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REDUCTION OF CM ELLIPTIC CURVES AND MODULAR

FUNCTION CONGRUENCES

NOAM ELKIES, KEN ONO AND TONGHAI YANG

1. Introduction and Statement of Results

Let j(z) be the modular function for SL2(Z) defined by

j(z) :=

∞∑

n=1

c(n)qn =

(
1 + 240

∑∞
n=1

∑
v|n v3qn

)3

q
∏∞

n=1(1 − qn)24
= q−1 + 744 + 196884q + · · · ,

where q = e2πiz. The coefficients c(n) possess some striking properties. By “Mon-
strous Moonshine”, these integers occur as degrees of a special graded representation
of the Monster group, and they satisfy some classical Ramanujan-type congruences.
In particular, Lehner proved [Le] that if p ≤ 7 is prime and m is a positive integer,
then for every n ≥ 1 we have

c(pmn) ≡





0 (mod 23m+8) if p = 2,

0 (mod 32m+3) if p = 3,

0 (mod 5m+1) if p = 5,

0 (mod 7m) if p = 7.

Modulo 11, it also turns out that c(11n) ≡ 0 (mod 11) for every positive integer n.
As usual, if U(p) denotes the formal power series operator

(1.1)

(
∞∑

n=−∞

a(n)qn

) ∣∣∣ U(p) :=

∞∑

n=−∞

a(pn)qn,

then these congruences imply that

j(z) | U(p) ≡ 744 (mod p)

for every prime p ≤ 11. It is natural to ask whether such congruences hold for any
primes p ≥ 13.

Date: February 2, 2008.
2000 Mathematics Subject Classification. 11F30, 11G05.
The authors thank the National Science Foundation for its support. The second author is grateful

for the support of the David and Lucile Packard, H. I. Romnes and John S. Guggenheim Fellowships.
1

http://arXiv.org/abs/math/0512350v1


2 NOAM ELKIES, KEN ONO AND TONGHAI YANG

Remark. Since the Hecke operator T (p) acts like U(p) on spaces of holomorphic integer
weight modular forms modulo p, this problem is somewhat analogous to that of
determining whether there are infinitely many non-ordinary primes for the generic
integer weight newform without complex multiplication. Apart from those newforms
associated to modular elliptic curves, for which the existence of infinitely many non-
ordinary primes was shown in [El], little is known.

Serre showed [Se] that the answer to this question for j(z) is negative, an ob-
servation which has been generalized by the second author and Ahlgren [AO]. In
particular, if F (x) ∈ Z[x] is a polynomial of degree m ≥ 1 and p > 12m+1 is a prime
which does not divide the leading coefficient of F (x), then (see Corollary 5 of [AO])

F (j(z)) | U(p) 6≡ a(0) (mod p),

where a(0) is the constant term in the Fourier expansion of F (j(z)).

Remark. In the cuspidal case where (m, p) = (1, 13), it is interesting to note that (for
example, see Section (6.16) or [Se])

(j(z) − 744) | U(13) ≡ −∆(z) (mod 13),

where ∆(z) = q
∏∞

n=1(1 − qn)24 is the usual Delta-function.

Here we investigate the more general question concerning the existence of congru-
ences of the form

(1.2) F (j(z)) | U(p) ≡ Gp(j(z)) (mod p),

where Gp(x) ∈ Z[x]. The result quoted above implies that congruences of the form
(1.2) do not hold for any primes p > 12m + 1. This follows from the simple fact
that the only polynomials in j(z) whose Fourier expansions do not contain negative
powers of q are constant.

In Section 2 we give a general criterion (Theorem 2.3) that proves such congru-
ences, and we apply it to Hilbert class polynomials. For a discriminant −D < 0,
let HD(x) ∈ Z[x] be the associated Hilbert class polynomial. More precisely, HD(x)
is the polynomial of degree h(−D) whose roots are the singular moduli of discrimi-
nant −D, where h(−D) is the class number of the ring of integers OD of Q(

√
−D).

By the theory of complex multiplication, these singular moduli are the j-invariants
of those elliptic curves that have complex multiplication by OD, the ring of integers
of Q(

√
−D).

Although there are no congruences of the form (1.2) for F (x) = HD(x) involving
primes p > 12h(−D)+1, we show that such congruences are quite common for smaller
primes, as Lehner demonstrated for F (x) = H3(x) = x.
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Theorem 1.1. Suppose that −D < 0 is a fundamental discriminant, and that integers

cD(n) are defined by

HD(j(z)) =

∞∑

n=−h(−D)

cD(n)qn.

(1) If p ≤ 11 is prime and h(−D) < p, then

HD(j(z)) | U(p) ≡ cD(0) (mod p).

(2) For every prime p there is a non-positive integer Np such that

HD(j(z)) | U(p) ≡ Gp(j(z)) (mod p),

for some Gp(x) ∈ Z[x], provided that −D < Np and
(
−D
p

)
6= 1. This poly-

nomial Gp(x) has degree ≤ h(−D)/p. In particular, Gp(x) is constant if

h(−D) < p, or more generally if cD(−pn) ≡ 0 (mod p) for every integer

n > 0.

Proving Theorem 1.1 (2) depends heavily on the interplay between singular moduli
and supersingular j-invariants. For a prime p ≥ 5, define the supersingular loci Sp(x)

and S̃p(x) in Fp[x] by

Sp(x) :=
∏

E/Fp supersingular

(x − j(E)),

S̃p(x) :=
∏

E/Fp supersingular
j(E)6∈{0,1728}

(x − j(E)).
(1.3)

These products are over isomorphism classes of supersingular elliptic curves. It is a

classical fact (for example, see [Si1]) that the degree of S̃p(x) is ⌊p/12⌋.
The criterion for proving congruences of the form (1.2) is stated in terms of the

divisibility of F (x) by S̃p(x)2 in Fp[x]. For Hilbert class polynomials, this criterion is
quite natural since a classical theorem of Deuring asserts that the reduction of every
discriminant −D singular modulus modulo p is a supersingular j-invariant when p
does not split in Q(

√
−D).

Therefore, to prove Theorem 1.1 we are forced to consider the surjectivity of Deur-
ing’s reduction map of singular moduli onto supersingular j-invariants, a question
which is already of significant interest. Using classical facts about elliptic curves
with CM and certain quaternion algebras, we reinterpret this problem in terms of
the vanishing of Fourier coefficients of specific weight 3/2 theta functions constructed
by Gross. Then, using deep results of Duke and Iwaniec which bound coefficients of
half-integral weight cusp forms, we obtain the following theorem.
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Theorem 1.2. If p is an odd prime and t ≥ 1, then there is a non-positive integer

Np(t) such that Sp(x)t | HD(x) in Fp[x] for every fundamental discriminant −D <
Np(t) for which

(
−D
p

)
6= 1.

Three Remarks. 1. After this paper was submitted for publication, Bill Duke and
the referee informed us of earlier work of P. Michel [Mi]. In this recent paper, Michel
obtains equidistribution results which imply Theorem 1.2 for discriminants for which
p is inert. His proof, which is different from ours, is based on subconvexity bounds
for L-functions. Our proof, which also includes the ramified cases, is based on non-
trivial estimates of Fourier coefficients of half-integral weight cusp forms. Both proofs
are somewhat related via Waldspurger’s formulas connecting values of L-functions to
Fourier coefficients.

2. Theorem 1.2 is ineffective due to the ineffectivity of Siegel’s lower bound for
class numbers. It is possible to obtain effective results by employing various Riemann
hypotheses (for example, see work [OS] by the second author and Soundararajan
concerning Ramanujan’s ternary quadratic form), or by assuming the non-existence
of Landau-Siegel zeros.

3. Theorem 1.2 is closely related to the work of Gross and Zagier [GZ] which
provides the prime factorization of norms of differences of singular moduli in many
cases.

In Section 2 we use a result of Koike (arising in his study of “p-adic rigidity of
j(z)”) to prove Theorem 2.3. In Section 3 we recall preliminary facts regarding
endomorphism rings of elliptic curves with complex multiplication and quaternion
algebras, and we prove Theorem 1.2 using facts about weight 3/2 Eisenstein series
combined with the Duke-Iwaniec bounds for coefficients of weight 3/2 cusp forms.
Then we combine these results with Theorem 2.3 to prove Theorem 1.1. In Section 4
we conclude with some remarks on numerical calculations related to Theorems 1.1
and 1.2.

2. A congruence criterion and supersingular j-invariants

Here we give a simple criterion which implies congruences of the form (1.2). This
criterion is a simple generalization of Theorem 2 of [AO]. The following result of
Koike (see Proposition 1 of [Koi]), which is a special case of work of Dwork and
Deligne [Dw], describes the Fourier expansion of j(pz) (mod p2) in terms of j(z) and
the collection of supersingular j-invariants. Since clearly j(pz) ≡ j(z)p mod p, we can
describe the Fourier expansion of j(pz) (mod p2) via the reduction modulo p of the
expansion of (j(pz) − j(z)p)/p.

Theorem 2.1. For each prime p there is a rational function δp(x) = Np(x)/S̃p(x),
with Np ∈ Fp[x], such that

(2.1) j(pz) ≡ j(z)p + pδp(j(z)) (mod p2).
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Corollary 2.2. For all F ∈ Z[x] we have

(2.2) F (j(pz)) ≡ F (j(z)p) + pF ′(j(z)p)δp(j(z)) (mod p2),

where F ′ denotes the derivative of F .

Proof. By linearity it suffices to prove this for F = xk (k = 0, 1, 2, . . .). The case k = 0
is trivial; k = 1 is Theorem 2.1; and for k > 1 we may either raise the congruence in
Theorem 2.1 to the power k and reduce mod p2, or argue by induction from the case
k − 1 and the same congruence, obtaining

(2.3) j(pz)k ≡ j(z)pk + pj(z)(k−1)pδp(j(z)) (mod p2)

as claimed. �

We can now deduce our congruence criterion using little more than the theory of
Hecke operators.

Theorem 2.3. Let F (x) ∈ Z[x] be a monic polynomial of degree m, and let

F (j(z)) =
∞∑

n=−m

a(n)qn.

(1) If p is prime and S̃p(x)2 divides F (x) in Fp[x], then

F (j(z)) | U(p) ≡ Gp(j(z)) (mod p),

for some Gp(x) ∈ Z[x] with degree ≤ m/p.
(2) If p ≤ 11 is prime and m < p, then

F (j(z)) | U(p) ≡ a(0) (mod p),

where a(0) is the constant term in the Fourier expansion of F (j(z)).

Proof. For (1), let

F (j(z)) =

∞∑

n=−∞

a(n)qn.

Denote by T0(p) the operator pT (p), that is, p times the usual weight zero pth Hecke
operator. Then we have

(2.4) pF (j(z)) | U(p) = F (j(z)) | T0(p) − F (j(pz)) = p
∞∑

n=−∞

a(pn)qn.

The modular function F (j(z)) | T0(p) is in Z[j(z)] since it has integer Fourier co-

efficients and is holomorphic on H. Since S̃p(x)2|F (x) we have S̃p(x)|F ′(x), whence

also S̃p(x)|F ′(xp). By Corollary 2.2 it follows that F (j(pz)) (mod p2) is congruent
modulo p2 to an integer polynomial in j(z), namely F (j(z))p + pF ′(j(z)p)δp(j(z)).
Thus (2.4) yields the desired congruence modulo p between F (j(z)) | U(p) and a



6 NOAM ELKIES, KEN ONO AND TONGHAI YANG

polynomial in j(z). Moreover, this polynomial must have degree ≤ m/p because
F (j(z)) | U(p) has valuation ≥ −m/p at the cusp.

For (2), we observe that the condition S̃p(x)2|F (x) of (1) is vacuous for p ≤ 11,

because S̃p(x) = 1 for those p. Thus F (j(z)) | U(p) is always congruent mod p to a
polynomial in j of degree at most m/p. In particular, if m < p then this polynomial
reduces to a constant, which must equal a(0) by the definition of U(p).

�

3. Gross’ theta functions and the proofs of Theorems 1.1 and 1.2

Throughout, p shall denote a prime. We begin by recalling certain facts about
elliptic curves with complex multiplication (for example, see Chapter II of [Si2]). Let
B be the unique quaternion algebra over Q ramified exactly at p and ∞. For x ∈ B,
let Q(x) = xx̄ = −x2, the reduced norm of x; the map Q : B → Q is a quadratic form
on B, which is positive-definite because B is ramified at ∞. Fix a maximal order
R ⊂ B. Then Q takes integer values on R, and since B is ramified at p, the subset

π := {x ∈ R | p|Q(x)}

of R is a two-sided ideal with R/π a finite field of p2 elements and π2 = pR.
Let K = Q(

√
−D) be an imaginary quadratic field with ring of integers OD. More

generally, for a positive integer m congruent to 0 or 3 mod 4, let

Om = Z +
1

2
(m +

√
−m)Z,

the order of discriminant −m in Q(
√
−m). An optimal embedding of Om into R is

an embedding in i : Q(
√
−m) →֒ B for which i−1(R) = Om. Such an embedding is

determined by the image of
√
−m in

V = {x ∈ B | tr x = 0},

a 3-dimensional subspace of B. This image must be an element of norm m in the
lattice

L := V ∩ (Z + 2R)

in V , and conversely every v ∈ L of norm m comes from an embedding Q(
√
−m) →֒ B,

which is optimal if and only if v is a primitive vector of L (that is, v /∈ fL for any
f > 1).

Two optimal embeddings i1, i2 are equivalent if they are conjugate to each other
by a unit in R; In other words, if there is u ∈ R× such that i1(x) = ui2(x)u−1 for all
x ∈ Om. Let h(Om, R) be the number of equivalence classes of optimal embeddings
of Om into R. Using the connection between embeddings and lattice vectors, Gross
proved [Gr] that these numbers generate the theta series of L as follows:
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Lemma 3.1. ([Gr], Proposition 12.9) The theta function

θL(z) :=
∑

x∈L

e(Q(x))

is given by

θL(z) = 1 +
∑

m≥1

aR(m)qm,

where

aR(m) = wR

∑

m=f2D

h(OD, R)

u(d)
,

in which u(D) = 1
2
#O×

d and wR = #R×. Moreover, θL is a holomorphic modular

form of weight 3/2 and level 4p.

Remark. This θL(z) is a modular form of half-integral weight in the sense of Shimura [Sh].
Moreover, it lies in Kohnen’s plus-space [Koh].

Now recall that every maximal order of B is isomorphic with the endomorphism
ring of some supersingular elliptic curve E0 over k = Fp, say R = End(E0), with the
ideal π comprising the inseparable endomorphisms of E0. Let Cp be the completion
of an algebraic closure of Qp. The residue field of the unramified quadratic extension
of Qp in Cp is a finite field of p2 elements; call it k. There is then a canonical map
R → k, x 7→ x̃, defined as follows: any x ∈ R = End(E0) induces multiplication by
x̃ on the invariant differentials of E0. The kernel {x | x̃ = 0} is our ideal π, so this
map x 7→ x̃ identifies k with R/π.

Suppose that (E, i) is a CM elliptic curve over Cp with complex multiplication
by OD. We may then choose a map

i : OD
∼→ End(E)

which is normalized in the sense that any a ∈ OD acts on the invariant differentials
of E by multiplication by a. (There are two choices of i, related by conjugation in
Gal(K/Q), and one of them is normalized.) If p is inert or ramified in K, then a

classical result of Deuring states that Ẽ := E mod p is a supersingular elliptic curve
over k, and if Ẽ ∼= E0, then we obtain an optimal embedding

f : OD
∼= End(E) → End(Ẽ) ∼= End(E0) = R,

and moreover the embedding is normalized : if x = f(a) then x̃ is the residue of a
in k. Any embedding equivalent to a normalized one is again normalized, because
conjugation by a unit in R× commutes with our map x 7→ x̃. Since any two isomor-

phisms Ẽ ∼= E0 differ by multiplication by a unit in R×, one sees that the equivalence
class of f is uniquely determined by (E, i). Conversely, given a normalized optimal
embedding f : OD → R, Deuring’s lifting theorem (see [GZ, Proposition 2.7]) asserts
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that there is a CM elliptic curve (E, i), unique up to isomorphism, such that Ẽ ∼= E0,
and its associated optimal embedding is normalized and equivalent to f .

Note now that embeddings of OK into R come in conjugate pairs {i, ı̄}, where

ı̄(a) = i(ā) = i(a). If p is inert in K, then in each pair {i, ı̄} exactly one of i, ı̄ is
normalized, whereas if p is ramified in K then every embedding is normalized. We
have thus proved the following lemma.

Lemma 3.2. Let JD be the set of j-invariants of CM elliptic curves with endomor-

phism ring OD. If we set

JD(E0) = {j ∈ JD | j mod p = j(E0)},
then

#JD(E0) = εh(OD, R),

where R = End(E0) and ε = 1/2 or 1 according as p is inert or ramified in K.

Proof of Theorem 1.2. For every prime p, there are finitely many supersingular elliptic
curves E0 over Fp. So to prove the theorem it suffices to show, for each supersingular
curve E0 with R = End(E0) and each positive integer t, that there is a non-positive
integer Np(t) such that every fundamental discriminant −D < Np(t) with

(
−D
p

)
6= 1

has the property that ordx=j(E0)(HD(x) mod p) ≥ t. By Lemmas 3.1 and 3.2, this is
equivalent to

(3.1) aR(D) ≥ wRt

εu(d)
.

This turns out to be a simple consequence of well-known deep results of Siegel [Si],
Duke [Du], and Iwaniec [Iw]. Indeed, one has by [Si]

(3.2) θL(z) =
12

p − 1
Egen(L)(z) + CL(z),

where Egen(L)(z) is the Eisenstein series associated to the genus of the lattice L and
CL(z) is a cusp form of weight 3/2 and level 4p. Although Siegel’s result is not stated
for forms of half-integral weight forms, the proof follows mutatis mutandis, with the
constant 12/(p−1) coming from Gross’ explicit calculation of these Eisenstein series.
More precisely, he shows in [Gr, (12.11)] (this is 2G in his notation, see also [KRY,
§8]) that

(3.3) Egen(L)(z) =
p − 1

12
+ 2

∑

m>0

Hp(m)qm,

where Hp(m) is a slight modification of Kronecker-Hurwitz class number H(m) de-
fined in [Gr, (1.8)]. In particular, when −D is a fundamental discriminant, one has

Hp(D) =
1

2

(
1 −

(−D

p

))
h(−D)

u(D)
,
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where h(−D) is the ideal class number of K.
By Siegel’s theorem [Si], one has

Hp(D) ≫ D
1

2
−ǫ

for every ǫ > 0 when (−D
p

) 6= 1. On the other hand, a theorem of Duke [Du], which

extended earlier work of Iwaniec [Iw], implies that the coefficients of the cusp form

CL(z) =
∑

m≥1

cL(m)qm

satisfy

|cL(D)| ≪ D
3

7
+ǫ.

Since 3/7 < 1/2, we get

aR(D) =
24

p − 1
Hp(D) + cL(D) ≫ D

1

2
−ǫ.

This proves (3.1), and consequently completes the proof of the theorem. �

Proof of Theorem 1.1. Theorem 1.1 (1) follows immediately from Theorem 2.3 (1).
Theorem 1.1 (2) follows from Theorem 2.3 (2) and Theorem 1.2 by letting Np =
Np(2). �

4. Concluding Remarks

Numerical computations reveal many nearly uniform sets of examples of congru-
ences of the form (1.2). Here we comment on those cases where

HD(j(z)) | U(p) ≡ cD(0) (mod p).

In view of Theorem 2.3, it is natural to investigate those fundamental discriminants
−D < 0 for which

(4.1) p/6 < h(−D) < p.

The lower bound of this inequality is dictated by the fact that the degree of S̃p(x) is
⌊p/12⌋, and the upper bound is chosen so that the U(p) operator does not produce a
Fourier expansion with negative powers of q.

Computations reveal that if −239 < −D < 0 and p is an odd prime satisfying (4.1)
for which

(
−D
p

)
6= 1, then Sp(x)2 divides HD(x) in Fp[x], which, by Theorem 2.3, in

turn implies that

HD(j(z)) | U(p) ≡ cD(0) (mod p).

This uniformity suggests that this phenomenon might hold in generality. However,
this is not true; when −D = −239, we have

H−239(j(z)) | U(79) ≡ 44 + 2q + 62q2 + · · · (mod 79),
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although 79 is inert in Q(
√
−239) and h(−239) = 15. In this case S79(x) divides

H239(x) in F79[x], but the supersingular j-invariant j = −15 is a root of multiplicity
only 1. This raises the following natural question.

Question. If p is an odd prime, then define Ωp by

Ωp :=

{
−D fundamental

∣∣ p/6 < h(−D) < p and

(−D

p

)
6= 1

}
.

In general, what “proportion” of −D ∈ Ωp have the property that

HD(j(z)) | U(p) ≡ cD(0) (mod p)?
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