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Abstract
The computation of geodesic paths and distances on triangle
meshes is a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination” algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction
In this paper we present practical methods for computing both exact
and approximate shortest (i.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.
The computation of geodesic paths is a common operation in many
computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts
(e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and
the result generally has less distortion and better packing efficiency
if the cuts are geodesic. Geodesic paths are used in segmenting a
mesh into subparts, as done in [Katz and Tal 2003; Funkhouser et al.
2004]. Mesh editing systems such as [Kobbelt et al. 1998] also use
geodesics to delineate the extents of editing operations. Simulating
fire on a mesh [Lee et al. 2001] also benefits from geodesics.
In addition, geodesic paths establish a surface distance metric,
which is an essential building block for many other techniques. For
example, radial-basis interpolation over a mesh requires calcula-
tion of geodesic distances, and is used in numerous applications
such as skinning [Sloan et al. 2001], mesh watermarking [Praun
et al. 1999], and the definition of surface vector fields [Praun et al.
2000]. Shape classification algorithms such as [Hilaga et al. 2001]
use Morse analysis of a geodesic distance field. Parameterization
metrics based on isomaps [Zigelman et al. 2002; Zhou et al. 2004;
Peyré and Cohen 2005] are also driven by geodesic distances.
In this paper we explore the problem of producing both exact and
approximate solutions for geodesic paths (and hence distances) on
triangle meshes (Figure 1). We present three contributions:
Exact algorithm We first present an efficient implementation of
the exact geodesic algorithm by Mitchell, Mount, and Papadim-
itriou (MMP) [1987]. Using a simple parameterization of the dis-

Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n2 log n) is pessimistic, and that in practice, the algo-
rithm runs in sub-quadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.
Approximation algorithmWe extend the algorithmwith a merg-
ing operation to obtain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in
O(n log n) time even for small error thresholds.
Exact geodesic path between two points We show how to
efficiently obtain the exact solution to the “single source, single
destination” problem, by using a lower-bound property of our ap-
proximation algorithm to prune the frontier of the MMP algorithm.
In practice, we compute the shortest path between two points on a
1M-triangle mesh in just a few seconds.

2 Related work
The MMP algorithm [Mitchell et al. 1987] provides an exact solu-
tion for the “single source, all destination” shortest path problem
on a triangle mesh. Their algorithm partitions each mesh edge into
a set of intervals (windows) over which the exact distance compu-
tation can be performed atomically. These windows are propagated
in a “continuous Dijkstra”-like manner. They prove a worst case
running time of O(n2 log n). Unfortunately, as far as we know the
MMP algorithm has not been implemented previously and thus has
not made its way into practice.
An exact geodesic algorithm with worst case time complexity of
O(n2) was described by Chen and Han [1996] and partially imple-
mented by Kaneva and O’Rourke [2000]. We show that our MMP
implementation runs many times faster than that implementation.
Kapoor [1999] describes an algorithm for the “single source, sin-
gle destination” geodesic path between two given mesh vertices,
in O(n log2 n) time. This is a complicated method which calls as
subroutines many other complicated computational geometry algo-
rithms; it is unclear if this algorithm will ever be realized.
Approximate geodesics with guaranteed error bounds can be ob-
tained by adding extra edges into the mesh and running Dijkstra
on the one-skeleton of this augmented mesh [Lanthier et al. 1997].
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Many extra edges are required to obtain accurate geodesics. Al-
gorithms such as [Kanai and Suzuki 2001; Martinez et al. 2004]
rely on iterative optimization, and the results therefore depend sig-
nificantly on the initial approximate path. If this approximation is
poor, the method might converge to an (incorrect) locally shortest
path, or might require a large number of iterations. Mitchell [2000]
presents a broad survey of approximate algorithms for graph and
geodesic search.
Kimmel and Sethian [1998] employ a variant of the fast-
marching method to compute approximate geodesics on meshes in
O(n log n) time. Several methods [Novotni and Klein 2002; Kir-
sanov 2004; Reimers 2004] explore an improved update rule for
geodesic computation. Many of these methods require special pro-
cessing of triangles with obtuse angles. We show that our MMP-
based approximation algorithm yields more accurate solutions than
the fast-marching method when applied to meshes. Moreover in
Appendix B, we also demonstrate benefits of our algorithm when
applied to meshes that approximate smooth manifolds.
Polthier and Schmies [1998] explore a different definition of
geodesic path on meshes using a notion of “straightest” instead of
“shortest”. Because these straightest geodesics are not always de-
fined between pairs of points on a mesh, this notion may be inap-
propriate for many applications. Pham-Trong et al. [2001] explore
geodesic paths over smooth parametric surfaces.

3 Exact algorithm
A window in the wall admits light into the room and its bor-
ders define the illuminated regions on the other walls of the room.

Common knowledge

Given a piecewise planar surface S defined by a triangle mesh, and
a source vertex vs ∈ S, the MMP algorithm computes an explicit
representation of the geodesic distance function D : S → R.
For any point p ∈ S, this function D(p) returns the length of
the geodesic path from p back to the source vs. Once a complete
representation for D has been computed, one can quickly apply
a “backtracing” algorithm to compute the shortest path from any
query point to the source. This distance function can also be used
to calculate isolines of constant distance (Figure 1).
Shortest paths can be visual-
ized as rays emanating from
the source vertex vs in all
tangent directions. These
shortest paths are governed
by the following three prop-
erties. Interior to a trian-
gle, a shortest path must be a
straight line. When crossing
over an edge, a shortest path
must correspond to a straight
line if the two adjacent faces are unfolded into a common plane.
As proven in [Mitchell et al. 1987], the only vertices that a shortest
path can pass through (besides the source and destination) are (1)
boundary vertices, (2) saddle vertices which are vertices with total
angle greater than 2π (i.e. also called hyperbolic vertices), and (3)
parabolic vertices whose total angle equals 2π. Parabolic vertices
typically do not require special treatment since their neighborhoods
unfold isometrically.
Algorithm overview The basic idea of the MMP algorithm is to
track together groups of shortest paths that can be parameterized
atomically. This is achieved by partitioning each mesh edge into
a set of intervals that we call windows. We will show that all the
shortest paths within a window can be encoded locally using a 6-
tuple (b0, b1, d0, d1, σ, τ). The windows are then propagated across
faces of the mesh in Dijkstra-like sweep.
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Figure 2: (a) Pencil of rays from the source vertex s passing through
window w over the strip of unfolded triangles. (b) The position of
the source vs (or more generally pseudosource s) is parameterized
relative to the window w that lies on edge −−→p0p1.

3.1 Distance field along a window
Consider a specific shortest path from the source vertex vs to some
point p on an edge e, and let us assume that this path does not pass
through any saddle or boundary vertices. In this case, when all the
faces intersecting the path are unfolded in a single common plane,
the path forms a straight line. Consider the set of neighboring points
on e whose shortest paths back to the source pass through the same
sequence of faces. These paths are also straight lines in the same
unfolding. In particular, the paths form a pencil of lines emanating
from the unfolded source vertex. We represent this group of shortest
paths atomically over a window w of the edge e (see Figure 2(a)).
The distance field D(p) over the window w is represented com-
pactly as follows. We first store the endpoints of the window using
two scalar valued parametric coordinates b0, b1 ∈ [0, ‖e‖] measur-
ing distance along the edge. Next, we encode the position of the
source vertex (relative to the window in the planar unfolding) us-
ing its distances d0, d1 to the window endpoints. Finally, we record
a binary direction τ specifying the side of the edge on which the
source lies. From this tuple (b0, b1, d0, d1, τ), it is easy to position
the source in the planar unfolding adjacent to the edge, by inter-
secting two circles as shown in Figure 2(b), and thereby recover the
distance field within this window.
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Suppose now that the shortest path passes through
one or more saddle/boundary vertices on its way to
the source, and let s be the nearest such vertex to
w. Again, consider the set of neighboring points on
e whose shortest paths go through the same strip of
faces back to s. In the unfolding of the strip between
e and s, these shortest paths will form a pencil of
lines emanating from s as seen in Figure 3. Because
this set of shortest paths share the same path from
s back to the source vertex vs, the distance field is
now characterized by (1) the position of this pseudosource vertex s
relative to the edge, and (2) the length σ=D(s) of the path from s
back to the source vs. We refer to σ as the pseudosource distance.
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Figure 3: (a) Orthogonal projection of a 3D mesh near a red saddle
vertex. Part of the edge in the upper triangle is not visible by rays
from the source vertex vs. (b) Unfolding the triangles into the plane
of the upper triangle reveals that the total angle is greater than 2π,
resulting in two different “images” of vs in the unfolding. All short-
est paths from vs to the red window w pass through the red pseu-
dosource vertex s.
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Figure 4: (a) Window propagation resulting in one window. (b) Win-
dow propagation resulting in two windows. (c) Special case of win-
dow propagation (saddle vertex at p0); two additional (red) windows
are added to the left of the ray (s, p0).

To summarize, the distance field D(p) over the window is ex-
pressed as a tuple (b0, b1, d0, d1, σ, τ), where b0, b1 define the end-
points of w, d0, d1 are the corresponding distances to the pseu-
dosource, σ is the geodesic distance from s to the source vs, and τ
encodes the direction of s from the directed edge e.

3.2 Window propagation
Given a window w on an edge e1, we propagate its distance field
across an adjacent face f to define new potential windows on the
two opposing edges e2, e3. Essentially, we compute how the pencil
of straight lines would extend across one more unfolded face in the
strip. However, the edges e2 and e3 may already contain previously
propagated windows, so we must “intersect” these previous win-
dows with the new potential windows, to capture their combined
minimum distance field. In other words, we only keep the part of a
newly computed potential window that has a smaller geodesic dis-
tance than that already associated with points on e2 or e3.
Let w′ be the new potential window on one of the two opposing
edges (Figure 4(a,b)). To define the distance field over w′, we ex-
tend the rays from the pseudosource s through the endpoints of w
and intersect them with the new edge, to obtain the new interval
[b′0, b

′
1]. We then compute the new distances d′

0, d
′
1 from these new

endpoints to the pseudosource s. The pseudosource distance σ′ =σ
is unchanged, and the direction τ is assigned to point into face f .
We have a special case when w is adjacent to a saddle/boundary
vertex v, since shortest paths may pass through v, i.e. v may act as
a new pseudosource. Suppose v lies at the left endpoint q0 = p0

of w. In this case we add extra windows on the edges −−→p1p2 and−−→p2p0. These additional windows cover the parts of the edges that
lie to the left of the ray (s, p0) and are not already “illuminated” by
s throughw (Figure 4(c)). These new additional windows will have
a pseudosource at v with σ = D(v). The case with v at q1 = p1 is
treated in a symmetrical manner.

3.3 Intersection of overlapping windows
Suppose that the newly created windoww0 and at least one existing
window w1 on edge e have a nonempty intersection region δ =
w0∩w1. We must decide which of the windows defines theminimal
distance function for each point in δ, and update the windows along
e appropriately.
In particular, if one of the windows defines a larger distance every-
where over δ, then we simply cut δ away from its interval. The
more interesting case is when w0 is minimal on part of δ, while w1

is minimal on the remaining part of δ. To correctly partition δ, we
must then find the point p ∈ δ where the distance functions defined
by w0 and w1 are equal, i.e. ‖s0 − p ‖ + σ0 = ‖s1 − p ‖ + σ1. If
we define our planar coordinate system to align e with the x axis as
shown in Figure 5(a), this can be expressed as:

√
(px−s0x)2 + s2

0y + σ0 =
√

(px−s1x)2 + s2
1y + σ1.

This equation can be reduced to a quadratic with a single solution
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Figure 5: (a) Two overlapping windows w0 and w1 (with unfolded
pseudosources s0 and s1) and their intersection δ = [b0, b1]. (b) The
formation of two disjoint windows; in the special case that σ0 = σ1,
then ‖s0 − p ‖ = ‖s1 − p ‖ = d as illustrated.

in the required range, i.e. px ∈ δ such that

Ap2
x + Bpx + C = 0, where A = (α2−β2),

B = γα + 2s1xβ
2, C = 1/4γ2 − ‖s1‖2β2,

with α = s1x − s0x, β = σ1−σ0, γ = ‖s0‖2−‖s1‖2−β2.

Finally, we adjust the boundary b1 of the left window and b0 of the
right window to the location of px as shown in Figure 5(b).

3.4 Continuous Dijkstra
The MMP algorithm propagates distance information out from the
source in a Dijkstra-like fashion. When windows are created, they
are placed in a priority queue sorted by distance back to the source.
When a window is popped off the queue, it is propagated outward
across a face. We next present this algorithm in more detail.
The priority queue is initialized with a window for each edge adja-
cent to the source vs. The distance fields for these initial edges are
trivial, e.g. vertices adjacent to vs are assigned distances D equal
to the corresponding edge lengths.
The basic step is to select (and remove) a window from the queue
and propagate it as in Section 3.2. Note that the propagation step
can add, modify, or remove existing windows, and the queue is up-
dated accordingly. We repeat the process until the queue is empty.
Interestingly, the algorithm will generate the correct solution re-
gardless of the order in which windows are removed from the
queue. However, selecting windows in arbitrary order leads to an
extremely slow result. The optimal approach is to propagate the
windows as a wavefront, by ordering them in the queue according
to minimal distance from the source vertex, i.e. minp∈w D(p) for
windoww. In practice, other reasonable criteria are acceptable. For
example, the minimal distance at the window endpoints is faster to
compute and the overall algorithm performance is nearly the same.
Because of the limited precision of the computations, small gaps or
overlaps can be generated between windows on an edge. We check
and fix such problems by either extending or reducing the window
extents. Even for our largest models (700K faces) we have not en-
countered numerical difficulties. Note that the total path lengths
are simple sums of distances across finitely many triangle faces
(O(

√
n) in practice), so numerical errors do not accumulate ex-

ponentially as they might with ODE integration algorithms.

3.5 Geodesic path construction: Backtracing
Once all edges are covered by windows representing geodesic dis-
tance, it is easy to trace a shortest path from any surface point p
back to the source.
First, in the general case that p lies in a face interior, we consider
all windows on the three edges bounding the face, and minimize
‖p − p′‖ + D(p′) over all points p′ within these windows.
Having jumped to a first window, we can then iteratively hop to
previous windows all the way back to the source. That is, given lo-
cation p on a current window, we find the adjacent face f according
to the direction τ . We reconstruct the location of the pseudosource



s in the plane of the face using the window parameters, and intersect
the line−→p s with the two opposite edges of face f . This intersection
point gives us a new point on a new window, from which we repeat
the process.
When reaching a pseudosource s itself (i.e. a saddle or boundary
vertex), we iteratively move to windows adjacent to s, circumnav-
igating either clockwise or counter-clockwise, until finding a win-
dow with a new pseudosource.

3.6 Performance analysis
Let n be the number of the mesh edges. When the windows are
propagated as a wavefront, it is shown in [Mitchell et al. 1987] that
each edge may have O(n) windows and therefore the total number
of windows can be O(n2). This results in a worst case complexity
of O(n2) space and O(n2 log n) time. The log n factor is due to
the need for a priority queue and for the binary searching required
to find overlapping windows during window propagation.
However, for more typical meshes, we observe that edges have an
average of O(

√
n) windows. Intuitively, given a mesh with uni-

formly distributed vertices, the number of edges can be thought of
as being proportional to area, while the number of edges crossed by
a shortest path is proportional to diameter. This intuitive reasoning
gives us the expected O(

√
n) window-per-edge complexity.

To confirm this intuition, we constructed a series of subdivision
meshes for several simple surfaces using the Loop subdivision
scheme [1987], and ran our implementation. Let Wi and Wi+1

be the total number of resulting windows on two subsequent levels

Time Faces Windows WPE Exp
Eight (1) 0.055 1536 11859 5.15
Eight (2) 0.453 6144 90986 9.87 1.47
Eight (3) 4.256 24576 705032 19.13 1.48
Eight (4) 56.103 98304 5383796 36.51 1.47
Sphere (1) 0.000 32 54 1.13
Sphere (2) 0.002 128 310 1.62 1.26
Sphere (3) 0.011 512 2362 3.08 1.46
Sphere (4) 0.087 2048 17418 5.67 1.44
Sphere (5) 0.677 8192 132116 10.75 1.46
Sphere (6) 5.650 32768 997608 20.30 1.46
Sphere (7) 77.320 131072 8022292 40.80 1.50
Convex (1) 0.000 16 28 1.00
Convex (2) 0.000 64 116 1.12 1.03
Convex (3) 0.003 256 692 1.73 1.29
Convex (4) 0.023 1024 5094 3.25 1.44
Convex (5) 0.199 4096 39996 6.44 1.49
Convex (6) 1.778 16384 318113 12.88 1.50
Convex (7) 19.971 65536 2564209 26.02 1.51
Saddle (1) 0.000 16 36 1.29
Saddle (2) 0.001 64 216 2.08 1.29
Saddle (3) 0.007 256 1520 3.80 1.41
Saddle (4) 0.054 1024 11448 7.30 1.46
Saddle (5) 0.453 4096 87194 14.05 1.46
Saddle (6) 4.209 16384 663782 26.87 1.46
Saddle (7) 51.007 65536 5062828 51.37 1.47

Figure 6: These various subdivision meshes show how the resulting
number of windows increases as the mesh is subdivided. WPE is the
average number of windows per edge; ‘Exp’ is the exponent p when
estimating O(np).

Knot Time WPE
Smooth 5.16 20.6
 +10% noise 3.67 15.1
 +20% noise 2.52 10.7
 +40% noise 1.48 6.4
 +80% noise 0.81 3.5

Figure 7: Performance of the exact algorithm when adding random
geometrical noise to the smooth knot surface. The noise moves each
vertex in a random direction by a uniform random distance from 0 to
the indicated percentage of average edge length. The model and
zoom-in shown have “20%” noise.

of mesh subdivision. We estimate the exponent p in theO(np)win-
dow complexity by evaluating log4(Wi+1/Wi), since the number
of mesh edges increases by 4 at each level. From Figure 6 we see
that the window complexity grows as approximately O(n1.5).
Surprisingly, the window complexity is even less when the mesh
surface has a rough texture, as shown in the experiments of Fig-
ure 7. Intuitively, the bumpy features in the surface cause adjacent
windows to overlap and thereby annihilate each other.

4 Approximation algorithm
In this section we introduce a method to compute an approximation
D to the geodesic distance functionD, which requires less time and
space. The method works just like the exact algorithm, except for
one key difference— before propagating a window, we try tomerge
it with an adjacent window on the same edge, as illustrated in Fig-
ure 8(a). The merging replaces two windows w0, w1 in the queue
with a new window w′ that covers w0∪w1. This involves choosing
a new pseudosource s′ that effectively replaces the previous ap-
proximate distance function with a new one. There are constraints
as described in the next section, and merging is only performed if
these constraints can be satisfied. The windows w0 and w1 are then
deleted from the queue, and w′ is inserted into the queue.
In addition, we prove in Appendix A that our approximation D is
a lower bound, namely D(p) ≤ D(p), ∀p ∈ S. This property is
employed later in Section 5.

4.1 Constraints on window merging
Some conditions must be satisfied before we merge two windows.
Directionality: The two windowsw0, w1 must have direction val-
ues τ in agreement.
Visibility: We define the visibility region of a window to be the
area spanned by the rays exiting the window from the direction of
the pseudosource, as illustrated in Figure 8(a). To guarantee that D
is defined without gaps, the visibility region of the new window w′

must at least cover the union of those of the merged windows.
Continuity: To maintain distance field continuity along the edges
and at the vertices of the mesh, we must preserve distances at the
endpoints of the merged window w′.
Accuracy: If window merging is performed indiscriminately, it
usually results in slightly more than one window per edge on av-
erage, and is thus fast and consumes little memory. However, in
practice it is desirable to bound the error

max
p=(x,0)∈w′

∆D(p) = |D′(p) −D(p)|,

where D is the original and D′ the merged approximate distance
function. The difference ∆D reaches its maximum either at the
endpoints of wi, i=0, 1, or where ∂

∂x∆D = 0, which is equivalent
to the following quadratic equation for each of the two wi:

(s′y
2−siy

2)x2 +2(s′xsiy
2−sixs′y

2
)x+(six

2s′y
2−s′x

2
siy

2) = 0.

To measure the error D − D between our approximation and the
exact distance function, we accumulate error by storing a scalar
value ξ on each window, assigning ξ′ = max(ξ0, ξ1) + ∆D(p).
This is rather conservative but still works well in practice. Then,
one possible test is to disallow the merge unless ξ′ ≤ εabs where
εabs is an absolute error threshold. Instead, we prefer to bound the
relative error (the error measured as a fraction of geodesic distance)
at the same point p, by testing if ξ′/D(p) ≤ εrel.
However, if we only bound the global (accumulated) error, many
merges will occur near the source vertex vs (until the error thresh-
old is reached), leaving little opportunity for later merges farther
from the source, and thus possibly resulting in an excessive number
of windows. Our solution is to additionally bound the local error
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Figure 8: (a) Merging two windows into one such that the visibility
region is not reduced. (b) Selecting the pseudosource for the new
window. The visibility constraint V corresponds to the yellow region
while the constraints of (4.3) define the pink region.

∆D(p) (actually, the relative local error ∆D(p)/D(p)) by a frac-
tion of the global error tolerance. We set this fraction to be 10% in
all our experiments, although ideally this value should depend on
the size of the mesh. Thanks to this heuristic, we are able to satisfy
the global error bound using significantly fewer windows overall.
Monotonicity: We must be careful that the distance function over
the edge is not smaller than the distance function over the parent
windows from which it was propagated, where correspondence is
defined by the propagation method. However, it is difficult to ana-
lytically check this property in practice. When we do not check this,
loops in window propagation are possible. Because we maintain
consistency of the source direction τ , our algorithm cannot produce
any “bouncing” infinite loops, propagating back and forth between
two adjacent edges. It is conceivable, though, that more exotic in-
finite loops could occur. Of course, we could explicitly maintain
a directed graph representing the propagation evolution, explicitly
check for loops in this graph, and disallow any attempted propaga-
tion steps that would complete a loop. In practice, we have never
encountered such loops in any of our experiments, and so we do not
explicitly perform these checks.

4.2 Finding the merged window pseudosource
We attempt to find a pseudosource position for the merged window
that satisfies all the constraints of the previous section.
Denote the two adjacent windows wi, with pseudosources si, for
i = 0, 1. Using the same local coordinate frame used previously,
the merged window w′ will have two endpoints q′i ≡ (b′i, 0). Our
goal is to find a new pseudosource s′ = (s′x, s′y) and pseudosource
distance σ′ for the merged window that satisfy the following con-
straints.
To maintain continuity, we require that the geodesic distances at its
endpoints Di ≡ D(q′i) = ‖si − q′i‖ + σi are preserved by the
merge. This can be expressed as

(s′x − b′i)
2 + s′y

2
= (Di − σ′)2.

It follows that
σ′ = αs′x + β; (4.1)

s′y
2

= As′x
2

+ Bs′x + C, (4.2)

with A = α2 − 1, B = 2α(β−D0) + 2b′0, C = (D0 − β)2 − b′20 ,
α = (b′1 − b′0)/(D1 −D0), β = (b′20 − b′21 −D2

0 +D2
1)/(2(D1 −D0)).

This constrains s′ to lie on a conic curve γ.
To maintain directionality, we must impose the inequality s′y ≥ 0.
To satisfy the visibility constraint we require our solution to lie in-
side the sector between the two lines Li, i=0, 1 that pass through
the q′i to si (Figure 8(b)). (If the intersection point of Li has posi-
tive y-coordinate, then the allowed region V is a triangle. Otherwise
V is open.)

To constrain σ′ and the d′
i to be non-negative we add the inequali-

ties σ′ ≥ 0, ‖q′i − s′‖ = Di − σ′ ≥ 0. It follows from (4.1) that
these inequalities are equivalent to:

{
− β

α ≤ s′x ≤ D0−β
α , if α > 0,

D0−β
α ≤ s′x ≤ − β

α , if α < 0.
(4.3)

If all the above constraints are not simultaneously satisfiable we dis-
allow the merge. Otherwise we pick the s′ with minimal σ′ value.
This must occur when one of our inequality constraints is “tight”.

4.3 Backtracing
The geodesic path for our approximation algorithm is traced sim-
ilarly to the algorithm in Section 3.5 but with one essential differ-
ence. When window w is the result of merging two original win-
dows, its pseudosource position is different from the pseudosource
positions of those original windows. If we were to trace back in the
direction of the merged pseudosource, the resulting path would be
different from that represented in the forward propagation, and its
overall length might exceed the computed error bound.
Our approach is to obtain the original pre-merge pseudosource by
maintaining a list of references to the windows that were succes-
sively merged into w (together with their endpoints). The average
length of these lists is only about 2 in all our experiments. Another
benefit of using the correct pseudosource is that we can trivially
guarantee that the source will be reached without any loops.

5 Exact geodesic between two vertices
Our goal is to find the geodesic path between a source vertex vs

and a target vertex vt on the mesh. Note that it is inefficient to run
our exact algorithm on the entire mesh (or even until reaching vt).
In this section we present an algorithm that performs a sequence of
pruned searches, exploiting progressively tighter lower and upper
bounds on geodesic distance, so that the final, exact algorithm need
only be run on a “thin” region surrounding the solution.
Our approach can be seen as a “continuous A* search”, in that
it adapts the traditional edge-based A* algorithm [Pohl 1971] to
meshes. A similar pruning approach is also explored in [Floater
et al. 2002] although their scheme lacks true distance bounds.
Denote by Pst the geodesic path between vs and vt. LetDs(p) and
Dt(p) be the geodesic distances from point p to vs and vt respec-
tively, and let Dst = Ds(t) = Dt(s) be the length of Pst. Then, it
is obvious that any point p on Pst satisfiesDs(p) + Dt(p) = Dst.
If Ls(p) and Lt(p) are lower-bound functions ofDs(p) andDt(p)
respectively, and Ust is an upper-bound value for Dst, then any
point p on Pst also satisfies

Ls(p) + Lt(p) ≤ Ust. (5.1)

This inequality is the core of the following algorithm:
Step 1: Using Dijkstra search on edges only, compute an upper-
bound distance Ust(Dijkstra) by searching from vs until vt is
reached. This step is made almost twice as fast using a bidirec-
tional search, which runs two simultaneous Dijkstra searches from
vs and vt until they both retire a common vertex.
Step 2: Start our approximation search (Section 4) from vt until vs

is reached, which computes a lower-bound distance function Lt(·).
During the search, we use the inequality (5.1) to prune the search by
only propagating windows that have at least one point p satisfying

Lt(p) + ‖p, vs‖ ≤ Ust(Dijkstra),
where ‖·, ·‖ measures Euclidean distance (not on the mesh) and is
therefore a trivial lower bound onDs(p).
Step 3: Using the windows provided by the previous step, ap-
ply backtracing (Section 4.3) to form a path from vs back to vt.



The length of this path defines a tighter upper-bound distance
Ust(backtrace).
Step 4: Start our exact search (Section 3) from vs until vt is
reached, which computes exact distance D(vs, ·). During the
search, we again use the inequality (5.1) to propagate only windows
that have at least one point p satisfying

Ds(p) + Lt(p) ≤ Ust(backtrace).

Step 5: The geodesic distance between vs and vt has now been
computed asDst =Ds(vt). To obtain the geodesic path vt back to
vs, apply backtracing (Section 3.5) using the windows provided by
the previous step.
As future work, it would be useful to obtain even tighter A* bounds
by precomputing distances to a set of landmark points on the mesh,
as explored in [Goldberg and Harrelson 2005] for graph search.

6 Experimental results
We tested the algorithms on a Pentium M 1.6GHz PC with 1GB
RAM. As shown in Table 1, our exact algorithm is useful even
for large models. For instance, the exact geodesic distance from a
source point to all vertices of the 400K-triangle Davidmodel is com-
puted in 75 seconds. By comparison, the implementation of Chen
and Han [1996] by Kaneva and O’Rourke [2000] runs successfully
only on the 30K-triangle Buddha S model from our dataset, with a
computation time of over 28 hours. In practice the main bottleneck
of our exact algorithm is the memory space required to store all the
windows. For 1GB memory, we are able to process a mesh of up
to 700K faces. This space complexity constraint provides strong
motivation for our approximate algorithm.
With a 0.1% relative error bound, our approximate geodesic algo-
rithm runs significantly faster and uses much less memory than the
exact algorithm. Table 1 reports both (1) the maximal absolute
difference |D(v) − D(v)| between the approximate and exact dis-
tances, and (2) the average relative difference |D(v)−D(v)|/D(v).
Absolute errors are reported as percentages of the object diameter.
We compare the accuracy of our approximate algorithm with the
fast marching (FM) algorithm of [Kimmel and Sethian 1998].
Specifically, we used the FM implementation of Peyré and Co-
hen [2003; 2005], and verified that two other recent FM implemen-
tations [Reimers 2004; Sifri et al. 2003] produced identical distance
results and had similar speed. Table 1 shows that our approxima-
tion algorithm has similar running times to the FM algorithm, but
more importantly it has significantly better accuracy. The error dis-
tribution graph of Figure 11 shows that our algorithm also has much
better accuracy than the improved update rule of [Kirsanov 2004].
Path results Figure 10 shows our point-to-point exact shortest
path algorithm of Section 5 applied to a 1M-triangle Buddha XL
model. It takes about 4 seconds to compute the path crossing half
the model. Shortest paths between relatively closer vertices can be
computed at interactive rates. For small models, paths between two
arbitrary vertices can be computed in a matter of milliseconds.

Exact Aprroximate (0.1% rel) Fast marching
Model Faces time WPE time WPE max abs ave rel time max abs ave rel
Rockerarm 80,354 18.24 19.74 1.92 1.32 0.06% 0.04% 3.35 0.63% 0.84%
Horse 96,956 18.43 18.41 2.44 1.40 0.08% 0.05% 3.45 1.44% 0.75%
Dragon 100,000 6.45 7.18 3.53 1.85 0.09% 0.07% 5.81 1.09% 1.20%
Buddha S 30,000 1.03 4.57 0.97 1.95 0.14% 0.08% 1.23 2.15% 2.59%
Buddha M 199,272 24.43 11.83 6.17 1.57 0.08% 0.06% 11.03 0.56% 0.79%
David 399,710 75.13 16.72 11.13 1.48 0.11% 0.05% 18.15 0.49% 0.55%
Fandisk S 1,000 0.05 6.77 0.03 2.07 0.74% 0.07% 0.04 10.03% 5.09%
Fandisk U 9,926 0.78 10.72 0.14 1.01 0.05% 0.03% 0.21 1.21% 1.41%

Table 1: Comparison of our exact and approximation algorithms with
fast-marching for the models of Figure 9. Times are in seconds; WPE
indicates average number of windows per edge.

Horse Dragon

David Buddha M

Fandisk Rockerarm

Fandisk S Fandisk U
Figure 9: Models used for the tests in Table 1.



Dijkstra region One path Another path
Time (sec) Dijkstra Approximation Exact Total
Buddha XL: Left two 0.466 1.327 2.561 4.354
Buddha XL: Right 0.098 0.188 0.229 0.515
Buddha M: Left two 0.032 0.228 0.228 0.519
Buddha M: Right 0.017 0.040 0.031 0.088

Figure 10: Illustration of our exact algorithm for finding the shortest
path between pairs of vertices on the Buddha. The colored regions
correspond to the pruned searches of successive search steps, and
the final exact paths are shown in red. Timings in seconds are listed
for both the 1M-face Buddha XL and 200K-face Buddha M meshes.

Our mesh geodesic algorithm also pro-
vides a practical solution to the prob-
lem of path planning in the presence of
obstacles [Hershberger and Suri 1999].
In this setting, the mesh is a triangu-
lation of a planar region, with holes in
the mesh encoding the geometry of the
obstacles. A simple example is shown
in the inset figure.

7 Conclusions and future work
We have presented both exact and approximate algorithms for com-
puting geodesic paths and distances on triangle meshes, and showed
that these algorithms are fast enough to be practical on complicated
meshes. For point-to-point geodesic computation, we developed a
technique that uses a sequence of pruned searches with narrowing
distance bounds to efficiently home in on the exact shortest path.
The bottleneck of the exact geodesic algorithm is the memory re-
quirement due to the large number of windows. One idea to remedy
this problem is to instead store a “pseudosource direction vector” at
each mesh vertex. This direction vector is sufficient to repeatedly
trace the geodesic path back (through successive face unfoldings)
to preceding pseudosources. With this new data structure, windows
can be deleted once they are retired from the queue.
Other future directions are to consider weighted or anisotropic dis-
tance metrics, and to generalize to higher-dimensional or smooth
manifolds.
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Figure 11: Error distribution on the rockerarm model (40K vertices).
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tance from the source. Flat-exact is the method of [Kirsanov 2004].
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A Lower bound for the exact geodesic distance
Suppose we merge the windowsw0 andw1 to form a single window
w′. We prove that the distance function defined by w′ is no greater
than the distance function defined by the two original windows w0

and w1, i.e. ∀p ∈ w′, ‖p − s′‖ + σ′ ≤ ‖p − si‖ + σi, i = 0, 1.
Consider the bisector between s0 and s′, i.e. the locus of points p
such that

σ0 + ‖s0 − p‖ = σ′ + ‖s′ − p‖.
The bisector curve is a hyperbola branch, since the difference be-
tween the distances to s0 and s′ is constant. This hyperbola divides
the plane into two (Voronoi) regions, one closer to s0 and another
closer to s′. The bisector intersects the x-axis in at most two points,
at q′0 and perhaps somewhere else. See Figure 8(a).
By the visibility constraint, s′ is to the right of the line defined by s0

and q′0, and hence the x-axis immediately to the right of q′0 is in the
region closer to s′. Since s1 is closer to q′1 than s0: σ0+‖s0−q′1‖ >
σ1+‖s1−q′1‖, and σ1+‖s1−q′1‖ = σ′+‖s′−q′1‖ by construction,
q′1 is on a segment of the x-axis that is closer to s′ than to s0:

σ0 + ‖s0 − q′1‖ > σ′ + ‖s′ − q′1‖
and hence the whole w′ is closer to s′ than to s0.
Analogously, it can be proven that w′ is closer to s′ than to s1, by
considering the bisector between s1 and s′.

B Experiments with smooth surfaces
In this paper we have focused on the problem of computing
geodesic distances over meshes. However, in computer graphics,
meshes frequently represent an underlying smooth surface and thus,
it is informative to examine the difference between the analytic
geodesic distances on the smooth surface and the distances com-
puted along the mesh.
For numerical comparison, we have chosen a spherical surface be-
cause it has nonzero curvature and a simple analytic distance func-
tion G(·). We consider seven approximation levels of the sphere
obtained by regularly subdividing an octahedron using Loop’s

level 1 level 3 level 5
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1.5 WPE
Exact

1E-5

1E-4

1E-3

1E-2

1E-1
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Fast marching

1 WPE
1.5 WPE

Exact

maximal absolute maximal relative average relative

maximal absolute average relative
level Exact R 1.5 WPE R FM R Exact R 1.5 WPE R FM R

1 0.30170 0.30170 0.266 0.05197 0.05197 0.030
2 0.08052 1.91 0.08052 1.91 0.127 1.07 0.01760 1.56 0.01760 1.56 0.030 0.00
3 0.02020 1.99 0.02796 1.53 0.067 0.93 0.00506 1.80 0.00552 1.67 0.027 0.17
4 0.00499 2.02 0.00959 1.54 0.044 0.61 0.00133 1.92 0.00213 1.38 0.019 0.47
5 0.00125 2.00 0.00333 1.52 0.027 0.72 0.00034 1.97 0.00071 1.58 0.012 0.65
6 0.00031 2.00 0.00117 1.51 0.015 0.80 0.00009 1.98 0.00027 1.40 0.007 0.75
7 0.00008 1.99 0.00041 1.50 0.008 0.85 0.00002 1.98 0.00009 1.53 0.004 0.82

Figure 12: The first row shows three of the approximating meshes.
The second row shows errors for the meshes on seven subdivision
levels. The table shows the errors and convergence rates.

maximal absolute average relative
level 1 WPE 1.5 WPE 2 WPE 2.5 WPE Exact 1 WPE 1.5 WPE 2 WPE 2.5 WPE Exact

2 0.94 1.91 1.25 1.56
3 0.94 1.53 1.99 1.22 1.67 1.80
4 0.90 1.54 1.65 2.02 1.15 1.38 1.81 1.92
5 0.89 1.52 1.87 1.85 2.00 1.10 1.58 1.82 1.88 1.97
6 0.89 1.51 1.84 1.90 2.00 1.07 1.40 1.64 1.86 1.98
7 0.89 1.50 1.81 1.90 1.99 1.00 1.53 1.79 1.85 1.98

Table 2: Convergence rates of our approximation and exact algo-
rithms for the sphere model. See also Figure 12. When the average
number of windows per edge (WPE) increases, the convergence rate
approaches the exact algorithm rate. (Missing cells denote values
identical to the exact algorithm.)

scheme, with vertices projected onto the sphere; the coarsest mesh
has 18 vertices and the finest one has 64K vertices.
To analyze the algorithms we measure errors using the maximal
absolute difference between G(v) and the distances D(v) pro-
vided by the algorithms, as well as the maximal and average
relative differences |D(v) − G(v)|/G(v) between the distances.
In addition, we numerically compute the convergence rate R =
log2(Ei−1/Ei) where Ei are errors at successive subdivision lev-
els. Figure 12 compares our exact and approximate algorithms with
the FM method. The results indicate that the exact algorithm has
second-order convergence, which is in agreement with the results
of [Floater 2005] for approximation of curves.
For the results in Figure 12, we maintained an average of 1.5
windows per edge (WPE) by manually adjusting the relative error
bound εrel across subdivision levels. Note that our approximation
algorithm is adaptive with respect to the number of windows per
edge, since it allocates more windows to “difficult” mesh regions.
Table 2 demonstrates that when WPE increases, the convergence
rate grows and approaches that of the exact algorithm. These results
also indicate that setting WPE to a value as small as 1.5 already in-
creases convergence rate substantially.


