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Introduction
In epidemiologic studies of environmental 
contaminants measured in urine, investiga-
tors adjust for creatinine or specific gravity to 
correct for variations in urine diluteness at the 
time of measurement (Barr et al. 2005; Thorne 
2008). Similarly, contaminant concentrations 
for lipophilic chemicals measured in blood are 
adjusted for serum lipid level (SLL) (Phillips 
et al. 1989; Schisterman et al. 2005).

Most investigators agree that adjust-
ment is beneficial, but controversy has arisen 
regarding the best approach (Schisterman 
et al. 2005). Traditionally, investigators stan-
dardize measured urinary biomarker concen-
trations by dividing by the concentration of 
urinary creatinine. This division converts the 
scale to weight of chemical per weight creati-
nine, reflecting the assumption that creatinine 
excretion is approximately constant across 
individuals and time. In principle, because 
individuals with low urinary creatinine 
concentrations are well hydrated, they would 
have commensurately dilute urinary concen-
trations of environmental contaminants. 
Thus, standardization would equalize concen-
trations across individuals and across time 
within individuals. The same concept applies 
to adjustment for SLL because individuals 

with elevated lipid concentrations tend to 
carry proportionally higher concentrations of 
lipid-soluble contaminants (Longnecker et al. 
1996; Phillips et al. 1989).

Schisterman et al. (2005) challenged this 
classical standardization approach by demon-
strating its poor performance in simulated 
scenarios involving lipophilic chemicals 
measured in serum. Considering simulations 
based on a number of directed acyclic graphs 
(DAGs), the authors found that simply 
including serum lipid as a covariate in the 
regression model generated more accurate 
and precise effect estimates than traditional 
standardization. They also demonstrated 
good performance of a two-stage model in 
which SLL was regressed on the contaminant 
(stage I) with the resulting residual term 
then entered as a covariate when modeling 
the effect of the contaminant on the outcome 
(stage II) (Hunter et al. 1997). The paper by 
Schisterman et al. (2005) has been widely 
cited, reflecting its substantial influence on 
analytic practice. However, we believe that 
some important causal scenarios remain to 
be explored.

To set the stage for our alternative 
scenarios, consider the purpose for which 
urinary and blood measurements are made. In 

many applications, urine and blood are used 
as accessible proxies for inaccessible target 
tissues. For example, when examining the 
effects of bisphenol A (BPA) on breast cancer, 
breast and reproductive organs are probably 
the most disease-relevant tissues. Instead, 
however, we measure urinary BPA concentra-
tion, not because the urine itself is a source 
of exposure, but as a surrogate. Because the 
target and proxy contaminant concentrations 
can differ, the use of proxy measurements 
results in measurement error, which causes 
bias. Furthermore, because the target and the 
proxy have different relationships with the 
outcome and with other factors, the choice of 
confounding variables may depend on how 
the causal network is defined.

A further complication to identifying 
true exposure levels is that risk factors for the 
disease under study might also affect creati-
nine or SLL. For example, creatinine levels 
can vary by sex, race, age, fat-free mass, and 
body mass index (BMI) (Barr et al. 2005). 
Sex, age, and BMI are also associated with 
SLL (Costanza et al. 2005). Barr et al. (2005) 
consequently recommended adjusting for 
creatinine as a covariate in the regression 
model. However, according to DAG theory 
(Greenland et al. 1999), creatinine (or SLL) 
may act as a “collider,” that is, a common 
descendant of two other variables on a causal 
pathway. If so, epidemiologists have demon-
strated that adjusting for creatinine (or SLL) 
could induce noncausal associations and lead 
to further confounding (Cole et al. 2010). 
Additionally, adjusting for creatinine or 
serum lipids as covariates may not adequately 
control for the measurement error that results 
from between-subject variations in urinary 
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Background: Investigators measuring exposure biomarkers in urine typically adjust for  creatinine 
to account for dilution-dependent sample variation in urine concentrations. Similarly, it is standard 
to adjust for serum lipids when measuring lipophilic chemicals in serum. However, there is 
controversy regarding the best approach, and existing methods may not effectively correct for 
measurement error.

oBjectives: We compared adjustment methods, including novel approaches, using simulated 
case–control data.

Methods: Using a directed acyclic graph framework, we defined six causal scenarios for 
 epidemiologic studies of environmental chemicals measured in urine or serum. The scenarios 
include variables known to influence creatinine (e.g., age and hydration) or serum lipid levels (e.g., 
body mass index and recent fat intake). Over a range of true effect sizes, we analyzed each scenario 
using seven adjustment approaches and estimated the corresponding bias and confidence interval 
coverage across 1,000 simulated studies.

results: For urinary biomarker measurements, our novel method, which incorporates both 
covariate-adjusted standardization and the inclusion of creatinine as a covariate in the regression 
model, had low bias and possessed 95% confidence interval coverage of nearly 95% for most simu-
lated scenarios. For serum biomarker measurements, a similar approach involving standardization 
plus serum lipid level adjustment generally performed well.

conclusions: To control measurement error bias caused by variations in serum lipids or by 
urinary diluteness, we recommend improved methods for standardizing exposure concentrations 
across individuals.

citation: O’Brien KM, Upson K, Cook NR, Weinberg CR. 2016. Environmental chemicals in 
urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect 
124:220–227; http://dx.doi.org/10.1289/ehp.1509693
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dilution or SLL. That issue is considered in 
the present study with the aid of DAGs.

We also consider how to control for 
measurement error when using proxy 
biomarker measures. We demonstrate the 
limitations of existing approaches and propose 
novel methods to control confounding and 
measurement error more effectively. We 
construct DAGs corresponding to several 
scenarios with distinct causal frameworks for 
toxicants measured in urine (Part I) versus 
those measured in serum (Part II). For each 
setting, we present results from simulation 
studies conducted to compare methods. In 
Part III, we apply these approaches to real data 
in a study of urinary phthalate concentrations 
and early pregnancy loss.

Part I: Environmental 
Chemicals Measured in Urine
Methods. We first consider scenarios where 
urine serves as a proxy for disease-relevant 
tissues (Figure 1, DAGs A–C). For instance, 
suppose we want to measure the association 
between breast cancer risk and BPA concen-
trations in breast tissue (i.e., target tissue, 
presumably causal), but we can measure only 
urinary BPA concentrations (presumably not 
causal). For the sake of simplicity, we assume 
that overall exposure and the consequent 
target tissue biomarker concentrations are 
stable across time and ignore the error caused 
by obtaining a “snapshot” measurement 
rather than measuring cumulative exposure. 
Our only focus is on the part of measurement 
error that adjustment for creatinine in the 
urine sample can potentially mitigate, that is, 
the discrepancy between urinary and target 
tissue concentrations at the time that the 
proxy sample was collected.

In scenario A (Figure 1), target-tissue 
concentrations (ET), which depend on overall 
environmental exposure (EO), affect disease 
risk. Proxy concentrations (EP), measured 
in urine, depend on both EO and hydra-
tion levels at the time of sample collection. 
Hydration commensurately affects creatinine 
levels. Scenario B (Figure 1) additionally 
allows some covariate X (e.g., age) to affect 
both creatinine and disease risk. Conditioning 
on urinary creatinine by adjusting for it in the 
model will induce an association between EP 
and disease (Cole et al. 2010; Greenland et al. 
1999) unless X is also included in the model. 
Scenario C (Figure 1) is similar to scenario B 
except that X can also affect EO. Conditioning 
on creatinine will again open a “back-door 
path” between EP and disease unless one also 
adjusts for X.

For the simulation study, we gener-
ated data for each of the relevant covariates 
by randomly drawing values from speci-
fied distributions. Our primary purpose for 
doing so was to compare the effect estimates 

produced by an analysis of the simulated 
data to the true effect estimates, which we 
defined when designing the simulation. We 
selected five possible values of the true odds 
ratio (OR, per unit change) for the effect of 
ET on disease: 2.00, 1.30, 1.00, 0.77, and 
0.50. These values correspond to true natural 
log (ln) OR values (denoted βTRUE) of 0.69, 
0.26, 0.00, –0.26, and –0.69, respectively. 
Each simulation was repeated 1,000 times. 
The sample included 500 participants when 
the OR was 2.0 or 0.5 and 1,000 otherwise.

The variable distributions selected for the 
simulation study are discussed in detail in 
Supplemental Material, “Part I: Description 
of simulation study parameters for urine 
biomarker scenarios (DAGs A–C).” Briefly, 
we generated values for urinary biomarker 
concentrations with a log-normal distribu-
tion that approximates the distribution seen 
for BPA in female participants from the 
2007–2010 National Health and Nutrition 
Examination Surveys [NHANES; Centers for 
Disease Contol and Prevention (CDC) 2009, 
updated 2013]. We simulated values for creat-
inine, hydration, and X based on the assump-
tions specified in the DAG. In sensitivity 
analyses, we simulated assay-specific measure-
ment errors by including a random error 
term in the equation used to generate EP or 
creatinine. All analyses were performed in SAS 
(version 9.3; SAS Institute Inc., Cary, NC).

The presence or absence of disease was 
assigned by random draws from a binomial 
distribution where the ln odds of having 
disease (D) was linearly dependent on the 

target-tissue concentrations, ET: logit[Pr(D)] = 
α + βTRUE × ET + δ × W. Here, W is a vector 
containing any relevant confounders. We 
selected intercept terms to impose case–control 
sampling with approximately 50% cases.

To enable scale-invariant comparisons 
between results based on ET versus EP, we 
rescaled the biomarker measures using stan-
dardized z-scores. Then, for each of seven 
statistical approaches described below, we esti-
mated the association between one standard 
deviation (SD) increase in EP (with or without 
prior creatinine standardization, depending 
on the approach) and the change in ln odds of 
disease risk. The resulting estimated coefficient 
for the EP z-score (EPz), should be very close 
to the corresponding β for the ET z-score. 
The derivations of the coefficients for the ET 
z-scores (ETz) corresponding to each DAG are 
defined in Supplemental Material, Table S1, 
“Variable relationships, urinary biomarker 
scenarios (A–C),” and are listed in the results 
tables. To the extent that the estimated coef-
ficient for EPz systematically differs across 
simulations from the true coefficient for ETz, 
there is bias.

Method 1. We fit a model that does not 
adjust for creatinine: logit[Pr(D)] = α + β 
× EPz + δ × W. This naïve approach illumi-
nates the consequences of ignoring dilution 
effects. When analyzing scenarios B and C, 
we adjusted for factor X as a confounder. This 
adjustment was made in all seven approaches, 
which are described in detail in Table 1.

Method 2. We compute the ratio of EP 
to creatinine and then estimate the effect 

Figure 1. Directed acyclic graphs illustrating three possible relationships (scenarios A–C) among overall 
exposure concentrations (EO), target-tissue exposure concentrations (ET), urinary (proxy) exposure 
concentrations (Ep), hydration, creatinine concentration, covariate X, and disease (D). Variables with solid 
outlines are observed, those with dashed outlines are unobserved.
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per SD: logit[Pr(D)] = α + β × ratioz + δ 
× W. This is the commonly used creatinine 
standardization method, which reflects the 
assumption that creatinine levels are inversely 
proportional to urinary diluteness.

Method 3. The third approach, covariate-
adjusted standardization, allows for systematic 
differences in long-term average creatinine 
levels across subpopulations. We first fit a 
model for ln(creatinine) as a function of the 
covariates thought to directly and chroni-
cally affect it (e.g., factor X). We then stan-
dardize by calculating Cratio = EP/(Cr/C^r), 
where Cr and C^r denote the observed and 
fitted creatinine, respectively. Finally, we 
standardize Cratio and fit: logit[Pr(D)]= 
α + β × Cratioz + δ × W. This method should 
specifically control the covariate-independent, 
short-term multiplicative effect of hydration 
on urinary diluteness.

Method 4. The fourth approach includes 
creatinine in the model: logit[Pr(D)] = α + 
β × EPz + λ × creatinine + δ × W. As discussed 
previously, the inclusion of creatinine serves to 
block confounding causal pathways involving 
both creatinine and disease (Barr et al. 2005; 
Schisterman et al. 2005).

Method 5. The fifth approach uses the 
two-stage model suggested by Schisterman 
et al. (2005), first modeling creatinine as if 
affected by EPz: creatinine = α + β × EPz + R, 
and then including the residual (R) in 
the model: logit[Pr(D)] = α + β × EPz + 
θ × R + δ × W.

Methods 6 and 7. The final two approaches 
are motivated by scenario C. We use the 
standardized biomarker measure (ratioz, 
as in Method 2) or the covariate-adjusted 
standardized biomarker measure (Cratioz, as 
in Method 3) in regression models that also 
include creatinine as a covariate: logit[Pr(D)] 
= α + β × ratioz + λ × creatinine + δ × W 
(Method 6) or logit[Pr(D)] = α + β × Cratioz + 
λ × creatinine + δ × W (Method 7). The goals 
of these methods are to control for variation 
due to hydration and to reduce confounding 
by blocking back-door paths between creatinine 
and risk factors related to both creatinine and 
disease. As with Method 3, Method 7 should 
allow separate control for the independent, 
multiplicative effect of hydration on diluteness.

For each of the seven methods and 
1,000 data simulations, we obtained a point 
estimate and a variance estimate for the coef-
ficient of the urinary biomarker measure of 
interest (EPz, ratioz or Cratioz). To measure 
bias, we subtracted the true beta coefficient 
for ETz [i.e., the ln(OR), which corresponds 
to the standardized concentration in the 
target tissue as specified for that simulation] 
from the mean of the 1,000 point estimates. 
We also calculated the square root of the 
mean of the 1,000 estimated variances across 
all simulations as well as the empirical SD, 

which is the SD of the 1,000 point estimates. 
Concordance between these values indicates 
good model-based variance estimation at the 
simulated sample size. We also calculated the 
empirical confidence interval (CI) coverage, 
which is the proportion of simulations in 
which the 95% confidence interval included 
the true beta coefficient of ETz. The standard 
error of the bias was calculated by dividing 
the empirical SD by the square root of the 
number of simulations (n = 1,000).

Results. Table 2 shows the results of the 
simulations. The effect estimates are marked 
with an asterisk (*) if CI coverage was statisti-
cally consistent with 95% (0.95 ± 0.0135).

For scenario A, Methods 1 (unadjusted) 
and 4 (covariate-adjusted) were biased 
relative to the other methods when ET had 
an effect (i.e., when the true OR ≠ 1.0). The 
other methods performed very well, with 
little to no detectable bias (± 0.01), and CI 
coverage consistent with 95% except when 
the OR = 2.0, in which case CI coverage was 
consistently < 95%. The values of the model-
based SDs were, on average, close to those 
of the empirical SDs across all scenarios and 
statistical approaches (data not shown).

For scenario B, the covariate-adjusted 
standardization methods (3 and 7) performed 
consistently well. The other methods were more 
biased, especially the traditional standardization 
methods (2 and 6). Here, when the true OR 
was 2.0, the bias was 0.08, which corresponds 
to a change of 12% (0.08/ETz = 0.08/0.65). 
CI coverages were consistent with 95% for 
Methods 3, 4, and 7 under all scenarios.

For scenario C, when the effect was large 
and positive (true OR = 2.0), the traditional 
standardization approaches were highly biased 
(0.17 = 26% change for Methods 2 and 6). 
Methods 3 and 7 had consistently low bias 
and CI coverages near 95%.

When there was no true effect (true 
OR = 1.0), all seven methods showed CI 
coverages consistent with 95% and minimal 
bias for all three scenarios. Thus, all seven 
approaches provide valid hypothesis tests. 
When there was a true effect, however, only 
the covariate-adjusted standardized approaches 
(3 and 7) performed well under all scenarios, 
with CI coverage consistent with 95%.

Results for scenarios with classical assay 
measurement error introduced for both EP 
and creatinine are shown in Supplemental 
Material, Table S2, “Results from simulations 
with measurement error: urinary biomarker 
scenarios (A–C).” As expected, the estimates 
were generally more biased than when EP 
and creatinine were measured without error. 
Although the seven methods varied in their 
relative performance, the covariate-adjusted 
standardization plus creatinine adjustment 
method (7) again performed well, showing 
minimal bias and good coverage for all but 
one of the six tested methods.

In general, we found that both covariate-
adjusted standardizat ion approaches 
(Methods 3 and 7) performed well in all 
simulation scenarios and effect size specifica-
tions, with minimal bias and close to nominal 
CI coverage rates. This good performance 
persisted even when there was a complicated 
confounding structure and simulated labo-
ratory measurement error. Because real-life 
scenarios will likely involve more complicated 
causal structures than those modeled here, 
Method 7 (covariate-adjusted standardization 
plus creatinine adjustment) may have better 
general utility.

Part II: Environmental 
Chemicals Measured in Serum
Methods. We next consider scenarios where 
lipophilic chemicals are measured in serum 
(Figure 2, DAGs D–F). To parallel the 
previous example, suppose we want to measure 
the association between a biomarker in a target 
tissue [e.g., polychlorinated biphenyl (PCB) 
in breast tissue] and an outcome (e.g., breast 
cancer), but only measure PCB concentra-
tions in serum. For the sake of simplicity, we 
again assume that exposure concentrations are 
stable across time and focus on the measure-
ment error that we can potentially adjust for 
by accounting for SLL at the time of sample 
collection. Further details of the serum 
biomarker simulation study are discussed in 
Supplemental Material, “Part II: Description 
of simulation study parameters for serum 
biomarker scenarios (DAGs D–F).”

In these scenarios, total SLL is the sum of 
two components: adiposity-related SLL and 

Table 1. Statistical models for each analytic method, as applied to biomarkers measured in urine.

Method logit[Pr(D)] =
1. Unadjusted α + β × EPz + δ × W
2. Standardized α + β × ratioz + δ × W
3. Covariate-adjusted standardization α + β × Cratioz + δ × W
4. Covariate adjustment α + β × EPz + λ × creatinine + δ × W
5. 2-stage model α + β × EPz + θ × R + δ × W; creatinine = α + β × EPz + R
6. Standardization plus covariate adjustment α + β × ratioz + λ × creatinine + δ × W
7. Covariate-adjusted standardization plus covariate 

adjustment
α + β × Cratioz + λ × creatinine + δ × W

Abbreviations: C
^

r , predicted creatinine; Cratio, EP/(Cr/C
^

r ); EP, proxy exposure level; EPz, proxy exposure z-score; ratioz, 
z-score for EP:creatinine ratio. Creatinine predicted based on X1 in all scenarios. W not included in Scenario A. In 
scenarios B and C, W = X1.
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variable SLL. Adiposity SLL is positively asso-
ciated with obesity and is temporally stable. 
In contrast, variable SLL changes after recent 
fat intake (Longnecker et al. 1996; Phillips 
et al. 1989).

In all three scenarios, total SLL affects 
the serum concentration of lipid-soluble 
contaminants (EP), and adiposity SLL is associ-
ated with disease risk, as is the target-tissue 
biomarker concentration (ET). In scenarios E 
and F, we also assume that factor X (e.g., BMI) 
affects both adiposity SLL and disease risk. 
In scenario F, X also affects overall exposure 
[EO; see Supplemental Material, Table S3, 
“Variable relationships, serum biomarker 
scenarios (D–F)”].

We used the same EO distribution as that 
used in the previous example and simulated 

1,000 case–control studies with five possible 
true effect parameters (2.00, 1.30, 1.00, 
0.77, and 0.50), setting the sample size to 
500 when the OR was 2.0 or 0.5 and to 
1,000 otherwise. For sensitivity analyses of 
assay-specific measurement error, we added 
a random error term to the equation used to 
generate EP or total SLL [see Supplemental 
Material, “Part II: Description of simula-
tion study parameters for serum biomarker 
scenarios (DAGs D–F)”]. Further details of 
the seven statistical approaches applied to 
serum biomarkers are shown in Table 3.

Results. For scenario D (Figure 2), both 
standardization methods (2 and 6) and 
both covariate-adjusted standardization 
methods (3 and 7) performed well (Table 4). 
The remaining three methods were biased 

(absolute bias > 0.05) and showed sub-
nominal CI coverage except when there was 
no true association (true OR = 1.0).

When X influenced SLL and disease 
risk, as in scenario E (Figure 2), standard-
ization (Method 2) and standardization 
plus covariate adjustment (Method 6) 
demonstrated little to no bias (± 0.01). The 
other methods were biased, particularly the 
covariate adjustment model (Method 4, 
bias = 0.19 when true OR = 2.0 and –0.17 
when true OR = 0.5). The two covariate-
adjusted standardization methods (3 and 
7) were moderately biased when the effect 
was small (true OR = 1.3 or 0.77), and these 
methods performed more poorly when the 
effect size was large. For scenario F (Figure 2), 
the standardization methods (2 and 6) again 

Table 2. Results from simulation studies comparing seven methods for creatinine adjustment when assessing the relationship between a urinary biomarker and 
disease risk under different causal scenarios (Figure 1) and true effect sizes (true ORs = 2.0, 1.3, 1.0, 0.77, or 0.5).

Analysis method

Scenario A Scenario B Scenario C

Bias (SE)a CI coverage Bias (SE)a CI coverage Bias (SE)a CI coverage
True OR = 2.0, true β for ETz = 0.650 (A and B) or 0.690 (C)

1. Unadjusted –0.02 (0.003) 0.92 –0.02 (0.003) 0.93 –0.03 (0.004) 0.93
2. Standardizedb 0.01 (0.003) 0.93 0.08 (0.004) 0.90 0.17 (0.005) 0.82
3. Covariate-adjusted standardization (CAS)b,c 0.01 (0.003) 0.93 0.01 (0.003) 0.94* 0.00 (0.004) 0.94
4. Covariate adjustment (CA)b 0.03 (0.003) 0.92 0.03 (0.004) 0.94* 0.02 (0.004) 0.93
5. 2-stage modelb –0.01 (0.003) 0.91 –0.01 (0.003) 0.93 0.07 (0.004) 0.92
6. Standardization plus CAb 0.01 (0.003) 0.93 0.08 (0.004) 0.90 0.17 (0.005) 0.81
7. CAS plus CAb,c 0.01 (0.003) 0.93 0.01 (0.003) 0.94* 0.01 (0.004) 0.94*

True OR = 1.3, true β for ETz = 0.245 (A and B) or 0.260 (C)
1. Unadjusted –0.01 (0.002) 0.95* –0.01 (0.002) 0.94* –0.01 (0.002) 0.94*
2. Standardizedb 0.00 (0.002) 0.95* 0.03 (0.002) 0.93 0.06 (0.003) 0.90
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95*
4. CAb 0.01 (0.002) 0.95* 0.01 (0.002) 0.94* 0.01 (0.002) 0.95*
5. 2-stage modelb –0.01 (0.002) 0.95* –0.01 (0.002) 0.94* 0.03 (0.003) 0.95*
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.03 (0.002) 0.93 0.06 (0.003) 0.90
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.94* 0.00 (0.002) 0.95*

True OR = 1.0, true β for ETz = 0.0 
1. Unadjusted 0.00 (0.002) 0.96* 0.00 (0.002) 0.96* 0.00 (0.002) 0.96*
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.96*
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95*
4. CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95*
5. 2-stage modelb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96*
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.96*
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.002) 0.95*

True OR = 0.77, true β for ETz = –0.245 (A and B) or –0.260 (C)
1. Unadjusted 0.01 (0.002) 0.95* 0.01 (0.002) 0.95* 0.01 (0.002) 0.96*
2. Standardizedb 0.00 (0.002) 0.96* –0.02 (0.002) 0.94* –0.04 (0.003) 0.94
3. CASb,c 0.00 (0.002) 0.96* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96*
4. CAb –0.01 (0.002) 0.95* –0.01 (0.002) 0.95* –0.01 (0.002) 0.96*
5. 2-stage modelb 0.01 (0.002) 0.95* 0.01 (0.002) 0.95* –0.02 (0.002) 0.95*
6. Standardization plus CAb 0.00 (0.002) 0.96* –0.02 (0.002) 0.94* –0.04 (0.003) 0.94*
7. CAS plus CAb,c 0.00 (0.002) 0.96* 0.00 (0.002) 0.95* 0.00 (0.002) 0.96*

True OR = 0.5, true β for ETz = –0.650 (A and B) or –0.690 (C)
1. Unadjusted 0.02 (0.003) 0.94* 0.02 (0.003) 0.92 0.00 (0.004) 0.94*
2. Standardizedb –0.01 (0.003) 0.95* –0.06 (0.004) 0.92 –0.02 (0.004) 0.87
3. CASb,c –0.01 (0.003) 0.95* 0.00 (0.003) 0.94* –0.01 (0.004) 0.95*
4. CAb –0.03 (0.003) 0.94* –0.02 (0.004) 0.95* –0.02 (0.004) 0.95*
5. 2-stage modelb 0.01 (0.003) 0.94* 0.02 (0.003) 0.92 0.01 (0.004) 0.91
6. Standardization plus CAb –0.01 (0.003) 0.95* –0.06 (0.004) 0.92 –0.01 (0.004) 0.87
7. CAS plus CAb,c –0.01 (0.003) 0.95* 0.00 (0.003) 0.94* –0.02 (0.004) 0.95*

Abbreviations: ETz, target-tissue exposure z-score; EPz, proxy exposure z-score; SE, standard error; CI, confidence interval. Each simulation was repeated 1,000 times. Samples 
included 500 observations when the true OR = 2.0 or 0.5 and 1,000 observations otherwise.
aBias is equal to the mean observed beta coefficient for βPz, which is either the urine exposure z-score (Methods 1, 4, 5) or the z-score for the urine exposure:creatinine ratio (Methods 
2, 3, 6), minus the true beta coefficient for ETz. The standard error of the bias estimate is the square root of the average variance of βPz divided by the square root of the number of 
simulations. bB and C are adjusted for X. cCreatinine is predicted using X. *CI coverage is consistent with 0.95 (0.95 ± 0.0135). Note that CI coverage values are rounded, and only those 
values that are consistent with 95% have been marked with an asterisk.
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showed the least bias and best CI coverage 
when X also affected EO.

In contrast to the results for the urinary 
biomarker scenarios, Methods 1 and 5 were 
biased when there was no true effect. The 
CI coverages were consistent with 95% for 
all methods and all scenarios. When clas-
sical assay measurement error was present 
[see Supplemental Material, Table S4, 
“Results from simulations with measurement 
error: serum biomarker scenarios (D–F)],” 
all methods suffered, but Methods 2 and 6 
continued to have the best overall performance.

In general, when assessing the relation-
ship between a health outcome and a lipid-
soluble chemical measured in serum, we 
found that Methods 2 and 6 performed best. 
These methods involved standardizing the 
biomarker measurement by dividing it by 
the measured SLL. Method 6, in which the 
SLL was also included as a covariate, may be 
best suited for use in epidemiologic studies 
involving many interrelated covariates.

Part III: Applied Example 
of Phthalates And Early 
Pregnancy Loss
Methods. We examined the association 
between mono-(3-carboxypropyl) phthalate 
(MCPP) and early pregnancy loss using data 
from the North Carolina Early Pregnancy 
Study (1982–1986). Details of the study have 
been described (Jukic et al. 2015; Wilcox 
et al. 1988). MCPP, human chorionic gonad-
otropin (hCG), and creatinine were measured 
in first-morning urine samples from 221 
healthy women who were trying to conceive. 
MCPP and creatinine were assessed in 
specimens composed of three pooled, equal-
volume aliquots collected during participants’ 
conception cycles (n = 198).

Conception was inferred if hCG concen-
trations were > 0.025 ng/mL on 3 consecutive 
days. A decline in hCG before 6 completed 
weeks (starting at the time of a woman’s last 
menstrual period) was considered an early 
pregnancy loss (n = 48). We considered the 
following variables as potential confounders 
on the basis of their possible relationship 
with early pregnancy loss and MCPP: age at 
conception, BMI, current smoking status, 
alcohol intake, caffeine intake, and educa-
tion. Of these, only age was associated with 
creatinine in our study sample. Therefore, the 
DAG for this example would most resemble 
the previously described DAG C, with factor 
X = age and BMI, smoking, alcohol, caffeine, 
and education acting as confounders that are 
associated with MCPP (EO) and early loss but 
not predictive of creatinine.

We assessed the relationship between 
MCPP and early pregnancy loss using the 
seven statistical methods considered above. 
Because exposure units differ across methods, 

we used z-scores to allow comparison, 
although this scaling would not be used 
in applied settings where the investigator 
requires a unit-based effect measure.

Results. The median creatinine and MCPP 
concentrations were 1.4 g/L and 13.5 μg/L, 
respectively, with interquartile ranges of 
1.1–1.7 and 9.5–21.1, respectively, and SDs 
of 0.5 and 13.5, respectively. Unadjusted, 
log-transformed MCPP and log-transformed 
creatinine were positively correlated (Pearson’s 
r2 = 0.28, p < 0.001). After creatinine stan-
dardization, logMCPP had a median of 
2.32 μg/g creatinine (or 10.2 μg/g when expo-
nentiated) and reduced variability [coefficient 
of variation (CV) = 0.26 vs. 0.27 when unstan-
dardized, with CVs based on log-transformed 
values]. Variability was further reduced when 
we applied covariate-adjusted standardization 
before log-transformation (CV = 0.23).

Although none of the resulting ORs and 
95% CIs indicate a statistically significant 
association between MCPP and early preg-
nancy loss, the estimates for Methods 1, 4, 
and 5 suggest a positive association, whereas 
the estimates for Methods 2, 3, 6, and 7 are 
< 1 (Table 5). If these same point estimates 
were reported for a study with a larger sample 

size, the choice of creatinine-adjustment 
approach could influence the conclusion.

In this example, we used pooled urine 
specimens to decrease the influence of short-
term variations in hydration and to provide 
a stable assessment of phthalate concentra-
tions over time. Although this was an impor-
tant strength of the design, and pooling of 
multiple samples should be considered when 
feasible, it made the relative benefits of our 
novel standardization methods less apparent. 
Another limitation of this example is that 
the women included in the Early Pregnancy 
Study were fairly homogenous for factors 
associated with creatinine, including race 
(95% white), age (range 21–42), and BMI 
(89% were < 25 kg/m2).

Discussion
When urinary concentrations of an environ-
mental contaminant are used as surrogates 
for concentrations in risk-relevant target 
tissues, day-to-day and person-to-person 
variations in urine dilution can cause bias-
inducing, power-eroding measurement 
error. Measurement error is also problematic 
in studies of lipophilic chemicals in serum, 
particularly if fasting serum samples are 

Table 3. Statistical models for each analytic method, as applied to biomarkers measured in serum.

Method logit[Pr(BC)] =
1. Unadjusted α + β × EPz + δ × W
2. Standardized α + β × ratioz + δ × W
3. Covariate-adjusted standardization α + β × Cratioz + δ × W
4. Covariate adjustment α + β × EPz + λ × SLL + δ × W
5. 2-stage model α + β × EPz + θ × R + δ × W; SLL = α + β × EPz + R
6. Standardization plus covariate adjustment α + β × ratioz + λ × SLL + δ × W
7. Covariate-adjusted standardization plus covariate adjustment α + β × Cratioz + λ × SLL + δ × W

Abbreviations: Cratio, EP/(SLL/S
^

LL); EP, proxy exposure level; EPz, proxy exposure z-score; ratioz, z-score for EP:SLL ratio; 
SLL, serum lipid level; S

^

LL, predicted SLL. SLL predicted based on X2 in all scenarios. W not included in scenario D. In 
scenarios E and F, W = X2.

Figure 2. Directed acyclic graphs illustrating three possible relationships (scenarios D–F) among overall 
exposure concentrations (EO), target-tissue exposure concentrations (ET), serum (proxy) exposure 
concentrations (Ep), recent fat intake, adiposity serum lipid levels (SLL), variable SLL, total SLL, covariate 
X, and disease (D). Variables with solid outlines are observed, those with dashed outlines are unobserved.
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unavailable and it becomes impossible to tease 
out the relative influences of general adiposity 
versus those of recent fat intake on the 
measurements. Additional complexities arise 
for both biologic matrices if there are factors 
that influence both creatinine excretion and 
the outcome, or both SLL and the outcome.

Although the methods are controversial, 
convenient approaches to reducing measure-
ment error bias for exposure biomarkers 
measured in urine and serum involve dividing 
by specific gravity or creatinine levels for 
urinary concentrations, or by a serum lipid 
summary measure for serum concentrations 
(Method 2) (Barr et al. 2005; Schisterman 
et al. 2005; Thorne 2008). With these stan-
dardization methods, we implicitly assume a 
causal model such as those shown in scenarios 

A and D, and the results from our simula-
tions support the belief that standardization 
by division works well under these scenarios.

Concerns that traditional standardiza-
tion is not appropriate in settings where 
disease risk factors can also affect creati-
nine (scenarios B and C) led us to devise a 
modified method. First, we model creatinine 
in relation to other known risk factors and 
obtain a predicted value for creatinine. The 
remaining proportional variation around the 
fitted mean is approximately attributable to 
hydration levels, which also affect the concen-
tration of the biomarker of interest. We adjust 
the concentration in the urine by dividing by 
the ratio of the measured value to the fitted 
mean value of creatinine (Method 3). We also 
considered augmenting Method 3 by including 

adjustment for creatinine in the regression 
model for risk (Method 7). These analytic 
approaches performed well under scenarios 
B and C, in which a confounder of the 
exposure–disease association also influenced 
creatinine levels. On the basis of these results, 
we recommend that Method 7 be used for 
studies of urinary biomarkers that resemble the 
scenarios described in DAGs A, B, or C, and 
we provide code to implement this method 
in SAS (see Supplemental Material, “Part III: 
SAS coding example for implementation of 
covariate-adjusted standardization method”; 
http://www.niehs.nih.gov/research/resources/
software/biostatistics/covariate/index.cfm).

The usefulness of this proposed method 
depends on the availability of relevant predic-
tors because more informative prediction 

Table 4. Results from simulation studies comparing seven methods for serum lipid level adjustment when assessing the relationship between a serum biomarker 
and disease risk under different causal scenarios (Figure 2) and true effect sizes (true ORs = 2.0, 1.3, 1.0, 0.77, or 0.5).

Analysis method

Scenario D Scenario E Scenario F

Bias (SE)a CI coverage Bias (SE)a CI coverage Bias (SE)a CI coverage
True OR = 2.0, true β for ETz = 0.650 (D and E) or 0.838 (F)

1. Unadjusted –0.15 (0.003) 0.63 –0.04 (0.004) 0.92 0.03 (0.006) 0.94
2. Standardizedb 0.01 (0.003) 0.95* 0.01 (0.003) 0.94* 0.01 (0.005) 0.94*
3. Covariate-adjusted standardization (CAS)b,c 0.01 (0.003) 0.94* 0.11 (0.004) 0.86 0.29 (0.006) 0.72
4. Covariate adjustment (CA)b 0.17 (0.004) 0.78 0.19 (0.004) 0.73 0.33 (0.007) 0.68
5. 2-stage modelb –0.12 (0.003) 0.73 –0.13 (0.004) 0.77 –0.02 (0.006) 0.92
6. Standardization plus CAb 0.01 (0.003) 0.94* 0.01 (0.003) 0.94* 0.01 (0.005) 0.94*
7. CAS plus CAb,c 0.01 (0.003) 0.94* 0.11 (0.004) 0.86 0.29 (0.006) 0.72

True OR = 1.3, true β for ETz = 0.245 (D and E) or 0.316 (F)
1. Unadjusted –0.05 (0.002) 0.90 –0.01 (0.002) 0.95* 0.01 (0.003) 0.96*
2. Standardizedb 0.00 (0.002) 0.94* 0.00 (0.002) 0.94* 0.00 (0.003) 0.96*
3. CASb,c 0.00 (0.002) 0.95* 0.04 (0.002) 0.93 0.09 (0.004) 0.89
4. CAb 0.06 (0.003) 0.91 0.06 (0.003) 0.88 0.10 (0.004) 0.88
5. 2-stage modelb –0.05 (0.002) 0.90 –0.05 (0.002) 0.91 –0.02 (0.003) 0.94*
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.94* 0.00 (0.003) 0.96*
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.04 (0.002) 0.93 0.09 (0.004) 0.89

True OR = 1.0, true β for ETz = 0.0
1. Unadjusted 0.01 (0.002) 0.96* 0.01 (0.002) 0.96* 0.00 (0.003) 0.96*
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.96*
3. CASb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.96* 0.00 (0.003) 0.97
4. CAb 0.00 (0.003) 0.95* 0.00 (0.003) 0.95* 0.00 (0.003) 0.97
5. 2-stage modelb 0.01 (0.002) 0.96* 0.01 (0.002) 0.96 0.01 (0.003) 0.96*
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.96*
7. CAS plus CAb,c 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.97

True OR = 0.77, true β for ETz = –0.245 (D and E) or –0.316 (F)
1. Unadjusted 0.06 (0.002) 0.85 0.02 (0.002) 0.95* 0.00 (0.003) 0.96*
2. Standardizedb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.95*
3. CASb,c 0.00 (0.002) 0.95* –0.03 (0.002) 0.93 –0.07 (0.003) 0.91
4. CAb –0.06 (0.003) 0.90 –0.06 (0.003) 0.89 –0.08 (0.003) 0.90
5. 2-stage modelb 0.06 (0.002) 0.86 0.07 (0.002) 0.87 0.05 (0.003) 0.92
6. Standardization plus CAb 0.00 (0.002) 0.95* 0.00 (0.002) 0.95* 0.00 (0.003) 0.95*
7. CAS plus CAb,c 0.00 (0.002) 0.95* –0.03 (0.002) 0.93 –0.08 (0.003) 0.91

True OR = 0.5, true β for ETz = –0.650 (D and E) or –0.838 (F)
1. Unadjusted 0.17 (0.003) 0.55 0.06 (0.004) 0.90 0.01 (0.005) 0.94*
2. Standardizedb 0.00 (0.003) 0.94* –0.01 (0.003) 0.93 0.00 (0.004) 0.95*
3. CASb,c 0.00 (0.003) 0.95* –0.09 (0.004) 0.89 –0.22 (0.006) 0.78
4. CAb –0.16 (0.004) 0.79 –0.17 (0.004) 0.77 –0.26 (0.006) 0.74
5. 2-stage modelb 0.14 (0.003) 0.69 0.15 (0.004) 0.72 0.09 (0.005) 0.89
6. Standardization plus CAb 0.00 (0.003) 0.94* –0.01 (0.003) 0.93 –0.01 (0.004) 0.95*
7. CAS plus CAb,c 0.00 (0.003) 0.94* –0.09 (0.004) 0.89 –0.23 (0.006) 0.77

 Abbreviations: ETz, target-tissue exposure z-score; EPz, proxy exposure z-score; SE, standard error; CI, confidence interval. 
Each simulation was repeated 1,000 times. Samples included 500 observations when the true OR = 2.0 or 0.5 and 1,000 observations otherwise.
aBias is equal to the mean observed beta coefficient for βPz, which is either the serum exposure z-score (Methods 1, 4, 5) or the z-score for the serum exposure to lipid level ratio 
(Methods 2, 3, 6), minus the true beta coefficient for ETz. The standard deviation of the bias estimate is the square root of the average variance of βPz divided by the square root of 
the number of simulations. bE and F are adjusted for X. cSerum lipid levels are predicted using X. *CI coverage is consistent with 0.95 (0.95 ± 0.0135). Note that CI coverage values are 
rounded, and only those values that are consistent with 95% have been marked with an asterisk. 
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models for creatinine will improve measures of 
the residual proportion of creatinine attribut-
able to hydration. Many predictors of creati-
nine, including age, race, sex, and BMI, are 
routinely collected, but the field could benefit 
from an improved understanding of physiologic 
factors that influence creatinine.

The issues associated with serum biomarker 
measures are more complex than those asso-
ciated with urinary biomarker measures. 
Although creatinine and urinary EP share a 
common causal ancestor (i.e., hydration), 
total SLL influences a lipophilic EP directly. 
Additionally, total SLL is causally downstream 
from long-term adiposity, which is a risk factor 
for many chronic diseases. By contrast, a causal 
link between hydration/creatinine and disease 
(except kidney disease) seems unlikely, given 
that creatinine is a byproduct of muscle catabo-
lism. Because of these discrepancies, we cannot 
use covariate-adjusted standardization to isolate 
the effects of SLL in the same way that we can 
approximately isolate the effects of hydration 
in the urinary biomarker examples.

In our simulations for the serum biomarker 
setting, the effect estimates were typi-
cally more biased than those for the urinary 
biomarker measurement scenarios. We found 
that the traditional standardization approach 
(Method 2) outperformed the covariate-
adjusted standardization approach (Method 3), 
but we believe that in scenarios that are more 
complex than the ones simulated here, addi-
tionally including SLL as a covariate in the 
regression model (Method 6) will help to 
ensure that any backdoor paths are sufficiently 
blocked and that confounding is controlled. 
Because such adjustment may be useful even 
when SLL (or creatinine) is not acting as a 
confounder, it may be useful to think of SLL 
(or creatinine) as a “concomitant variable” or 
a non-confounding covariate that can improve 
estimation precision if included in the data 
analysis (Li et al. 2013).

A key feature of the causal diagrams 
presented herein is that we allow for the 
possibility that concentrations differ across 
tissues. For both the hypothetical and applied 
examples we have presented, we assume that 
urinary excretion concentrations are corre-
lated with chemical concentrations in the 

target tissues but are not perfect surrogates for 
them. This conceptualization of the problem 
differs from that of Schisterman et al. (2005), 
which sometimes assumes that urinary or 
serum biomarker concentrations are directly 
causally related to the outcome. Moreover, we 
consider situations where SLL directly affects 
the amount of analyte present in the serum.

To enable meaningful comparisons of esti-
mated beta coefficients across all seven models, 
we calculated z-scores and estimated the 
effects per SD increase in biomarker concen-
tration. Unlike crude exposure measures, these 
z-scores are scale-invariant and thus allowed 
us to make direct comparisons of estimates 
derived using different methods. However, 
we do not recommend the use of z-scores in 
practice because SDs may vary considerably 
across studies or population subgroups.

We also considered situations in which 
a covariate can affect both serum lipid (or 
urinary creatinine) levels and the outcome 
(scenarios B and E) or in which a covariate can 
affect exposure, serum lipid/creatinine levels, 
and the outcome (scenarios C and F). We 
believe that the DAGs included here capture 
the key features of pertinent scenarios, but 
there may be other relevant situations that 
have not been addressed by our simula-
tions. For example, we have not considered 
scenarios in which the target tissue is exposed 
directly (e.g., airborne contaminants and 
lung disease) or in which the exposure of 
interest is internally produced (e.g., hCG). 
We also acknowledge that our assumption 
that the relationships between hydration 
and creatinine and between hydration and 
EP are multiplicative is an approximation, 
however plausible.

Typically, DAGs are used to select the 
minimal set of adjustment covariates needed 
to control confounding and permit valid 
causal inference. Instead, we have used DAGs 
to guide our understanding of measure surro-
gacy and sources of measurement error in 
settings where urine and blood enable conve-
nient proxy measurement of environmental 
agents or biomarkers of exposure. Our treat-
ment of measurement error using DAGs is 
incomplete in the sense that the scenarios 
considered involve only a “snapshot” measure 

of an exposure that may have long-lasting 
effects. However, the most realistic goal of 
any standardization approach is to control 
bias due to short-term and risk-irrelevant 
influences on the measurement.

We note that our results apply specifically 
to etiologic studies that measure the associa-
tion of environmental exposures with a health 
outcome. Other scientific applications, such as 
studies of hormone secretion patterns across 
menstrual cycles (Baird et al. 1997), might 
rely on within-person changes over time. For 
such studies, factors that influence long-term 
concentrations may not be relevant.

Nevertheless, we believe that the general 
framework we have developed has broad 
applicability. For example, one could consider 
dietary biomarkers (e.g., urinary sodium) or 
analyte concentrations measured in other 
body fluids, such as saliva, semen, or breast 
milk. Each case would require careful consid-
eration of the relationships among the proxy 
tissue, the target tissue, and any factors that 
could influence relative concentrations or 
confound the exposure–disease relationship.

Conclusion
We have proposed a new covariate-adjusted 
standardization method to adjust for creati-
nine when estimating the association between 
a health outcome and environmental chemi-
cals or biomarkers measured in urine. For 
studies of lipophilic contaminants measured 
in serum, our results suggest that a different, 
more traditional standardization approach 
is appropriate. In both cases, also adjusting 
for creatinine or SLL as a covariate seems to 
provide additional benefits. Other recently 
proposed approaches, such as including 
creatinine or serum lipids as adjustment vari-
ables in statistical models or accounting for 
residuals from a stage-one predictive model, 
did not work well in our causal scenarios 
that regarded urine or blood as surrogates for 
target tissues. With the use of the proposed 
methods, our simulations illustrated that it is 
possible to control for variations in creatinine 
or SLL due to risk-irrelevant temporal pertur-
bations. Improved methods for standardizing 
biomarker measures should enable improved 
estimation of the effects of environmental 
exposures on human health.
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