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Abstract

The linear dynamics of ion sputtered solids is essential to understanding the evolution of ordered

and disordered surface patterns. We review the existing models of linear dynamics and point out

qualitative discrepancies between theory and experimental observations that characterize the linear

regime. In particular, we emphasize the importance of experimental and theoretical analysis of

bifurcation points: certain values of control parameters such as ion beam angle or energy, where

flat surfaces undergo a transition from stability to instability.

PACS numbers:
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I. INTRODUCTION

The spontaneous evolution of topographic patterns on solid surfaces due to sputtering by

a uniform ion beam, a phenomenon which was discovered by Navez et al. in 1962 [1], has

attracted high level of interest during the last two decades. As several articles in this volume

describe, for a variety of surface types and system parameters (e.g. ion type and energy, beam

angle and temperature, substrate type), the evolving surface patterns can take the form of

ordered or disordered arrays of one-dimensional ripples or two-dimensional structure of dots,

whose typical length scales are 102±1 nm [1–18]. The large separation of scales between the

patterns and the characteristic penetration depth of ions into a solid surface (typically at

least an order of magnitude) suggests that evolution of surface morphology can be described

as a dynamics of continuous media. In such a formalism [19], pattern formation is attributed

to the instability of a homogenously eroding surface to the linear growth of spatially-varying

(Fourier) modes, and to the nonlinear interaction between these modes.

The potential use of this method for nanoscale patterning at sub-lithographic length scales

has stimulated interest in the control of this phenomenon. Developing such control requires,

however, a quantitative nonlinear theory that enables prediction of the type of surface pat-

tern that emerges for a given set of system parameters. Despite significant theoretical effort

over the last couple of decades, this goal has not been accomplished yet. Moreover, we will

argue below that current experimental data indicate that even for the simplest, prototypical

case of isotropic, elemental systems (which lack the potentially confounding effects of crys-

tallographic anisotropy and differential elemental sputtering), we do not yet have a good

understanding of even the linear part of the dynamics, which governs the initial formation

of the instability. The exploding collection of nonlinear theoretical approaches reduces, in

the linear dynamics, to only a handful. We will review here our approach to classifying the

possible types of linear dynamics, and will briefly comment on the possible consequences of

our studies for the potential development of a nonlinear theory of pattern formation due to

ion sputtering.

A widely-used starting point to linear stability analysis was introduced by Bradley and

Harper (BH) in 1988 [20]. They built on previous theoretical work of Sigmund [21, 22],

who modeled the nuclear energy deposition density (and hence the local erosion rate) as a

Gaussian ellipsoid beneath the surface. Sigmund thereby showed that such a response implies
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FIG. 1: (a) Plot of sputter yield curve I(θ), normalized by I(0) (b,c) Plots of Sx(θ) and Sy(θ),

normalized by |Sx(0)| = |Sy(0)|. The parameters used are: a = 1.5 nm, σ = 0.9 nm, µ = 0.5 nm.

a curvature-dependent sputter yield (atoms out per incident ion), and therefore to a faster

erosion of concave surface regions than of convex ones. Assuming an ion beam propagating

downward along the ẑ direction, Bradley and Harper showed that when Sigmund’s response is

combined with surface diffusion mediated morphological relaxation [43], the linear dynamics

for surface height h(x, t) of an initially homogenous surface h = bx is:

∂h

∂t
= −I + {−I ′∂x + Sx∂xx + Sy∂yy − B̃∇4}h , (1)

where the coefficients Sx,y(b) are derived from Sigmund’s Gaussian response function and

their negative values reflect the instability mechanism described above. The coefficient

B̃ = (1+b2)−3/2B, with B is material parameter containing the surface free energy and other

material parameters characterizing the kinetics of surface relaxation, and I(b) is Sigmund’s

sputter yield (I ′ ≡ dI/db). For a given beam angle (i.e. given b) the early evolution of

surface morphology is dominated by the fastest growing Fourier modes, and the characteristic

pattern length scale is thus
√

8π2B̃/(−min(Sy, Sx)) (assuming at least one of the two BH

coefficients Sx, Sy is negative). We denote by θ = tan−1(b), the angle between the beam

direction (-ẑ) and the normal to the flat surface n̂ (0 ≤ θ ≤ π/2), and x̂ is the axis

perpendicular to the beam direction in the n̂ − ẑ plane [44]. The behavior of Sx(θ) and

Sy(θ) for characteristic parameter values is shown in Fig. 1. Bradley-Harper theory gives

rise to two central predictions: (i) Below a crossover angle θcross, Sx < Sy < 0, implying that

for sufficiently small beam angles the emerging pattern is dominated by a parallel mode (i.e.

wave vector parallel to projected ion beam direction along the surface) (ii) Sy < 0 for all θ,

implying instability of flat surfaces to the growth of perpendicular modes (i.e. wave vector
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perpendicular to ion beam) at all incidence angles. The derivation of nonlinear terms that

should be added to the linear BH equation to describe the growth and saturation of pattern

amplitude from this model was carried out by Makeev, Cuerno and Barabasi [23, 24], who

expanded Sigmund’s Gaussian ellipsoid model to higher order in surface height derivatives,

and arrived at a Kuramoto-Sivashinsky type equation [19] for the surface evolution.

Although Bradley-Harper theory successfully explains some features of many experiments

(e.g. exponential growth and temperature dependence of pattern amplitude [25]) a growing

number of experimental observations [14, 26–29] seems to contradict the central predictions

of this theory. Some experiments exhibit dominance of perpendicular rather than parallel

mode ripples mode at small beam angles, and even more dramatically - beam angle regimes

were found where roughness is damped out and flat surfaces are stable and undergo homoge-

nous erosion. These discrepancies are associated with the linear stability of flat surfaces, and

thus indicate that BH linear dynamics are incomplete. (We do not discuss here experiments

indicating problems with nonlinear extensions of BH theory [3, 4, 34].) Obviously, linear

dynamics is an essential cornerstone for the development of a nonlinear pattern formation

theory [19]. These observed discrepancies have thus motivated us to search for a general

form of linear dynamics that can capture all existing experimental observations associated

with the linear stability and instability and the early stage of pattern growth. The only con-

straints we suggest to impose on such general linear dynamics are that all its terms must be

associated with testable (at least in principle) physical mechanisms, and that its predictions

agree with robust features of ion sputtering experiments, most notably the characteristic

angular dependence of the sputter yield (see Figs. 1 and 2).

From a mathematical point of view, the possible dynamics that account for the observed

deviations from the BH predictions form two classes [35]: (i) Modifications of coefficients in

the BH equation (1), which allow less restrictive dependence on control parameters (such

as beam angle or ion energy), and (ii) Dynamics which require other linear operators to be

added to the BH equation. Physical mechanisms that lead to linear dynamics of class (i)

could be associated with local surface responses to ion sputtering which are not of Sigmund’s

form, or with other local processes such as induced mass flow on the sputtered surface. By

contrast, the only examples we have identified that lead to linear dynamics of class (ii)

are associated with nonlocal processes, which are described by integral operators whose

range is much larger than the pattern wavelength. Moreover, we argue that experimental
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observations support linear dynamics of class (ii). We note that several recent works have

suggested various modifications of the BH equation and its nonlinear extensions [23, 30,

31]. These works were motivated, however, by nonlinear phenomena, most notably by

the observation of highly ordered steady patterns [4, 7]. Although a complete theory for

ion-sputtering-induced pattern formation will necessarily include nonlinear components, we

believe that an essential prerequisite for such a theory is the understanding of the relevant

physical mechanisms in the linear regime. Therefore the analysis and the experimental

observations discussed here are associated solely with the behavior in this regime. We point

out very briefly how understanding of the linear dynamics may guide our analysis into the

nonlinear pattern formation regime.

The paper is organized as follows: In section II we write a very general form for the surface

dynamics, and use it to explain the assumptions underlying the BH theory. We review the

central predictions of this theory and discuss their robustness with respect to variations in

the form of Sigmund response function. Experimental observations that disagree with the

BH predictions are mentioned. In Section III we discuss physically-motivated mechanisms

for linear theories of class (i), which preserve the functional form of the BH equation. We

show that, although they can potentially explain some of these observations, such theories do

not suffice to explain all deviations from the BH predictions in the linear regime. In Section

IV we explain why experimental observations imply terms that must be added to the BH

equations, and point out two examples of these terms containing linear integral operators,

hinting on the nonlocal nature of the physical mechanisms that they represent. In Section

V we conclude and discuss directions for future studies inspired by our approach.

II. BRADLEY-HARPER THEORY AND PURELY EROSIVE RESPONSE

The most general evolution equation based on the accumulation of local responses to ion

impacts is [32]:

∂h(x, t)

∂t
=

∫
dx′Jion(x′)∆[x− x′, hx(x, t), hy(x, t), hxx(x, t), hyy(x, t), hxy(x, t), ...] , (2)

where x = (x, y), Jion(x′) is the ion flux at x′, subscripts x and y denote partial derivatives,

and the kernel ∆[x− x′, . . . ], representing the change in height at x due to an ion impact

at x′, is expected to decay smoothly to zero at large distances |x − x′|. Assuming radial
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symmetry about the ion track and no explicit dependence on the surface slope and curvature,

the simplest form of kernel that describes local response is:

∆[x− x′, . . . ] = ∆h(r, z) = −Ae−g(r)−f(z) , (3)

where r =
√

(x− x′)2 + (y − y′)2, z = h(x, y) − h(x′, y′), and A is a length that depends

on parameters such as ion energy and ion and target mass. Sigmund’s Gaussian ellipsoid

response [22] is a particular case of Eq. (3), with

f(z) =
1

2σ2
(z − a)2 ; g(r) =

1

2µ2
r2 , (4)

where a is the average penetration depth of the ion, and σ, µ are lengths characterizing the

ranges of response in directions parallel and perpendicular to ẑ, respectively.

Bradley and Harper [20] assumed Sigmund’s response (4) and carried out an expansion of

h(x, y, t) around the homogenously flat surface h = bx− It (where I is the average vertical

erosion rate). Let us notice already that a similar expansion can be pursued whenever a

kernel ∆ in Eq. (2) is assumed to be characterized by scales (e.g. a, µ, σ in Eq. (4)) much

smaller than the characteristic scales of the evolving surface patterns. The BH analysis

yields Eq. (1) with the terms Sxhxx and Syhyy on its RHS. The small parameter of such an

expansion is proportional to the ratio between a characteristic length of Sigmund’s response

(e.g. penetration depth a) and a typical wavelength of the evolving pattern. This implies

two important consequences: First - the approach is valid only if the unstable wavelength

is indeed sufficiently larger than a (or some other length characterizing the local response).

Second - linear terms in this expansion that are proportional to higher order derivatives of

h can be neglected (with respect to Sxhxx and Syhyy). In terms of Sigmund’s parameters,

the sputter yield and BH coefficients are given by the formulas:

I(b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y)

Sy(b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y)f ′(bx)y2

Sx(b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y)f ′(bx)x2 (5)

where ρb(x, y) = g(
√

x2 + y2) + f(bx) and α is a constant. Characteristic plots of these

coefficients (as a function of slope b) are given in Fig. 1. Analysis of these expressions yields

two central predictions: (i) The BH coefficient Sy, associated with the dynamics of Fourier
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modes h(x, y, t) = bx − It + eRqt cos(qy) is negative for all values of b, implying Rq > 0

and hence instability of the sputtered surface to growth of perpendicular mode ripples.

This consequence applies for all values of Sigmund’s parameters a, σ, µ. (ii) Assuming the

Gaussian ellipsoid response shape, with σ > µ (corresponding to a broader distribution of

the nuclear energy deposition along along its trajectory direction than in the perpendicular

directions, on average), one finds Sx < Sy < 0 for sufficiently small beam angles (i.e. small

slope b). The wavelength of the unstable modes (associated with negativity of Sy and of Sx

for sufficiently small b) is determined by a relaxation mechanism. BH assumed a suggested

a Mullins-Herring surface diffusion mediated relaxation [33], as represented by the term

−B̃∇4h on the RHS of Eq. (1). With typical values of B̃ and Sigmund’s parameters of

order ∼ 1 nm (for typical ion energies of order 1 keV), one finds characteristic dominant

(fastest growing) pattern wavelength
√

8π2B̃/(−min(Sy, Sx)) of order tens to hundreds of

nm’s, in agreement with experimental observations. As discussed in the introduction, these

predictions have been contradicted by some recent experiments.

The above review of the BH approach suggests a natural anchor for modifications of the

linear theory: the response function ∆ in Eq. (2). Although Sigmund’s Gaussian ellipsoidal

response is plausible and has been widely accepted, it is important to remember that the

”microscopic” coefficients a, σ, µ, and moreover the Gaussian ellipsoidal shape of the surface

response, are not measured directly in experiments. The strongest experimental evidence

in favor of Sigmund’s response is the angular dependence of the sputter yield I(b), whose

qualitative shape (up to large slopes b > 1) as plotted in Fig. 1 (I(0) > 0, I ′(0) = 0, and

monotonic increase with b > 0) have been verified in many experiments. In contrast, the

BH coefficients Sx, Sy are not measured directly in most experiments.

Assuming another, non-Sigmund type of local response ∆, the BH expansion as described

above can be repeated, and modified coefficients Seff
x,y can be computed. As long as the

assumed response ∆ is local, namely its characteristic scales are much smaller than the

evolving pattern wavelength, such a modification preserves the linear functional form of the

BH equation (1). Our first question is thus: Which of the BH predictions are robust? i.e.,

which predictions remain valid under a modification of the local kernel ∆ that does not

significantly affect the sputter yield I(b)?

Results from our investigation of this problem [35] are presented in the rest of this section

and in the next one. Here we discuss a natural generalization of Sigmund’s response to
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functions of the form (3) where the functions f(z) and g(r) are not necessarily quadratic, as

assumed in Sigmund’s form (4). Numerical evidence for the plausibility of such generalized

form comes from the work of Feix el at. [30], who used Molecular Dynamics methods to

simulate the energy deposited by impinging ion. Their numerical simulations yielded a

”toroidal” response function of the form (3) with g(r) + f(z) attaining its minimal value

(thereby maximizing the deposited energy density) along a ring (z = 0, r = r0 > 0) rather

than at the ”average ion stopping point” (z = 0, r = 0). Motivated by this result, we

repeated the BH expansion, using for ∆ the form (3) with non-quadratic functions g(r) and

f(z) [35]. We thus arrived at modified BH coefficients Seff
x , Seff

y , such that the integral on the

RHS of Eq. (2) is approximated by the differential operators: Seff
x hxx+Seff

y hyy. We studied

general smooth functions f(z) + g(r) that assume minima at a single point (z = 0, r = 0),

and along a curve (z = 0, r > 0). In order to compute the modified BH coefficients Seff
x,y we

used the saddle point technique. Our detailed calculations are presented in section III of [35].

A central result of our analysis is that all such response functions give rise to Seff
y (b) < 0,

and therefore to instability of flat surfaces with respect to amplification of perpendicular

modes, for all beam angles. Furthermore, although the calculations become increasingly

cumbersome as more complicated forms of the functions g(r), f(z) are considered, our result

suggests that Seff
y (b) < 0 for all beam angles, as long as the surface response to local ion

∆ is purely erosive, namely - gives rise to net erosion at all surface points. Such a response

can be represented by a function of the type (3) or by the more general form:

∆h(r, z) = −
∞∑

j=1

Aje
−gj(r)−fj(z) , (6)

with coefficients Aj > 0 [45]. We may thus conclude that the BH prediction of the instability

of a flat surface at any beam angle is fairly robust with respect to modifications of the

response function to ion impact that are erosive everywhere on the surface. Motivated by

this conclusion, we went on to explore the robustness of the instability of flat surfaces when

local responses which are not everywhere erosive are considered. This issue is discussed in

the next section.

Another important conclusion is that the BH prediction of the dominance of parallel

modes over perpendicular modes at small beam angles does not seem to be as robust as

the instability prediction. This can be easily demonstrated by considering e.g. a Gaussian

ellipsoid with µ > σ. Such a response is obviously erosive everywhere, yet it gives rise to
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dominance of perpendicular modes at small beam angles.

III. MODIFICATIONS OF BH COEFFICIENTS

The conclusions of our work discussed in the previous section is that a purely erosive,

local surface response to ion impact of the form (2) is contradicted by experimental obser-

vations of a stable flat surface over a range of incident angles. In this section we discuss

surface dynamics of the general type (2), where the assumption that the response is of the

purely erosive type (3) or (6) with {Aj > 0} is relaxed. Our discussion is limited to two rep-

resentative response types, whose corresponding sputter yield is similar to the one obtained

for Sigmund’s response, but which may give rise to beam angles for which flat surfaces are

stable.

A. Response that is not erosive everywhere

Several recent studies demonstrated that under certain circumstances it is possible that

a crater forms at the impact point and is surrounded by a rim elevated from the original

surface [5, 8, 36, 37]. This behavior, where ∆h > 0 in the rim, is qualitatively different from

the erosive response functions described in (3). We then ask: Is the BH prediction of the

instability of a flat surface at all beam angles robust when such a response is considered?

To carry out this analysis we considered response functions of the form (6) where some

of the coefficients Aj are negative and some are positive. Whereas arbitrary choices of the

coefficients Aj give rise to a yield curve I(b) substantially different from the shape depicted

in Fig. 1 (and even to overall deposition rather than erosion of the surface), it is possible to

show that there exist choices of coefficients {Aj}, which do preserve the yield curve closely.

It is this class of coefficients we are interested in. Focusing for simplicity on a response

function that can be approximated as the sum of two Gaussian ellipsoids with positive and

negative coefficients, respectively:

∆h(r, z) = −A[e−r2/2µ2
1−(z−a1)2/2σ2

1 − βe−r2/2µ2
2−(z−a2)2/2σ2

2 ] , (7)

where A, β > 0, we shoed [35] that if β < β∗(µ1,2, σ1,2) the yield curve is not significantly

modified from the form predicted by Sigmund’s response, to within experimental error,
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where:

β∗ = (µ1/µ2)
2ea2

2/(2σ2
2)−a2

1/(2σ2
1) (8)

Moreover, we showed that although the condition (8) generally implies a small ratio between

the rim and crater amplitude, it is possible to find parameter regimes where Seff
y (b) > 0

(i.e. stability to perpendicular modes) at some intervals of the slope b, unlike the case

for response functions discussed in the previous section [35]. In particular, one can find

parameter regimes where β < β∗ (thus the yield curve retains its characteristic shape)

and Seff
x (b), Seff

y (b) are both positive over various intervals of the slope b. A yield curve

I(b), and modified BH coefficients Seff
x (b), Seff

y (b) for two response functions of the type (7)

with representative sets of parameters µ1,2, σ1,2, σ are plotted in Fig. 2. While both give

rise to essentially identical I(b) (whose variation from the shape predicted by Sigmund’s

response, obtained by β = 0, is unnoticeable), the modified BH coefficients Seff
x (b), Seff

y (b)

are markedly different from the shape predicted by Sigmund. Notably, regimes of beam

angle (i.e. surface slope) where flat surface is stable (i.e. both Seff
x (b) > 0 and Seff

y (b) > 0)

can be obtained for small beam angles or even for intermediate values of beam angles, in

qualitative agreement with the experiments of [14] and [27]. This result demonstrates a

very significant conclusion: small changes in the shape of the surface response of a single

ion can completely change the stability characteristics of a flat surface from BH predictions,

but yet lead to an experimentally indistinguishable sputter yield curve. Further analysis

will require a microscopic theory for sputtering processes which are not erosive everywhere.

Alternatively, comparison with atomistic simulations [37] may allow extraction of effective

parameters such as β, a1,2, σ1,2, and µ1,2 in Eq. (7).

B. Induced surface currents

Another possible type of local response that qualitatively modifies the BH coefficients but

not the functional form of the BH equation (1) is related to surface currents induced by ion

impact. The existence of such surface currents was conjectured by Carter and Vishnyakov

[26], who associated them with an average forward motion of recoils parallel to the ion

direction before coming to rest. Recently, this effect was observed by Moseler et al. [38]

in MD simulations in the study of the ion-enhanced smoothing of diamond-like carbon

surfaces bombarded by low energy (30-150 eV) carbon ions at near-normal incidence. These
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FIG. 2: Normalized yield curve and BH coefficients Sx, Sy for two sets of parameters of the two-

Gaussians model, Eq. (7). The parameters a1, σ1, µ1 are the ”Sigmund parameters” taken as

in Fig. 1, and the same normalization factors are used. The new parameters are: top row -

α = 0.03; a2 = 0.5nm,σ2 = 0.5 nm, and µ2 = 1 nm; bottom row - α = 0.03, a2 = 0.9nm, σ2 = 0.2

nm and µ2 = 1.5 nm.

simulations found that the average net effect of each ion impact is a displacement along

the surface that is proportional to θ for small beam angle θ. Induced surface currents also

appear to be important for the stability of crystalline surfaces under growth and erosion

[39]. The mechanisms of [26] and [38] are somewhat different: the former, developed to

model the response to high-energy ions, assumes volume transport in the collision cascade

with a component parallel to the surface that yields a net current, whereas the latter seems

to be a low-energy effect where a true surface current is induced. However, in both cases an

explicit dependence on angle of incidence is apparent, and phenomenologically they appear

virtually indistinguishable.

Such induced surface currents can be modeled using a local response function (3), but

with an important difference from the analysis described so far in the above sections. The

response functions (3) or (6) do not depend explicitly on the incidence angle and are fully

characterized by considering normal incidence (b = 0). For such functions the dependence

of the coefficients I(b), Sx(b) and Sy(b) in Eq. (1) on the angle θ = tan−1(b) is purely
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geometrical, reflecting the fact that the distribution of values of the ion trajectory projections

on the surface depends on the slope b. In contrast, local responses ∆ that reflect also induced

surface currents are expected to depend explicitly on slope, and cannot be written in the b-

independent forms (3) or (6). Incorporating induced surface currents into surface dynamics

yields on the RHS of Eq. (1) the linear terms νxhxx + νyhyy, where

νx(b) ∝ 1− b2

(1 + b2)2
(9)

νy(b) ∝ 1

1 + b2
, (10)

and the proportionality coefficients are positive constants that can depend on surface type,

temperature, ion type and energy [26, 35].

Let us highlight two important points regarding this analysis. First, surface currents

conserve mass and thus do not affect the sputter yield I(b). Therefore, it is impossible

to confirm or rule out their existence from sputter yield measurements. Second, although

surface currents cannot be represented by local response of the form (3) or (6), their effect on

the linear surface dynamics is similar and is captured through terms proportional to second-

order partial derivatives. Incorporation of induced surface currents into ion-sputtered surface

dynamics thus preserves the functional form of Eq. (1), and amounts to adding to the BH

coefficients Seff
x , Seff

y terms of the same order with coefficients νx(b), νy(b), respectively. The

possible effect of surface currents on the stability of flat surfaces is qualitatively similar to

the schematic plot in the top row of Fig. 2. If the induced surface current mechanism is

sufficiently strong, one should observe a regime of stable flat surfaces at small beam angles.

Although this mechanism could be related to the observation of flat surfaces in experiments

[26], stability of flat surfaces at a range of intermediate beam angles, reported in [14] and [27]

seems to imply other mechanisms not included in this approach, such as response functions

that are not everywhere erosive (discussed in the beginning of this section) and possibly

other processes as described in the following sections.

IV. FINITE WAVELENGTH AND NONLOCAL PROCESSES

There are two common features to the mechanisms described in the previous two sections.

First, they are all associated with process whose effect on the surface dynamics can be

described by a local response ∆ in Eq. (2), which depends only on the local topography of
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FIG. 3: Schematic plots depicting the transition between stable and unstable surface dynamics

for three dispersion relations. (a) Left column: generalized Bradley-Harper, Eq. (1), where the

transition occurs at Seff,∗ = 0 with diverging wavelength. (b) Middle column: with Facsko non-

local “damping term”, transition occurs at Seff,∗ < 0 with finite wavelength. (c) Right column:

with Asaro-Tiller nonlocal elastic energy mechanism, transition occurs at Seff,∗ > 0 with finite

wavelength.

the surface point that undergoes ion impact. Second, they all give rise to surface dynamics

of the form (1), whose possible bifurcations - transitions between stability and instability

of flat surface - are associated with vanishing amplitude and divergence of the pattern

wavelength at certain beam angles. This is depicted in the left column of Fig. 3, where

we schematically plot the growth rate Rq of Fourier modes with wavenumber q for values

of b above bifurcation (where there exist unstable modes with Rq > 0), at bifurcation, and

below bifurcation (where all modes are decaying Rq < 0). Mathematically, this is reflected

through the fact that bifurcation corresponds to parameter values where the maximal growth

rate (over all Fourier modes) is vanishing: max(Rq) = 0. Because the dispersion relation

from (1) but with S replaced by Seff is Rq = Seff
j q2 − Bq4 (where i = x, y, for parallel

or perpendicular modes, respectively, and where Seff corresponds to any modifications of

13



the BH coefficients associated with local response as described in previous section), we see

that bifurcation described by surface dynamics (1) implies that the typical length scale

(proportional to the inverse wavenumber of the most unstable mode), must diverge.

While stability of flat surfaces at various regimes of beam angles has been noticed in the

past [26], there exists only a handful of reports in the literature on wavelength measurements

near bifurcation. While it is hard to draw general conclusions from few existing results,

there is a substantial evidence that at least some bifurcation points in the dynamics of

ion-sputtered surfaces are characterized by finite rather than diverging wavelength [27–29].

This observation, together with the above argument, suggest that linear surface dynamics

is not fully described by an equation of the form (2), but is rather influenced by nonlocal

processes, whose characteristic spatial range is not necessarily smaller than the scale of the

emerging pattern. General conditions under which this assertion applies are listed in [35].

Here we will demonstrate this principle through two examples.

A. Facsko ”damping” term

The schematic plots in the middle and right columns of Fig. 3 demonstrate the qualitative

effect of such additional mechanisms on surface dynamics near bifurcation. The middle

column describes a bifurcation associated with variation of a modified BH coefficient Seff =

Seff
x , through the variation of a control parameter (e.g. beam angle or ion energy), where

the growth rate Rq is assumed to be dominated by:

Rq = −K + Seffq2 − B̃q4 , (11)

and for simplicity we assume the unstable mode is along the x-direction. The center column

of Fig. 3 reflects the fact that the equation max{Rq} = 0, which represents the bifurca-

tion point, selects a most unstable wavenumber |q| > 0 as bifurcation is approached. To

understand why Eq. (11) reflects a nonlocal process, notice that the constant −K on its

RHS correspond to a ”damping” linear term ∂h/∂t = −Kh(x, t) in the real-space surface

dynamics (in addition to any other terms associated with local response in Eq. (2)). How-

ever, because the dynamics must be invariant under translation h → h + c of the surface

level (where c is any constant), such a term must appear as a part of an integral term

−K[h(x, t) − ∫
dx′h(x′, t)] that preserves this invariance. Such a term was proposed by
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Facsko et al. [31] in order to explain the observations of ordered arrays of ripples and dots

in experiments and simulations [4, 7, 14]. Its physical origin, hypothesized to be related

to nonlocal redeposition, has not been clarified yet. The emergence of a spatial integral

over the whole sputtered surface associated with this term is an example of the principle

mentioned above: Finite wavelength near bifurcation results from a surface response over

scales much larger than the nanometric scales associated with penetration depth and energy

release of the ion.

B. Asaro-Tiller stresses

Another example that yields a bifurcation with finite wavelength upon variation of a

modified BH coefficient Seff , is depicted in the right column of Fig. 3:

Rq = Seffq2 + M |q3| − B̃q4 , (12)

where again we assume for simplicity that the dominant wave vector near bifurcation is along

the x-direction, and denote by Seff = Seff
x , the modified BH coefficient. As in the previous

example, bifurcation is represented by max{Rq} = 0, which is obtained for q = M/2B > 0.

The growth rate Rq in Eq. (12) stems from adding a term M |q|3 associated with induced

stresses in the solid to the ”usual” terms Seffq2 and −B̃q4 associated with local response

in Eq. (1). This term is related to the well-known Asaro-Tiller instability, which develops

on surfaces of solids subject to biaxial stress σ0 [40, 41]. The coefficient M ∝ σ2
0, where σ0

is the induced stress in the near surface region due to the ion bombardment. The nonlocal

mechanism associated with the Asaro-Tiller term is less transparent than the nonlocality

associated with the damping term −K in the growth rate (11), and its derivation is based

on elasticity theory, which we will not discuss here. It suffices to mention that the term

M |q|3 in Rq corresponds to a real-space surface dynamics ∂h/∂t arising from a long-range

elastic interaction and dominated by a (spatial) integral over the whole surface, similar to

the integral associated with the damping term −K. From a mathematical perspective, the

dependence of Rq on a nonanalytic function of q (here |q|3) indicates that this term is not

related to a local (i.e. differential) operator such as ∇3, but rather to some linear integral

of h(x, t).

Although the physical mechanism underlying the growth rate (12) is much clearer than the
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global redeposition process that may give rise to a growth rate of the type (11), preliminary

measurements of the induced stress σ0 (hence the coefficient M in (12)) indicate that M is

too small to affect a qualitative change in the linear dynamics from the shape in Fig. 3a to

the shape in Fig. 3b [42]. Thus, the actual mechanism underlying nonlocal response which

eventually leads to finite pattern wavelength at bifurcation remains unclear.

V. CONCLUSIONS AND OUTLOOK

We described here a theoretical approach for discerning the general form of the linear

dynamics of ion sputtered surfaces by focusing on the analysis near bifurcation points,

where a flat surface becomes unstable to the formation of a topographic pattern upon the

smooth variation of a control parameter (e.g. beam angle or energy). Our analysis, together

with recent experimental observations, suggests that the dynamics are strongly affected by

physical processes that cannot be described as a local response of the surface to ion impact.

This conclusion is arrived at by contrasting our theoretical observation that local response

implies diverging pattern wavelength at putative bifurcations with experimental observations

that clearly indicate the existence of a bifurcation without a diverging length scale.

The actual mechanisms required to explain existing data, however, are still unclear. We

showed that several mechanisms beyond the classical theory of Bradley and Harper can be

relevant in developing a linear dynamics theory that explains all existing data, but it is

quite possible that some of these mechanisms act simultaneously. For example, observations

of a stable flat surface over various regimes of beam angle can be related to local response

(2) to ion impact which are not purely erosive, as described in section III, but observa-

tions of finite pattern wavelength near bifurcations seem to reflect the influence of nonlocal

mechanisms on the surface dynamics. At the current stage, it is hard to conclude which of

the mechanisms outlined in the sections III and IV are actually relevant, because existing

models and experimental measurements of relevant physical parameters are not sufficiently

quantitative. We believe that a prime goal of research in this field is the development of the

general linear dynamics underlying the early stage of pattern formation. As we described

here, the identification of bifurcation points and a careful analysis of pattern features in

their vicinity is an extremely valuable tool for that purpose.

Finally, we mention that although the focus of this review was on linear dynamics, we
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expect the outcome of this study to be an essential cornerstone for the development of a

nonlinear pattern formation theory, which will eventually allow the prediction of pattern

features for a given set of control parameters. This expectation is based on the universal

properties of weakly nonlinear pattern formation theory: quite generally [19], knowledge

of the linear dynamics and the associated leading order nonlinearity (often extracted from

symmetry principles) suffices to classify the possible pattern morphologies near and further

away from bifurcation points.
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used in previous studies, where ẑ is taken to be normal to the (unperturbed) surface, and x̂

is tangential to it. In the linear dynamics discussed in this paper, the transformation from

our coordinate system to this one is obtained by replacing ∂x →
√

1 + b2∂x and ∂h/∂t →
√

1 + b2∂h/∂t.

[45] Notice that the coefficients {Aj} are not unique because the functions e−gj(r)−fj(z) do not

form a basis.

19


