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THE D4 ROOT SYSTEM IS NOT UNIVERSALLY OPTIMAL

HENRY COHN, JOHN H. CONWAY, NOAM D. ELKIES, AND ABHINAV KUMAR

Abstract. We prove that the D4 root system (equivalently, the set of vertices
of the regular 24-cell) is not a universally optimal spherical code. We further
conjecture that there is no universally optimal spherical code of 24 points in S3,
based on numerical computations suggesting that every 5-design consisting of
24 points in S3 is in a 3-parameter family (which we describe explicitly, based
on a construction due to Sali) of deformations of the D4 root system.

1. Introduction

In [Cohn and Kumar 07] the authors (building on work by Yudin, Kolushov, and
Andreev in [Yudin 93, Kolushov and Yudin 94, Kolushov and Yudin 97, Andreev 96,
Andreev 97]) introduce the notion of a universally optimal code in Sn−1, the unit
sphere in R

n. For a function f : [−1, 1) → R and a finite set C ⊂ Sn−1, define the
energy Ef (C) by

Ef (C) =
∑

c,c′∈C

c 6=c′

f
(

〈c, c′〉
)

,

where 〈c, c′〉 is the usual inner product. We think of f as a potential function, and
Ef (C) as the potential energy of the configuration C of particles on Sn−1. Note
that because each pair of points in C is counted in both orders, Ef (C) is twice the
potential energy from physics, but of course this constant factor is unimportant.

A function f : [−1, 1) → R is said to be absolutely monotonic if it is smooth and it
and all its derivatives are nonnegative on [−1, 1). A finite subset C0 ⊂ Sn−1 is said
to be universally optimal if Ef (C0) ≤ Ef (C) for all C ⊂ Sn−1 with #C = #C0

and all absolutely monotonic f . We say that C0 is an optimal spherical code if
tmax(C0) ≤ tmax(C) for all such C, where

tmax(C) := max
c,c′∈C

c 6=c′

〈c, c′〉

is the cosine of the minimal distance of C. A universally optimal code is automat-
ically optimal (let f(t) = (1 − t)−N or (1 + t)N for large N).

In [Cohn and Kumar 07], linear programming bounds are applied to show that
many optimal codes are in fact universally optimal. Notably absent from this list
is the D4 root system CD4

, which is expected but not yet proved to be the unique
optimal code of size 24 in S3. This root system can also be described as the vertices
of the regular 24-cell.
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It is shown in [Cohn and Kumar 07] that the vertices of any regular polytope
whose faces are simplices form a universally optimal spherical code. The dodeca-
hedron, 120-cell, and cubes in Rn with n ≥ 3 are not even optimal spherical codes
(see [Sloane 00]) and hence cannot be universally optimal. Thus the 24-cell was
the only remaining regular polytope. Cohn and Kumar conjectured in an early
draft of [Cohn and Kumar 07] that CD4

was universally optimal, but reported the
numerical result that for the natural potential function f(t) = (1 − t)−1 there was
another code C ⊂ S3 with #C = 24 at which Ef has a local minimum only slightly
larger than Ef (CD4

) (668.1902+, compared with 668).
What makes this code noteworthy is that in simulations of particle dynamics on

S3 under the potential function f (along with a viscosity force to remove kinetic
energy and cause convergence to a local minimum for Ef ), 24 particles converge
more than 90% of the time to C, rather than to CD4

. Similar effects appear to
occur for f(t) = (1 − t)−s for other values of s. In other words, these codes have a
much larger basin of attraction than CD4

, despite being suboptimal.
In this paper we give a simple description of a one-parameter family of configura-

tions Cθ that includes these codes, and exhibit choices of f (such as f(t) = (1+ t)8)
and θ for which Ef (Cθ) < Ef (CD4

). We thus disprove the conjectured universal
optimality of CD4

.
We further conjecture that there is no universally optimal spherical code of 24

points in S3. Any such code would have to be a 5-design, because CD4
is. Numerical

computations led us to a 3-parameter family of such designs that can be constructed
using an approach introduced by Sali in [Sali 94]. The family contains CD4

as a
special case, and consists of deformations of CD4

.
We exhibit these designs and prove that, within the family, CD4

minimizes the
energy for every absolutely monotonic potential function, and is the unique mini-
mizer unless that function is a polynomial of degree at most 5. Our computations
suggest that every 5-design of 24 points in S3 is in the new family. If true, this
would imply the nonexistence of a universally optimal design of this size in S3

because we already know that CD4
is not universally optimal.

One way to think about the D4 root system’s lack of universal optimality is
that it explains how D4 is worse than E8. The D4 and E8 root systems are
similar in many ways: they are both beautiful, highly symmetrical configurations
that seem to be the unique optimal spherical codes of their sizes and dimensions.
However, one striking difference is that linear programming bounds prove this
optimality and uniqueness for E8 but not for D4 (see [Arestov and Babenko 97,
Bannai and Sloane 81, Levenshtein 79, Odlyzko and Sloane 79]). This leads one to
wonder what causes that difference. Is D4 in some way worse than E8? Our results
in this paper show that the answer is yes: for E8, linear programming bounds prove
universal optimality (see [Cohn and Kumar 07]), while for D4 universal optimality
is not merely unproved but in fact false.

2. The codes Cθ

We computed the 24× 24 Gram matrix of inner products between the points of
the suboptimal but locally optimal configuration mentioned above for the potential
function f(t) = (1− t)−1. Each inner product occurred more than once, suggesting
that the configuration had some symmetry. By studying this pattern we eventually
identified the configuration with a code in the following family of 24-point codes
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Cθ ⊂ S3. (We are of course not the first to use this approach of computing a
code numerically and using its Gram matrix to detect symmetries and then find
good coordinates. One recent case — also, as it happens, for codes in S3 — is
[Sloane et al. 03], where the method is called “beautification.”)

We identify R
4 with the complex vector space C

2 so that

S3 = {(w1, w2) ∈ C
2 : |w1|2 + |w2|2 = 1}.

For θ ∈ R/2πZ such that sin 2θ 6= 0 and sin θ 6= cos θ we set

Cθ := {(z, 0), (0, w), (z sin θ, w cos θ), (z cos θ, w sin θ) : z3 = w3 = 1}.
Thus Cθ consists of 24 unit vectors, namely 3 + 3 of the form (z, 0) or (0, w) and
32 + 32 of the form (z sin θ, w cos θ) or (z cos θ, w sin θ). Each of these codes has 72
symmetries (each complex coordinate can be independently conjugated or multi-
plied by cube roots of unity, and the two coordinates may be switched), forming
a group G isomorphic to the wreath product of the symmetric group S3 with S2.
This group does not act transitively: there are two orbits, one consisting of the six
points (z, 0) and (0, w) and the other consisting of the remaining 18 points.

Listing all possible pairs c, c′ ∈ Cθ with c 6= c′, we find that there are in general
11 possible inner products, with multiplicities ranging from 18 to 84. We thus
compute that

Ef (Cθ) = 18
(

f(0) + f(sin 2θ)
)

+ 36
(

f(sin θ) + f(cos θ)
)

+ 36

(

f

(

sin2 θ − 1

2
cos2 θ

)

+ f

(

cos2 θ − 1

2
sin2 θ

))

+ 72

(

f

(

− sin θ

2

)

+ f

(

− cos θ

2

)

+ f

(

sin 2θ

4

)

+ f

(

− sin 2θ

2

))

+ 84f

(

−1

2

)

.

For CD4
we have the simpler formula

Ef (CD4
) = 24f(−1) + 192

(

f

(

1

2

)

+ f

(

−1

2

))

+ 144f(0).

3. Failure of Universal Optimality

By Theorem 9b in [Widder 41, p. 154], an absolutely monotonic function on
[−1, 1) can be approximated, uniformly on compact subsets, by nonnegative lin-
ear combinations of the absolutely monotonic functions f(t) = (1 + t)k with k ∈
{0, 1, 2, . . .}. To test universal optimality of some spherical code C0 it is thus
enough to test whether Ef (C0) ≤ Ef (C) holds for all C ⊂ Sn−1 with #C = #C0

and each f(t) = (1 + t)k. We wrote a computer program to compute Ef (CD4
) and

Ef (Cθ), and plotted the difference Ef (CD4
) − Ef (Cθ) as a function of θ.

For k ≤ 2 the plots suggested that Ef (CD4
) = Ef (Cθ) for all θ. This is easy

to prove, either directly from the formulas or more nicely by observing that CD4

and Cθ are both spherical 2-designs (the latter because G acts irreducibly on R4),
so Ef (CD4

) + 24f(1) and Ef (Cθ) + 24f(1) both equal 24 times the average of
c 7→ f

(

〈c, c0〉
)

over S3 for any c0 ∈ S3.
For k = 3, the plot suggested that Ef (CD4

) ≤ Ef (Cθ), with equality at a unique
value of θ in [0, π], numerically θ = 2.51674+. We verified this by using the rational
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parametrization

sin θ =
2u

1 + u2
, cos θ =

1 − u2

1 + u2

of the unit circle, computing Ef (CD4
)−Ef (Cθ) symbolically as a rational function

of u, and factoring this function. We found that

Ef (CD4
) − Ef (Cθ) = −18

(u6 − 6u4 − 12u3 + 3u2 − 2)2

(u2 + 1)6
,

and thus that Ef (CD4
) ≤ Ef (Cθ), with equality if and only if u is a root of the

sextic u6 − 6u4 − 12u3 + 3u2 − 2. This sextic has two real roots,

u = −(0.51171+), u = 3.09594−,
which yield the two permutations of {sin θ, cos θ} = {0.58498−,−(0.81105+)} and
thus give rise to a unique code Cθ with Ef (CD4

) = Ef (Cθ). This code is char-
acterized more simply by the condition that sin θ + cos θ is a root of the cubic
3y3 − 9y − 2 = 0, or better yet that sin3 θ + cos3 θ = − 1

3 . The latter formulation
also lets us show that this is the unique Cθ that is a spherical 3-design: the cubics
on R4 invariant under G are the multiples of Re(w3

1)+Re(w3
2), and the sum of this

cubic over Cθ is 6 + 18(sin3 θ + cos3 θ). Since CD4
and this particular Cθ are both

3-designs, they automatically minimize the energy for any potential function that
is a polynomial of degree at most 3. We must thus try k > 3 if we are to show that
CD4

is not universally optimal.
For k = 4 through k = 7 the plot indicated that Ef (Cθ) comes near Ef (CD4

) for
θ ≈ 2.52 but stays safely above Ef (CD4

) for all θ, which is easily proved using the
rational parametrization. (For k = 4 and k = 5 we could also have seen that CD4

minimizes Ef by noting that CD4
is a 5-design.) However, for k = 8 the minimum

value of Ef (Cθ), occurring at θ = 2.529367746+, is 5064.9533+, slightly but clearly
smaller than Ef (CD4

) = 5065.5. That is, this Cθ is a better code than CD4
for the

potential function (1 + t)8, so CD4
is not optimal for this potential function and

hence not universally optimal.
The maximum value of Ef (CD4

)−Ef (Cθ) for f(t) = (1+t)k remains positive for
k = 9, 10, 11, 12, 13, attained at values of θ that slowly increase from θ = 2.52937−
for k = 8 to θ = 2.54122− for k = 13. Each of these is itself enough to disprove
the conjecture that CD4

is universally optimal. (Another natural counterexample
is f(t) = e6t with θ = 2.53719+.)

We found no further solutions of Ef (CD4
) > Ef (Cθ) with k > 13. It is clear that

Ef (CD4
) < Ef (Cθ) must hold for all θ if k is large enough, because tmax(Cθ) >

tmax(CD4
) = 1

2 : the smallest value t0 of tmax(Cθ) is (
√

7 − 1)/3 = 0.54858+,
occurring when either

t0 = sin θ = cos2 θ − 1

2
sin2 θ

with θ = 2.56092+ or

t0 = cos θ = sin2 θ − 1

2
cos2 θ

with θ = 5.29305+. Quantifying what “large enough” means, and combining the
resulting bound with our computations for smaller k, we obtained the following
result:

Proposition 3.1. For 8 ≤ k ≤ 13, there exists a choice of θ for which

Ef (Cθ) < Ef (CD4
)
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when f(t) = (1 + t)k. For other nonnegative integers k, no such θ exists.

Proof. If k is large enough that

18f

(√
7 − 1

3

)

> 24f(−1) + 192

(

f

(

1

2

)

+ f

(

−1

2

))

+ 144f(0),

then Ef (CD4
) < Ef (Cθ). This criterion is wasteful, but we have no need of sharper

inequalities. Calculation shows that this criterion holds for all k ≥ 75. This leaves
only finitely many values of k. For each of them, we use the rational parametrization
of the unit circle to translate the statement of Proposition 3.1 into the assertion of
existence or nonexistence of a real solution of a polynomial in Z[u], which can be
confirmed algorithmically using Sturm’s theorem. Doing so in each case completes
the proof. �

We cannot rule out the possibility that there exists a universally optimal 24-point
code in S3, but it seems exceedingly unlikely. If CD4

is the unique optimal spherical
code, as is widely believed, then no universally optimal code can exist. The same
conclusion follows from the conjecture in the next section.

It is still natural to ask which configuration minimizes each absolutely monotonic
potential function. We are unaware of any case in which another code beats CD4

and all the codes Cθ for some absolutely monotonic potential function, but given
the subtlety of this area we are not in a position to make conjectures confidently.

4. New Spherical 5-Designs

Spherical designs are an important source of minimal-energy configurations: a
spherical τ -design automatically minimizes the potential energy for f(t) = (1 + t)k

with k ≤ τ . Conversely, if an N -point spherical τ -design exists in Sn−1, then every
N -point configuration in Sn−1 that minimizes the potential function f(t) = (1+t)τ

must be a τ -design. Thus, when searching for universally optimal configurations,
it is important to study τ -designs with τ as large as possible.

For 24 points in S3, the D4 root system forms a 5-design. By Theorem 5.11 in
[Delsarte et al. 77], every 6-design must have at least 30 points, so 24 points cannot
form a 6-design. Counting degrees of freedom suggests that 24-point 4-designs are
plentiful, but 5-designs exist only for subtler reasons. One can search for them by
having a computer minimize potential energy for f(t) = (1 + t)5. Here, we report
on a three-dimensional family of 5-designs found by this method. The D4 root
system is contained in this family, and all the designs in the family can be viewed
as deformations of CD4

. We conjecture that there are no other 24-point spherical
5-designs in S3. We shall show that this conjecture implies the nonexistence of a
universally optimal 24-point code in S3.

Our construction of 5-designs slightly generalizes a construction of Sloane, Hardin,
and Cara for the 24-cell (Construction 1 and Theorem 1 in [Sloane et al. 03]). The
Sloane–Hardin–Cara construction also works for certain other dimensions and num-
bers of points, and can be further generalized using our more abstract approach.
For example, one can construct a family of designs in S2n−1 from a design in CPn−1.
We plan to treat further applications in a future paper. See also the final paragraph
of this section.

Fix an “Eisenstein structure” on the D4 root lattice, that is, an action of Z[r],
where r = e2πi/3 is a cube root of unity. (It is enough to specify the action of r,
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which can be any element of order 3 in Aut(D4) that acts on R4 with no nonzero
fixed points; such elements constitute a single conjugacy class in Aut(D4).) Then
R4 is identified with C2, with the inner product given by

〈

(z1, z2), (ζ1, ζ2)
〉

= Re
(

z1ζ1 + z2ζ2

)

.

The group µ6 of sixth roots of unity (generated by −1 and r) acts on CD4
and parti-

tions its 24 points into four hexagons centered at the origin; call themH0, H1, H2, H3.
In coordinates, we may take

H0 = {(w, 0) : w ∈ µ6},
H1 = {(uiw, tiw) : w ∈ µ6},
H2 = {(uiw, rtiw) : w ∈ µ6},
H3 = {(uiw, rtiw) : w ∈ µ6},

where u =
√

1/3 and t =
√

2/3. For any complex numbers a0, a1, a2, a3 with
|a0| = |a1| = |a2| = |a3| = 1, we define

D(a0, a1, a2, a3) = a0H0 ∪ a1H1 ∪ a2H2 ∪ a3H3.

We claim that D(a0, a1, a2, a3) is a 5-design. That is, we claim that for every poly-
nomial P of degree at most 5 on R4, the average of P (c) over c ∈ D(a0, a1, a2, a3)
equals the average of P (c) over c ∈ S3. It is sufficient to prove that the average
is independent of the choice of a0, a1, a2, a3, because D(1, 1, 1, 1) = CD4

is already
known to be a 5-design. But this is easy: for each m ∈ {0, 1, 2, 3}, the restriction
of P to the plane spanned by Hm is again a polynomial of degree at most 5, and
amHm is a 5-design in the unit circle of this plane, so the average of P over amHm

is the average of P over this unit circle, independent of the choice of am.
This construction via rotating hexagons is a special case of Lemma 2.3 in [Sali 94],

where that idea is applied to prove that many spherical designs are not rigid. Sali
rotates a single hexagon to prove that CD4

is not rigid, but he does not attempt a
complete classification of the 24-point 5-designs.

It is far from obvious that there is no other way to perturb the D4 root system
to form a 5-design. For example, if there were two disjoint hexagons in D4 that
did not come from the same choice of Eisenstein structure as above, then rotating
them independently would produce 5-designs not in our family. However, one can
check via a counting argument that every pair of disjoint hexagons does indeed
come from some common Eisenstein structure. This supports our conjecture that
there are no other 24-point spherical 5-designs in S3.

The family of 5-designs of the form D(a0, a1, a2, a3) is three-dimensional, for the
following reason. One of the four parameters a0, a1, a2, a3 is redundant, because
for every α ∈ C

∗ with |α| = 1 we have D(αa0, αa1, αa2, αa3) ∼= D(a0, a1, a2, a3).
We may thus assume α0 = 1. We claim that for each (a1, a2, a3) there are only
finitely many (a′1, a

′
2, a

′
3) such that D(1, a1, a2, a3) ∼= D(1, a′1, a

′
2, a

′
3). If this were

not true, there would be an infinite set of designs D(1, b1, b2, b3) equivalent under
automorphisms of S3 that stabilize H0 pointwise. But this is impossible, because
such an automorphism must act trivially on the first coordinate z1. Hence our
5-designs constitute a three-dimensional family, as claimed.

Some other known spherical designs can be similarly generalized. For instance,
the 7-design of 48 points in S3, obtained in [Sloane et al. 03] from two copies of CD4

,
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has a decomposition into six regular octagons, which can be rotated independently
to yield a five-dimensional family of 7-designs.

It is also fruitful to take a more abstract approach. A 24-point design with
a µ6 action is specified by four points, one in each orbit. Our new designs are
characterized by the condition that under the natural map C

2 \ {(0, 0)} → CP
1

given by (z1, z2) 7→ z1/z2, the four points must map to the vertices of a regular
tetrahedron (if we identify CP1 with S2 via stereographic projection, with CP1 =
C∪{∞} and S2 a unit sphere centered at the origin). In slightly different language,
we have specified the image of the design under the Hopf map S3 → S2. The fact
that the regular tetrahedron is a spherical 2-design in S2 plays a crucial role, and can
be used to prove that this construction yields 5-designs. Likewise, the six octagons
that make up each of our 7-designs map to the vertices of a regular octahedron,
which is a spherical 3-design. Again, we intend to discuss this approach in more
detail in a future paper.

5. Optimality of CD4
among new 5-designs

In this section we prove that among all these new 5-designs, the 24-cell minimizes
potential energy for each absolutely monotonic potential function. As before, it is
sufficient to do this for f(t) = (1 + t)k. For k ≤ 5 this follows immediately from
the spherical design property, and for k > 5 we will show directly that CD4

is the
unique minimizer.

Within each hexagon Hm, the six points are in the same relative position in each
design, and thus make the same contribution to the potential energy. Hence it suf-
fices to show that the potential energy between each pair of hexagons is separately
minimized for the D4 configuration.

Let a0 = 1, a1 = ieiθ, a2 = ieiφ, and a3 = ieiψ. Because of the sixfold rotational
symmetry of each Hm, the angles θ, φ, and ψ are determined only modulo π/3. In
particular, θ = φ = ψ = π/6 yields the 24-cell (because π/2 ≡ π/6 (mod π/3)).

First, consider the pair (H0, H1). We find that the inner products between the

points of H0 and a1H1 are (1/
√

3) cos(θ + jπ/3) with 0 ≤ j ≤ 5, each repeated
six times. By Lemma 5.1 below, the sum is minimized exactly when θ ≡ π/6
(mod π/3). Similarly, considering (H0, H2) and (H0, H3) shows that the corre-
sponding contributions to potential energy are minimized when φ ≡ π/6 (mod π/3)
or ψ ≡ π/6 (mod π/3), respectively.

Next, consider the pair (H1, H2). The dot products possible are of the form

Re
(

(u2 + rt2)a1a2w
j
)

=
1√
3

cos

(

3π

2
+ θ − φ+

jπ

3

)

with 0 ≤ j ≤ 5, each repeated six times. Once again we conclude from Lemma
5.1 that the potential energy is minimized when θ ≡ φ (mod π/3). Similarly,
considering the remaining pairs (H1, H3) and (H2, H3) shows that θ ≡ φ ≡ ψ
(mod π/3). Thus, it will follow from the lemma below that for each k ≥ 6, the
D4 configuration with θ = φ = ψ = π/6 is the unique code in this family that
minimizes the potential energy under the potential function f(t) = (1 + t)k.

Lemma 5.1. Let k be a nonnegative integer. When k ≥ 6, the function

θ 7→
5
∑

j=0

(

1 +
cos(θ + jπ/3)√

3

)k
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has a unique global minimum within [0, π/3], which occurs at θ = π/6. When k ≤ 5,
the function is constant.

Proof. We must show that the coefficient of yk in the generating function

5
∑

j=0

∞
∑

k=0

(

(

1 +
cos(θ + jπ/3)√

3

)k

−
(

1 +
cos(π/6 + jπ/3)√

3

)k
)

yk

is zero if k ≤ 5 or θ ≡ π/6 (mod π/3) and strictly positive otherwise. Explicit
computation using the sum of a geometric series shows that the generating function
equals

y6
(

cos2 θ
)(

4 cos2 θ − 3
)2

216

(

1

1 − y
+

2

2 − y
+

2

2 − 3y

) 5
∏

j=0

1

1 − y
(

1 + cos(θ+jπ/3)√
3

) .

The factor of
(

cos2 θ
)(

4 cos2 θ− 3
)2

vanishes iff θ ≡ π/6 (mod π/3) and is positive
otherwise. Clearly the factor

1

1 − y
+

2

2 − y
+

2

2 − 3y

has positive coefficients, as does

5
∏

j=0

1

1 − y
(

1 + cos(θ+jπ/3)√
3

) ,

because 1+cos(θ+jπ/3)/
√

3 > 0 for all j. It follows that their product has positive
coefficients, and taking the factor of y6 into account completes the proof. �

6. Local Optimality

So far, we have not addressed the question of whether our new codes are actually
local minima for energy. Of course that is not needed for our main result, because
they improve on the 24-cell regardless of whether they are locally optimal, but it is
an interesting question in its own right.

For the codes Cθ this question appears subtle, and we do not resolve it com-
pletely. To see the issues involved, consider the case of f(t) = (1 − t)−1. As θ
varies, the lowest energy obtained is 668.1920+ when θ = 2.5371+. That code
appears to be locally minimal among all codes, based on diagonalizing the Hessian
matrix numerically, but we have not proved it. By contrast, the other two local
minima within the family Cθ (with energy 721.7796+ at θ = −(2.0231+) and en-
ergy 926.3218+ at θ = 0.5320+) are critical points but definitely not local minima
among all codes; the Hessians have 22 and 36 negative eigenvalues, respectively.

We do not know a simple criterion that predicts whether a local minimum among
the codes Cθ as θ varies will prove to be a local minimum among all codes, but
it is not hard to prove that every critical point in the restricted setting is also an
unrestricted critical point. Specifically, a short calculation shows that for every
code Cθ and every smooth potential function, the gradient of potential energy on
the space of all configurations lies in the tangent space of the subspace consisting
of all the codes Cθ. It follows immediately that if the derivative with respect to
θ of potential energy vanishes, then the gradient vanishes as well. Furthermore,
such critical points always exist: starting at an arbitrary code Cθ and performing
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gradient descent will never leave the space of such codes and will always end at a
critical point.

At this point one may wonder whether it is even clear that the regular 24-
cell is a local minimum for all absolutely monotonic potential functions. It is
straightforward to show that it is a critical point, but we know of no simple proof
that it is actually a local minimum. The best proof we have found is the following
calculation.

For each of the 24 points, choose an orthonormal basis of the tangent space to
S3 at that point, and compute the Hessian matrix of potential energy with respect
to these coordinates. Its eigenvalues depend on the potential function, but the
corresponding eigenspaces do not. There is a simple reason for that, although we
will not require this machinery. Consider the space Sym24(S3) of all unordered sets
of 24 points in S3. The symmetry group of the 24-cell acts on the tangent space to
Sym24(S3) at the point corresponding to the 24-cell, and this representation breaks
up as a direct sum of irreducible representations. On each nontrivial irreducible
representation the Hessian has a single eigenvalue, and these subspaces do not
depend on the potential function. In practice, the simplest way to calculate the
eigenspaces is not to use representation theory, but rather to find them for one
potential function and then verify that they are always eigenspaces.

If the potential function is f : [−1, 1) → R, then the eigenvalues of the Hessian
are

0,
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with multiplicities 6, 9, 16, 8, 12, 4, 9, and 8, respectively.
One mild subtlety is that 0 is always an eigenvalue, so one might worry that the

second derivative test is inconclusive. However, note that the potential energy is
invariant under the action of the 6-dimensional Lie group O(4), which yields the
6 eigenvalues of 0. In such a case, if all other eigenvalues are positive, then local
minimality still holds, for the following reason. Notice that O(4) acts freely on
the space of ordered 24-tuples of points in S3 that span R4, and it acts properly
since O(4) is compact. The quotient space is therefore a smooth manifold, and the
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positivity of the remaining eigenvalues suffices for the potential energy to have a
strict local minimum on the quotient space.

To complete the proof, we need only consider f(t) = (1+t)k with k ∈ {0, 1, 2, . . .}.
For k ≤ 5 the other eigenvalues are not all positive (some vanish), but because the
24-cell is a spherical 5-design it is automatically a global minimum for these ener-
gies. For k ≥ 6 one can check that all the other eigenvalues are positive. That is
obvious asymptotically, because they grow exponentially as functions of k; to prove
it for all k ≥ 6 one reduces the problem to a finite number of cases and checks each
of them. It follows that the regular 24-cell locally minimizes potential energy for
each absolutely monotonic potential function, and it is furthermore a strict local
minimum (modulo orthogonal transformations) unless the potential function is a
polynomial of degree at most 5.
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