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Abstract

Adaptive, cell-mediated immunity involves the presentation of antigenic peptides on 

class I MHC molecules at the cell surface. This requires an ABC transporter associated 

with antigen processing (TAP) to transport antigenic peptides generated in the cytosol 

into the endoplasmic reticulum (ER) for loading onto class I MHC.  Recent crystal 

structures of bacterial ABC transporters suggest how the transmembrane domains of TAP 

form a peptide-binding cavity that acquires peptides from the cytosol, and following 

ATP-induced conformational changes, the peptide-binding cavity closes to the cytosol 

and instead opens to the ER lumen for peptide release.  Extensive biochemical studies 

show how transport is driven by ATP binding and hydrolysis on an asymmetric pair of 

cytosolic nucleotide-binding domains, which are physically coupled to the peptide-

binding site to propagate conformational changes through the protein.
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Introduction

A central component of immune surveillance is the recognition of foreign antigenic 

peptides presented by class I MHC molecules on the surface of infected or otherwise 

aberrant cells (see [1] for a recent review).  Most of these peptides are derived from 

intracellular proteins turned over and degraded in the cytosol.  These peptides are 

recognized by T lymphocytes when bound to class I MHC molecules at the cell surface, 

and hence the cytosolic peptides must cross a membrane to gain access to the 

extracellular environment.  This compartmentalization problem is solved during class I 

MHC processing and assembly in the endoplasmic reticulum (ER) by an ATP-driven 

engine dedicated to peptide transport.  The transporter associated with antigen processing 

(TAP), a heterodimer of homologous TAP1 and TAP2 subunits, uses the energy of ATP 

binding and hydrolysis to transport diverse peptides from the cytosol into the ER lumen

[2,3].  In the ER membrane, TAP, chaperones and class I MHC molecules form a large 

peptide loading complex (PLC) that co-localizes peptide transport and loading onto MHC 

molecules [4].  Previous reviews have summarized much of the biochemical and 

functional data on TAP (e.g. [5,6]).  In this review, after briefly describing the peptide 

loading complex, we will focus on the structure and mechanism of its keystone, the TAP 

transporter.

The peptide-loading complex

When intracellular proteins are turned over by ubiquitin-proteasome mediated 

degradation, short peptides are generated, some of which are transported by TAP into the 

ER lumen for loading on to class I MHC molecules (Figure 1A; see [7] for a recent 
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review).  Prior to peptide loading, class I heavy chain and β2-microglobulin are 

assembled via interactions with protein disulfide isomerases (PDI), and the lectin-type 

chaperones calnexin and calreticulin [7].  Calreticulin-bound class I MHC heterodimers 

are then recruited into a large peptide-loading complex (PLC) that contains TAP at its 

core [4,8].  Additional chaperones join the PLC, including ERp57/ER60 (officially 

classified as PDIA3; protein disulfide isomerase family A, member 3) and the class I-

specific chaperone tapasin. PLC architecture remains controversial [7-9], and further 

analysis is required to clarify the stoichiometry of components and possible dynamic 

changes as peptides are transported and bound to MHC.  Tapasin interacts with the key 

components of the PLC: its C-terminal transmembrane and cytosolic region interacts with 

the TAP subunits [10,11], and its ER lumenal domains interact with class I MHC [11].  

Tapasin facilitates class I MHC loading [12], at least in part by forming a disulfide-linked 

complex with ERp57, an oxidoreductase that assists appropriate disulfide bond formation

[13].  This disulfide bond between the two chaperones sequesters ERp57 activity and 

prevents the enzyme from reducing a critical disulfide bond in the class I MHC peptide-

binding groove [14].  After class I MHC has bound an antigenic peptide, ER-resident 

chaperones are released, allowing the peptide-bound MHC to migrate through the Golgi 

apparatus and onwards to the cell surface.

At the heart of the peptide-loading complex is the TAP transporter.  TAP is a member of 

the large and ubiquitous family of ATP-binding cassette (ABC) transporters, which pump 

diverse substrates across various cellular membranes.  All ABC transporters share a 

common modular architecture of two transmembrane domains (TMDs) and two 
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nucleotide-binding domains (NBDs) arranged from one or more polypeptide chains.  The 

simplest transporters are assembled from identical subunits and hence are symmetric with 

two identical TMDs and NBDs, whereas the more complex eukaryotic transporters tend 

to have non-identical domains, often fused at the genetic level in a single polypeptide.  

TAP is a heterodimer of homologous but non-equivalent TAP1 and TAP2 subunits, 

which each provide a single TMD and NBD [15-17].  The two TMDs and two NBDs of 

ABC transporters form a core unit capable of substrate transport, but are often 

supplemented by accessory domains that provide additional functions, such as regulation, 

substrate capture, or binding of associated proteins [18].  Both TAP1 and TAP2 have an 

additional transmembrane, N-terminal accessory domain that binds tapasin during PLC 

assembly [19-21], although these domains are not required for the fundamental task of 

peptide transport [19,21].

A shared general mechanism for ABC transporters

All ABC transporters likely share a common mechanism (see [22] for a recent review).  

The two TMDs form a cavity for substrate binding that alternates between facing one side 

of the membrane for substrate acquisition and the other side for substrate release (Figure 

1B).  This alternating access mechanism is driven by ATP binding to the cytosolic NBDs 

and subsequent ATP hydrolysis (Figure 1B).  Each NBD binds an ATP molecule, and the 

two ATP-bound NBDs form a closed, tight association [23].  The ATP molecules are 

clasped at the interface and provide contacts to both NBDs [24].  When the NBDs are 

closed around ATP, the TMDs form an outward-facing cavity (‘outward’ is defined as the 

side of the membrane opposite the cytosolic NBDs) [25-28].  Following ATP hydrolysis, 



Page 5 of 22

the NBDs open and the substrate-binding cavity of the TMDs faces inwards [27,29,30]

(Figure 1B).  Importers and exporters use the same basic set of conformations, but differ 

on which states bind the substrate with high or low affinity.

There are now multiple crystal structures of bacterial ABC transporters, both importers 

and exporters, and in inward- and outward-facing conformations [25-30].  Two of these

bacterial transporters have significant homology to TAP and can therefore provide 

templates for three-dimensional models: a putative drug exporter (Sav1866; [28]) and a 

lipid flippase (MsbA) that has been crystallized in multiple conformations (some likely 

non-physiological) [27].  The Sav1866 and MsbA structures illustrate the arrangement of 

the four core domains: two TMDs and two NBDs (Figure 2A).  Each TMD consists of a 

bundle of six long helices that extend into the cytoplasm.  Unexpectedly, the TMDs show 

domain-swapping: helices 1 and 2 of one polypeptide chain bundle with helices 3-6 of the 

second polypeptide and vice-versa, so that the both polypeptide chain participate in the 

formation of each bundle of transmembrane helices.  The NBDs form the closed, ATP-

dependent dimer previously observed in structures of isolated NBDs (Figure 2B), and

interact with the TMDs by a short coupling helix (Figure 2).  The implications of this 

coupling helix are discussed below.

The TAP peptide binding site

Various strategies have been used to map residues in TAP that contact antigenic peptide, 

including chemically active peptides that cleave or cross-link to TAP [31] and the 

identification of a polymorphic site that alters TAP’s peptide specificity [32,33].  When 
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these peptide-binding residues are mapped onto the corresponding residues of Sav1866, 

they cluster at the base of an outward-facing cavity (Figure 2A; [28]).  Structural models 

of TAP, based on the Sav1866 and MsbA structures, support the hypothesis that this 

putative peptide-binding cavity alternates between facing the cytosolic and ER lumenal 

sides of the membrane as the NBDs open and close [34].  While such models suggest 

where peptides bind TAP, the exact mechanism by which TAP selects and binds peptide 

substrates is still unknown, although the peptide specificity of TAP is well-established 

([35] and references therein). Class I MHC molecules present peptides of 8-10 residues 

with specific amino acids at anchor positions to provide strong contacts between the 

peptide and MHC molecule, whereas at other positions the peptide sequence is free to 

vary.  TAP must similarly bind peptides in a manner that provides sufficient affinity but 

allows peptide sequence diversity.  Human TAP prefers peptides with basic or 

hydrophobic amino acids at the C-terminus, which complements MHC specificity, and 

has a weaker preference for basic residues near the N-terminus.  These preferences 

presumably reflect the chemical nature of critical sites on TAP that grasp the peptide 

substrate.  Hence both TAP and MHC display specificity for certain amino acids at a few 

positions in the peptide substrate to provide affinity, but also recognize a huge diversity 

of peptide sequences to allow presentation of many different epitopes to the immune 

system.  However, TAP favors 8-13-residue peptides, slightly longer than the canonical 

8-10 amino acids that fit onto class I MHC.  These longer peptides are trimmed at their 

N-termini by the ER-associated aminopeptidase (ERAP; [36-38]), producing the required 

length for class I MHC binding and increasing peptide sequence diversity at the N-

terminus.
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Asymmetry in the TAP ATPase sites refines a model for peptide transport 

As described above, ATP-dependent NBD closure and subsequent ATP hydrolysis-driven 

opening of the NBDs energize the conformational changes in the membrane-spanning 

regions of TAP required for transport (Figure 1B).  Upon NBD closure, two composite 

ATPase sites are formed at the interface between the TAP1- and TAP2-NBDs (Figure 

2B).  The ATPase sites include characteristic motifs found in all ABC transporters and 

many other ATPases [24].  Each NBD first binds ATP via interactions with the Walker A 

motif which contacts the α- and β-phosphates and coordinates an ATP-associated 

magnesium ion, the Walker B motif which contains a critical acidic residue that positions 

and polarizes the hydrolytic water molecule, and the switch motif which contacts the 

labile γ-phosphate.  The second NBD can now interact with this ATP-bound site and 

complete the active site by contributing the D-loop which positions and polarizes the 

hydrolytic water via a backbone carbonyl, and the signature motif which contacts the γ-

phosphate and mediates ATP-dependent NBD association.  Only in the composite active 

site of the closed NBD dimer are the hydrolytic water molecule and γ-phosphate 

appropriately positioned for hydrolysis [24,39].  High resolution crystal structures of 

TAP1-NBD, both as an ADP-bound monomer [40] and as an ATP-bound dimer used as a 

surrogate model for the physiological TAP1-/TAP2-NBD dimer [39], support this 

mechanism.

Unlike most bacterial ABC transporters, some motifs for ATP binding and hydrolysis 

show departures from consensus in both TAP1 and TAP2, such that in the context of an 
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ATP-bound TAP dimer, one ATPase site has consensus motifs, while the second ATPase 

site has substitutions away from consensus [39].  The two ATPase sites are referred to as 

the consensus and degenerate sites, respectively.  Within the degenerate site, substitutions 

in the switch and Walker B motifs markedly reduce ATPase activity, while substitutions 

in the signature motif weaken ATP-dependent NBD association [39].  Because the 

degenerate site is impaired, the consensus site is the principal driver of NBD closure and 

ATP hydrolysis.  This is supported by multiple studies that introduce damaging mutations 

into the TAP ATPase sites; mutations are partially tolerated in the degenerate site, but 

peptide transport activity is lost when the equivalent mutations are introduced in the 

consensus site [41-44].  This property of having only one consensus ATPase site, while 

the second site has acquired substitutions that impair its activities, is common amongst 

eukaryotic ABC transporters.  A similar phenomenon is seen in other families of 

oligomeric ATPases, where homo-oligomeric bacterial ATPases with consensus motifs 

have evolved into complex hetero-oligomers with full activity retained in only a subset of 

active sites.  The implications of the evolution toward heterogeneous active sites are not 

fully understood.  It may simply be that the impairment of one ATPase site is tolerated in 

heterodimers.  Alternatively, it may facilitate more complex functions and regulatory 

mechanisms.

The TAP1- and TAP2-NBDs also have unique nucleotide specificities.  TAP1-NBD 

binds both ATP and ADP, similar to most ABC transporter NBDs, whereas the TAP2-

NBD has a strong preference for ADP ([42,45] and E. Procko, A. McFedries and R. 

Gaudet, unpublished data).  However, at some stage during the transport cycle, TAP2 
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binds and hydrolyzes ATP, which is critical for driving conformational changes 

associated with transport [46] - TAP2 forms the main contacts to the ATP hydrolyzed in 

the consensus ATPase site [39].  While it has been suggested that TAP2 only displays a 

preference for ADP when isolated from TAP1 and that the physiological TAP1/2 

heterodimer has no such nucleotide preferences [47], another possibility is that the 

nucleotide specificity of TAP2 is regulated during a transport cycle.  Using chimeras 

between the TAP1 and TAP2 proteins, it was observed that a short stretch of amino acids 

near the C-terminus is responsible for the unique nucleotide specificities [48].  In the 

TAP1-NBD structure [39,40], these amino acids are distant from the ATP-binding site 

and instead form a hinge-like loop that bridges two subdomains (Figure 2B).  The NBD 

fold comprises two lobes, an ATPase subdomain and a helical subdomain, that are

capable of rigid body rotations.  While a crystal structure of TAP2-NBD has yet to be 

determined, the length and residues of the hinge element differ in TAP1 and TAP2.  We 

hence hypothesize that the distinct nucleotide specificities of TAP1 and TAP2 are due to 

different relative orientations of the NBD subdomains, encoded by their unique hinge 

regions.  In crystal structures of full-length bacterial ABC transporters, a short helical 

element from each TMD, called a coupling helix, contacts each respective NBD [22].  

This coupling helix fits in a groove between the two NBD subdomains such that TMD 

motions could direct the NBD subdomains into different orientations (Figure 2).  The 

domain swapping observed in the structure of the Sav1866 TMDs described above, if 

conserved in TAP, would entail an interaction of the TAP1 coupling helix with the TAP2

NBD and vice-versa, possibly explaining how TAP1 seems to alter the nucleotide-

binding preference of TAP2 [47].  This influence of the coupling helix on nucleotide-
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binding specificity could also be dynamic.  For example, antigenic peptide binding to the 

TMDs could cause a conformational change transmitted, via the coupling helix, to the 

TAP2-NBD, altering its subdomain orientations to promote ADP-ATP exchange or NBD 

closure.

We recently proposed a model for the mechanism of TAP illustrated in Figure 1B

[34,39].  The transport cycle of TAP begins in an inward-facing conformation with the 

NBDs apart.  The binding of peptide substrate to the cytosolic-facing cavity of the TMDs 

causes a conformational change that enables NBD closure, perhaps by facilitating 

exchange of ADP for ATP on TAP2.  ATP-driven NBD closure is coupled to TMD 

motions that flip the peptide-binding cavity to an outward/lumenal-facing conformation.  

This leads to peptide release, as supported by biochemical experiments indicating that 

TAP has lowest affinity for peptides when the NBDs are trapped in a closed state [31].  

ATP hydrolysis in the consensus ATPase site (possibly followed by a nonessential 

hydrolysis of ATP in the degenerate site) causes the NBDs to re-open, resetting the 

inward-facing conformation for another transport cycle.

Viral inhibitors of TAP

A number of viruses target TAP to subvert class I MHC presentation and evade immune 

surveillance.  mK3 of murine gammaherpesvirus-68 and UL49.5 of bovine herpesvirus 1

(BHV-1) bind and target TAP for proteasomal degradation [49,50].  Other viral inhibitors 

arrest TAP in a translocation-incompetent state. US6 of human cytomegalovirus

(HCMV) and UL49.5 of equine herpesvirus (EHV) types 1 and 4 lock TAP in a state that 
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can still bind antigenic peptides, but block the interaction of TAP with ATP [51-56].  

US6, which interacts with TAP on the ER lumenal side, could propagate its inhibition to 

the cytosolic nucleotide-binding sites of TAP via the coupling helices’ proposed 

modulation of NBD subdomain orientation.  The UL49.5 proteins of BHV-1 and 

pseudorabies virus (PRV) arrest TAP in a state that can still bind peptides without 

preventing ATP interactions [49,51].  Finally, the cytosolic ICP47 proteins of herpes 

simplex viruses (HSV) block the TAP peptide-binding cavity by competing with 

antigenic peptides [57,58].  Therefore these viral inhibitors – US6, UL49.5 and ICP47 –

likely all trap TAP in an inward-facing, open-NBDs conformation, blocking the initiation 

of a transport cycle (Figure 3).  This is reminiscent of substrate-mediated trans-inhibition 

observed for some bacterial ABC importers, in which the transported substrate binds a 

cytosolic regulatory domain to lock the transporter in the inward-facing, open-NBD 

conformation when cytoplasmic substrate levels are high [59,60].  The viral TAP 

inhibitors may function analogously to the regulatory domains of these importers, and by 

blocking the transporter prior to ATP-driven NBD closure the inhibitors would avoid

working against the energy provided by ATP hydrolysis to dissociate the NBDs.  A 

possible exception to this general inhibition mechanism may be presented by the BNLF2a 

protein of Epstein-Barr virus and its close relatives.  BNLF2a interacts with and locks 

TAP in a conformation that is unable to bind free ATP or peptides [61].  The nucleotide-

and peptide-binding sites may simply be occluded, or alternatively BNLF2a may lock 

TAP in an outward-facing, closed-NBD conformation, in which the now lumenal-facing 

peptide-binding cavity has low substrate affinity and the closed ATPase sites are 

inaccessible for nucleotide exchange.  Additional viral inhibitors of this important 
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transporter for antigen presentation will likely be discovered and will continue to be 

useful tools to determine the molecular mechanism of peptide transport by TAP.

Concluding remarks

Recent bacterial ABC transporter structures have advanced our understanding of 

the TAP transporter, how it functions in the peptide loading complex, and how it is 

inhibited by viral proteins.  In turn, TAP has proven to be an excellent model for 

asymmetric ABC transporters because it is readily amenable to biochemical 

experimentation and several viral inhibitors of TAP function are available.  We anticipate 

that this reciprocal interaction between the antigen presentation and ABC transporter 

fields will continue to yield insights into ABC transporter function in antigen presentation 

and beyond.  
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Figure legends

Figure 1.  Antigenic peptide transport and loading

A. Nascent class I MHC heavy chains and β2-microglobulin are assembled with 

assistance from numerous chaperones (a).  The MHC heterodimer is then recruited into 

the TAP-containing PLC via interactions with tapasin (b).  Peptides generated by 

ubiquitin-proteasome mediated protein turnover (c), some subsequently trimmed by 

cytosolic peptidases [62], are transported by TAP from the cytosol into the ER lumen (d).  

These peptides are bound by class I MHC, some after further trimming in the ER by 

ERAP, causing the fully folded class I MHC-peptide complexes to shed ER-associated 

chaperones (e).  The peptide-MHC molecules migrate to the cell surface (f and g) where 

they are scanned by CD8+ T cells.  B. A model of peptide transport begins with TAP in 

an inward/cytosol-facing conformation with the NBDs open.  A peptide binds a cytosol-

facing cavity formed by the TMDs, causing a conformational change that is transmitted 

to the NBDs.  This conformational change permits ATP-dependent NBD closure, perhaps 

by facilitating exchange of ADP on TAP2 for ATP.  As the NBDs close, the peptide-

binding cavity closes to the cytosol and opens to the ER lumen, creating the closed, 

outward-facing conformation of TAP.  Peptide affinity is markedly reduced in this 

conformation, and the peptide is hence released into the ER.  ATP hydrolysis in the 

consensus ATPase site is sufficient to destabilize the closed NBDs (hydrolysis may also 

occur in the degenerate ATPase site, but this is not essential), which re-open to generate 

the resting conformation.
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Figure 2. Structural information on TAP

A. Ribbon representation of the Sav1866 crystal structure, a TAP homologue from 

bacteria, with closed NBDs and an outward-facing cavity.  The cavity (indicated with a 

cone) has a roughly V-shaped opening that faces the top of the structure in this 

orientation. The approximate position of the membrane is shaded blue. Positions 

equivalent to those that bind antigenic peptides in TAP are indicated with colored 

spheres, including a polymorphic site that alters TAP peptide specificity (blue; [32,33]), a 

site that is cleaved by reactive peptides (yellow; [31]), and a site that can cross-link to 

cysteine-containing peptides (red; [31]).  These positions are near the base of the cavity, 

and are predicted to be accessible for peptide binding when the conformation changes to 

expose the cavity to the inside/cytosol.  The coupling helices from the TMDs that interact 

with the NBDs are shown as solid cylinders.  B. Homology model of TAP1-NBD bound 

to TAP2-NBD in the closed conformation with ATP at the interface [63].  Each 

composite ATPase site is formed by Walker A (dark blue), Walker B (purple) and switch 

(red) motifs from one NBD, and signature (yellow) and D-loop (cyan) motifs from the 

second NBD, highlighted on the top, degenerate ATPase site.  The NBD fold has ATPase 

and helical subdomains (labeled for TAP2), and a coupling helix (CH, represented with a 

cylinder) from a TMD fits in the groove between the two subdomains, such that the TMD 

conformation could alter the subdomain orientations.  The hinge elements that determine 

the unique nucleotide-binding specificities of TAP1 and TAP2, possibly by setting the 

preferred subdomain orientations, are colored brown.
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Figure 3.  Viral inhibition of TAP

Several viral proteins inhibit TAP by arresting the transporter in the resting conformation, 

with the NBDs open and the peptide-binding cavity facing the cytosol.  HSV ICP47 

competitively blocks the peptide-binding site (A), UL49.5 of BHV-1 and PRV arrest the 

transporter (B), and HCMV US6 prevents interactions with ATP while still permitting 

ADP binding (C; the UL49.5 proteins of EHV-1/4 also prevent ATP binding).  These 

viral inhibitors arrest TAP analogously to substrate-mediated trans-inhibition of certain 

bacterial ABC transporters, in which the transported substrate binds cytosolic regulatory 

domains to lock the transporter in the inward-facing, open-NBDs conformation.  Shown 

is the crystal structure of a trans-inhibited tungstate/molybdate transporter (ModBC) [59], 

with tungstate ions bound to the cytosolic regulatory domains (D).
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