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On some points-and-lines problems and configurations
Noam D. Elkies

Abstract. We apply an old method for constructing points-and-lines configurations in the plane
to study some recent questions in incidence geometry.

What are known as “Points and Lines” puzzles are found very interesting by many
people. The most familiar example, here given, to plant nine trees so that they
shall form ten straight rows with three trees in every row, is attributed to Sir Isaac
Newton, but the earliest collection of such puzzles is, I believe, in a rare little book
that I possess — published in 1821 — Rational Amusement for Winter Evenings, by
John Jackson. The author gives ten examples of “Trees planted in Rows.”

These tree-planting puzzles have always been a matter of great perplexity. They are
real “puzzles,” in the truest sense of the word, because nobody has yet succeeded
in finding a direct and certain way of solving them. They demand the exercise of
sagacity, ingenuity, and patience, and what we call “luck” is also sometimes of service.

— H.E. Dudeney, Amusements in Mathematics (1917) [8], page 56

Introduction. Almost a century after Dudeney wrote these paragraphs, problems in inci-
dence geometry continue to perplex both recreational and professional mathematicians, and the
prospect of a uniform “direct and certain way of solving them” remains remote. Even for natural
asymptotic questions, a wide gap often separates the best upper and lower bounds known. In
this paper we construct some explicit point-and-line configurations that yield new lower bounds
for two specific questions of this kind. Question 1, suggested by the recreational literature, asks:
How many lines can meet n2 points in the plane in at least n points each? Question 2 arises in
the research literature [3]: If on each of N horizontal lines we choose (at most) N points, how
many additional lines can contain N of these N2 points? It turns out that an arrangement of
16 points in 15 lines of 4 (Figure 1 below), which has been known at least since 1908, naturally
generalizes to configurations that not only give lower bounds for Question 1 but also improve on
the previous records for Question 2. We also find a variation of this construction that yields a
partial answer to Question 1 and a further improvement for the cases N = 12m = 12, 24, 36, . . .
and N = 12m − 1 = 11, 23, 35, . . . of Question 2. By the construction in [3], the new results for
Question 2 yield, for each N ≥ 5, improved lower bounds on the exponent in the asymptotic
“orchard-planting” problem with N -point lines. Each of these arrangements exploits dihedral
symmetry: the lines include all axes of symmetry, and every point lies on one of the axes and at
least one pair of lines symmetrical with respect to this axis. This approach is at least a century
old (we give specific citations later), but might still produce further new examples and results
for modern incidence geometry.

The rest of this paper is organized as follows. We first give some general background on this
kind of points-and-lines problem. We then introduce Question 1, on plane arrangements of n2

points with many n-point lines, and show the best configurations previously known. Next we
present Brass’s problem as Question 2, and observe that some of the configurations already
known for Question 1 also answer Question 2. We proceed to modify the known constructions
to obtain further improvements for both Questions. Finally we reconsider the symmetry of our
configurations, which can be even greater than it appears. Most notably, the obvious fivefold
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dihedral symmetry of Figure 1 extends to an action of the icosahedral group A5 by projective
linear transformations. This action, and an analogous action of the octahedral group S4 on the
real projective plane, leads us to further points-and-lines configurations related with the finite
projective planes of orders ≤ 5. We expand the customary concluding Acknowledgements, to
explain how we became aware of Question 2 and its connection with Question 1 even though
such problems are quite far from our usual research work.

Definitions of Tk and tk, and of T
(r)
k and t

(r)
k ; the exponents τk. For a finite set S of

points in the plane, let tk(S) (k = 2, 3, 4, . . .) be the number of lines meeting S in exactly k
points, and Tk(S) =

∑

k′≥k tk′ (S) the number of lines meeting S in at least k points. For a
positive integer n let

tk(n) := max
|S|=n

tk(S), Tk(n) := max
|S|=n

Tk(S), (1)

so tk(n) (or Tk(n)) is the largest number of lines that can contain exactly (or at least) k points
out of some configuration of n points in the plane. Clearly tk(n) ≤ Tk(n). For r > k we also let

t
(r)
k (n) := max

|S|=n

T
r
(S)=0

tk(S), T
(r)
k (n) := max

|S|=n

T
r
(S)=0

Tk(S), (2)

restricting S to point sets for which no line contains r or more points. For instance, the condition
that no line contain more than k points (common in “orchard-planting” problems) corresponds

to r = k + 1, and clearly in that case t
(r)
k (n) = T

(r)
k (n). See for instance [4, p.315 ff.], where

t
(k+1)
k (n) is called torchard

k (n).

A key question concerns the asymptotic behavior of t
(r)
k (n) and T

(r)
k (n) as n → ∞ for fixed k, r.

The question is trivial for k = 2: clearly t
(3)
2 (n) =

(

n
2

)

= T
(r)
2 (n) for all r > 2. In general,

for all k, r, n we have an elementary upper bound T
(r)
k (n) ≤

(

n

2

)/(

k

2

)

. For k = 3 this gives

T
(r)
3 (n) ≤ n2/6 − O(n), which is known to be asymptotically sharp: certain configurations of

torsion points on cubic curves even give t
(4)
3 (n) = n2/6 − O(n) (see for instance [5, 6]). For

k ≥ 4, Erdős proposed long ago the conjecture that t
(k+1)
k (n) = o(n2) (this is “Conjecture 12” of

[4, p.317]); more generally one might guess that T
(r)
k (n) = o(n2) for any fixed k, r with 4 ≤ k < r.

[Note that the corresponding conjecture for Tk(n) or even tk(n) is false, for instance because a
k×m lattice array has at least m2/(k−1) lines of exactly k points (and even this is not optimal,
see [15]); this is why we fix some finite upper bound r on the number of points in any line.] But

it is not known that t
(k+1)
k = o(n2) for any k ≥ 4, even though the best lower bounds on T

(r)
k (n)

are Ck,rn
τk with

2 = τ3 > τ4 ≥ τ5 ≥ τ6 ≥ · · · → 1. (3)

Our results include improvements on these τk for each k ≥ 5 (though to be sure we are still
nowhere near settling Erdős’s conjecture). See Theorem 1, stated near the end of this paper.

Sets of n2 points in the plane with many n-point lines. Anyone who has seen a magic

square knows that t
(n+1)
n (n2) ≥ 2n + 2 for all n > 1: a square array of n2 points in the plane

forms 2n + 2 lines of n, namely the n horizontal lines, n vertical lines, and 2 diagonals. For
n = 2 this is clearly optimal because each of the six pairs of points has a two-point line through
it. But for each n > 2 one can get more than 2n + 2 lines. A famous configuration, known at
least since the beginning of the twentieth century [7, p.175], shows that for n = 4 one may get
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as many as 15 lines of 4 by using a double pentagram instead of a square. See Figure 1. (The
closed and open circles indicate points on 3 and 5 lines respectively; more about this later.)

Figure 1: 16 points, 15 lines of 4

This construction readily generalizes to all even n > 2: replace the two nested pentagrams by
two nested (n + 1)-point stars, each formed from the longest diagonals of a regular (n + 1)-gon,
to obtain a configuration with (n + 1)-fold dihedral symmetry consisting of n2 points lying on
3n + 3 lines of n points each. Figure 2 shows the case n = 6 of this construction.

This suggests several questions, which we first raised in the interview [17, p.228]:

Question 1a: Is this configuration optimal?

That is, is 3n + 3 the maximal number of lines that can meet n2 points in the plane in (at
least) n points each? Using the notation of (1), we are asking: is tn(n2) = Tn(n2) = 3n + 3
for n = 4, 6, 8, . . .? This might be known for n = 4, but is almost certainly open for every even
n ≥ 6.

Question 1b: What happens for odd n?

For n = 3 it has long been known that the maximum is 10, though over the complex numbers the
famous configuration of nine flex points of a smooth cubic has 12 lines of three (it is probably
mere coincidence that this is also the value of 3n + 3 for n = 3), which attains the upper
bound

(

9
2

)/(

3
2

)

exactly: the line through every pair of points goes through a third point of the
configuration.1 The 10-line configuration, mentioned by Dudeney in the passage quoted earlier
from [8, p.56], is obtained from the 3× 3 square array by moving an opposite pair of edge points
halfway towards the center (Figure 3); we later return to this configuration as well.2

1 Note too that the flexes of a smooth cubic in the plane are also its 3-torsion points. Over the real numbers,

we already noted the use of torsion points on such curves in estimating t
(4)
3 (n). For more on points-and-lines

arrangements in the complex plane and beyond, see [10, 14].
2 Burr begins his article [5] by quoting the puzzle asking for this configuration from the same source (Rational

Amusement for Winter Evenings (1821) by John Jackson), where it is given as a verse:

Your aid I want, nine trees to plant
In rows just half a score;

And let there be in each row three.
Solve this: I ask no more.
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Figure 2: 36 points, 21 lines of 6

Figure 3: 9 points, 10 lines of 3
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Some twenty years ago we constructed — with some “luck”, as Dudeney might say — a sporadic
arrangement of 25 points with 18 lines of five (Figure 4, also shown in [17, p.228]). The points
on each edge of the triangle bisect and trisect the edge. Thus tn(n2) ≥ 3n + 3 also for n = 5.
We construct a different such configuration later, from Figure 8. We do not know whether 18
lines is maximal, nor whether either 18-line configuration was known earlier.

Figure 4: 25 points, 18 lines of 5

For odd n ≥ 7, one can at least see quickly that the 2n + 2 lines of the square configuration are
not optimal. We can already get 2n + 2 lines using only (n− 1)2 + 3 points: (n− 1)2 in a square
array, one point in the center of the square (which has not been used yet because n is odd), and
two points at infinity where the line at infinity meets the coordinate axes. Then we can use the
remaining 2n − 4 points to form another 4

√
n − O(1) lines by putting them on diagonals that

contain n − 2, n − 3, n − 4, . . . points in the array. At the end, if points at infinity are deemed
undesirable one may apply a projective transformation to put all n2 points in the finite plane.3

We shall show that 3n + 1 lines can always be attained, even under the “orchard” constraint

that no line contain more than n points; that is, t
(n+1)
n (n2) ≥ 3n + 1. We shall also show that

for n = 12m − 1 = 11, 23, 35, 47, etc., there are configurations of n2 points in the plane with
3n + 4 lines each of which passes through at least n of the n2 points. But these configurations
necessarily contain some lines of n+1 points, so we obtain Tn(n2) ≥ 3n+4 for these values of n
but not tn(n2) ≥ 3n + 4.

Parallel lines with many Brass transversals. P. Brass asks [3]:

Question 2: Can there be N parallel lines li in the plane, and M > N + 4 lines λj not parallel

3 Dudeney used much the same trick in his second solution [8, p.190] to the puzzle of placing 21 points in 12
lines of 5: the configuration is projectively equivalent to the 16 points (i, j) (1 ≤ i, j ≤ 4) in the (x, y) plane,
together with the points (3/2, 5/2) and (5/2, 3/2) and the three points at infinity contained in the four lines x = i,
the four lines y = j, and the three lines x = y, x − y = ±1. The twelfth line is then x + y = 4. The use of
projections in this context to bring points at infinity to the finite plane is noted explicitly in [1, p.105].
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to the li, such that for each i we have

#
(

M
⋃

j=1

li ∩ λj

)

≤ N (4)

(that is, there are at most N points on li through which some λj passes)?

We shall call such λj a collection of “Brass transversals” to the li. More generally, one may
of course ask, for any N and N ′, for the maximal number of lines λj whose union intersects
each of N parallel lines li in at most N ′ points. But the case N = N ′ is of particular interest
because Brass [3] gives an explicit recursive construction showing that a collection of M Brass

transversals yields t
(N+1)
N (n) = Ω(nlog

N
M ) as n → ∞.

Question 2 specifies M > N + 4 because M = N + 4 can be attained for each N ≥ 3. Let li be
the line x = i for i < N , and the line at infinity for i = N ; let λj be the line y = j for j ≤ N ; and
let the remaining four transversals be the lines y = x, y = x + 1, x + y = N , and x + y = N + 1.
These N + 4 lines meet lN in 3 points, and li in N points for each i < N . For N = 3 this
configuration is easily seen to be unique up to projective transformations. Figure 3 shows it in
another guise, with 7 = 3+4 Brass transversals to the three vertical lines; projecting one of these
lines to infinity yields the case N = 3 of the construction described earlier in this paragraph. The

resulting bound t
(4)
3 (n) = Ω(nlog

3
7) is not interesting, because we already know that t

(4)
3 (n) is

asymptotic to n2/6. But in [4, p.317] we find that for N ∈ [5, 17] the lower bound with exponent
logN (N +4) is the best exponent known, and for N ≥ 18 it can be used with a different recursive
construction due to Grünbaum [11] to obtain the record exponent 1+(1/(N −γ)) with γ

.
= 3.59.

We improve this to

logN 2N = 1 +
log 2

log N
(5)

for each N = 5, 7, 9, . . ., using our configurations from Question 1 with n = N − 1 and M = 2N .
Project the center of our n2-point configuration to infinity; let the li be the N = n + 1 lines
through this point at infinity, and let the λj be the remaining M = 2N = 2n + 2 lines. Then

#(∪j li ∩ λj) = N for each i, and the bound t
(N+1)
N (n) = Ω(nτ ) with τ = logN 2N follows by [3].

We cannot quite do this for N = 6 using our sporadic 25-point configuration in Figure 4, because
the six lines through the center are not equivalent. When li is one of the three axes of symmetry
of the triangle, the λj meet li in only four points; but for the other three li (those parallel to the
triangle’s sides), there are seven points of intersection. Still, this configuration may be of use
for Brass’s construction because the inequality (4) remains true on average, even with a strict
inequality: one might have expected eight points of intersection for li in the second group, but
the two new points coincide because two of the λj are parallel to li and thus meet li in the same
point at infinity (which is not one of the 25 points of our configuration).

Further refinements. For N = 3 the configuration that attains N + 4 = 7 Brass transversals
is unique, and can be displayed symmetrically as shown on the left side of Figure 5 by projecting
one of the transversals to infinity. This again suggests a generalization to arbitrary odd N : let
li be the line through the origin making angle (i/N)π with the horizontal; and let λj be the N
pairs of lines parallel to the li at unit distance, together with the line at infinity, for a total of
M = 2N + 1 transversals. Taking the indices of the li modulo N , we see that for each i′ mod N
the transversals parallel to li±i′ meet li at the point(s) 1/ sin((i′/N)π) units from the origin.
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This gives N points of intersection for each line, and all the points with i′ = 0 are on the line
at infinity, which accounts for the (2N + 1)-st transversal. The right side of Figure 5 shows the
N = 5 case of this construction. Again we conclude by projecting the origin to infinity to obtain
parallel lines li. For each N = 5, 7, 9, . . ., this gives us an even better value logN (2N + 1) for
the exponent τN of (3). Moreover, the set of N2 points li ∩ λj meets the 3N + 1 lines li, λj in
N points each, and meets no line in more than N points because the set is contained in the N

lines li. Therefore t
(N+1)
N (N2) ≥ 3N + 1. This gives a new lower bound on t

(N+1)
N (N2) for each

odd N ≥ 7. (We exclude N = 5, because then 3N + 1 = 16, but Figure 4 already attains 18.)

Figure 5: n lines, 2n + 1 Brass transversals including the line at infinity (n = 3, 5)

This construction fails when N is even, because then the points at unit distance from the origin
on li each lie on just one transversal (with i′ = N/2). But we still achieve M = 2N by
discarding the line at infinity and rotating the other lines λj by an angle π/2N about the origin.
This improves on N + 4 for all even N ≥ 6. (Figure 6 shows the case N = 6.) We therefore
attain τN = logN 2N for all even N , and have thus improved the exponent τN for all integers
N ≥ 5.

Our configuration with a double N -point star also required that N be odd, for a different
reason: for even N , the longest diagonals of a regular N -gon that do not go through its center
intersect each other in only N −2 points. But for large N the double-star construction has some
flexibility that we can sometimes exploit to improve the configuration and allow some even N as
well. Namely, we may match any of one star’s rings of N intersection points with any ring at a
different position on the other star. This can be done when the ratio between stars’ circumradii
is

ρN (i, j) := sin
iπ

N

/

sin
jπ

N

for some distinct positive integers i, j < N/2, regardless of the parity of N . [So far, as in Figure 2
(with N = 7), we have always used (i, j) = (1, (N − 1)/2).] If ρN(i, j) = ρN (i′, j′) for another
pair (i′, j′) of integers in (0, N/2), then the resulting double-star configuration has the same
number of incidences with N fewer points. We may find such i, i′, j, j′ when 6|N and N ≥ 12,
using the identity

sin θ sin(
π

2
− θ) = sin θ cos θ =

1

2
sin 2θ = sin

π

6
sin 2θ.
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Figure 6: 6 lines, 12 Brass transversals

[That these are in fact the only solutions is a special case (and much easier than the full result)
of [16, Thm. 4]; the authors of [16] report that the same theorem had already been obtained
by Bol [2]. Unfortunately it is not possible to have a third pair (i′′, j′′).] This gives (i′, j, j′) =
(2i, N/6, (N/2) − 1). Moreover, when N = 12m, we may choose i, i′, j, j′ so that i and j′

are odd while i′ and j are even, for instance (i, i′, j, j′) = (1, 2, 2m, 6m − 1). Figure 7 shows
this when N = 12. Projecting the center to infinity then yields N parallel lines and 2N + 1
Brass transversals (including the projection of the line at infinity, as before), with only N − 1
intersection points on each parallel line. We have thus obtained yet another improvement for
the cases N = 12m and N = 12m− 1 of Question 2.

We can also use this configuration to partly answer Question 1b, as follows. Each of the lines
through the center has a pair of points each of which lies on just one of the transversals. (These
N pairs of points are marked by closed circles in Figure 7.) There are 2N sets of N points
containing one point from each of these pairs; choosing one of these sets and removing it leaves
(N − 1)2 points with 2N lines of N − 1 points and N + 1 lines of N . We have thus shown that
Tn(n2) ≥ 3n + 4 for n = N − 1 = 12m− 1, as promised earlier.

Returning to Question 2, we collect all our results and use them in Brass’s recursive construc-
tion [3], obtaining:
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Figure 7: (N, M) = (11, 25) or (12, 25); also, 121 points, 37 lines of at least 11 (see text)
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Theorem 1. For N ≥ 5, let

M = M(N) =











2N + 3, if N ≡ −1 mod 12;

2N + 1, if N ≡ 0, 1, 3, 5, 7, or 9 mod 12;

2N, if N ≡ 2, 4, 6, 8, or 10 mod 12.

(6)

Then for each N ≥ 5 we have t
(N+1)
N (n) = Ω(nτN ) where τN = logN M .

A numerical table of these new τN for 5 ≤ N ≤ 30 follows:

N 5 6 7 8 9 10 11 12 13 14 15 16 17
τN 1.489 1.386 1.391 1.333 1.340 1.301 1.342 1.295 1.284 1.262 1.268 1.250 1.254

N 18 19 20 21 22 23 24 25 26 27 28 29 30
τN 1.239 1.244 1.231 1.235 1.224 1.241 1.224 1.221 1.212 1.215 1.208 1.210 1.203

Table 1

These values of τN , like the ones previously known, approach 1 as N → ∞, but much more
slowly: τN − 1 ≈ log 2/ logN , while the previous results had τN − 1 ≈ 1/N . Unlike those
previous τN , the values in Table 1 are quite far from the monotonic descent described in (3).

For instance, our lower bound on t
(r)
6 (n) (any r > 7) uses configurations with many 7-point

lines, and for N = 8, 9, 10 and r > 11 our lower bound on t
(r)
N (n) uses configurations with

many 11-point lines! Evidently the asymptotic behavior of t
(r)
k (n) remains “a matter of great

perplexity”, as Dudeney described it almost 90 years ago. Can one improve on Theorem 1 by
showing that τN ≥ τN ′ when N ≤ N ′? Can one exploit the extra line lN+1 in our configuration
for the case N = 12m − 1 of Question 2 to obtain a further asymptotic improvement? Can the
configurations arising from the identity ρN (i, 2i) = ρN (N/6, (N/2)− 1) be exploited also in the
cases N = 18, 30, 42, . . . when N/6 is odd?

One can attempt similar constructions with three or more nested stars, or only one. The only
such variation we have found that bears on the questions that motivated us here is a triple
pentagram. Adding to the old 16-point configuration of Figure 1 a third star, and also each of
the five points where the line at infinity meets parallel sides of the three stars, we obtain 26
points spanning 21 lines of 15. See Figure 8. The open circles mark the 10 points each of which
is contained in only three of the 21 lines; removing any one of these leaves 25 points in 18 lines
of 5, in a configuration distinct from Figure 4.

More about Figure 1 and symmetries. We saw that the solution of the puzzle “to plant nine
trees so that they shall form ten straight rows with three trees in every row” is more symmetrical
than it appears from its usual presentation in Figure 3: this presentation has only 4 symmetries,
but the projection shown on the left side of Figure 5 exhibits the 12-element group of symmetries
of the regular hexagon. Likewise, our initial configuration of 16 points in 15 lines of 4 (Figure 1)
turns out to be even more symmetrical than it looks: its group of projective symmetries is the
alternating group A5, acting transitively on the 15 lines and dividing the points into orbits of size
6 and 10. (The six-point orbit consists of the central point and the five points of the middle ring,
each of which lies on 5 four-point lines; these are the points drawn as open circles in Figure 1.)
To see this, let A5 act on the 2 ·6 vertices of a regular icosahedron in R3, and map those vertices
to 6 points in P2 while preserving a fivefold symmetry of the icosahedron. The other 10 points
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Figure 8: 26 points (5 at infinity), 21 lines of 5

Figure 9: 13 points (3 at infinity), 13 lines
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are the pairs of face centers, and the 15 lines are dual to the pairs of edge centers.4 Let P6, P10,
and P15 be the 6-, 10-, and 15-point orbits of points under this action of A5, and L6, L10, L15

the corresponding orbits of lines. Then for i, j ∈ {6, 10, 15} there exists a point in Pi contained
in some line of Lj if and only if i = 15 or j = 15, in which case there are 30 such points. Figure 1
shows 60 of these incidences. If we instead consider the 21 points and 21 lines of P6 ∪ P15 and
L6 ∪ L15, we find 90 incidences. These are contained among the 105 incidences in the finite
projective plane of order 4; the 15 missing incidences are between each point of P15 and its dual
line. Likewise the 31 points and 31 lines of P6 ∪ P10 ∪ P15 and L6 ∪ L10 ∪ L15 show 150 of the
186 incidences of the projective plane of order 5.

A similar configuration arises from the regular cube or octahedron, with symmetry group S4,
again larger than can be shown in any plane projection. The vertices, faces and edges of a
regular octahedron yield 3 + 4 + 6 points and as many lines, shown in Figure 9. The 48 inci-
dences are among the 52 in the finite projective plane of order 3, lacking only the incidences
between each face point and its dual line. To explain this, note that the points are the images
of the 2 · 13 nonzero points (x1, x2, x3) ∈ Z3 with each |xi| ≤ 1, and likewise the lines are
x1y1 + x2y2 + x3y3 = 0 with each yi ∈ {−1, 0, 1}. These remain distinct when reduced mod 3,
and the only new incidences mod 3 are the four with

(x1 : x2 : x3) = (y1 : y2 : y3) = (±1 : ±1 : ±1).

We can similarly relate the configurations of 21 or 31 points and lines of the previous paragraph
with the corresponding finite projective planes, by recognizing them as points and lines with
small coordinates in Z[ϕ] where ϕ = (

√
5 + 1)/2, and then reducing these coordinates modulo

the prime ideal 2Z[ϕ] or
√

5Z[ϕ] respectively.

Account and acknowledgements. Last year I traveled to Calgary for the Workshop in
Discrete Geometry in honor of the 50th birthday of Károly Bezdek, and found my way to the
lecture room just in time for the problem session. I intended to present an open “tree-planting”
problem in incidence geometry (Question 1) that I had wondered about for some time. The
first few cases lead to appealing configurations; I had no better reason than pure curiosity for
asking the question in general, but this meeting seemed a natural venue to raise the problem,
and a reasonable one to hope for new information. That incidence geometry was an appropriate
topic was confirmed when Peter Brass, who was among the first to present a problem at this
session, asked a question of a similar flavor (Question 2), though his interest in it was more
than recreational: a positive answer would yield an asymptotic improvement to a construction
in his recent paper [3]. I thought that one of the “appealing configurations” I was about to show
(Figure 1) might work, and after some hurried scribbling verified that projecting its center point
to infinity answers the first odd instance (N = 5) of Brass’s question. Later experimentation
showed that the natural generalization of this configuration (as in Figure 2 for n = 6) yields
such an answer for all odd N > 3, and afterwards led to the further refinements described in the
Introduction and illustrated in Figures 5, 6, and 7.

I thank the organizers of the Calgary Workshop in Discrete Geometry, for inviting me to par-
ticipate in the workshop; Peter Brass, for extended e-mail correspondence on these problems,
including references to his paper [3] and the relevant sections of [4]; and the referee, for directing

4 We noted this online at [9]. This page links to a picture of the images of the vertices, face centers, and edge
centers, and of their dual lines; it also mentions Question 1 and the configurations for the cases n = 4, 6, 8, . . .
and n = 5.
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me to references [13, 15] and suggesting a rearrangement of the exposition. This paper is based
on research supported in part by NSF grant DMS-0501029.
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