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abstract: We propose a new mechanism based on sexual selection
to explain the evolution of diet breadth in insects. More specifically,
we show that mate choice in females for certain diet-derived male
pheromones can be exploited by maternal effect genes that prefer-
entially place offspring on a specific host plant, resulting in special-
ization. Our analytical model also suggests that the process is more
likely to occur with species that show male-congregating mating
strategies, such as lekking and hilltopping. The model offers a new
explanation for the similarity between the composition of male lep-
idopteran pheromones and the chemistry of their host plants and
also suggests a novel mechanism of host plant shift. This is the first
time that sexual selection has been proposed to drive host plant
specialization and the first time that a mechanism with selection
acting solely on the adult stage has been shown to be capable of
determining larval feeding habits.

Keywords: maternal effects, pheromone, Lepidoptera, diet breadth,
host shift, specialization.

The evolution of diet breadth in insects has long fascinated
ecologists and evolutionary biologists, and multiple factors
have been suggested to promote specialist or generalist
diets in different contexts. Among the former are the abil-
ity to deal with plant chemistry (Ehrlich and Raven 1964),
competition for resources (Karban 1986), and enemy-free
space (Atsatt 1981; Jeffries and Lawton 1984). Among the
latter are habitat unpredictability (Strong et al. 1984), the
necessity for certain nutritional requirements (Bernays et
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al. 1997), and resource availability (Thompson 1982).
Many phytophagous insects have restricted diets (Janzen
1988; Thompson 1994), and feeding specialization has
been argued to be a central force driving their evolution
(Ehrlich and Raven 1964; Nosil 2002).

Insects are well known for their dependence on chemical
communication. Mating signals are among the most es-
sential chemical messages exchanged between individual
insects, and it is important to understand the origin and
composition of these signals. In the case of Lepidoptera,
males produce courtship pheromones that are often struc-
turally similar to compounds found in certain plants
(Baker 1989). The arctiid moth Utetheisa ornatrix is par-
ticularly well known in this regard (Conner et al. 1981;
Eisner and Meinwald 1987, 1995; Dussourd et al. 1988,
1991), but other species, as either larvae or adults, also
acquire host plant chemicals for the production of pher-
omones. For example, some species of arctiid moths are
known to sequester chemicals during the larval stage for
later use as pheromones or as precursors of pheromones
(Baker 1989; Landolt and Phillips 1997), and adult males
of danaiine and ithomiine butterflies actively collect chem-
icals (usually alkaloids in plant material such as rotting
fruits or broken twigs) to use as pheromones (Edgar and
Culvenor 1974; Pliske 1975).

Research on the relationship between pheromone com-
position and larval diet has typically focused on under-
standing how host plant characteristics (e.g., plant chem-
istry) could give rise to pheromone composition and how
this could affect mating behavior. Host plant and phero-
mone chemical similarity has been explained in the context
of the exploitation of a preexisting female sensory system
that is geared to find and identify host plants (Edgar et
al. 1974; Conner et al. 1981; Boppre and Schneider 1985;
Eisner and Meinwald 1987, 1995; Dussourd et al. 1988,
1991; Baker 1989; Krasnoff and Dussourd 1989; Landolt
and Phillips 1997). Here we invoke sexual selection as a
new evolutionary route to the evolution of specialization
in larval feeding. This line of reasoning reverses the causal
chain in the conventional explanation for the resemblance
between pheromones and host plant chemicals. We argue
that preexisting mate choice mechanisms in females for



Host Plant Specialization Driven by Sexual Selection 831

Table 1: Genetic and fitness scheme for the selection model

Genotype

WZ WZ∗ ZZ ZZ∗ Z∗Z Z∗Z∗

Frequency (1 ! ps) ps (1 ! pd)(1 ! ps) (1 ! pd)ps pd(1 ! ps) pdps

Fitness 1 1 ! s 1 1 1 " t 1 " t

certain male pheromones can be exploited by maternal
effect genes that preferentially place male offspring in a
plant environment suited to incorporating the necessary
chemicals to produce such pheromones.

The Model

To model this possible mechanism, we start with a pop-
ulation of a generalist lepidopteran species and introduce
a mutant oviposition preference allele. We consider the
case of Z linkage for oviposition preference genes because
all studies of such genes in butterflies show sex linkage
(Sperling 1994; Janz 1998; Prowell 1998 and references
therein). We denote a Z chromosome bearing this novel
mutant as Z∗ and one with a wild-type allele as Z. The
mutant occurs in frequency p. Female genotypes Z∗W and
ZW occur in the frequencies ps and ( ), while male1 ! ps

genotypes Z∗Z∗, Z∗Z, ZZ∗, and ZZ occur in the frequencies
pdps, pd( ), ( )ps, and ( )( ), respec-1 ! p 1 ! p 1 ! p 1 ! ps d d s

tively. We use subscripts s and d to denote sire derived
and dam derived because this avoids the confusion of m’s
and f ’s (Mothers? Males? Females? Fathers?). Plants come
in two varieties, a and b. The a variety represents one
species or one clade, and b represents one or many dif-
ferent species or clades; together, a and b make up the
set of established oviposition sites for the generalist species.
The WZ∗ mothers oviposit exclusively on a host plants,
while wild-type mothers oviposit on both types of plants.
Host plants a and b can differ in one of two ways, either
by the presence in a of a unique chemical that can be
later modified into a mating pheromone or in the relative
ratios of the same host plant chemicals that go into making
the pheromonal suite of the adult male. Males developing
on a host plants experience increased fitness relative to
males developing on host plant b, reflecting the attrac-
tiveness of the pheromone in the adult stage and a pre-
existing preference in females for this pheromone. The
fitness of preferred males can be modeled as a fixed con-
stant, as we do below for ease of presentation, or it can
be drawn from a fitness function (see appendix).

The Z chromosome has different fitness consequences
in the two sexes. In females, it is the sire-derived copy,
the lone Z in heterogametic females, that causes fitness
variation. We assign a reduced fitness, , to females1 ! s
bearing the Z∗ version of this chromosome to reflect a
cost of searching for a suitable oviposition site. Fitness

variation also exists between the dam-derived Z chro-
mosomes, which are present only in males, to the extent
that they reflect a bias for where these males have devel-
oped. All sons of WZ∗ mothers are reared on a, while
only a fraction of sons of WZ mothers are reared there
by chance, according to a host plant density. Thus, males
with a dam-derived Z∗ have fitness , and males with1 " t
a dam-derived Z have an average fitness of 1. Table 1 gives
the genotype frequencies and fitness values for all possible
individuals.

We separately examine allele frequency changes after
selection in males and females. We apply selection ac-
cording to the above fitness regime. This will give the
frequency of Z∗ in sperm as

[p p " p (1 ! p )/2](1 " t) " [(1 ! p )p /2]d s d s d s′p ps wm

p (1 " p )(1 " t) " (1 ! p )pd s d sp . (1)
2wm

This frequency is also the frequency of sire-derived al-
leles in the next generation of zygotes. Average male fitness
is .w p 1 " p tm d

Second, we apply selection to females to generate the
subsequent frequencies of alleles in their eggs. This will
be the dam-derived frequency in zygotes. We apply selec-
tion according to the scheme above to give

1′p p p (1 ! s), (2)d swf

in which average female fitness is . The timingw p 1 ! p sf s

of the selection on females is inconsequential because we
make an assumption of random mating among genotypes.
Thus, selection could occur on females premating or
postmating.

Subtracting ps from ps
′ and pd from pd

′ gives equations
for the change in sire-derived and dam-derived allele fre-
quencies:

′Dp p p ! ps s s

[p (1 " p )(1 " t) " (1 ! p )p ] ! 2pwd s d s s m

p ,
2wm

′Dp p p ! p (3)d d d

p (1 ! s) ! p ws d f

p .
wf
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Figure 1: Parameter combinations of s (direct cost of oviposition search)
and t (male fitness benefit) and their associated oviposition behaviors in
females. The equation shown in the figure was used to draw the line
dividing the parameter space. For values above this line, we have a com-
bination of parameters that favors generalist behavior; for values below
the line, we get the evolution of specialization.

Combining the above equations in a weighted average
(one Z chromosome in females and two Z chromosomes
in males) gives a precise one-generation change in an al-
lele’s population-wide frequency, p, for any starting values
and allows us to look for equilibria:

1 2
Dp p Dp " Dpd s3 3

1
p [p (1 " t)w " p (1 ! s)w ! (p " p )w w ].d f s m d s f m3w wf m

(4)

When s is 0, the cost to mothers of being specialists is
nonexistent, and the above reduces to

1
Dp p [p (1 ! p )(1 " t) ! p (1 ! p )], (5)d d d d3wm

which, by inspection, is always greater than or equal to 0
if t is positive, suggesting that if the cost of searching for
a plants is sufficiently low, the evolution of specialization
will always be obtained.

When the cost of choosy oviposition is entered in equa-
tion (4), we see that the change in p is greater than or
equal to 0 provided that

p (1 " t)w " p (1 ! s)w ! (p " p )w w 1 0. (6)d f s m d s f m

This can be rearranged to form the following inequality:

p (1 ! p)ws s mt
1 . (7)

s p (1 ! p )wd d f

The above inequality indicates that provided that s, the
direct costs to maternal fitness, are small or that t, the
indirect benefits to sons of host plant choice, are relatively
large, the evolution of specialization is attainable by the
indirect selection mechanism described here.

For the case of absolute fitness benefits to males, that
is, when t is constant, we can ask whether such a selection
scheme permits any internal equilibria. At equilibrium,
equation (2) can be rewritten as

1ˆ ˆp p p (1 ! s). (8)d swf

The above permits only the trivial equilibria at
. For certain combinations of the fitness pa-p , p p 0, 1d s

rameters s and t the oviposition behavior becomes selec-
tively neutral. This gives rise to another situation in which
equation (7) is expected to return an equality rather than

an inequality. The function relating s and t that makes the
behavior neutral is given by rewriting equation (7) as an
equality and using the substitution in equation (8):

t
s p . (9)

1 " t

Figure 1 plots equation (9) and shows the parameter space
that permits specialization to evolve.

This model has some minor but important assumptions.
First, we assume no allelic variation for the male trait (the
ability to produce the pheromone). All males are capable
of producing pheromones from the host plant chemicals,
and the differences in pheromone composition between
males are completely determined by the host plant envi-
ronment. Second, the pheromonal suites of males reared
on both a and b plants contain a shared component nec-
essary for species recognition. The difference between
males reared on either plant is not so large that females
fail to recognize a-reared males as conspecifics. This as-
sumption is not problematic since, as mentioned before,
there are many examples in Lepidoptera where the male
sequesters chemicals from the host plant to use as pher-
omones and where these pheromones can be composed
of a mixture of chemicals (Baker 1989 and references
therein; Nishida et al. 1996). Third, larval feeding on any
of the possible host plants does not result in viability dif-
ferences. All fitness differences due to host plants are ex-
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perienced by adults. Fourth, we have chosen to make no
assumption on how plant density affects the search cost
to mothers or on the frequency with which generalist
mothers oviposit on a plants according to density. We
have instead assigned costs and benefits in a general sense,
such that s and t could both become functions of a plant
density parameter. An assumption of a linear effect of a
plant density in both males and females was explored (not
shown) and found to make no difference to our result.
The main assumption of our model is the preexisting fe-
male preference for a particular pheromone blend in
mates. In our model, we do not present an explicit ex-
planation for that initial preference. Rather, we assume the
existence of this mating preference and explore its con-
sequences in the presence of allelic variation for ovipo-
sition behavior.

Discussion

Our model not only shows that the evolution of host plant
specialization through sexual selection is possible but also
suggests a certain range of values for the direct search costs
imposed on females and the indirect benefits provided by
their sexy sons for which this mechanism could work (fig.
1). That relationship also permits predictions of which taxa
the sexual selection mechanism of host plant specialization
is more likely to work for.

Many butterfly species show mating strategies, such as
lekking and hilltopping (Shields 1967; Rutowski 1991;
Wiklund 2003), that involve male congregations. These
mating strategies are likely to impose the strong sexual
selection (see also appendix) required for the mechanism
proposed here to work and could drive host plant spe-
cialization, even in cases where the costs are relatively high.
The facts that ZW species are especially prone to sexual
selection (Reeve and Pfennig 2003; Kirkpatrick and Hall
2004) and that lekking and hilltopping are common be-
haviors make butterflies a good candidate for the study of
the mechanism proposed here. In addition, any feature
that decreases female searching cost should predispose the
evolution of host plant specialization by the mechanism
proposed here. In this respect, lineages that have acquired
traits or that inhabit environments that diminish female
searching costs are also good candidates to use in the study
of our mechanism of host plant specialization. We should
mention that there are some species where other aspects
of the mating biology render our proposed mechanism
irrelevant. Pupal mating butterflies are one such example.
Here, males sit on female pupae and compete to fertilize
the females as they emerge (Gilbert 1991; Deinert et al.
1994; Deinert 2003). In such species, precopulatory female
choice is absent, and our model does not apply.

Our model of host plant specialization offers a new

explanation for some patterns described in the literature.
One interesting phenomenon accommodated by our
model is the frequently observed mismatch between ovi-
position preference and larval performance (Thompson
1988). Since, in our model, the forces acting on the evo-
lution of larval host plant specialization are solely deter-
mined by selection on the adult stage, there is no a priori
reason to expect that plants that have potentially useful
pheromone precursors would also be the ones that confer
the best performance in the larval stage. Our hypothesis
explaining this mismatch is not mutually exclusive with
others, such as the enemy-free space model (Lawton and
McNeil 1979; Atsatt 1981). Further, having Z-linked ovi-
position preferences means that any fitness cost associated
with host plant choice need only be paid for by increased
fitness in males—not females, since they do not inherit
the maternal Z chromosome (Miller et al. 2006)—sug-
gesting that host plants with sexually antagonistic conse-
quences in favor of sons are suitable substrates on which
butterflies may specialize. The Z linkage may consequently
expand the realm of possible plants on which butterflies
can specialize and help explain the mismatch between host
plant choice and larval performance. This also suggests
that our mechanism of host plant specialization through
sexual selection could be more common in insects where
females are the heterogametic sex and oviposition genes
are located on the Z chromosome. A further theoretical
exploration of autosomal linkage may prove fruitful.

Our model also offers an alternative explanation for the
similarity between insect pheromone chemistry and host
plant compounds. The existing explanation is based on
the idea that males are able to exploit the female sensory
mechanism for finding host plants by essentially mimick-
ing the plants (Edgar et al. 1974; Baker 1989; Krasnoff and
Dussourd 1989) and assumes that specialization in females
happens before the male acquisition of specific phero-
mones derived from larval feeding. According to our
model, the similarity of pheromone and host plant chem-
icals can be explained by a reverse series of events in which
a preexisting preference in females favoring a plant-derived
pheromone would drive specialization on that host plant
by indirectly selecting for oviposition preference genes; the
chemical resemblance between pheromones and host
plants is an outcome of this process under our model.
Using a phylogeny for comparative analysis offers a way
to test these two views of the acquisition of male courtship
pheromone communication and the evolution of special-
ization. If sexual selection is the mechanism driving host
plant specialization, we would expect to find pheromone
communication and the ability to change host plant chem-
icals into attractive pheromones evolving before host plant
specialization. The opposite result would falsify our hy-
pothesis and lend support to the current explanation of
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similarity between host plant chemistry and pheromone
composition. Comparative methods may not be able to
fully resolve these two hypotheses, given that the order of
acquisition of these characteristics might be lost in the
reconstruction of a particular clade. A complementary ap-
proach would be to study generalist species that exhibit
quantitative variation in the use of host plants among
populations and look for covariance between this trait and
female preference for host plant–derived pheromones. Our
hypothesis predicts a positive association between male
offspring fitness and female oviposition preference. If our
sexual selection hypothesis is correct, it should be possible
to identify signs of sexual selection before specialization.
In contrast, the alternative hypothesis would assume that
sexual selection could play a role only after host plant
specialization has been achieved.

Although our model was developed explicitly to describe
the evolution of host plant specialization from a generalist
strategy, it also suggests a novel mechanism of host plant
shift. Consider a scenario in which a and b represent a
novel host plant and an established host plant, respectively.
Under this reworked scenario, the same mechanism pre-
sented above for specialization would describe the evo-
lution of a host plant shift from b to a as an outcome of
sexual selection on the adult stage.

To our knowledge, this is the first time that sexual se-
lection on male secondary traits has been proposed to drive
host plant specialization. We suggest that it might be an
important and overlooked mechanism in Lepidoptera and
in those species where we observe a mismatch between
larval performance and oviposition preference. Our model
was developed explicitly for butterflies and moths, but in
principle, a sexual selection mechanism of host plant spe-
cialization could work in any insect taxon where (1) adult
male secondary sexual traits are affected by the larval stage,
(2) those traits are a product of gene and host plant en-
vironment interactions, (3) female choice is possible, and
(4) oviposition choice has a strong genetic component.
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APPENDIX

Models for Fixed Relative Preferences and
the Best-of-N Males

In the body of the article, we present the simplest possible
selection scheme in which t, the fitness benefit to males
of being sexy, is not related to the frequency of sexy males.
This choice was made to simplify the presentation of the
underlying workings of the model. However, most models
of sexual selection assume that the benefit of sexiness to
a male is in some way related to the frequency of the
preferred trait in the population. What we do here is model
t as a function of the frequency f of sexy males in the
population. The frequency of sexy males is given as the
sum of the frequency of sons of specializing mothers and
that fraction of sons f who were randomly oviposited on
the a plant by generalist mothers:

f p p " (1 ! p )f,d d

1 ! f p (1 ! p )(1 ! f).d

Let Ui be the proportion of females that mate with a
male in class i, where for nonsexy males and 2 fori p 1
sexy males. We will use two different behavioral rules to
calculate U. The fitness Wi of the two classes of male is
given by

U1W p ,1 (1 ! f )

U2W p ,2 f

and we can calculate t as

W2t p ! 1.
W1

To explore the consequences of imposing our first be-
havioral rule, fixed relative preferences in females (sensu
Kirkpatrick 1982), we let a be the propensity of a female
to mate with a sexy male rather than with a nonsexy male.
Verbally, this means she is a times more likely to mate
with a sexy male. The Ui are

1 ! f
U p ,1 (1 ! f ) " af

af
U p .2 (1 ! f ) " af

Male fitness is given by
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1
W p ,1 (1 ! f ) " af

a
W p .2 (1 ! f ) " af

The above shows that absolute male fitness is negatively
frequency dependent for both types of male. However,
taking the ratio gives , a fixed constant. Thus,t p a ! 1
under a fixed relative mating preference scheme in which
all females are choosy, the fitness of a sexy male at any
frequency is constant, and equations (4) and (7) apply.
This means that fixation of the specializing allele is de-
terministically a possibility in our infinite population pro-
vided that a is sufficiently high.

A second rule of mate choice captures the behavior at
a lek (Seger 1985). We sample a pair of males at random
from the population, and the female mates with one of
them according to the following preference. If the pair is
heterogeneous, one sexy and one nonsexy male, then the
female chooses the sexy male with probability .(1 " c)/2
When , mating is random, and when , thec p 0 c p 1
female mates with the sexy male with certainty. For this
case, the Ui are given by

U p (1 ! f ) ! cf(1 ! f ),1

U p f " cf(1 ! f );2

male fitnesses are given by

W p 1 ! cf,1

W p 1 " c(1 ! f );2

and the fitness parameter t is given by

1 " c(1 ! f )
t p ! 1

1 ! cf

c
p .

1 ! cf

In the “best of two” mating scheme, we capture the positive
frequency dependence that Seger found (1985). Thus, the
“best of two” rule augments the probability of the evo-
lution of specialization.
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