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The unit of charge in nature is a fundamental constant. In reduced dimension, 

however, charge may be fractionalized. A prominent example in two dimensions is 

the fractional quantum Hall effect in which the elementary charge excitations are 

quantized to e/(2p+1), where e is the unit of electric charge and p is an integer1-3. 

Quantum one-dimensional (1D) systems have also been theoretically predicted to 

carry charge in units smaller than a single electron charge. Unlike 2D systems, the 

charge excitations in 1D are not quantized and depend directly on the strength of 

the Coulomb interactions. For example, in a system with momentum conservation, it 

is predicted that the charge of a unidirectional electron that is injected into the wire 

decomposes into a right and left moving charge excitations carrying fractional 

charge f0e and (1-f0)e respectively4,5.  f0 approaches unity for non-interacting 

electrons and is less than one for repulsive interactions.  In this work we provide the 

first direct measurements of fractional charge in 1D. We realize a 3-terminal 

geometry where unidirectional electrons are injected at the bulk of a wire and the 

resulting current at drains located on both sides is measured. The result is presented 

in terms of an asymmetry parameter, defined as AS = (IR-IL)/(IR+IL), IR,L being the 

currents detected on the right and left. AS depends on the extent of 

fractionalization, but also on details of the coupling at the drains.  We evaluate the 

effect of drain coupling by measuring the 2-terminal conductance G2T between the 

right and left drains, finding that G2T/G0 = AS, where G0 = (2e2/h) is the quantum of 
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conductance. We argue, based on a theoretical model that this observed equality 

proves that the tunneling electron charge fractionalizes as predicted by theory. 

 

Charge fractionalization in 1D is already predicted for the spinless Luttinger model4,5. 

The charge fraction f0 is given by  

 ( ) 210 cgf += ,     (1) 

where gc is the Luttinger liquid interaction parameter. For a Galilean invariant system, 

gc=vF/vc, where vF is the bare Fermi velocity and vc is the velocity of charge excitations.  

Roughly, ( ) 2
1

21 −+≈ Fc Ug ε , where U is the Coulomb interaction energy, and εF  is the 

Fermi  energy. In a spinful 1D system, this charge fractionalization occurs in addition to 

spin-charge separation, which is another type of electron fractionalization. Spin-charge 

separation has been recently confirmed by spectroscopy and tunneling experiments6-8 and  

will therefore not be addressed in this work. 

Observing charge fractionalization in an experiment is a considerable challenge: In 2D, 

Laughlin’s theory of the fractional quantum Hall effect was confirmed by low-frequency 

shot-noise measurements1,3, as well as by direct charge sensing with a single electron 

transistor9. However, FQH edge states are chiral, propagating along the edges of a 2-

Dimensional Electron Gas (2DEG), so that counter-propagating modes are spatially 

separated. In contrast, the non-chiral quantum wire modes are confined to the same 

spatial channel, and cannot be contacted individually. As a result their chemical 

potentials renormalize in a non-trivial manner when adiabatically coupled to metallic 

leads, making interaction physics difficult to observe. For example, the DC 2-terminal 

conductance with ideal contacts is universal and given by , independent 

of interactions5,10-13. Furthermore, low-frequency shot-noise measurements in an ideal 

wire would only reveal the physics of the Fermi-liquid contacts, remaining insensitive to 

fractionalization14. Although this difficulty is removed at frequencies exceeding vF / gcL ~ 

10

heGG /2 2
0 ≡=

10 Hz, where the excitation wave-length is shorter than the wire segment15-17, these 

frequencies are difficult to explore experimentally at low-temperatures. 

Initial experimental indication of electron fractionalization in 1D is provided by angle-

resolved photo-emission spectroscopy (ARPES) measurements on stripe-ordered cuprate 
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materials8. Recent theoretical studies have proposed transport experiments aimed at 

detecting the same physics in quantum wires. Generally, these involve the realization of 

multi-terminal geometries, including: (i) Local injection of electrons into a wire, where 

high-frequency noise-correlations are expected15; (ii) A four-probe geometry, measuring 

voltage shot-noise due to an impurity18;  (iii) Studying the DC I(V) curves in the presence 

of a bulk contact19; (iv)  Measuring the suppression of Aharonov-Bohm interference 

between two weakly coupled wires 20. 

In this work we realize our own version of a multi-terminal geometry: We use a double-

wire system previously applied to the study of spin-charge separation7,21 and localization 

in 1D22. Using momentum conservation in the tunneling process between the two wires 

we inject unidirectional electrons to the bulk of a wire, with fractionalization resulting in 

currents detected on both sides of the injection region. The ratio of these currents together 

with a 2-terminal reference measurement and a separate measurement of gc allows us to 

extract the extent of charge fractionalization. 

The double quantum-wire sample (Figure 1a) is prepared using Cleaved Edge 

Overgrowth (CEO): Two parallel 2D quantum wells are grown by standard techniques in 

a GaAs / AlGaAs heterostructure, followed by cleavage in the MBE vacuum chamber 

and a subsequent growth sequence on the cleaved plane. The second growth-sequence 

induces 1D channels that are quantum confined at the edge of the quantum wells. The 

Upper Wire (UW) is 20 nm or 25 nm wide, and the Lower Wire (LW) is 30 nm wide. 

They are separated by a 6 nm wide barrier, 300 mV high, designed to allow measurable 

tunneling. 

The samples are designed to have only the top 2DEG populated (light blue in Figure 1a), 

serving as a contact to the UW (dark blue) at its edge. The experimental geometry is 

controlled by the application of negative voltage to tungsten top-gates. The gates are 

tuned to deplete the UW while leaving the LW (dark green) continuous. The 3-terminal 

geometry which is presented in the figure requires biasing two gates (G1 and G2) defining 

a finite central junction of length LS = 10-40 μm, and a semi-infinite junction on each 

side. The short junction serves as the source and the long junctions 1 and 3 as drains. We 

measure the differential tunneling conductance ∂IT/∂VSD between the source and each 
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drain using standard lock-in techniques. Typically dVSD is 14 μV and the frequency a few 

Hz. The measurements are performed in a 3He refrigerator at T = 0.25 K. 

Since LS >> 1/kF, and the wires are parallel to within atomic precision, even the finite 

source junction is in effect translationally invariant and the tunneling electrons conserve 

both energy ε and momentum ħk, k being the wave-number. Source-drain voltage VSD 

controls the energy of the tunneling electrons. Here the DC component of VSD is set to 

zero, and an AC component, smaller than temperature, is added for lock-in purposes. A 

magnetic field, B, applied perpendicular to the cleave plane, adds momentum  

to the tunneling electrons, d being the distance between the centers of the wires. It is 

instructive to describe tunneling between the wires in terms of their energy-momentum 

dispersions. B has the effect of shifting both dispersions relative to one another along the 

momentum axis, as seen in the Fig. 2a, which depicts their relative positions for various 

magnetic fields. Since VSD = 0, both dispersions have the same electro-chemical potential. 

The UW is represented by the dispersions of one 1D mode and the 2DEG, and the LW by 

one 1D mode. The dispersions are presented by parabolae as an illustration, but in reality 

are more complex due to electron-electron interactions. Typically at B = 0 the two 1D 

dispersions do not overlap (i), since the wires have different densities, and tunneling is 

suppressed. Applying a field B- shifts the dispersions to overlap near one of the Fermi-

points (ii), allowing tunneling between co-propagating electrons. The high field crossing 

of the two dispersions, where electrons tunnel between counter-propagating modes is 

marked as B+ (iv, v) where 

eBdq =Bh

L
F

U
F kkB ±=± h  , U/L standing for UW / LW. A key feature of 

this measurement geometry is that at B = B±, electrons with a well-defined momentum-

state, near the Fermi-point, are added to the LW. Typically each wire is populated by 

several sub-bands, but tunneling between different sub-bands is suppressed by near-

orthogonality 21, so that each sub-band j contributes a single pair of peaks, denoted Bj
±.  

In Figure 2b the right and left differential conductances ∂IR/∂VSD and ∂IL/∂VSD for LS = 10 

μm are plotted vs. B. They are measured by applying differential voltage at the source, 

and reading the current at each of the left and right drains. As B is scanned from zero to 

positive fields, small, sharp peaks are first encountered at B-
1,2. The wide feature at 

1T<B<3T results from tunneling between the populated 2DEG in the upper quantum well 

and the LW (Fig 2a (iii)). Further increasing the field, we finally encounter the B+ feature 
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at B = 6.5T. In order to check whether the original directionality of the injected electrons 

is conserved, we now compare the conductance of both drains. Pronounced directional 

asymmetry emerges near the B+ feature: At B = +B+ left-moving electrons are injected 

into the LW (Fig 2a (iv)), and the current detected at the left drain is indeed significantly 

stronger than on the right. Exactly opposite values appear at B = -B+, attesting to the 

geometric symmetry of the sample. A similar effect appears near the B- features, but is 

more difficult to observe since the differential conductance is small relative to a strong 

background signal. We note that the current associated with injection from the 2DEG is 

relatively symmetric. This suggests that the 2D-1D tunneling conductance may involve 

significant contribution from processes which do not conserve momentum. 

The effect observed near -B+ is quantified by an asymmetry parameter 

( ) ( )LRLR IIIIAS +−≡ ; The deviation from perfect asymmetry cannot a-priori be 

attributed to fractionalization since the wire is not perfect, and microscopic effects such 

as back-scattering can suppress AS by distributing the charge evenly in the wire before it 

has chance to be detected. Moreover, complicated processes associated with coupling of 

the interacting wire with the non-interacting leads also take place in the drains and may 

lead to a smaller overall asymmetry. In order to isolate fractionalization physics from 

such microscopic effects we also measure the 2-terminal conductance between the left 

and right drains. The 2-terminal conductance, being independently sensitive to these 

microscopic processes, allows us to extract the extent of fractionalization from AS. To 

demonstrate this we use a model (the geometry of which is depicted in figure 1b) 

derivable from Luttinger liquid theory when a single sub-band is occupied in the LW. 

The model should also be a good approximation when there are several occupied sub-

bands, as the contacts communicate with only one of the sub-bands, scattering between 

sub-bands is small, and gates G1,2 transmit only the lowest sub-band.  

The chemical potentials V1,3 in the UW (subscript indicates junction) are set by the 2DEG 

that couples to both right and left-moving UW modes 23. According to Luttinger liquid 

theory, we may define separate chemical potentials for right and left-moving LW charge 

modes on each side of the central junction, denoted y1,3 , w1,3 respectively.  These are 

defined so that the current (right-moving) at any point is given by I = gc G0 (y - w), where 

G0 = 2e2/h, while w+y is determined by the charge density, such that in equilibrium, 
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where I=0,  y and w are equal to the electron chemical potential V. With these definitions, 

one finds that a right moving charge excitation will affect the local value of y, but leave w 

unchanged, and vice versa. At the two end contacts, if the currents are small enough so 

that linear response applies, we must have y1 = βV1 +γ w1, w3 =βV3 + γ y3, where the 

parameters β and γ must satisfy β + γ = 1 so that y=w=V in equilibrium. We have 

assumed here that the two junctions have identical parameters. We note without limiting 

the generality of the model, β accounts for both backscattering occurring in the LW as 

well as any process associated with the coupling of the LW to the Fermi liquid leads. 

For the two-terminal conductance, no current enters the LW at the center contact, so if 

there is no scattering there, we must have w1 =w3 and y1=y3, and we compute G2T = I/(V3-

V1).  This yields ( )ββ −= 202 GgG cT . We note that the gc dependence is a consequence 

of the boundary conditions at equilibrium.  For the three terminal conductance, we set 

V1=V3=0, and require that IR+IL = IS, where IS is the injected current, IR= gc G0 (y3-w3) is 

the net right-moving current in the right half of the wire and  IL= gc G0 (w1-y1) is the left-

moving current in the left half of the wire .   

At B = -B+, where the center contact injects right moving electrons, if we assume that an 

(unknown) fraction  f of each electron charge travels to the right, this means that gcG0(y3-

y1)= IS f  and  gcG0 (w1-w3) = IS (1-f).    

Now solving for ( ) ( )LRLR IIIIAS +−=  we obtain: 

  ( 12
2

−
−

= fAS
β

)β ,  (2) 

 and hence the ratio: 

 
12

][ 02

−
=

f
g

AS
GG cT ,(Error! Bookmark not 

defined.3) 

at least for a single mode wire. This is a fundamental result: It implies that regardless of 

the microscopic details, it is sufficient to measure G2T , AS and  under the same 

conditions in order to extract f.  

cg

We therefore proceed to measure G2T between contacts O1 and O3, (Figure 1a). This 

requires tuning the voltage of a single gate (G2 or G1 in the figure) to deplete the UW. 

Since coupling to the LW is via tunneling, G2T depends on B, and should be maximal 
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when B = B+. G2T vs. VG scans are presented in Figure 3a, depicting line-scans taken at 

different magnetic fields close to B+. For VG = -1.58 V conductance through the UW is 

suppressed. For -1.76 < VG < -1.58 V current flows through the LW, coupled by junctions 

1, 3. For each line-scan G2T(B) is taken as the maximal value in this range and is 

presented as a dot in panel B. The result appears to fit a Lorentzian, possibly related to 

variations of the density or of the tunneling rate along the wire. 

We study the ratio G2T / AS by comparing G2T(B+) and AS(B+) at different wire densities. 

Density is controlled either by biasing a side-gate, evaporated over the cleave plane, or by 

shining infrared light on the sample. The results are plotted in Figure 4. In the observed 

density-range G2T appears to depend linearly on nL, the line intercepting G2T(nL) = 0 at a 

finite density of nL = 20 μm-1. The mechanism underlying this dependence is not 

understood. Superimposing the asymmetry results on this plot yields the key 

experimental finding of this work: AS(nL) lies on top of the G2T(nL) line, showing that G2T 

= AS in all these cases. Only few AS data-points are presented since this measurement 

imposes a stringent requirement: The density distribution along the sample has to be very 

smooth, so that the density in the source junction would be identical to the densities in 

both drain junctions. This implies that the maximal tunneling-rate appearing at B = B+ 

will occur at the same magnetic field everywhere. The inset to Figure 4 shows that G2T = 

AS even when the density distribution is not perfectly smooth: In these cases the B+ 

feature appearing in the asymmetry scan reflects the local density at the source junction, 

marked BS
+, and the B+ feature of the 2-terminal measurement reflects density in larger 

regions at the drains. The AS result is therefore taken at BS
+ and should be compared to 

G2T at the same field. This is done by super-imposing a data-point AS(BS
+) on a plot of 

G2T(B), taken at the same conditions. In order to present compiled data from different 

scans, where the height and width of the G2T(B) Lorentzian are different, we normalize 

each Lorentzian to unity height and width, and apply the same transformation to the 

respective AS(BS
+) data-point, verifying that AS(BS

+) = G2T(BS
+). 

The compiled measurements presented in Figure 4 show that the result AS = G2T is 

robust: It holds for different samples, at different densities, and even when the sample has 

an uneven density-distribution. Returning now to Eq. 3, we have ( ) cgf =−12 , 

confirming that the fractionalization factor is ( ) 21+= cgf , as theoretically predicted by 
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Luttinger theory4 for an ideal momentum-conserving directional injector. To determine 

the value of f we need an independent evaluation of cg . Following the method outlined in 
21 we measure the tunneling conductance of the source junction as a function of both B 

and VSD, allowing us to extract the spin and charge-mode dispersions. According to 

Luttinger liquid theory, for a Galilean invariant system, gc=vF/vc. We thus obtain values 

of 0.4 < gc < 0.5, as observed in our previous work for the range of our observed densities 

implying that the fractionalization ratios are in the range of 0.7 < f < 0.75. 

In summary, we have measured an asymmetry in the electrical current obtained by 

injecting directional electrons into a quantum wire, and have found a direct relation 

between it and the separately measured two-terminal conductance. This relation can be 

explained by a simple model for an interacting single-mode wire, provided that each 

injected electron is fractionalized, with a forward-moving fraction ( ) 21+= cgf , where 

cg  is the charge coupling constant that enters Luttinger liquid theory.  This fraction is in 

fact the result predicted by Luttinger liquid theory for injection at an ideal momentum-

conserving contact.  The actual values of cg , and thus of f, were determined from 

tunneling measurements as a function of source-drain voltage and magnetic field. 
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Figures 

 

 

Figure 1: a, Cleaved-Edge-Overgrowth sample. Both wires (UW – blue; LW - green) form on the 

cleaved edge, facing the page. The UW is at the edge of a populated 2DEG (light blue) serving as a contact, 

through ohmic contacts O1, O2, O3. 2-terminal geometry is realized by biasing gate G1 to deplete the UW, 

so that transport takes place by tunneling into the LW and back via tunnel-junctions 1 and 3. The 3-terminal 

geometry is realized by depleting the UW using both gates G1,2, which define a finite source junction. 

Contact O2 is biased, and DC current to drains O1, O3 is measured. Magnetic field B applied perpendicular 

to the cleave plane allows momentum-control of tunneling. 

b, Phenomenological model: Junctions 1 and 3 are characterized by parameter β. In junction 1, the 

chemical potential of the outgoing LW charge-mode y1 depends on the incoming potential w1 and the UW 

potential V1. The same holds for junction 3. In the 3-terminal geometry current IS is injected at the source. 

Note: V1,3 are the UW electron-potentials at the junction, in equilibrium with the 2DEG.  
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Figure 2: 3-Terminal asymmetry measurement. a, Annotations depicting the dispersion arrangement for 

each major feature. Blue (red) - single mode in the LW (UW). UW 2DEG is depicted by rotated dispersion. 

(i) B = 0; (ii) B = B-; (iii) 2D-1D tunneling (iv) B = +B+; (v) B = -B+. The red dot represents the injected 

electrons. Note that since the UW density is larger than the LW density, at B = B- right movers are injected. 

At B = B+ left movers are always injected. b, Differential conductance at the right and left drains is plotted 

vs. B. Current is detected whenever populated states in one wire overlap unpopulated states in the other. 

The wide features around B = ±2T are associated with tunneling from the upper 2D to the LW. The sharp 

features at B = ±6.5T = ±B+ are associated with the overlap of counter-propagating 1D states in both wires. 

When B = +B+, left-moving electrons are injected to the LW, and the majority of the current is detected at 

the left drain. At B = -B+ the majority of the current is detected at the right. The right / left vs. B± symmetry 

attests to the geometrical symmetry of the right and left drains. 
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Figure 3: 2-terminal conductance scans. a, G2T vs. VG, for 4.825 T < B < 5.75 T. The LW conductance 

step is defined  between VG =-1.58 V, where the last UW mode closes, and VG=-1.76 V, where the LW 

closes. Coupling to the LW is done via junctions 1, 3 (Fig. 1). The height of the step increases as B 

approaches B+. At each B, the data-point G2T(B) is defined as the maximal value in the range marked by the 

two vertical lines. b, G2T vs. B, as extracted from (a). The solid line is a Lorentzian fit. B < B+ scans are 

omitted from (a) for clarity. 
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Figure 4: G2T (dots) and AS (triangles), plotted vs. LW density nL for three different samples. The line 

is a linear fit. Density control: Sample 13#1 – side-gate; 10#4, 11#1 – Illumination. Inset: AS vs. BS
+ (dots); 

G2T(B) Lorentzian (line). In order to present compiled data from different densities, where Lorentzian width 

and height vary, we normalized each Lorentzian to unity width and height. AS vs. BS
+ data-point is then 

subject to the same normalization (see text). 
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