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Scheduling and Ordering Production Policies in a Limited
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The Multiple Replenishment Products Case
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Abstract

This paper formulates production policies to maximize the performance of an apparel manufacturing
system that replenishes basic items characterized by a flat average demand. The simulation-based model
compares a number of production strategies and chooses an ordering and scheduling policy that increases
the overall performance of the supply chain. In doing so, different supplier configurations (i.e., different
capacity resources and cost structures) are compared and the optimal strategy is selected to maximize
the supplier’s profit while maintaining a high order fill rate and minimizing the risk of carrying inventory.
The system’s performance is then compared to an upper limit, calculated using Linear Programming.
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1 Introduction

Before lean retailing, retailers placed orders
with manufacturers many months in advance of the
planned selling season; factory lead times' weren’t
important. Manufacturers organized the work in
their factories to minimize the direct labor cost.
Nowadays, with lean retailing and rapid replen-
ishment a manufacturer of replenishment products
wants to have just sufficient finished goods to sat-
isfy the uncertain time varying demand but not so
much that the inventory carrying costs diminish the
profit [3].

Lean retailers require that their suppliers com-
pete not only on price, but also on replenishment
speed, flexibility and other services. The quick
replenishment practices required by lean retailers
were first adopted for basic apparel products and
now are being introduced for fashion-basic prod-
ucts. Currently, very few fashion items are replen-
ished on this basis.

These requirements have forced the channel
players to adopt new strategies to cope with the
lean retailing innovation. On one hand, the retailers
must develop the capability to gather and analyze

available information and to incorporate the results
into internal forecasting, planning and decision-
making processes. On the other hand, manufactur-
ers supplying lean retailers with replenished items
have to provide increased product variety and a high
order fill rates. Two extreme strategies for the man-
ufacturer to meet retailer’s requirements would be:

1. Holding high levels of finished goods inven-
tory to meet retailers’ demands. This is
not a sustainable policy in the long term as
more retailers move toward lean retailing and
the increased risks and costs associated with
holding inventory, product proliferation and
shorter product life cycles.

2. Alter its internal design, planning, procure-
ment, manufacturing and distribution opera-
tions in order to respond rapidly to demand
changes without increasing its own exposure
to inventory risk.

In our model, manufacturers can better manage
their own risk by explicitly taking into account dif-
ferent uncertainties introduced by lean retailing. In
particular, we consider the uncertainty in demand

IThe lead time is defined as the time interval between getting the product authorization to produce an item and receiving

the finished good in the distribution center.



at the stock keeping unit (SKU) level. The model
estimates the extent to which a manufacturer’s fin-
ished goods inventory must increase as a function of
greater demand uncertainty and higher order fulfill-
ment rate(OFR)?requirements. This rate is a good
proxy for the retailer’s satisfaction with deliveries.
Most items sold at retail are offered in a variety
of sizes and colors for a given style. The pattern of
weekly demand for each of these SKUs can be calcu-
lated and characterized by a coefficient of variation
(CV) defined as the ratio of standard deviation of
demand to the average demand. The CV of each
SKU is one of the primary factors that determines
the level of finished goods inventory a manufacturer
needs to carry to achieve a given OFR. A SKU with
a high CV (for which the weekly variation of de-
mand departs much more from the average demand)
requires relatively a larger number of weeks of aver-
age sales in finished goods inventory compared to a
SKU with a lower CV. Empirical results and prob-
ability theory tell us that low sales volume SKUs
will tend to have higher CVs than high sales vol-
ume SKUs.

2 Literature and Assumptions

When demand is deterministic and time vary-
ing, two main approaches have been considered [9]:

1. When variability of the demand pattern is
very low, use the basic Economic Order Quan-
tity (EOQ) based on the average demand rate.

2. Use the Wagner-Whitin dynamic lot siz-
ing algorithm or one of its extension (e.g.
the Silver-Meal algorithm) to solve the de-
terministic, time-varying demand problem.
The Wagner-Whitin dynamic lot sizing model
in [4] is considered to be the standard method
to solve the deterministic demand models.

These methods assume: 1) a setup cost that deter-
mines the level of the EOQ and 2) no capacity con-
straint. The problem becomes more complex when
a realistic production capacity constraint is intro-
duced. Even for a single-item problem, the solution
for the limited capacity case is complex and the lack
of an analytical solution justifies the use of heuristic
procedures to solve the problem. When demand is

random, a frequently used policy to determine the
ordering level at each time period is the base-stock
policy. This policy consists of building inventory up
to a target level or safety stock level to deal with the
demand variability. Extensive decision rules have
been developed for finding the safety stock levels.
Tayur and Glasserman [8] examine the stability of
this policy in a limited production capacity model:
”the system is stable if, on average, it can produce
finished goods at a greater rate than they are de-
manded”.

Apparel manufacturers, in our model, can bet-
ter manage their own risk by explicitly taking into
account different uncertainties introduced by lean
retailing. In particular, the uncertainty in demand
at the SKU level is the main driver of the man-
ufacturer’s inventory policy. The model estimates
the extent to which a manufacturer’s finished goods
inventory must increase as a function of greater de-
mand uncertainty and higher OFR requirements.

Some flexibility of the production capacity over
time is a major requirement given the stochastic na-
ture of the demand. The higher the upper bound
of the production capacity, the higher the order fill
rate for all SKUs and the higher the profit. This as-
sumption is feasible when the production facility is
a large plant that produces many similar styles and
has the capability of stretching or reducing the ca-
pacity by reallocating the workers to different tasks.

3 Problem Formulation

In this problem, the supply chain is defined
by a manufacturer having many different customers
and a retailer having to make ordering decisions to
satisfy customers’ demand requirements on multi-
ple SKUs. It is assumed that the demand is never
backlogged®. The dynamics of the system are gov-
erned by the products’ aggregate time-varying de-
mand of their retailers and the production evolution
from the raw materials to the finished goods in the
distribution center. We refer to the system as SOPS
(Scheduling and Ordering Production System).

Let there be P production lines in the system
and each production line, identified by subscript p
has 3 characteristics: the lead-time, LT},; the pro-
duction cost for SKU k, PC,(k) * and the produc-

2The order fill rate in the model is defined as being the fraction of customer demand for a particular SKU that can be
immediately filled (i.e. from inventory) during a specified time period; Some call this a service level.
3The lost sales assumption is common in apparel industry. The customer could walk in to a store not find his size, and

walk out without the product.

4includes the assembly cost, the labor cost, the transportation cost from the raw material suppliers to the plant and from
the plant to the Distribution center and any tariffs, insurances or duty if applicable



tion capacity limitations, U;,mn and Up"** 5. There
are K number of SKUs indexed by k, selling at price
SP; and an annual inventory carrying cost, ICCy,
expressed in annual percentage of inventory costs.
The demand of each SKU is characterized by its
mean p and its coefficient of variation C'Vj. Each
time period is indexed by, t. T is the time horizon
over which the profit is calculated. At is the time
unit (e.g. week) for orders, demand etc...

di(t) : Demand at time t for each SKU k,
defined on the interval[t, ¢ + At].
Finished goods inventory level

for each SKU Ek, at time t, at the

[t,t + At].

Total number of units of each SKU k,
scheduled for production during

[t — At, 1]

(Ek(t)

end of the interval
up k(1)

in plant p.

7= [l
of total production allocated to each

P
plant p, such that Z v = 1.

m=1

The objective function is the expected profit
over the projected time horizon:

E{Profit} = E{Revenue — Total Costs}

Profit =

Z Z Py, « min|dy(t), z(t)]
t k
— > PCy(k) * up(t)

t,k,p
LP
— ZICCk * [z (t) + Z Zup,k(t —9)],
t,p p s=1

The constraints consist of the inventory dy-
namics and the capacity limits for each plant:

i (t+1) = max[0, z(t) — di(¢)] + Z Up i (t —LT,)

p

and .
U () <)t i (£) < UP™()
k

Vector of dimension P of the proportion

4 Solution Methodology
4.1 Ordinal Optimization

Simulation is one of the most broadly used
techniques to analyze complex stochastic systems.
When looking for the optimum or the best scenario
that maximizes the system’s performance, analyt-
ical solutions rarely exist. They exist primarily
for simple system models based on the assumption
that the objective function is smooth enough to use
derivatives. The calculus-based methods to solve
such problems include gradient and trajectory of
steepest descent (“fall line”) . These techniques,
also referred to, metaphorically, as “skiing downhill
in a fog” [5] are based on the improvement of the
global performance of the system depending on its
current stage.

Due to the presence of uncertainty, most real
world problems are not solvable using the classical
optimization techniques, unless strong assumptions
are made to simplify the formulation of the prob-
lem. Most human-made systems are characterized
by common criteria: a lack of structure, great un-
certainty and a large search space that makes the
problem NP-hard . Analytical tools have a limited
applicability due to the complexity of the systems.
This complexity forces the goal of finding the abso-
lute optimum to be softened to a goal of finding a
solution that has a high probability of being good
enough. This is the essence of Ordinal Optimiza-
tion [6]. When the goal is softened, we can toler-
ate imprecise performance estimates, since a ”good
enough” solution can be obtained with high confi-
dence from a selected set. Ordinal Optimization is
a search-based method that matches the “selected
subset” with the “good enough” subset. A “good
enough” subset is predetermined. This method is
used in SOPS to find the values of the parameters
that maximize the system performance.

4.2 Simulation Based Solution and Tar-
get Inventory

The SOPS simulations mimic actual plant op-
erations and model the non-deterministic demand.
The SKUs are aggregated into clusters with com-
mon coefficient of variation (CV) to simplify the

5These values could be expressed as a percentage of the nominal production capacity or as absolute values of maximum and
minimum units of production. If the nominal production capacity is 1000 units per week, then the capacity limitation could
be expressed as 80% to 120% of that value or as a minimum production of 800 and a maximum production of 1200 units.

6 A problem is NP-hard if an algorithm for solving it can be translated into one for solving any other NP-problem (Nonde-

terministic Polynomial time)



computation [7]. This decreases the search space
dimension and improves the simulations’ running
time. The SKUs demand in a cluster are uncor-
related. During each simulated week, random de-
mand levels are generated for each SKU. The de-
mand is generated from a two-parameter probabil-
ity distribution”. The two parameters are used to
fit the two parameters characterizing the demand
(mean and CV). We consider a make-to-stock man-
ufacturing system in which inventory is managed
through a base-stock policy which is called, in this
study, a “target policy”. The program finds the tar-
get policy that produces the best result using Or-
dinal Optimization. Operating profit is calculated
weekly from sales income less production, material
and inventory carrying costs.

The target inventory method is similar to the
traditional approach in inventory problems, also
known as the sS policy, where the supplier has an
inventory policy of returning the SKU stock level
to a target level S each time the inventory level of
that SKU drops to a minimum level s. In this case,
the manufacturer is trying to keep a certain target
level for its inventory subject to plant capacity con-
straints.

4.3 Ordering and Scheduling Policies

In the multiple products, multiple plants pro-
duction model, production cycle times (or lead-
times) of the plants range from LT, to LT az-
Each plant has a limited production capacity. At
each time period, an ordering policy determines the
number of units of each SKU to be produced. At
each time period, for each plant a scheduling proce-
dure determines the number of units of each SKU
to produce in each plant, consistent with produc-
tion capacity constraints. Given the complexity of
the system, there is no universal optimal ordering
or scheduling policy that maximizes the manufac-
turer’s profit under all demand conditions. There-
fore, the heuristics approach is the only way to ar-
rive at reasonable answers to the production prob-
lem. The heuristics used to define the scheduling
and ordering policies depend on the demand and
replenishment patterns.

In apparel manufacturing, three categories for
demand patterns can be distinguished: 1. Replen-

ishment items (basics) with a flat mean demand
through out the selling season; 2. Fashionable items
that have a short life cycle; 3. Replenishment items
that have seasonal peaks in demand. For the first
category, the scheduling and ordering policies are
critical. The use of a short cycle production line
can improve the profit and the inventory level®. As
an illustration of this feature, see the HBR article [1]
and the simulations at the end of this paper. For
the second case, the manufacturer fixes a schedule
ahead of the selling season to meet the forecast of
demand by building up inventory in the least ex-
pensive long cycle plants®. The last two cases are
treated separately in another study.

5 Different Ordering Policies

5.1 Classic Base Stock Policy or Look-
back Policy

One ordering policy, called a lookback policy, is
the classic base stock (order-up-to) level policy that
determines at each time period the total inventory
level position (Work In Process (WIP) + finished
goods), compares it to the target total inventory
level at that time and schedules the difference, if
any.

5.2 Planning for the Near Future or the
Lookforward Policy

Another ordering policy, the lookforward pol-
icy, is used in conjunction with a scheduling policy,
projecting the finished goods inventory at LTj,q:
units of time in the future before determining the
ordering amount to be scheduled in the plants. The
real demand per SKU is approximated!® by the
mean demand for that SKU. This requires some
estimates of the order placed between the present
time and LT,,,, units of time in the future. The
difference between the finished goods inventory and
the target inventory level for the given LT, ., units
of time determines the anticipated amount for each
SKU to be scheduled in each plant.

The focus of this paper is the development of a
multi-plant, multi-product algorithm to determine

"The density of the distribution takes on shapes similar to the gamma densities, intersects the origin and behave like a

Gaussian towards infinity.

8This can be true even when the short cycle plants’ production cost are higher than those of the long cycle time plant.

9The long cycle time is a bundle system where each worker is most efficient at one and only one operation - Taylorism

100ne might better approximate the inventory level some time in the future by estimating the actual demand by the mean
times the expected order service level. This order service level refinement does not appear to significantly change the results.



the profit. Each SKU has a nondeterministic de-
mand pattern and can be produced in all plants.
The objective function is the total profit; the maxi-
mization variables are the target inventory levels for
each SKU. Each plant has a lead time, production
capacity limitations and a cost structure. There is
no uncertainty on the delivery time. The variation
on lead time could be added easily into the algo-
rithm by replacing LT}, by the realized LT}

We adopt the following definitions:

7+ Target inventory (order-up-to) level
of finished goods for each SKU k.

WIP*(t) Work in process for SKU k at time ¢;
does not include finished goods.
FI*(t) Finished goods inventory for SKU k
at the beginning of time t.
DL (t) Delivery from plant p of SKU k
at the beginning of time ¢.
O, (@) The number of units of SKU k

order at the start of period ¢
to arrive at ¢t + LT},.

The evolution of the inventory system is de-
scribed by the following equations:

FIT*(t Z DL} (t— LT,) +
Max[o,Fng (t—1) — Dy(t —1)],
and
Op,(t) = Max[0,7, — FI[*(t)]. (1)
where
DL, (t) < Z O, T,), (2)
and
LT,—1
WIP[F(t) <> > OfF,(t—1) (3)
D =1

The level of WIP/*(t) depends on the schedul-
ing policy: how much to order of each SKU in each
plant when there is a limited production capacity
in each plant.

6 Different Scheduling Policies
6.1 Scheduling Procedures

FEach production plant is characterized not
only by its cost structure (materials, production
and transportation to the Distribution Center) and
lead-time but also by its scheduling procedure. The
long lead-time plants always have some flexibility
over some minimum/maximum range. In a multi-
ple plants, multiple products case, a collection of
these scheduling procedures is called a “scheduling
policy”. We distinguish two main scheduling proce-
dures: the “HiCvFirst” and “proportional” proce-
dure. We assume that the order to be scheduled at
a certain period, ¢ in plant p for SKU £k is expressed
in units as S} (¢). This amount is determined using
an ordering policy.

In the “HiCwvFirst” procedure, if the total
orders!! across all SKUs is between the minimum
and maximum capacity, then all the orders are
started. If the total order across all SKUs is higher
than maximum capacity, then the order is sched-
uled, starting with the SKUs from the highest CV
clusters to the lowest CV clusters until maximum
capacity is reached. If the total orders across SKUs
is lower than the minimum capacity, then the sched-
uler begins all orders and loads the plant with
a scale factor until minimum capacity is reached.
This scale factor for one SKU is equal to the ratio
of the target level of that SKU to the total target
levels of all SKUs. In this last case the following
amount is scheduled for SKU, k:

up,k () = SE(t) +

Tk min P
s 0 Z SE(®)

In the “proportional” procedure, the plant is
loaded pro rata for each SKU. The proportional fac-
tor for a SKU is equal to the ratio of the mean de-
mand of that SKU to the total average demand of
all SKUs. If the total of the orders is between the
minimum and maximum production capacity of the
plant, ie., UP® < 37, 8P < U™, then for each
SKu k, S? units are scheduled in plant p:

At time ¢, if the total of orders is greater
than the maximum capacity for that plant, i.e.,

HThe total orders, equal to the amount needed to be scheduled at each time period for each SKU, is determined using an

ordering policy.



>k Sk > Uy, then the scheduler starts in plant p
the following amount for each SKU:

SP(t ,
up,k(t) — k( ) % [ymax

XSk

At time t, if the total orders is less than the
minimum capacity for that plant, ie., Y, S; <
U™ then the scheduler in plant p begins produc-
tion of the following amount for each SKU:

upe(t) = SL(t) + et (Ui = 37 S52(1))
Kk =

Dk
6.2 Scheduling Policies

One of the scheduling policies that has been
used extensively is the “HiCuFirst” policy. This
policy consists of loading all the plants, starting
with the quickest cycle plant, using the “HiCuvFirst”
procedure for each plant. A second scheduling pol-
icy is a “Proportional” policy which loads all the
plants, starting with the quickest cycle plant, us-
ing the “Propportional” procedure for each plant.
A third policy is called a “mized” policy that loads
the quick cycle plants using the “HiCvFirst” pro-
cedure and the slow cycle plants using “Proppor-
tional” procedure. It also loads the quick cycle
plants first. Intuitively, this procedure is appropri-
ate when the shortest lead-time plant doesn’t have
much capacity flexibility given the highly skilled
workers needed. Note that all these policies load
the quickest lines to their maximum capacity.

According to [10], if an overall task is broken
down into a series of separate tasks and a worker
trained to efficiently and quickly do one task, then
the workers productivity would be higher than if
they have several tasks to do. In the apparel in-
dustry, this leads to the progressive bundle system.
Not all tasks require the same time, and therefore,
in an apparel factory a typical item might require
20 to 30 assembly and finishing operations. With
some operations being much shorter than others,
some tasks will require 3 or 4 operators to keep up
with the production of a single operator doing a sin-
gle task. These requirements for the balance of the
production line leads to a plant minimum of 100 to
200 days worth of WIP between operators. This
production system is called the progressive bundle
system.

6.3 Linear Programming and the Profit
Upper Limit

One can generate a deterministic demand situ-
ation by first generating the time varying demand,
for each SKU, over the time horizon 7. This de-
mand is treated as a known demand. The profit
generated from this pseudo-deterministic demand
situation is a good benchmark for the profit calcu-
lated using the SOPS and constitutes an absolute
upper limit. This maximum is calculated using a
linear programming framework [2]. The objective
function is the profit over the simulation time hori-
zon, defined as the revenue minus the costs of pro-
duction and inventory. Linear programming deter-
mines at each time period the production allocation
for each SKU that maximizes the overall profit un-
der the maximum and minimum production capac-
ity constraints.

To assess the performance of the scheduling
policies used by SOPS, the average profit'? is com-
pared to the profits generated by the deterministic
demand situation. The profit can then be statis-
tically compared using the profit standard devia-
tion to estimate the performance of the ordering
and scheduling policies.

7 Simulation Results
7.1 Ordering Policies Comparison

In a first attempt to compare the ordering poli-
cies, we considered the single SKU case to factor
out the scheduling policy impact. The input pa-
rameters are inspired from the apparel industry.
The inventory carrying cost is set to 18% and the
plant capacity limitations are flexible enough not
to interfere with the system performance. The two
ordering policies are statistically equivalent for all
CVs values and for all the plants’ lead-times. This
demonstrates that the two ordering policies are per-
mutable when there is no forecasting algorithm in-
volved. If there is a forecasting algorithm, the look-
Forward policy seems to be advantageous.

7.2 Scheduling Policies Comparison

For comparing the scheduling policies, we have
used 20 SKUs in a two plants setting. The first
plant has a lead-time of 11 weeks and the second
plant has a lead time of 2 weeks and has a higher

12the average is taken over a large number of simulation runs. This number of simulation is chosen such that incrementing
this number changes the average profit by less than some predetermined small epsilon, for example 0.01%



production cost. All the SKUs are clustered into
3 groups: a high, a medium and a low CV group.
The set of conditions for the input parameters are
extracted from the apparel industry and mimic the
values used in [1]. These values can be changed to
accommodate other products. As it would be ex-
pected intuitively, the total inventory level (see [1]),
decreases when the production capacity allocated
to the quick line increases. The inventory is in the
order of 6 weeks when all the items are produced
in the quick plant and in the order of 16 weeks
when all the items are produced in the slow plant.
This emphasizes the idea of decreasing the cost and
risk of carrying inventory by using quick production
lines. The graph below shows the profit curve for
the “proportional” and “mized” scheduling policies,
using the “lookforward” ordering policy. The profit
of the two scheduling policies differ by less than
one standard deviation of the profit. The highest
curve in the graph is the upper bound of the average
profit. The curve right below it is the average up-
per limit decreased by one standard deviation. The
next curve is the “mized” policy profit increased by
one standard deviation. The two scheduling poli-

cies performance approaches the upper limit. We
run the simulations for 4000 simulated years in or-
der to achieve a stable profit. For this multiple
products, two plant case, the SOPS’s simulation
and optimization running times'® are respectively
30 seconds and 12 hours. This time decreases dra-
matically with the machine performance.

8 Conclusions

In this paper, we defined a list of ordering and
scheduling policies in a multiple products, multiple
plants case. This list is not exhaustive and other
policies can be developed. However, we demon-
strated that the scheduling policies’ performances
are within one standard deviation from one another
and they approach the upper bound benchmark, ex-
tracted from the pseudo-deterministic case.
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