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Abstract

Performing maximum-likelihood estimation for parameters in an exponential ran-

dom graph model is challenging because of the unknown normalizing constant. Geyer

and Thompson (1992) provide a Monte Carlo algorithm that uses samples from a dis-

tribution with known parameters to approximate the full likelihood, which is then

maximized to estimate the MLE. We refine the approximation to use sample draws

collected from differently parameterized distributions, increasing the effective sample

size and improving the accuracy of the MLE estimate. Substantially lower estimation

variance is demonstrated in simulated and actual network data. We also propose a

new method for finding a starting point: scaling the MLE parameters of a small graph

subsampled from the original graph. Through simulation with the triad model, this

starting point produces convergence in many cases where the standard starting point

(based on pseudolikelihood) fails to give convergence, though the reverse is also true.1

1Kevin Bartz is Ph.D. Student, Statistics (e-mail: bartz@fas.harvard.edu); Joseph K. Blitzstein is

Assistant Professor, Statistics (e-mail: blitz@stat.harvard.edu); and Jun S. Liu is Professor, Statistics

(e-mail: jliu@stat.harvard.edu). All are at Harvard University, Cambridge, MA 02138. Comments

are welcome. An R package graphestimate, which reproduces the results of this paper, is available at

www.kevinbartz.com/graph. The authors thank Xiao-Li Meng and the referees for helpful comments.
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1 INTRODUCTION

Exponential families of random graphs are among the most widely-used, flexible models for

complex networks, particularly social networks. In these models, a set of (hopefully) scien-

tifically interesting choice of graph statistics is made, and a discrete exponential family is

formed with the graph statistics as sufficient statistics. So prevalent have these models be-

come that there are two well-established names: exponential random graph models (ERGM ),

and the shorter term p∗ (see Robins et al Robins et al. (2007) for a recent review).

Parameter estimation in ERGMs tends to be very challenging due to the normalizing

constant typically being unknown, requiring a combinatorially massive effort to evaluate a

sum over all graphs. An early approach by Strauss and Ikeda (1990) define a maximum

pseudolikelihood estimator (MPLE), which is computationally fast but is rather unreliable

(it is unsurprising that ignoring the dependencies in the model is perilous). For example,

Corander et al. (1998) present a simulation study suggesting that the MPLE may be in-

consistent. Thus, recent efforts have focused on using MCMC to approximate the likelihood

function. In particular, Geyer and Thompson (1992) introduce “Monte Carlo maximum like-

lihood” (MCMCMLE), which neatly uses random draws from the distribution with a chosen

β0 to approximate the likelihood function. This method is implemented for ERGMs in the

network analysis software suite statnet Handcock et al. (2003). If β0 is not close to the MLE,

it may require an infeasibly large MCMC sample size to obtain a reasonable approximation,

so an iterative method is used: choose β1 to maximize the approximate likelihood obtained

from the β0-graphs, then choose β2 based on β1-graphs, etc., until convergence. While clearly

an improvement over pseudolikelihood, the method is computationally expensive, often re-

quiring a huge number of draws and iterations. Moreover, the method is highly sensitive to

the initial parameter values, as demonstrated in Handcock (2003) and Snijders (2002).

In this paper, we propose a method for reducing the computational burden of MCMCMLE

by using the generated graphs more efficiently, avoiding the waste of discarding all the

previously generated graphs from the earlier iterations. For example, the thousands of

graphs generated from the β0 distribution still contain valuable information that can be

leveraged in later stages of the estimation. This is achieved with the help of an idea from
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Kong et al. (2003), which provides a semi-parametric method for simultaneously estimating

multiple normalizing constants, given samples from the corresponding distributions. This

enables using all the previous iterations’ simulation draws to approximate the likelihood,

rather than just the samples at the current parameter value. Our simulations show large

efficiency gains from this method, and suggest that for practical examples the effective sample

size is nearly equal to the total number of simulations. The simulations are based on several

standard network data sets and reasonably simple ERGMs where the estimation is already

challenging, such as the triad model, a canonical specification of Frank and Strauss (1986)

with features for the number of edges, triangles, and two-stars in the graph.

Additionally, we propose an alternative way to pick the starting point β0, rather than

the traditional choice of the MPLE. Using the MPLE for the initial parameter value often

results in nonconvergence. Instead, we subsample from the graph to obtain a smaller, more

tractable graph, find the MLE for the subgraph, and then fit a scaling transformation to

obtain an estimate for the full graph. While this method does not dominate the MPLE, we

find that it leads to convergence for many graphs for which the MPLE fails as a starting

point. Thus, both the subsample-based on the MPLE-based initial values are useful tools to

have on hand.

The paper is organized as follows. Section 2 provides background on the model, the

problem considered, and previous approaches to finding the MLE. Section 3 presents two

novel improvements to the efficiency of the methods: one based on importance sampling, and

a further refinement based on Kong et al. (2003). Section 4 presents our subsample-based

procedure for choosing starting points for an MLE-finding algorithm, and Section 7 discusses

the results and possible future directions. An R package graphestimate implementing the

methods proposed is available at www.kevinbartz.com/graph.

2 BACKGROUND

A graph consists of a set of nodes together with a set of edges, each of which corresponds to

a tie between two nodes. For notational simplicity, we focus here on undirected graphs, in

which ties are nondirectional. Let x(G) denote a feature of the graph G (a graph statistic).
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Typically features are geometrically natural quantities such as the number of edges or the

number of triangles in the graph. Given a set of features {xi}i=1,...,q, the exponential random

graph model (ERGM, also often called p∗) assumes that G arises from a discrete exponential

family

pβ(G) =
exp(β′x(G))

c(β)
∆
=

qβ(G)

c(β)
, (1)

where c(β) is the normalizing constant, whose analytic form is generally unknown due to the

combinatorial complexity of summing over all possible graphs. Note that there is an implicit

conditioning on the number of nodes in the graph, which is fixed for all graphs generated by

pβ.

Our goal is to find the MLE of β. However, since c(β) is unknown, the MLE generally

cannot be found analytically, so we seek a reliable approximation of the MLE.

2.1 Pseudolikelihood

The maximum pseudo-likelihood estimator (MPLE) of Strauss and Ikeda (1990) provides

fast and convenient parameter estimates, but without guarantees of consistency or reliable

guidance as to when the method will work well. The pseudolikelihood takes on an easy

analytical form by ignoring dependency, thereby giving a likelihood for which standard lo-

gistic regression algorithms can be employed. Given a graph G, let Gij be an indicator

variable representing the state of the edge linking nodes i and j. Let G′(i, j) be the same

graph as G, but with the i, j edge toggled, and let G−i,−j be the set of all other edges. The

pseudo-likelihood is

∏

i,j

P (Gij = gij|G−i,−j) =
∏

i,j

pβ(G)

pβ(G) + pβ(G′(i, j))

=
∏

i,j

logit−1 (β′[x(G) − x(G′(i, j))]) (2)

The change statistics x(G)−x(G′) are generally easy to compute, depending on the features

used. For example, for the edge feature, x(G)− x(G′) increments by one if an edge is added

and decrements if an edge is deleted. Table 1 gives the change statistics for the triad model.

The form (2) is identical to the likelihood of a logistic regression, where the true edge

states are the dependent variable and the change statistics x(G)−x(G′) are the independent
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Table 1: Change Statistics x(G) − x(G′(i, j)) for the Triad Model

Edge Gij Perturbed

Feature Added Deleted

Edges +1 −1

Triangles
∑

i′ Gji′Gi′i −
∑

i′ Gji′Gi′i

Two-stars
∑

i′ Gii′ + Gji′ −
∑

i′ Gii′ + Gji′

variables. The maximizing β̂MPLE are the usual logistic regression estimates. Note though

that the standard errors estimated by logistic regression are not reliable here, and the MPLE’s

mathematical properties are poorly understood. Thus, the MPLE is most useful as a rough

estimate of the MLE for use as a starting point for other, iterative methods.

2.2 Markov Chain Monte Carlo Maximum Likelihood

Geyer and Thompson (1992) approximate the likelihood using m samples {Gi} ∼ pβ0 for

known β0, which can be realized through an MCMC procedure as described in Section 2.3.

The approximated likelihood is maximized to approximate the MLE.

To obtain the approximated likelihood, write the log likelihood ratio of β to β0 as

Λ(β; G, β0) = l(β; G) − l(β0; G)

= log
qβ(G)

qβ0(G)
− log

c(β)

c(β0)
(3)

∆
= A(β; G, β0) − B(β; β0)

Since qβ(G) is simply the exponential component from (1), A has a known, simple form:

A(β; G, β0) = (β − β0)
′x(G)

The ratio B of normalizing constants is unknown, but can be approximated using the sampled
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graphs and importance sampling (see, for example, Liu (2002)):

Gi ∼ pβ0

B̂(β; β0, {Gi}) = log

{
1

m

m∑

i=1

ĉ(β)

ĉ(β0)

}

= log

{
1

m

m∑

i=1

qβ(Gi)

qβ0(Gi)

}

= log

{
1

m

m∑

i=1

exp((β − β0)
′x(Gi))

}

(4)

Note the dependencies: A depends on the parameters β and β0 and the data G; B depends

on only the parameters, while B̂ uses the parameters and the samples but not the data.

Plugging in B̂ for B yields the approximated log likelihood ratio,

Λ̂(β; G, β0, {Gi}) = A(β; G, β0) − B̂(β; β0, {Gi})

Note that as a function of β, Λ is the log likelihood l(β; G) plus a constant, so maximizing Λ

yields the MLE. Likewise, maximizing Λ̂ provides the MCMCMLE, an estimate of the MLE.

Of course, the MCMCMLE changes based on the drawn {Gi}. The error depends greatly

on the accuracy of the approximation Λ̂, which drops the further β is from β0. Geyer

and Thompson (1992) recommend an iterative approach, sampling new data at the current

MCMCMLE and re-estimating. The maximum found is unique since the likelihood, arising

from an exponential family, is globally concave.

1. Initialize with a point β(0), usually taken to be the MPLE. Then for each t,

(a) Sample m realizations {G(t)
i } ∼ pβ(t) .

(b) Set β(t+1) = arg maxβ Λ̂(β; G, β(t), {Gi}).

2. Stop after T iterations, or once maxβ Λ̂(β; G, β(t), {Gi}) < ε for some fixed ε. β(T ) is

the MCMCMLE.

2.3 Sampling Graphs

To sample graphs with parameters β we employ the Metropolis algorithm. We mutate graph

Gi to G′
i through by toggling a single possible edge from its current state Yij to 1− Yij. We
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select the edge uniformly at random, so the proposal distribution is symmetric. The ratio of

probabilities, governing acceptance of G′
i as Gi+1, is then

p(G′
i)

p(Gi)
= exp(β′(x(G′

i) − x(Gi)).

As in the pseudo-likelihood case, the change statistics x(G′
i) − x(Gi) are easily computed

using Table 1. Note that it is particularly important for ERGMs to allow sufficient burn-in

because each proposal modifies only a single edge. All of our simulations use 2
(

n
2

)
burn-in

steps, twice as many as needed to allow an empty graph to change to a full graph.

There are more possibilities for MCMC-based sampling, such as Gibbs sampling or Metro-

polis-Hastings with exotic proposal functions, but these do not lead to significant gains in

speed or accuracy for ERGMs, as demonstrated by Snijders (2002).

3 IMPROVING EFFICIENCY WITH MIXTURES

Geyer’s MCMCMLE has the weakness that the sampled {G(t)
i } are thrown away after each

iteration in favor of a new set at the updated parameter value. This seems inefficient, given

the computational expense of generating the sampled graphs through MCMC. In this section,

we introduce two improvements to the MCMCMLE procedure, using all the draws {G(s)
i , s ≤

t} from the previous iterations. Both generalize the importance sampling relationship (4) to

provide an improved estimate B̂. The first is a weighted average of t independent estimates

of B̂, and the second is an adaptation of a semiparametric method from Kong et al. (2003).

The other estimation steps in our two procedures are identical to Geyer’s; the only

difference is the improved B̂ used to approximate the likelihood.

3.1 Weighted-average Importance Sampling

Here we apply the same relationship (4) to each of t sets of draws {G(s)
i }, yielding t ap-

proximations Λ̂(s)(β). Intuitively, the most reliable approximation is the one with β(s) clos-

est to the likelihood argument β. In this section we form a weighted average estimator

Λ̂ =
∑

wsΛ̂(s) whose weights are proportional to inverse variance.
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Formally, at stage t, we form the approximated likelihood (3) by writing the ratio of

normalizing constants as

B(β; β(t)) = log
c(β)/c(β(s))

c(β(t))/c(β(s))

= B(β; β(s)) − B(β(t); β(s)), s ∈ {1, . . . , t − 1}

Noting that this holds for each s ∈ {1, . . . , t− 1}, we form an estimator for B(β; β(t)) as the

weighted average of estimators over s; namely,

B̂w(β)
∆
=

t∑

s=1

ws

(
B̂s(β) − B̂s(β

(t))
)

B̂s(b)
∆
= B̂(b; β(s), {G(s)

i })

for weights with
∑

ws = 1. Note that the second summand, which does not involve β, does

not affect optimization. In turn, the estimated log likelihood ratio is

Λ̂(β) = A(β) − B̂w(β),

which is a weighted average of log likelihood approximations.

A natural weighting is ws ∝ V̂ −1
s , with Vs = Var[B̂(β; β(s))]. The Delta Method approx-

imates Vs from expression (4) as

V̂s ≈
1
m

V̂ar[exp((β − β(s))′x(G(s)
i ))]

(
1
m

∑m
i=1 exp((β − β(s))′x(G(s)

i ))
)2

The numerator can be estimated as the sample variance of the expression over the draws

{G(s)
i }. Note that as β approaches β(s), the numerator approaches zero while the denomi-

nator approaches one. Hence V̂s → 0, which has the desired effect of increasing ws when β

is close to β(s). Our estimator leans on a particular β(s)’s draws as β approaches β(i).

Here B̂w is simply the best linear unbiased estimate formed from the t estimators of B,

one of which is B̂. Hence V [B̂w] ≤ V [B̂]; specifically,

Var[B̂] ≈ V̂t

Var[B̂w] ≈

(
t∑

s=1

V̂ −1
s

)−1
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3.2 Mixture Umbrella Distribution

The B̂ in (4) uses pβ as the umbrella density since {G(t)
i } ∼ pβ(t). In this section we improve

the estimator by redefining the umbrella density as a mixture density with equal weight on

each pβ(s) , s ≤ t as motivated by Kong et al. (2003).

At iteration t, re-index all samples to date as the collapsed set {Γj} = {G(s)
i }s≤t, j ∈

{1, . . . , mt}. The Γj can be viewed as draws from a mixture density with

pΓ(G) =
1

t

t∑

s=1

pβ(s)(G) =
1

t

t∑

s=1

qβ(s)(G)

c(β(s))
(5)

Then the ratio of normalizing constants can be written

B(β; β(t)) =
c(β)

c(β(t))
=

1

c(β(t))

∫
qβ(H)dH

=
1

c(β(t))

∫
qβ(H)(pΓ(H)dH)

pΓ(H)

A natural estimator of this integral is the weighted average over all graph draws available:

B̂m(β; β(t), {Γj}) =
1

ĉ(β(t))mt

mt∑

j=1

qβ(Γj)

p̂Γ(Γj)
(6)

Note the p̂Γ and ĉ in the denominator; the normalizing constants are unknown and must be

estimated. Kong et al. (2003) provide a semiparametric estimate of all normalizing constants

as:

ĉ(β(s)) =
mt∑

j=1

qβ(s)(Γj)

m
∑t

i=1 ĉ(β(i))−1qβ(i)(Γj)
(7)

Note that in terms of pΓ these equations simplify to

ĉ(β(i)) =
1

mt

mt∑

j=1

qβ(i)(Γj)

p̂Γ(Γj)
,

which takes the same form as (6). This is not surprising in light of the discussion in Kong

et al. (2003), which points out that system (7) of equations can be generated by starting

wth a mixture density of the generating distributions.

For comparison, consider the algorithm of Geyer and Thompson (1992) described in

Section 2.2, which can be viewed as an application of importance sampling to the statistic
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qβ(Gi). Importance sampling performs best when the umbrella distribution covers the most

important regions of the statistic, with the proposal distribution giving a good approximation

to the target distribution. Here, the statistic is the likelihood function across all β. When

the argument β is far from the β(t) used to generate the graphs, qβ(G) is several orders of

magnitude smaller than qβ(t)(G). This makes the approximated likelihood highly variable

since the umbrella distribution is a poor cover of the sampling distribution.

The problem is that the likelihood calculations are based on β varying, essentially pre-

senting a moving target. To accommodate this, the umbrella distribution should produce Gi

from a wide range of pβ. A natural choice is a mixture distribution including draws from all

{pβ(s) , s ≤ t} from which we have sampled graphs. This provides support for the umbrella

distribution over the swaths of the sampling distribution encompassing all previously drawn

graphs. Note that although the Γj are not actually draws from such a mixture, they can be

viewed as thus for the purpose of importance sampling.

Because of the complexity of estimating c(β(s)), s ≤ t simultaneously, it is not easy to

write an expression for the variance of this estimator. Instead, we compute variance via

simulation in later sections and compare this to the other estimators.

Despite the extra complexity, this method is only modestly more computationally ex-

pensive than that of Geyer and Thompson (1992). This is because runtime under both is

dominated by MCMC sampling, not the likelihood approximation. In our simulation study,

we compare the two methods’ runtime after a fixed number of iterations and consider whether

the expense is warranted by an improvement in accuracy.

4 STARTING POINT

A weakness of all methods mentioned above is that they depend on the likelihood approxi-

mation being accurate in the region of the MLE. If the starting point β(0) is too far away, a

large number of samples is needed for a suitable approximation. Without enough samples,

the algorithm can bounce around for a long time without converging. In practice nonconver-

gence is quite common in ERGMs since the conventional starting point, the MPLE, is often

far from the MLE. Simulation results in Section 5 suggest that starting at the MPLE and
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running 10 iterations, MCMCMLE converges for less than 90% of 100-node graphs under

the triad model.

In this section we aim to find a better starting point than the MPLE. Our approach is

based on subsampling from the observed graph G:

1. Subsample a smaller graph g from G by taking a subset of its nodes and edges. We

present three methods of accomplishing this.

2. Estimate the MLE β̂SMLE of g under the same model desired for the MLE of G. Call

this the SMLE.

3. Transform β̂SMLE into an estimate of β̂MLE by applying a scaling function S. The

scaling function can be learned by simulating from the desired model.

4.1 Subsampling Methods

We consider three methods of sampling a subgraph from the observed graph G. For the sake

of comparison, we define all three to subsample down to a fixed number ng of nodes.

• Node sampling. Sample ng nodes from G, including edges therein.

• Edge sampling. Sample edges from G one at a time until the subgraph has ng nodes.

• Snowball sampling, introduced in Goodman (1961) as a technique for sampling from

hard-to-reach populations. Sample a node from G. Include both the node itself, all its

neighbors, and all edges therein. Continue sampling one node at a time and including

all its neighbors until ng nodes are obtained in the subgraph. To ensure exactly ng

nodes, it may be necessary at the final stage to sample from among the neighbors if

including all would carry the total over ng. (Note that there are several variants, such

as including second-degree neighbors)

The former two may seem tempting at first due to a statistician’s desire for simple random

sampling, but closer thought (and simulations) show that snowball sampling is by far the

best of the three for this purpose. Intuitively, this is because the node sampling and edge

sampling destroy the structure and connectivity of the graph, while snowball sampling at least
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provides a more complete picture of the graph within a local neighborhood. Of course, there

are many other possible subsampling schemes, and finding the optimal one for the above

subsample down/scale up procedure remains an open problem.

4.2 Estimation and Transformation

After subsampling, we estimate the MLE β̂SMLE under the subsampled graph g under the

same model. Our goal is to use this as a starting point for the MCMCMLE procedure for G.

But subsampling impacts the MLE in an unknown way; empirically, MLEs of subsampled

graphs tend to be greater in magnitude than the MLE of the original graph.

To accommodate this we learn a scaling function S mapping β̂SMLE to the β̂MLE. Pairs

of known SMLEs and MLEs are needed in order to learn their relationship. We apply a

simulation-based procedure to obtain the pairs.

1. Simulate graphs for which the MLE of the desired model parameters is known or can

be approximated with low error.

2. Subsample from each such graph; find the SMLE.

3. Using all such pairs, fit a function S mapping the SMLE to the MLE. In our application

of this method, we employ GLS to find a linear S.

4.3 Practical Use

The primary use case for the scaling function is to provide a sane alternative starting point for

the MPLE that provides improved convergence behavior. However, compared to the MPLE,

learning a scaling function is expensive: it requires a multiple of the runtime required to the

ERGM to the original data. This is typically much longer than the MPLE, which requires

only a few seconds to find even for a large network. As such, when runtime is an issue, we

recommend the scaling function only as a fallback when the MPLE does not converge.

Note that the expense is mitigated for applications in which a researcher wishes to fit the

same ERGM to each of several network data sets of the same number of nodes. There, one

scaling function can be learned for the desired ERGM specification and node size, and then
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applied to generate starting points for each of the networks. Note that users who wish to fit

one of the three models we consider (ET, ETK, ETKS) to a 100-node network can use our

learned scaling functions directly. The accompanying R package graphestimate implements

our scaling function as an optional fallback behavior for these three feature sets.

5 SIMULATION STUDY

We next test our methods using a simulation study. We compare three MCMCMLE methods:

• Geyer : Simple method of Geyer and Thompson (1992) from Section 2.2, discarding

draws after every iteration and using B̂ to approximate the likelihood

• Imp.WA: Our weighted-average importance sampling method from Section 3.1, making

use of all iterations’ draws in B̂w

• Kong : Our mixture umbrella method from Section 3.2, making use of all iterations’

draws in B̂m

We compare two starting-point methods:

• The MPLE from Section 2.1

• Our subsample-based estimate from Section 4

To compare the MCMCMLE methods, we first simulate several thousand graphs from

three different ERGM specifications using random parameter values. We then execute each

MCMCMLE method several times using the MPLE as a starting point and compute the

variance and MSE of the each method’s parameter estimates.

To compare the starting point methods, we then repeat the Geyer and Thompson (1992)

MCMCMLE methodology using our subsample-based starting point, comparing convergence

results with those of the MPLE. We judge convergence by whether the likelihood ratio

increments by less than 0.01 in the final iteration; while this is arbitrary, it provides a fixed

yardstick for comparison.
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5.1 Data

Our simulation study considers graphs with n = 100 nodes. We use the following procedure

to generate a collection of graphs for evaluation.

1. Sample a true parameter p-vector β ∼ Np(−1, Ip).

2. Sample a graph from pβ using a Metropolis scheme.

We generate graphs for three different parameterizations:

• ETK, (βedges, βtriangles, βtwo-stars): the triad model; 10,000 graphs.

• ET, with (βedges, βtriangles): 1,000 graphs.

• ETKS, (βedges, βtriangles, βtwo-stars, βsquares): 1,000 graphs. βsqaures corresponds to the

number of squares formed by edges in the graph, a feature proposed by Snijders et al.

(2004).

Just over half of the graphs drawn for the triad model are degenerate — that is, they have the

minimum or maximum number of a given feature possible. For instance, both full and empty

graphs are degenerate under the triad model, as are graphs with the maximum number of

triangles possible with the same number of edges. In these cases, the MLE does not exist,

and so degenerate graphs are excluded from the estimation study in Section 5.2.

Statistics on degenerate graphs are given in Table 2. Of the 10,000 sampled graphs for

the triad model, 4,057 are nondegenerate. Degeneracy is common for significant values of

the two-star parameter because there are far more two-stars possible in a 100-node graph

than edges and triangles. The proportion of degeneracy is much lower for the ET model,

which does not have a two-star parameter. Additionally, about 10% of nondegenerate graphs

lead to nonconvergence of all three MCMCMLE methods; these are excluded from the MLE

estimation comparison but are examined in detail in Section 5.3.

5.2 Estimation Results

For each sampled graph, we repeat each MCMCMLE technique r = 10 times, each for five

iterations using an MCMC sample size of m =1,001 graphs at each iteration. From the r
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Table 2: Convergence and Degeneracy Totals by Model

ETK ET ETKS

Total graphs sampled 10,000 1,000 1,000

Nondegenerate graphs 4,057 914 299

At least one method converges 3,707 651 282

Kong converges 3,569 651 281

Imp.WA converges 3,517 651 280

Geyer converges 3,387 650 268

estimates at each iteration, we then compute two measures of accuracy:

• Sample variance of the estimates.

• Mean-squared error of the estimates, defining the truth as the MLE found using a

large MCMC sample size of mtruth =100,001. Note that although the exact parameters

used to simulate the graphs are available, we do not use them as the truth because

the direct goal of the MCMCMLE methods is to estimate the MLE. A comparison

with the actual simulation parameters would conflate the MLE’s MSE with that of the

MCMCMLE methodology. Hence we treat a well-approximated MLE as the ground

truth.

Our primary metric for comparison is the median of these quantities across the sampled

graphs. To avoid conflating the MLE and starting point comparisons, we use the MPLE as

the starting point for results in this subsection.

The results for each parameter in the triad model are given in Figure 1. Each panel shows

the variance and MSE of parameter estimates in the number of iterations. For simplicity,

the results are reported as a fraction of the variance seen in the first iteration (Note that

all three methods produce identical estimates after the first iteration). For later iterations,

our methods exhibit decaying variance in the number of iterations because they make use

of increasingly many draws, while Geyer’s plateaus because it uses only the fresh m at each

iteration.
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Figure 1: Median sample variance ratios and MSE ratios of parameter estimates plotted over

optimization iterations for each method. The ratios are given as a fraction of variance and

MSE after the first iteration, at which all methods are the same.

The Kong-based mixture method performs best by an outstanding margin. Its MLEs are

nearly five times as efficient as Geyer’s by the fifth iteration and about twice as efficient as

the weighted-averaging method. The trend holds for all parameters. It also holds for both

variance and MSE, suggesting that it is not a result of bias. Similar trends also hold for the

ET and ETKS models, whose results are shown in Figures 2 and 3.

Computationally, the Kong-based method more than takes about 50% more time than

the Geyer-based method after five iterations. In our simulations using a 64-bit 2GHz Intel

Core 2 Duo, the Kong-based mixture method took an average 2.1 s for five iterations, versus

1.4 s for Geyer’s. We observed the same pattern on a 64-bit dual-core AMD Turion, though

both took about 60% longer. Consequently, the five-fold variance improvement under Kong’s

method translates to a still-sizable three-fold gain in computational efficiency (defined as the

ratio of runtime to inverse estimation variance).
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Figure 2: Variance profile of parameter estimates for the two-parameter ET model.

Table 3 shows the elementwise average of the sample correlation matrices for the Geyer-

based method’s fifth-iteration MLE estimates. All three methods produced similar estima-

tion correlation structures. Of note is the high negative correlation between the edge and

two-stars parameters. This is because both capture the same higher-level effect of the density

of edges in the graph. These are the hardest two to estimate.

Table 3: Average Correlation Matrix of Geyer-based MCMLE

β̂edges β̂triangles β̂two-stars

β̂edges 1.00 0.08 -0.96

β̂triangles 0.08 1.00 -0.19

β̂two-stars -0.96 -0.19 1.00

5.3 Starting Point Results

For about 10% of the simulated graphs, none of the three methods converge. One reason for

this is that the starting point is too far from MLE, leading to a poor likelihood approximation.

Here we compare convergence under the two types of starting points: the conventional MPLE

starting point; and our subsample-based starting point.

Convergence statistics for the MPLE starting point were given in Table 2, as recorded in

the experiment of Section 5.2. Of nondegenerate graphs, about 90% lead to convergence in

the triad model. The convergence rate is similar across all three MLE estimation methods.
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Figure 3: Variance profile of parameter estimates for the four-parameter ETKS model.

Our results in this section are broken into two parts: first, in Section 5.3.1, the scaling

function learned to relate the SMLE to the MLE; next, in Section 5.3.2, the convergence

results under the subsampling-based starting point. For this comparison we focus on con-

vergence of Geyer’s MCMCMLE for the 4,057 nondegenerate triad-model graphs. We also

use snowball rather than node or edge sampling, because the latter two commonly produce

degenerate subgraphs. We use subgraphs of ng = 50 nodes out of n = 100 in the full graph.

5.3.1 Scaling Function

Before we can find subsample-based starting points, we first must perform a separate simu-

lation experiment to learn a scaling function that relates the SMLE to the estimated MLE.

This experiment requires a set of graphs whose MLEs are estimated with high confidence;

to avoid in-sample error, we select a new set of graphs using a methodology identical to

Section 5.1. This produces d =3,765 graphs. Next we snowball-sample 50 nodes from each

such graph and find the MCMLE of the subgraph, yielding the SMLE. This procedure takes
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a total of about 3 hours on our 2GHz Core 2 Duo laptop.

Figure 4 shows paired scatterplots comparing β̂MLE to β̂SMLE. Estimates of both βtriangles

and βtwo-stars under subsampling correlate near linearly to their whole-graph analogs. The

cross-plots of different parameters mirror the correlation matrix in Table 3.

Figure 4: Scatterplots comparing MLE parameters of the entire graph to MLE parameters

of sub-sampled graphs.

With most correlations linear, a linear scaling function seems reasonable. We fit θ̂ in a

feasible GLS (FGLS) regression

β̂MLE = θ′β̂SMLE + ε,

Cov(ε) =





Ĉov(β̂(1)
MLE) 0

. . .

0 Ĉov(β̂(d)
MLE)





The covariance for each set of β̂MLE is taken as the sample covariance matrix of the MLE
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estimates over that graph’s r = 10 repetitions. Table 4 shows our fitted scaling function

along with a marginal R2 for each parameter. Having coefficients less than one, the triangle

and edge parameter models tend to be lower for the whole graph than for the subsample.

The comparatively poor R2 for the β̂MLE,edges model confirms what is visible in the first row

of Figure 4, that the edge parameter has the poorest fit.

Table 4: FGLS-fitted Snowball Sampling Scaling Function

θ̂edges θ̂triangles θ̂two-stars

β0 (intercept) 1.59 (0.17) -0.27 (0.07) -0.37 (0.03)

β̂SMLE, edges 0.67 (0.07) -0.05 (0.03) -0.04 (0.01)

β̂SMLE, triangles -0.15 (0.05) 0.81 (0.02) -0.03 (0.01)

β̂SMLE, two-stars 0.94 (0.17) 0.10 (0.06) 0.48 (0.03)

Marginal R2 0.07 0.81 0.74

5.3.2 Convergence

With the scaling function learned, we next return to the graphs from the MLE experiment

of Section 5.2; we re-run Geyer starting at Ŝ(β̂SMLE) instead of β̂MPLE. Table 5 shows a

contingency table comparing the two starting points’ convergence results. We can see that

the scaling function is not universally better, but does result in convergence in 133 of the 670

graphs for which the MPLE fails. This suggests that the subsampling technique may be most

useful as a fallback when the MPLE fails. Failure can be detected using degeneracy detection

methods such as those given in Handcock (2003) (e.g., extreme values of the likelihood ratio,

degenerate sufficient statistics in the sampled graphs).

6 APPLICATION

Finally, we return to our MCMCMLE methods, testing them on triad models for two well-

known network data sets on which convergence could be reached.

• florentine, a nondirectional set of 20 marriage ties among 16 Renaissance Florentine
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Table 5: Convergence (C) and Nonconvergence (NC) Contingency Table

Ŝ(β̂SMLE)

C NC

β̂MPLE C 3,101 286 3,387

NC 133 537 670

3,234 823 4,057

families from Padgett (1994) and part of the statnet R package of Handcock et al.

(2003).

• molecule, a nondirectional data set with 20 nodes and 28 edges meant to resemble a

synthetic molecule, used within statnet.

To test our methods, we estimate r = 100 times for each data set using all three methods

for five iterations with m =10,000 samples at each iteration as recommended by Handcock

et al. (2003).

Figure 5 plots the estimates of the MLE under each MCMCMLE method, and standard

errors are given in Table 6. In all cases, the Kong mixture-based estimates are clearly less

variable than the others, while all have the same mean up to two significant digits. This

confirms the simulation results of Section 5.2. The standard errors show that mixture-

based estimates have about a five-fold efficiency gain over Geyer-based estimates, which is

comparable to the simulation results for the triad model. Weighted-averaging again falls in

between.

7 CONCLUSION

A mixture umbrella distribution, with normalizing constants estimated as in Kong et al.

(2003), greatly refines approximated likelihoods. Using this method to incorporate draws

from previous iterations yields a markedly more accurate MCMCMLE for a wide range of

ERGMs. The reduction in variance is roughly linear in the number of iterations. By five

iterations of our refined procedure, the MLE estimate is about 1/5 as variable as under the
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Figure 5: Scatterplots of MCMCMLEs for two network data sets.

approach proposed by Geyer and Thompson (1992).

Subsampling with snowball sampling as a means of finding starting points for MCM-

CMLE is a promising alternative to the MPLE; it is common for one to yield convergence

but not the other. Further development of improved subsample estimates is warranted, ei-

ther in terms of the scaling function used or the subsampling scheme). Meanwhile, it is

helpful to have both the MPLE and the subsampling starting point as standard choices of

initial value, to improve the chance of obtaining convergence.
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