synapses onto amacrines do not receive presynaptic inhibition.
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already within the background region, before any comparison to
motion in the object region. Essentially, it is guaranteed by the
pooling over rectified bipolar cells within the dendritic field of a
polyaxonal amacrine cell (Fig. 10). This nonlinear summation
makes the depolarizations of the amacrine cell largely indepen-
dent of pattern phase or spatial frequency (Hochstein and Shap-
ley, 1976; Ölveczky et al., 2003). The selectivity for differential
motion arises one synapse later, when signals from the object and
background regions converge, and the timing of excitation and
inhibition are compared. This may occur at the OMS ganglion
cell, or more likely at the bipolar cell terminal (Fig. 10). Pattern
invariance within the object region is again accomplished by
pooling within the dendritic field of the OMS ganglion cell.

This scheme differs significantly from the proposed algo-
rithms in other neural systems, where selectivity is computed
first. For example, complex cells in the primary visual cortex are
quite selective for the orientation of a line, but not for the line’s
position. In the classic Hubel–Wiesel model, it is assumed that
they function by pooling over many simple cells, each of which is
selective for both orientation and position (Hubel and Wiesel,
1962). Similarly, the owl’s auditory midbrain contains neurons
that are selective for the difference in latency of a sound at the two
ears, but not for the frequency of the sound. It is thought that
these neurons pool over many presynaptic cells, each of which is
tuned for interaural time difference, but also selective for a cer-
tain frequency (Konishi, 2003). Our study shows that this is not
the only route: in the case of differential motion detection, stim-
ulus generalization begins early in the circuit, and the selection of
a specific stimulus quality occurs one synapse later.
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