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INFERENCE,
STATISTICAL
To perform inference, in layman’s terms, is to make an
educated or informed guess of an unknown quantity of
interest given what is known. Statistical inference, again in
layman’s terms, goes one step further, by making an
informed guess about the error in our informed guess of
the unknown quantity. To the layman, this may be diffi-
cult to grasp—if I don’t know the truth, how could I pos-
sibly know the error in my guess? Indeed, the exact
error—that is, the difference between the truth and our
guess—can never be known when inference is needed. But
when our data set, or more generally, quantitative infor-
mation, is collected through a probabilistic mechanism—
or at least can be approximated or perceived as
such—probabilistic calculations and statistical methods
allow us to compute the probable error, formally known
as the “standard error,” of our guess, or more generally, of
our guessing method, the so-called “estimator.” Such cal-
culations also allow us to compare different estimators,
that is, different ways of making informed guesses, which
sometimes can lead to the best possible guess, or the most
efficient estimation, given a set of (often untestable)
assumptions and optimality criteria.

Consider the following semihypothetical example.
Mary, from a prestigious university in Europe, is being
recruited as a statistics professor by a private U.S. univer-
sity. Knowing that salaries at U.S. universities tend to be
significantly higher than at European universities, Mary
needs to figure out how much she should ask for without
aiming too low or too high; either mistake could prevent
her from receiving the best possible salary. This is a deci-
sion problem, because it depends on how much risk Mary
is willing to take and many other factors that may or may
not be quantifiable. The inference part comes in because,
in order to make an informed decision, Mary needs to
know something about the possible salary ranges at her
new university.

FROM SAMPLE TO POPULATION

As with any statistical inference, Mary knows well that the
first important step is to collect relevant data or informa-
tion. There are publicly available data, such as the annual
salary surveys conducted by the American Statistical
Association. But these results are too broad for Mary’s
purposes because the salary setup at Mary’s new university
might be quite different from many of the universities sur-
veyed. In other words, what Mary needs is a conditional
inference, conditional on the specific characteristics that
are most relevant to her goal. In Mary’s case, the most rel-
evant specifics include (1) the salary range at her new uni-
versity and (2) the salary for someone with experience and
credentials similar to hers.

Unlike at public universities, salary figures for senior
faculty at many private universities are kept confidential.
Therefore, collecting data is not easy, but in this example,
through various efforts Mary obtained $140,000,
$142,000, and $153,000 as the salary figures for three of
the university’s professors with statuses similar to Mary’s.
Mary’s interest is not in this particular sample, but in
inferring from this sample an underlying population of
possible salaries that have been or could be offered to fac-
ulty members who can be viewed approximately as
exchangeable with Mary in terms of a set of attributes that
are (perceived to be) used for deciding salaries (e.g.,
research achievements, teaching credentials, years since
PhD degree, etc.). This population is neither easy to
define nor knowable to most individuals, and certainly
not to Mary. Nevertheless, the sample Mary has, however
small, tells her something about this population. The
question is, what does it tell, and how can it be used in the
most efficient way? These are among the core questions
for statistical inference.

DEFINING ESTIMAND

But the first and foremost question is what quantity
Mary wants to estimate. To put it differently, if Mary
knew the entire distribution of the salaries, what features
would she be interested in? Formulating such an infer-
ence objective, or estimand, is a critical step in any statis-
tical inference, and often it is not as easy as it might first
appear. Indeed, in Mary’s case it would depend on how
“aggressive” she would want to be. Let’s say that she set-
tles on the 95th percentile of the salary distribution; she
believes that her credentials are sufficient for her to be in
the top 5 percent of existing salary range, but it probably
would not be an effective strategy to ask for a salary that
exceeds everyone else’s.

Mary then needs to estimate the 95th percentile
using the sample she has. The highest salary in the sample
is $153,000, so it appears that any estimate for the 95th
percentile should not exceed that limit if all we have is the
data. This would indeed be the case if we adopt a pure
nonparametric inference approach. The central goal of
this approach is very laudable: Making as few assumptions
as possible, let the data speak. Unfortunately, there is no
free lunch—the less you pay, the less you get. The prob-
lem with this approach is that unless one has a sufficient
amount of data, there is just not enough “volume” in the
data to speak loudly enough so that one could hear useful
messages. In the current case, without any other knowl-
edge or making any assumptions, Mary would have no
base to infer any figure higher than $153,000 to be a pos-
sible estimate for the 95th percentile.
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MAKING ASSUMPTIONS

But as a professional statistician, Mary knows better. She
knows that she needs to make some distributional
assumptions before she can extract nontrivial information
out of merely three numbers, and that in general, log-nor-
mal distribution is not a terrible assumption for salary fig-
ures. That is, histograms of the logarithm of salary figures
tend to be shaped like a “bell curve,” also known as the
Gaussian distribution. This is a tremendous amount of
information, because it effectively reduces the “infinitely
unknowable” distribution of possible salary figures to only
two parameters, the mean and the variance of the log of
the salary. Mary can estimate these two parameters using
the sample size of three if the three log salary figures
(11.849, 11.864, 11.938) she obtained can be regarded as
a probabilistic sample. This is a big “if,” but for now, let
us assume this is approximately true. Then the sample
mean 11.884 and sample standard deviation 0.048 pro-
vide valid estimates of the unknown true mean µ and true
standard deviation σ. Because for the normal distribution
N (µ, σ2) the 95th percentile is z95 = µ + 1.645σ, Mary’s
estimate for the 95th percentile for the log salary distribu-
tion is 11.884 + 1.645 × 0.048 = 11.963. Because the log
transformation is strictly monotone, this means that
Mary’s estimate for the 95th percentile for the salary dis-
tribution is exp (11.963) = $156,843, about 2.5 percent
higher than the observed maximal salary of $153,000!

ASSESSING UNCERTAINTY

With a sample size of three, Mary knows well that there is
large uncertainty in estimating the mean µ, as well as in
estimating σ. But how do we even measure such error
without knowing the true value? This is where the proba-
bilistic calculation comes in, if the sample we have can be
regarded as a probabilistic sample. By probabilistic sam-
ple, we mean that it is generated by a probabilistic mech-
anism, such as drawing a lottery. In Mary’s case, the
sample was clearly not drawn randomly, so we need to
make some assumptions. In general, in order for any sta-
tistical method to render a meaningful inference conclu-
sion, the sample must be “representative” of the
population of interest, or can be perceived as such, or can
be corrected as such with the help of additional informa-
tion. A common assumption to ensure such a “representa-
tiveness” is that our data form an independently and
identically distributed (i.i.d.) sample of the population of
interest. This assumption can be invalidated easily if, for
instance, faculty members with higher salaries are less
likely to disclose their salaries to Mary. This would be an
example of selection bias, or more specifically, a nonre-
sponse bias, a problem typical, rather than exceptional, in
opinion polls and other surveys that are the backbone of
many social science studies. But if Mary knew how a fac-

ulty’s response probability is related to the faculty mem-
ber’s salary, then methods do exist for her to correct for
such a bias.

Mary does not have such information, nor does she
worry too much of the potential bias in her sample. To
put it differently, she did her best to collect her data to be
“representative,” being mindful of the “garbage-in-
garbage-out” problem; no statistical analysis method
could come to rescue if the data quality is just poor. So she
is willing to accept the i.i.d. assumption, or rather, she
does not have strong evidence to invalidate it. This is typ-
ical with small samples, where model diagnosis, or more
generally, assumption checking is not directly feasible
using the data alone. But contrary to common belief, just
because one does not have enough data to check assump-
tions, this does not imply one should shy away from mak-
ing parametric assumptions. Indeed, it is with small
samples that the parametric assumptions become most
valuable. What one does need to keep in mind when deal-
ing with a small sample is that the inference will be par-
ticularly sensitive to the assumptions made, and therefore
a sensitivity analysis—that is, checking how the analysis
results vary with different assumptions—is particularly
necessary.

Under the i.i.d. assumption, we can imagine many
possible samples of three drawn randomly from the
underlying salary population, and for each of these sam-
ples we can calculate the corresponding sample mean and
sample standard deviation of the log salary. These sample
means and sample standard deviations themselves will
have their own distributions. Take the distribution of the
sample mean as an example. Under the i.i.d. assumption,
standard probability calculations show that the mean of
this distribution retains the original mean µ, but its vari-
ance is the original variance divided by the sample size n,
σ2/n. This makes good intuitive sense because averaging
samples should not alter the mean, but should reduce the
variability in approximating the true mean, and the degree
of reduction should depend on the sample size: The more
we average, the closer we are to the true mean, probabilis-
tically speaking. Furthermore, thanks to the central limit
theorem, one of the two most celebrated theorems in
probability and statistics (the other is the law of large
numbers, which justifies the usefulness of sample mean
for estimating population mean, among many other
things), often we can approximate the distribution of the
sample mean by a normal distribution, even if the under-
lying distribution for the original data is not normal.

CONSTRUCTING CONFIDENCE
INTERVALS

Consequently, we can assess the probable error in the sam-
ple mean, as an estimate of the true mean, because we can
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use the sample standard deviation to estimate σ, which
can then be used to form an obvious estimate of the stan-
dard error σ/√n. For Mary’s data, this comes out to be
0.048/√3 = 0.028, which is our estimate of the probable
error in our estimate of µ, 11.884. In addition, we can use
our distributional knowledge to form an interval estimate
for µ. Typically, an interval estimator is in an appealing
and convenient form of “sample mean ± 2 × standard
error,” which is a 95 percent confidence interval when (1)
the distribution of the sample mean is approximately nor-
mal; and (2) the sample size, n, is large enough (how large
is large enough would depend on problems at hand; in
some simple cases, n = 30 could be adequate, and in oth-
ers, even n = 30,000 might not be enough). For Mary’s
data, the assumption (1) holds under the assumption that
the log salary is normal, but the assumption (2) clearly
does not hold. However, there is an easy remedy, based on
a more refined statistical theory. The convenient form still
holds as long as one replaces the multiplier 2 by the
97.5th percentile of the t distribution with degrees of free-
dom n – 1. For Mary’s data, n = 3, so the multiplier is
4.303. Consequently, a 95 percent confidence interval for
µ can be obtained as 11.884 ± 4.303 × 0.028 = (11.766,
12.004). Translating back to the original salary scale, this
implies a 95 percent confidence interval ($128,541,
$163,407). This interval for the mean is noticeably wider
than the original sample range ($140,000, $153,000); this
is not a paradox, but rather a reflection that with sample
size of only three, there is a tremendous uncertainty in our
estimates, particularly because of the long tail in the log-
normal distribution.

So what is the meaning of this 95 percent confidence
interval? Clearly it does not mean that (11.766, 12.004)
includes the unknown value µ with 95 percent probabil-
ity; this interval either covers it or it does not. The 95 per-
cent confidence refers to the fact that among all such
intervals computed from all possible samples of the same
size, 95 percent of them should cover the true unknown
µ, if all the assumptions we made to justify our probabilis-
tic calculations are correct. This is much like when a sur-
geon quotes a 95 percent success chance for a pending
operation; he is transferring the overall (past) success rate
associated with this type of surgery—either in general, 
or by him—into confidence of success for the pending
operation.

By the same token, we can construct a confidence
interval for σ, and indeed for Mary’s estimand, a confi-
dence interval for the 95th percentile z95 = µ + 1.645σ.
These constructions are too involved for the current illus-
tration, but if we ignore the error in estimating σ (we
shouldn’t if this were a real problem), that is, by pretend-
ing σ = 0.048, then constructing a 95 percent confidence
interval for z95 = µ + 1.65σ would be the same as for µ +

1.645 × 0.048 = µ + 0.079, which is (11.766 + 0.079,
12.004 + 0.079) = (11.845, 12.083). Translating back to
the original salary scale, this implies that a 95 percent con-
fidence interval for z95 would be ($139,385, $176,839).
The right end point of this interval is about 15 percent
higher than the maximal observed salary figure,
$153,000. As Mary’s ultimate problem is making a deci-
sion, how she should use this knowledge goes beyond the
inference analysis. The role of inference, however, is quite
clear, because it provides quantitative information that has
direct bearing on her decision. For example, Mary’s asking
salary could be substantially different knowing that the
95th percentile is below $153,000 or could go above
$170,000.

LIMITATIONS

One central difficulty with statistical inference, which also
makes the statistical profession necessary, is that there sim-
ply is no “correct” answer: There are infinitely many
incorrect answers, a set of conceivable answers, and a few
good answers, depending on how many assumptions one
is willing to make. Typically, statistical results are only part
of a scientific investigation or of decision making, and
they should never be taken as “the answer” without care-
fully considering the assumptions made and the context
to which they would be applied. In our example above,
the statistical analysis provides Mary with a range of plau-
sible salary figures, but what she actually asks for will
depend on more than this analysis. More importantly, this
analysis depends heavily on the assumption that the three
salary figures are a random sample from the underlying
salary distribution, which is assumed to be log-normal.
Furthermore, this analysis completely ignored other infor-
mation that Mary may have, such as the American
Statistical Association’s annual salary survey. Such infor-
mation is too broad to be used directly for Mary’s pur-
poses (e.g., taking the 95th percentile from the annual
survey), but nevertheless it should provide some ballpark
figures for Mary to form a general prior impression of
what she is going after. This can be done via Bayesian
inference, which directly puts a probabilistic distribution
on any unknown quantity that is needed for making infer-
ence, and then computes the posterior distribution of
whatever we are interested in given the data. In Mary’s
case, this would lead to a distribution for z95, from which
she can directly assess the “aggressiveness” of each asking
salary figure by measuring how likely it exceeds the actual
95th percentile. For illustration of this more flexible
method, see Gelman et al (2004).

SEE ALSO Classical Statistical Analysis; Degrees of
Freedom; Distribution, Normal; Errors, Standard;
Inference, Bayesian; Selection Bias; Standard
Deviation; Statistics; Statistics in the Social Sciences
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INFERENCE, TRAIT
SEE Trait Inference.

INFERIORITY COMPLEX
Although Sigmund Freud is best known for his influence
on the field of psychology, he was also a renowned teacher.
Alfred Adler (1870–1937), a student of Freud, broke from
Freud’s teachings, criticizing his focus on the sexual. Adler
established an approach he called individual psychology,
which focused on the individual’s need for fulfillment and
power; he is credited with developing concepts such as
birth order, quest for significance, mental life, and a vari-
ety of complexes including the inferiority complex. Adler
suggested that the two needs children have to master are
inferiority (or the will for power) and the need for social
approval. According to Adler, people are constantly striv-
ing to be powerful, and feelings of inferiority (or weak-
ness) often pull them into a consuming state of
self-interest. It is important to note that, for Adler, inferi-
ority itself is not negative; rather, it is a normal and even
motivating force in life. All humans have some feelings of
inferiority and are striving to overcome them. It is when
one becomes fully consumed in his or her pursuit of
power, or by feelings of inferiority to the point of paraly-
sis, that inferiority becomes a burden. It is at this point
that one shifts from having feelings of inferiority to hav-
ing what Adler called the inferiority complex.

Adler initially conceptualized inferiority with regard
to what he termed organ inferiority. In 1907 Adler wrote
Study of Organ Inferiority and Its Physical Compensation, in
which he theorized that organ inferiority occurred when
one bodily organ was significantly weaker than another
organ, causing the surrounding organs to compensate for
the weakness in the inferior organ and make up for the
deficiency in another way. Similarly, Adler suggested that
individuals have or perceive that they have areas in which

they are deficient—whether physical or psychological.
Adler thought that, beginning in childhood, a deep feel-
ing of inferiority is instilled in each individual as a result
of the child’s physical stature. In contrast to an adult, a
child sees himself or herself as inferior in both physical
and psychological abilities. However, Adler thought that
the degree to which the child feels inferior is largely the
result of the child’s environment and interpretation of that
environment. That is, some children perceive that they
have more deficiencies or greater weaknesses because of
the challenges they face, the way they interact with the
adults in their lives, or the negative messages they get
about their abilities. These children come to believe that
they are inferior based on their perceptions of them-
selves and their life, not based on measurable or concrete 
criteria.

As adults, individuals also perceive areas of deficiency
or weakness. These perceived weaknesses may result from
life experiences (e.g., receiving a low test score) or from
critical statements made by important others (e.g., being
called stupid). Regardless of how the perceived deficit is
brought to the individual’s awareness, once the individual
identifies an area perceived to be a weakness, he or she
tries to compensate for those feelings of inferiority and
achieve power. However, if this compensation does not
have the desired result, the individual may become fully
focused on the inferiority and develop what Adler called
the inferiority complex.

According to Adler, the inferiority complex is a neu-
rosis; the individual is fully consumed in their focus on
the inferiority. It is a magnification of the normal feelings
of inferiority, and results when strivings to overcome infe-
riority are greatly hindered. Individuals who struggle with
feelings of inferiority may rate themselves in some area
important to them as a 5 on a scale of 1 to 10, when they
would aspire to a 6 or 7. In contrast, those with an inferi-
ority complex may rate themselves as a 2 on a scale of 1 to
10 when they aspire to a 9. Those with an inferiority com-
plex may also believe that there is no hope of ever reach-
ing 9. The perception of one’s shortcomings is an
important aspect of this complex. That is, it matters more
where individuals perceive themselves to be than it does
where they actually are.

An individual with an inferiority complex is often
overwhelmed, and as a result, the inferiority complex can
become as consuming as an ailment or disease. Individuals
may become manipulative in order to try to get others to
give them the affirmation they are looking for, or they may
try to use their deficiencies to get special attention or
accommodation for circumstances that they are actually
capable of handling or overcoming on their own. Those
with inferiority complexes may be self-centered, depressed,
incapable of development, compliant, shy, insecure, timid,
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