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Abstract: We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where

the electron-electron scattering time is faster than the electron-impurity scattering time. Our

hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by

perturbatively small inter-valley scattering, and long-range Coulomb interactions. The con-

ductivity matrix of our theory is Onsager reciprocal and positive-semidefinite. In addition to

the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly

expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp,

experimentally accessible signature of this axial-gravitational anomaly, even beyond the hy-

drodynamic limit.
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Introduction1

The recent theoretical predictions [1, 2, 3] and experimental discoveries [4, 5, 6] of Weyl semimetals open
up an exciting new solid state playground for exploring the physics of anomalous quantum field theories.
These anomalies can lead to very striking signatures in simple transport measurements. Upon applying
a magnetic field B = Bẑ and measuring the electrical conductivity σzz parallel to B, one predicts σzz
has a contribution which grows as B2 [7, 8, 9]. This “longitudinal negative magnetoresistance” is a
direct signature of the anomaly associated with the Weyl points in momentum space. Similar results
have also been predicted for thermal and thermoelectric transport [10, 11]. Negative magnetoresistance
in σ, with the predicted B2 dependence, has been observed experimentally in many different materials
[12, 13, 14, 15, 16, 17, 18].

So far, the theories of this negative magnetoresistance assume two facts about the dynamics of the
quasiparticles of the Weyl semimetal. Firstly, it is assumed that the quasiparticles are long lived, and
that a kinetic description of their dynamics is valid. Secondly, it is assumed that the dominant scattering
mechanism is between quasiparticles and impurities or phonons. In most simple crystals – including Weyl
semimetals – it is likely that this description is reasonable.

However, there are exotic metals in which the quasiparticle-quasiparticle scattering time is much
smaller than the quasiparticle-impurity/phonon scattering time. In such a finite temperature metal,
the complicated quantum dynamics of quasiparticles reduces to classical hydrodynamics of long lived
quantities – charge, energy and momentum – on long time and length scales. Most theoretical [19, 20, 21,
22, 23, 24, 25] and experimental [26, 27, 28] work on such electron fluids studies the dynamics of (weakly
interacting) Fermi liquids in ultrapure crystals. As expected, the physics of a hydrodynamic electron
fluid is qualitatively different from the kinetic regime where quasiparticle-impurity/phonon scattering
dominates, and there are qualitatively distinct signatures to look for in experiments.

Experimental evidence for a strongly interacting quasirelativistic plasma of electrons and holes has
recently emerged in graphene [29, 30]. The relativistic hydrodynamic theories necessary to understand this
plasma are different from ordinary Fermi liquid theory [31], and lead to qualitatively different transport
phenomena [32, 33]. The hydrodynamics necessary to describe an electron fluid in a Weyl material, when
the Fermi energy is close to a Weyl node, is similar to the hydrodynamics of the graphene plasma, though
with additional effects related to anomalies [34, 35]. Such a quasirelativistic regime is where negative
magnetoresistance is most pronounced [9], and also where interaction effects can be strongest, due to the
lack of a large Fermi surface to provide effective screening.

In this paper, we develop a minimal hydrodynamic model for direct current (dc) thermoelectric trans-
port in a disordered, interacting Weyl semimetal, where the Fermi energy is close to the Weyl nodes. The
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first hydrodynamic approach to transport in a Weyl semimetal may be found in [36] (see also [37, 38]). In
contrast to these, our approach manifestly ensures that the conductivity matrix is positive-semidefinite
and Onsager reciprocal. We apply an infinitesimal electric field Ei and temperature gradient ∂iT to a
Weyl semimetal, and compute the total charge current Ji and heat current Qi using hydrodynamics. We
then read off the thermoelectric conductivity matrix defined by(

Ji
Qi

)
=

(
σij αij
T ᾱij κ̄ij

)(
Ej
−∂jT

)
. (1)

In the limit where disorder, magnetic field and intervalley scattering are perturbatively weak, we show
that all conductivities may be written as the sum of a Drude conductivity for each valley fluid, and a
correction due to intervalley scattering: e.g. σij = σDrude

ij + σanomij . We present a general formula for the

coefficient of B2 in σanomzz : the quantitative dependence of this coefficient on temperature and electron
density can be different from quasiparticle-based methods.

While the qualitative form of our results (e.g. σanomij ∼ BiBj) is very similar to that found using kinetic
theory approaches [8, 9, 10, 11], we strongly emphasize that the physical interpretations are often quite
different. For example, the emergence of Drude conductivities in our model is not due to the existence of
long lived quasiparticles, but due to the fact that momentum relaxation is a perturbatively slow process
[31, 39]. Furthermore, distinct anomalies are responsible for the negative magnetoresistance in electrical
vs. thermal transport. This remains true even beyond our strict hydrodynamic limit.

In this paper, we work in units where ~ = kB = e = 1. We will also generally set the Fermi velocity
vF = 1. In our relativistic formalism, the effective speed of light is set by vF.

Weyl Hydrodynamics2

We begin by developing our hydrodynamic treatment of the electron fluid, assuming the chemical potential
lies close to the charge neutrality point for every node. For simplicity, we assume that the Weyl nodes are
locally isotropic to reduce the number of effective parameters. It is likely straightforward, though tedious,
to generalize and study anisotropic systems.

We will firstly review the hydrodynamic theory of a chiral fluid with an anomalous axial U(1) sym-
metry, derived in [34, 35]. Neglecting intervalley scattering, this theory describes the dynamics near one
Weyl node. The equations of relativistic chiral hydrodynamics are the conservation laws for charge, en-
ergy and momentum, modified by the external electromagnetic fields which we denote with Fµν . On a
curved space with Riemann tensor Rαβδγ , they read

∇µTµν = F νµJµ −
G

16π2
∇µ
[
ερσαβFρσR

νµ
αβ

]
, (2a)

∇µJµ = −C
8
εµνρσF

µνF ρσ − G

32π2
εµνρσRαβµνR

β
αρσ, (2b)

where C is a coefficient related to the standard axial anomaly and G is a coefficient related to an axial-
gravitational anomaly [40]. For a Weyl fermion

C =
k

4π2
, G =

k

24
, (3)

with k ∈ Z the Berry flux associated with the Weyl node [41]. Jµ and the energy-momentum tensor Tµν

are related to the hydrodynamic variables of chemical potential µ, temperature T , and velocity uµ in a
tightly constrained way [34, 35], which we review in the SI. We will take the background electromagnetic
field to be

F = Bdx ∧ dy + ∂iµ0dxi ∧ dt, (4)
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with B a constant. Constant B is required by Maxwell’s equations for the external electromagnetic field
in equilibrium, at leading order.

A single chiral fluid cannot exist in a Weyl material. Instead, enough Weyl nodes must exist so that
the “net” C for the material vanishes. This follows mathematically from the fact that the Brillouin zone
of a crystal is necessarily a compact manifold and so the sum of the Berry fluxes associated with each
node must vanish – this is the content of the Nielsen-Ninomiya theorem [7]. Hence, we must consider the
response of multiple chiral fluids when developing our theory of transport.

One might hope that so long as each chiral fluid has a well-behaved response, then the net conduc-
tivities are simply additive. This is not so: the transport problem is ill-posed for a single chiral fluid,
once we apply a background magnetic field. To see this, suppose that we apply an electric field such that
E ·B 6= 0. Then, the total charge in the sample obeys

dQtot

dt
=

∫
d3x ∂µJ

µ = CE ·BV3, (5)

with V3 the spatial volume of the metal. Even at the linear response level, we see that there is a necessary
O(E) time-dependence to any solution to the hydrodynamic equations (with spatial directions periodically
identified). If there is no static solution to the equations of motion, then any dc conductivity is an ill-posed
quantity to compute. There is also energy production in a uniform temperature gradient, proportional to
G∇T ·B, even when C = 0 (see the SI).

The physically relevant solution to this issue is that multiple Weyl nodes exist in a real material, and
this means that we must consider the coupled response of multiple chiral fluids. Rare intervalley processes
mediated by phonons and/or impurities couple these chiral fluids together [8] and make the transport
problem far richer for Weyl fluids than for simpler quantum critical fluids, including the Dirac fluid [32].

We label each valley fluid quantity with the labels ab · · · . For example, uµa is the velocity of valley
fluid a . To avoid being completely overwhelmed with free parameters, we only include coefficients at
zeroth order in derivatives coupling distinct fluids together. In fact, this will be sufficient to capture the
negative magnetoresistance, as we explain in the next section. Accounting for this coupling modifies the
conservation equations to

∇µJµa = −Ca
8
εµνρσF

µνF ρσ − Ga
32π2

εµνρσRαβµνR
β
αρσ −

∑
b

[Rabνb + Sabβb] , (6a)

∇µTµνa = F νµJµa −
Ga

16π2
∇µ
[
ερσαβFρσR

νµ
αβ

]
+ uνa

∑
b

[Uabνb + Vabβb] , (6b)

where we have defined βa ≡ 1/Ta and νa ≡ βaµa. The transport problem is well-posed if∑
a

Ca =
∑
a

Ga = 0. (7)

The new coefficients R,S,U and V characterize the rate of the intervalley transfer of charge, energy
and momentum due to relative imbalances in chemical potential or temperature. In writing (6), we have
chosen the intervalley scattering of energy and momentum to be relativistic. This makes the analysis
easier as it preserves Lorentz covariance, but will not play an important role in our results. In particular,
the intervalley momentum transfer processes are subleading effects in our theory of transport.

The gradient expansion may be different for each fluid, but we will assume that Jµa and Tµνa depend
only on fluid a. We require that∑

a or b

Rab =
∑
a or b

Sab =
∑
a or b

Uab =
∑
a or b

Vab = 0. (8)
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This ensures that globally charge and energy are conserved, as well as that uniform shifts in the background
chemical potential and/or temperature, for all fluids simultaneously, are exact zero modes of the equations
of motion.

For simplicity in (6), we have implicitly assumed that the Weyl nodes are all at the same chemical
potential in equilibrium. This is generally not true for realistic Weyl materials. As non-trivial issues in
hydrodynamics already arise without making this generalization, we will stick to the case where all Weyl
nodes are at the same chemical potential in equilibrium in this paper.

For the remainder of this paper, we will be interested in transport in flat spacetimes where Rµναβ = 0.
Except where otherwise stated, we will assume Minkowski space from now on. Hence, for most purposes,
we write partial derivatives ∂µ rather than covariant derivatives ∇µ. However, we will continue to use the
covariant derivative ∇µ at intermediate steps of the calculations where it is necessary.

2.1 Thermodynamic Constraints

We will now derive the constraints on our hydrodynamic parameters which are imposed by demanding that
the second law of thermodynamics is obeyed locally. Without intervalley coupling processes, and at the
ideal fluid level (derivative corrections, including Fµν , are neglected), the second law of thermodynamics
implies that the total entropy current sµ (where sa is the entropy density of fluid a) obeys (see e.g. [42, 43])

∂µs
µ = ∂µ

(∑
a

sau
µ
a

)
= 0. (9)

In the more generic, non-ideal, case the right hand side of (9) must be non-negative. In our theory of
coupled chiral fluids, the right hand side of (9) does not vanish already at the ideal fluid level:

∂µs
µ =

∑
ab

(βa [Uabνb + Vabβb] + νa [Rabνb + Sabβb]) ≥ 0. (10)

There is no possible change we can make to the entropy current that is local which can subtract off the
right hand side of (10). Hence, we demand that the matrix

A ≡
(
R −S
−U V

)
, (11)

is positive semi-definite.
Using standard arguments for Onsager reciprocity in statistical mechanics [44], one can show that

A = AT. In the SI, we will show using the memory matrix formalism [45, 39] that whenever the quantum
mechanical operators na and εa are naturally defined:

AIJ = T lim
ω→0

Im
(
GR
ẋI ẋJ

(ω)
)

ω
, (12)

where xI denotes (na, εa) and dots denote time derivatives. We also prove (8), and the symmetry and
positive-semidefiniteness of A through the memory matrix formalism, at the quantum mechanical level.

2.2 Equilibrium Fluid Flow

We now find an equilibrium solution to (6). Beginning with the simple case of B = 0, it is straightforward
to see following [46] that an equilibrium solution is

µa = µ0(x), (13a)
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Ta = T0 = constant, (13b)

uµa = (1,0). (13c)

Indeed as pointed out in [46, 32], this exactly satisfies (6) neglecting the inter-valley and anomalous terms.
Using (8) it is straightforward to see that the intervalley terms also vanish on this solution. If B = 0 then
CεµνρσF

µνF ρσ = 0, and hence this is an exact solution to the hydrodynamic equations. We define the
parameter ξ as the typical correlation length of µ(x): roughly speaking, ξ ∼ |µ0|/|∂xµ0|.

Following [43], we can perturbatively construct a solution to the equations of motion when B 6= 0,
assuming that

B � T 2 and 1� ξT. (14)

Both of these assumptions are necessary for our hydrodynamic formalism to be physically sensible. Using
these assumptions, it is consistent at leading order to only change via 6= 0, but to keep µa and Ta the
same:

vza =
Caµ

2
0B

2(εa + Pa)
+
GaT

2
0B

εa + Pa
≡ v(µ(x), T, Bi). (15)

It may seem surprising that in a single chiral fluid, there would be a non-vanishing charge current.
This is a well-known phenomenon called the chiral magnetic effect (for a recent review, see [47]). In our
model, the net current flow is the sum of the valley contributions:

Jz =
∑
a

Jza =
∑
a

Caµ0B = 0, (16)

and so indeed, this complies with the expectation that the net current in a solid-state system will vanish
in equilibrium, as discussed (in more generality) in [41, 48].

Thermoelectric Conductivity3

We now linearize the hydrodynamic equations around this equilibrium solution, applying infinitesimally
small external electric fields Ẽi, and temperature gradients ζ̃i = −∂i log T to the fluid. Although we
have placed an equals sign in this equation, we stress that we will apply ζ̃i in such a way we may apply
a constant temperature gradient on a compact space (with periodic boundary conditions). Applying a
constant Ẽi is simple, and corresponds to turning on an external electric field in Fµν . Applying a constant
ζ̃i is more subtle, and can be done by changing the spacetime metric to [49]

ds2 = ηµνdxµdxν − 2
e−iωt

−iω
ζ̃idxidt. (17)

ω is a regulator, which we take to 0 at the end of the calculation. This spacetime is flat (Rαβγδ = 0). In
order to account for both Ẽi and ζ̃i, the external gauge field is modified to A+ Ã, where

Ãi = −
(
Ẽi − µ0(x)ζ̃i

) e−iωt

−iω
. (18)

The hydrodynamic equations (6) must then be solved in this modified background. In linear response,
the hydrodynamic variables become

µa = µ0(x) + µ̃a(x), (19a)

Ta = T0 + T̃a(x), (19b)
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uµa ≈
(

1 + via
ζ̃ie
−iωt

iω
, via + ṽia

)
. (19c)

Note that tilded variables represent objects which are first order in linear response. The correction to uta
is necessary to ensure that uµuµ = −1 is maintained. In general we cannot solve the linearized equations
analytically, except in the limit of perturbatively weak disorder and magnetic field strength.

We assume that the inhomogeneity in the chemical potential is small:

µ0 = µ̄0 + uµ̂0(x), (20)

with u � µ̄0 and T . u is our perturbative parameter, and we assume that µ̂0 is a zero-mean random
function with unit variance. We assume the scalings

B ∼ u2 and R,S,U ,V ∼ u6. (21)

The hydrodynamic equations can be solved perturbatively, and the charge and heat currents may be
spatially averaged on this perturbative solution. The computation is presented in the SI, and we present
highlights here. At leading order, the linearized hydrodynamic equations reduce to

∂i

[
naw̃ia + σqa

(
Ẽi − ∂iµ̃a −

µ0
T

(T ζ̃i − ∂iT̃a)
)]

= CaẼiBi −
∑
b

[
Rabν̃b + Sabβ̃b

]
, (22a)

∂i

[
Tsaw̃ia − µ0σqa

(
Ẽi − ∂iµ̃a −

µ0
T

(T ζ̃i − ∂iT̃a)
)]

= 2GaT
2
0 ζ̃iBi

+
∑
b

[
(Rabµ0 + Uab)ν̃b + (Sabµ0 + Vab)β̃b

]
, (22b)

na(∂iµ̃a − Ẽi) + sa(∂iT̃a − T ζ̃i) = εijkw̃janaBk. (22c)

We have defined

ṽia = w̃ia +
∂vi
∂µ

µ̃a +
∂vi
∂T

T̃a. (23)

w̃ia represents the fluid velocity after subtracting the contribution coming from (15) in local thermal
equilibrium.

(22) depends on Ga, despite the fact that our spacetime is flat. This follows from the subtle fact that
thermodynamic consistency of the anomalous quantum field theory on curved spacetimes requires that
the axial-gravitational anomaly alters the thermodynamics of fluids on flat spacetimes [40].

The total charge current is J̃ i =
∑

a J̃
i
a, and the total heat current is Q̃i =

∑
a T̃

ti
a − µ0J̃ i. At leading

order in perturbation theory, we find that the charge current in each valley fluid may be written as

J̃ ia = naṼia + CaM̃aBi, (24)

and the heat current per valley, T̃ tia − µ0J̃ ia, may be written as

Q̃ia = TsaṼia + 2GaT0T̃aBi. (25)

In the above expressions Ṽia is a homogeneous O(u−2) contribution to w̃ia, and M̃a and T̃a are O(u−4)
homogeneous contributions to µ̃a and T̃a respectively.

The thermoelectric conductivity matrix is:

σxx = σyy =
∑
a

n2aΓa
Γ 2
a +B2n2a

, (26a)
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σxy =
∑
a

Bn3a
Γ 2
a +B2n2a

, (26b)

σzz =
∑
a

n2a
Γa

+ sB2, (26c)

κ̄xx = κ̄yy =
∑
a

Ts2aΓa
Γ 2
a +B2n2a

, (26d)

κ̄xy =
∑
a

BTnas
2
a

Γ 2
a +B2n2a

, (26e)

κ̄zz =
∑
a

Ts2a
Γa

+ hB2, (26f)

αxx = αyy =
∑
a

nasaΓa
Γ 2
a +B2n2a

, (26g)

αxy = −αyx =
∑
a

Bn2asa
Γ 2
a +B2n2a

, (26h)

αzz =
∑
a

nasa
Γa

+ aB2, (26i)

where we have defined the four parameters

s ≡ T
(
Ca Caµ

)( Rab −Sab
−Uab Vab

)−1(
Cb
Cbµ

)
, (27a)

h ≡ 4T 4
(

0 Ga
)( Rab −Sab
−Uab Vab

)−1(
0
Gb

)
, (27b)

a ≡ 2T 2
(

0 Ga
)( Rab −Sab
−Uab Vab

)−1(
Cb
Cbµ

)
, (27c)

Γa ≡
T 2
0 (sa(∂na/∂µ)− na(∂sa/∂µ))2

3σqa(εa + Pa)2
u2. (27d)

In these expressions, sums over valley indices are implicit. Coefficients odd under z → −z (such as σxz)
vanish. Note that all of the contributions to the conductivities listed above are of the same order O(u−2)
in our perturbative expansion, explaining the particular scaling limit (21) in u that was taken.

We have not listed the full set of transport coefficients. The unlisted transport coefficients are related
to those in (26) by Onsager reciprocity:

σij(B) = σji(−B), (28a)

κ̄ij(B) = κ̄ji(−B), (28b)

αij(B) = ᾱji(−B). (28c)

The symmetry of A is crucial in order for the final conductivity matrix to obey (28).
Evidently, the conductivities perpendicular to the magnetic field are Drude-like. This follows from

principles which are by now very well understood [31, 39]. In these weakly disordered fluids, the transport
coefficients are only limited by the rate at which momentum relaxes due to the disordered chemical
potential Γa/(εa+Pa), and/or the rate at which the magnetic field relaxes momentum (by “rotating” it in
the xy plane), Bna/(εa + Pa). This latter energy scale is the hydrodynamic cyclotron frequency [31]. In
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our hydrodynamic theory, we can see this momentum “bottleneck” through the fact that the components
of the charge and heat currents in (38) and (43), perpendicular to Bi, are proportional to the same fluid
velocity Ṽia ∼ u−2 at leading order. The transport of the fluid is dominated by the slow rate at which this
large velocity can relax. Since the heat current and charge current are proportional to this velocity field,
the contribution of each valley fluid to σ, α and κ̄ are all proportional to one another in the xy-plane.

The remaining non-vanishing transport coefficients are σzz, αzz and κ̄zz. From (26), we see that these
conductivities are a sum of a Drude-like contribution (since this is transport parallel to the magnetic
field, there is no magnetic momentum relaxation) from each valley, as before, and a new “anomalous”
contribution which couples the valley fluids together. This anomalous contribution has a qualitatively
similar origin as that discovered in [8, 36]. It can crudely be understood as follows: the chemical potential
and temperature imbalances M̃ and T̃ are proportional to B and inversely proportional to A, as the
homogeneous contributions to the right hand side of (22) cancel. Such thermodynamic imbalances lead
to corrections to valley fluid charge and heat currents, analogous to the chiral magnetic effect – these
are the linear in B terms in (38) and (43). Combining these scalings together immediately gives us the
qualitative form of the anomalous contributions to the conductivity matrix.

The positive-semidefiniteness of the thermoelectric conductivity matrix is guaranteed. Thinking of
the conductivity matrices as a sum of the anomalous contribution and Drude contributions for each
valley, it suffices to show each piece is positive-definite individually. The Drude pieces are manifestly
positive definite, as is well-known (it is an elementary exercise in linear algebra to confirm). To show
the anomalous pieces are positive-semidefinite, it suffices to show that sh ≥ Ta2. This follows from (27),
and the Cauchy-Schwarz inequality (vT

1 Av1)(v
T
2 Av2) ≥ (vT

1 Av2)
2 for any vectors v1,2, and a symmetric,

positive-semidefinite matrix A. These arguments also guarantee s, h > 0.
Our expression for the conductivity may seem ill-posed – it explicitly depends on the matrix inverse

A−1, but A is not invertible. In fact, the kernel of A has two linearly independent vectors: (1a, 1a) and
(1a,−1a), with 1a denoting a vector with valley indices with each entry equal to 1. However, in the
final formula for the thermoelectric conductivities, which sums over all valley fluids, we see that A−1

is contracted with vectors which are orthogonal to the kernel of A due to (7). The expression for the
conductivities is therefore finite and unique.

We present a simple example of our theory for a fluid with two identical Weyl nodes of opposite
chirality in the SI, along with a demonstration that the equations of motion are unchanged when we
account for long-range Coulomb interactions, or impose electric fields and temperature gradients through
boundary conditions in a finite domain. Hence, the transport coefficients we have computed above are in
fact those which will be measured in experiment.

In this paper, we used inhomogeneity in the chemical potential to relax momentum when B = 0.
By following the hydrodynamic derivation in [46], other mechanisms for disorder likely lead to the same
thermoelectric conductivities as reported in (26), but with a different formula for Γa.

3.1 Violation of the Wiedemann-Franz Law

The thermal conductivity κij usually measured in experiments is defined with the boundary conditions
J̃i = 0 (as opposed to κ̄ij , which is defined with Ẽi = 0). This thermal conductivity is related to the
elements of the transport matrix (1) by

κij = κ̄ij − T ᾱikσ−1kl αlj . (29)

In an ordinary metal, the Wiedemann-Franz (WF) law states that [50]

Lij ≡
κij
Tσij

=
π2

3
. (30)
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The numerical constant of π2/3 comes from the assumption that the quasiparticles are fermions, and that
the dominant interactions are between quasiparticles and phonons or impurities, but otherwise is robust
to microscopic details.

In general, our model will violate the WF law. Details of this computation are provided in the SI. In
general, the WF law is violated by an O(1) constant, which depends on the magnetic field B. However, in
the special case where we have valley fluids of opposite chirality but otherwise identical equations of state,
we find that the transverse Lorenz ratios Lxx, Lxy, Lyy are all parametrically smaller than 1 (in fact,
they vanish at leading order in perturbation theory). In contrast, we find that Lzz ∼ B2 at small B, and
saturates to a finite number as B becomes larger (but still � T 2). This dramatic angular dependence of
the WF law would be a sharp experimental test of our formalism in a strongly correlated Weyl material.

If the intervalley scattering rate is almost vanishing, the anomalous conductivities of a weakly inter-
acting Weyl gas are still computable with our formalism. Weak intravalley scattering processes bring the
“Fermi liquid” at each Weyl node to thermal equilibrium, and A may be computed via semiclassical kinetic
theory. Assuming that intervalley scattering occurs elastically off of point-like impurities, we compute s,
a and h in the SI. We find that Lanomzz < π2/3, asymptotically approaching the WF law when µ� T . This
is in contrast to the non-anomalous conductivities of a semiconductor, where under similar assumptions
Lzz > π2/3 [51]. The Mott relation between αanom

zz and σanomzz differs by an overall sign from the standard
relation. These discrepancies occur because we have assumed that elastic intervalley scattering is weaker
than intravalley thermalization. In contrast, [11] makes the opposite assumption when µ � T , and so
recovers all ordinary metallic phenomenology. Even in this limit, negative thermal magnetoresistance is
a consequence of non-vanishing Ga.

Outlook4

In this paper, we have systematically developed a hydrodynamic theory of thermoelectric transport in a
Weyl semimetal where quasiparticle-quasiparticle scattering is faster than quasiparticle-impurity and/or
quasiparticle-phonon scattering. We have demonstrated the presence of longitudinal negative magne-
toresistance in all thermoelectric conductivities. New phenomenological parameters introduced in our
classical model may be directly computed using the memory matrix formalism given a microscopic quan-
tum mechanical model of a Weyl semimetal. Our formalism is directly applicable to microscopic models
of interacting Weyl semimetals where all relevant nodes are at the same Fermi energy. Our model should
be generalized to the case where different nodes are at different Fermi energies, though our main results
about the nature of negative magnetoresistance likely do not change qualitatively.

Previously, exotic proposals have been put forth to measure the axial-gravitational anomaly in an
experiment. Measurements involving rotating cylinders of a Weyl semimetal have been proposed in
[41, 52], and it is possible that the rotational speed of neutron stars is related to this anomaly [53]. A
non-vanishing negative magnetoresistance in either αzz or κ̄zz is a direct experimental signature of the
axial-gravitational anomaly. It is exciting that a relatively mundane transport experiment on a Weyl
semimetal is capable of detecting this novel anomaly for the first time.
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Single Chiral FluidA

To first order, the hydrodynamic gradient expansion of a chiral fluid reads [34, 35]

Jµ = nuµ − σqPµν
(
∇νµ−

µ

T
∇νT − Fνρuρ

)
+D1ε

µνρσuν∇ρuσ +
D2

2
εµνρσuνFρσ, (31a)

Tµν = (ε+ P )uµuν + Pηµν − ηPµρPνσ(∇ρuσ +∇σuρ)−
(
ζ − 2η

3

)
Pµν∇ρuρ, (31b)

where η and ζ are shear and bulk viscosities, σq is a “quantum critical” conductivity,

Pµν = gµν + uµuν , (32)

and

D1 =
Cµ2

2

(
1− 2

3

nµ

ε+ P

)
− 4GµnT 2

ε+ P
, (33a)

D2 = Cµ

(
1− 1

2

nµ

ε+ P

)
− GT 2n

ε+ P
. (33b)

There is a further coefficient that is allowed in D1 [35, 40], though it does not contribute to transport and
so we will neglect it in this paper. The entropy current is given by

sµ ≡ (ε+ P )uµ − µ

T
Jµ +

(
Cµ3

3T
+ 2GµT

)
εµνρσuν∇ρuσ +

(
Cµ2

2T
+GT

)
1

2
εµνρσuνFρσ. (34)

Transport in the Weak Disorder LimitB

Here we present details of the computation of the thermoelectric conductivity matrix, using the notation
for the perturbative transport computation presented in the main text. At the first non-trivial order
in an expansion at small B and 1/ξ (assuming that they are of a similar magnitude),1 the linearized
hydrodynamic equations are

∂i
[
naṽia + ñavia + σqa

(
Ẽi + εijkB

kṽja − ∂iµ̃a −
µa
T

(T ζ̃i − ∂iT̃a)
)]
− ∂i

{
εijk∂jD1aṽka −BiD̃2a

+D2aε
ijkṽja∂kµ0

}
= CaẼzB −

∑
b

[
Rabν̃b + Sabβ̃b

]
, (35a)

∂i

[
Tsaṽia + (ε̃a + P̃a − µ0ña)via − µ0σqa

(
Ẽi + εijkB

kṽja − ∂iµ̃a −
µa
T

(T ζ̃i − ∂iT̃a)
)
− vjaηa∂j ṽia

−via
(
ζa +

ηa
3

)
∂j ṽja

]
− ∂i

{
µ0B

iD̃2a − µ0D2aε
ijkṽja∂kµ0 − µ0D1aε

ijk∂j ṽka

}
= 2GaT

2
0B

iζ̃i +
∑
b

[
(µ0Rab + Uab)ν̃b + (µ0Sab + Vab)β̃b

]
, (35b)

na(∂iµ̃a − Ẽi) + sa(∂iT̃a − T ζ̃i) + ∂j
(

(εa + Pa)(vjaṽia + viaṽja)− ηa(∂j ṽia + ∂iṽja)−
(
ζa −

2ηa
3

)
δij∂kṽka

)
= εijkJ̃

j
aB

k + via
∑
b

(
Uabν̃b + Vabβ̃b

)
. (35c)

1It is important to only work to leading order in 1/ξ since we only know the background solution to leading order in 1/ξ.
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These are respectively the equations of motion for charge, heat and momentum. In order to derive these
equations, it is important to use covariant derivatives with respect to the metric. We stress the importance
of carefully deriving the ζ̃i-dependent terms in (35). It is crucial that such terms be correctly accounted
for in order for the resulting theory of transport to obey Onsager reciprocity at the perturbative level.

We have been able to remove many potential terms in the above equations which end up being
proportional to εijk∂jµ0∂kµ0 = εijk∂jµ0∂kvl = 0. In (35), ñ and other thermodynamic objects are to
be interpreted as ñ = (∂µn)µ̃ + (∂Tn)T̃ , for example. One finds terms ∼ ω−1, which vanish identically
assuming that the background is a solution to the hydrodynamic equations; higher order terms in ω
vanish upon taking ω → 0. (35) is written in such a way that the terms on the left hand side are single-
valley terms, with non-anomalous contributions to the charge and heat conservation laws written as the
divergence of a current in square brackets, and anomalous contributions as the divergence of a current in
curly brackets; the terms on the right hand side of the charge and heat conservation laws are spatially
homogeneous violations of the conservation laws.

The equations (35) are valid for a disordered chemical potential of any strength. We will now focus
on the case where it is perturbatively small, and take the perturbative limit described in the main text.

Let us split all of our perturbations into constants (zero modes of spatial momentum) and spatially
fluctuating pieces:

ṽia = w̃ia +
∂vi
∂µ

µ̃a +
∂vi
∂T

T̃a, (36a)

w̃ia = Ṽia + Ṽia(x), (36b)

µ̃a = M̃a + M̃a(x), (36c)

T̃a = T̃a + θ̃a(x). (36d)

Recall that we defined v to be the function of µ and T which gives the equilibrium fluid velocity. We will
show self-consistently that the functions and constants introduced above scale as

Ṽ ∼ u−2, M̃ ∼ T̃ ∼ u−4, Ṽ , M̃ , θ̃ ∼ u−1, (37)

at leading order in perturbation theory. This will lead to charge and heat currents (and hence a conduc-
tivity matrix) which scale as u−2. To correctly capture the leading order response at small u, we do not
need every term which has been retained in (35). At leading order, linearized equations of motion reduce
to those shown in the main text. Upon replacing ṽ with w̃, the resulting equations have become much
simpler. Note that terms proportional to εijkvjBk = 0 (since vi ∼ Bi) can be dropped in the limit B → 0
and ξ → ∞, as can viscous terms, which can be shown to contribute extra factors of 1/ξ to the answer
[32].

Next, we define the charge and heat currents in our hydrodynamic theory. In an individual valley
fluid, the leading order contributions to the charge current (31) are

J̃ ia = naṽia + ñavia + D̃2aBi = naṼia + CaM̃aBi. (38)

The last step follows from the definitions of v and V. We assume that the total charge current is

J̃ i =
∑
a

J̃ ia. (39)

The canonical definition of the global heat current for all valley fluids is

Q̃i = T̃ ti − µ0J̃i. (40)
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In order to write Q̃i as a sum over valley contributions:

Q̃i =
∑
a

Q̃ia, (41)

we define
Q̃ia = T̃ tia − µ0J̃ ia. (42)

A simple computation reveals that at leading order in perturbation theory,

Q̃ia = TsaṼia + 2GaT0T̃aBi. (43)

Q̃ia is not equivalent to the entropy current of an individual valley fluid, even at leading order.
We now proceed to determine the spatially uniform responses Ṽia, M̃a and T̃a to leading order. We

begin by focusing on the inhomogeneous parts of the linearized equations. It is simplest to do so in
momentum space. At the leading order O(u−1), the inhomogeneous equations of motion are

iki

[
na(k)Ṽia + naṼia(k)− σqaiki

(
M̃a(k)− µ0

T
θ̃a(k)

)]
= 0, (44a)

iki

[
Tsa(k)Ṽia + TsaṼia(k) + µ0σqaiki

(
M̃a(k)− µ0

T
θ̃a(k)

)]
= 0, (44b)

naM̃a(k) + saθ̃a(k) = 0. (44c)

These equations are identical to those in [32] (with vanishing viscosity), but in one higher dimension.
Note that any term written without an explicit k dependence denotes the constant k = 0 mode. These
equations give the following relations for the spatially dependent parts of the hydrodynamic variables

kiṼia(k) = −µ0na(k) + T0sa(k)

εa + Pa
kiṼia, (45a)

θ̃a(k) =
ikiṼiaT 2

0 na(sana(k)− nasa(k))

σqak2(εa + Pa)2
, (45b)

M̃a(k) = − ikiṼiaT 2
0 sa(sana(k)− nasa(k))

σqak2(εa + Pa)2
. (45c)

To determine the conductivities, we also require the leading order homogeneous components of the equa-
tions of motion. Spatially integrating over the momentum conservation equation, we find the leading
order equation (at order O(u0))

ΓijaṼja − naẼi − saT0ζ̃i = εijknaṼjaBk, (46)

with

Γija ≡
∑
k

kikj
k2

T 2
0 (sa(∂na/∂µ)− na(∂sa/∂µ))2

σqa(εa + Pa)2
u2 |µ̂(k)|2 . (47)

Γija is proportional to the rate at which momentum relaxes in the fluid due to the effects of the inho-
mogeneous chemical potential. Henceforth, we will assume isotropy for simplicity: Γija ≡ Γaδij . It is
manifest from the definition that Γa > 0. We can easily solve this equation for Ṽia.

Finally, to see the effects of the anomalies on hydrodynamic transport, we spatially average over the
charge and heat conservation equations. At leading order O(u2), this gives

CaBEz =
∑
b

[
Rabν̃b + Sabβ̃b

]
, (48a)
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−Caµ0BEz − 2GaT
2
0Bζz =

∑
b

[
Uabν̃b + Vabβ̃b

]
. (48b)

Due to the anomalies, external temperature gradients and electric fields induce changes in the chemical
potential and temperature of each fluid, which result in charge and heat flow. In the above equations, and
for the rest of this paragraph, the fluctuations ν̃b and β̃b denote the homogeneous parts of these objects,
as it is only these which contribute at leading order to M̃ and T̃. Hence, we find that(

ν̃a
−β̃a

)
=

(
Rab −Sab
−Uab Vab

)−1(
CbBEz

Cbµ0BEz + 2GbT
2
0Bζ̃z

)
. (49)

We will find useful the relation (
M̃
T̃

)
=

(
T µT
0 T 2

)(
ν̃

−β̃

)
. (50)

We are now ready to construct the thermoelectric conductivity matrix. Combining the definition of
the thermoelectric conductivity matrix, (39) and (41) with our hydrodynamic results (38), (43), (46), (49)
and (50) we obtain the thermoelectric conductivity matrix presented in the main text.

Simple ExampleC

It is instructive to study the simplest possible system with an anomalous contribution to the conductivity.
This is a Weyl semimetal with 2 valley fluids, where the Berry flux

k1 = −k2 = 1, (51)

and C1,2 and G1,2 are given by the results for a free Weyl fermion [41]. We also assume that the equations
of state and disorder for each valley fluid are identical, so that n1,2 = n, s1,2 = s and Γ1,2 = Γ . Finally,
we take the simplest possible ansatz for A consistent with symmetry, positive-definiteness and global
conservation laws:

R =

(
R0 −R0

−R0 R0

)
, (52a)

S = U =

(
S0 −S0
−S0 S0

)
, (52b)

V =

(
V0 −V0
−V0 V0

)
, (52c)

with positive-semidefiniteness of A imposing R0,V0 ≥ 0 and

R0V0 ≥ S20 . (53)

We find the thermoelectric conductivities

σxx = σyy = 2
n2Γ

Γ 2 +B2n2
, (54a)

σxy = 2
Bn3

Γ 2 +B2n2
, (54b)

σxz = σyz = 0, (54c)
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σzz = 2
n2

Γ
+
TB2(R0µ

2 + 2S0µ+ V0)
16π4(R0V0 − S20 )

, (54d)

κ̄xx = κ̄yy = 2
Ts2Γ

Γ 2 +B2n2
, (54e)

κ̄xy = 2
BTns2

Γ 2 +B2n2
, (54f)

κ̄xz = κ̄yz = 0, (54g)

κ̄zz = 2
Ts2

Γ
+

T 4B2R0

144(R0V0 − S20 )
, (54h)

αxx = αyy = 2
nsΓ

Γ 2 +B2n2
, (54i)

αxy = −αyx = 2
Bn2s

Γ 2 +B2n2
, (54j)

αxz = αyz = 0, (54k)

αzz = 2
ns

Γ
+
T 2B2(R0µ+ S0)
48π2(R0V0 − S20 )

. (54l)

As expected due to the matrix inverse in the expressions for s, a and h, we see that the anomalous
contributions to the conductivities depend on the intervalley scattering rates for charge and energy in a
rather complicated way.

Imposing External Sources Through Boundary ConditionsD

The derivation of the thermoelectric conductivity matrix presented above applied Ẽi and ζ̃i by particular
deformations to background fields. As in [46], one might also wish to impose electric fields and temperature
gradients in a space with boundaries, as is done in a real experiment. In this case, we do not need to
deform the metric from Minkowski space, nor the external gauge field, as we did in the main text.

For example, let us keep the x and y directions periodic, but consider a Weyl fluid in the domain
0 ≤ z ≤ L, subject to the boundary conditions

µ(z = 0) = µ0, µ(z = L) = µ0 − ẼzL, (55a)

T (z = 0) = T0, T (z = L) = T0 − ζ̃zT0L. (55b)

The hydrodynamic variables become

µa = µ0 + µ̃a − Ẽzz, (56a)

Ta = T0 + T̃a − T0ζ̃zz, (56b)

uµa = (1, via + ṽia), (56c)

and, in linear response, we can also arrive at (35). The simplest way to see this as follows. In equilibrium
the hydrodynamic equations are satisfied (at leading order in B and ξ). After taking spatial derivatives in
∂µJ

µ
a (for example), it is possible to obtain terms of the form −Ẽzz×∂iµ0 which are linear in z. However,

all such terms must identically cancel, because the background solution is independent of a global spatial
shift in µ and T . We have, in fact, already seen this explicitly – the coefficients of Ma and Ta in the
charge and heat currents (38) and (43) are all independent of x.
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Hence, upon plugging in (56) into the equations of motion, the only terms which do not vanish at
leading order in B and 1/ξ are

∂zJ
z
a = ∂z (−CaBEzz + · · · ) = −

∑
b

[
Rabν̃b + Sabβ̃b

]
(57a)

∂z
(
T tza − µ0Jza

)
= ∂z

(
−2GaBT

2
0 ζ̃zz + · · ·

)
=
∑
b

[
(µ0Rab + Uab)ν̃b + (µ0Sab + Vab)β̃b

]
, (57b)

∂zT
zz
a = −naẼz − T0saζ̃z + · · · (57c)

The · · · terms above are linear in µ̃a, T̃a or ṽia, and are the same as found in (35). Upon comparing with
(35), we see that the source (Ẽz and ζ̃z) terms are identical.

Hence our equations of motion (35) are unchanged, and our perturbative theory of transport can be
recovered regardless of the choice of boundary conditions. This is important as experiments will always
impose temperature gradients through the boundary conditions on a finite domain.

Coulomb ScreeningE

Coulomb screening alters the electric field seen by the charges. In our equilibrium solution, it leads to an
effective change in µ0(x), the disorder profile seen by the fluid. We may account for it by replacing

µ0 → µ0 − ϕ ≡ µ0 −
∫

d3y K(x;y)
∑
a

na(y), (58)

with K ∼ 1/r the Coulomb kernel (its precise form is not important, and we could include thermal
screening effects if we wish). However, as pointed out in [32, 33], by simply redefining µ0 to be the
equilibrium electrochemical potential, one can neglect this effect.

We must still account for the effects of Coulomb screening on the linear response around the equilibrium
state. In our perturbative formalism, the leading order conductivities are governed by the equations of
motion (35), and the simplification in the main text. We may account for Coulomb screening in these
equations by modifying the external electric field to

Ẽi → Ẽi − ∂iϕ̃, (59)

where ϕ̃ is the convolution of the Coulomb kernel with
∑

a ña. The equations of motion then become

∂i

[
naw̃ia + σqa

(
Ẽi − ∂iΦ̃a −

µ0
T

(T ζ̃i − ∂iT̃a)
)]

= CaẼiBi −
∑
b

[
Rabν̃b + Sabβ̃b

]
, (60a)

∂i

[
Tsaw̃ia − µ0σqa

(
Ẽi − ∂iΦ̃a −

µ0
T

(T ζ̃i − ∂iT̃a)
)]

= 2GaT
2
0 ζ̃iBi

+
∑
b

[
(Rabµ0 + Uab)ν̃b + (Sabµ0 + Vab)β̃b

]
, (60b)

na(∂iΦ̃a − Ẽi) + sa(∂iT̃a − T ζ̃i) = εijkw̃janaBk, (60c)

where we have defined
Φ̃a ≡ ϕ̃+ µ̃a. (61)

We have neglected the contribution of the Coulomb kernel to the anomalous creation of charge in a single
valley in (60). This is because, in our perturbative limit, only the homogeneous part of this term is
important. Since

ν̃a =
µ̃a
T0

+ β̃aµ0 =
Φ̃a − ϕ̃
T0

+ β̃aµ0, (62)
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it follows from the fact that
∑

bRab =
∑

b Sab = 0 that the ϕ̃-dependent corrections to the inter-valley
terms exactly cancel. Mathematically, we now see that (60) are the same as the linearized equations
of motion in the main text, up to a relabeling of the variables. The long-range Coulomb interactions,
introduced in hydrodynamics through Fµν , do not alter our definitions of the charge current (38) or the
heat current (43) at leading order in perturbation theory. Hence, our expressions for the conductivities are
not affected by long-range Coulomb interactions, confirming our claim in the main text. The interactions
may alter the specific values of the parameters in the hydrodynamic equations (31).2

Finite frequency transport is generally sensitive to long-range Coulomb interactions, although in (dis-
ordered) charge-neutral systems the effect is likely much more suppressed (see [33] for a recent discussion
in two spatial dimensions).

Violation of the Wiedemann-Franz Law in the Hydrodynamic RegimeF

Since σij , αij and κ̄ij are block diagonal in our perturbative hydrodynamic formalism, κij will be as well.
We begin by focusing on the longitudinal (zz) conductivities. A simple computation gives

κzz = T
∑
a

s2a
Γa

+ hB2 − T
(
aB2 +

∑
a

sana
Γa

)2(
sB2 +

∑
a

n2a
Γa

)−1
. (63)

Firstly, consider the case B = 0. In this case, there are two possibilities of interest. If3

sa = s and na = n, (64)

for all valley fluids, then
κzz(B = 0) ∼ O

(
u0
)
, (65)

is subleading in perturbation theory. Hence, assuming n 6= 0 (i.e., the system is at finite charge density),
we find that Lzz � LWF in the perturbative limit u → 0. That a charged fluid has a highly suppressed
κ is by now a well-appreciated effect in normal relativistic fluids with a single valley [31, 54]. If the
valley fluids are indistinguishable as in (64), then they behave as a “single valley” at B = 0 and so the
considerations of [31, 54] apply here. The reason that (65) is small relative to κ̄zz is that the boundary
condition J̃ = 0 forces us to set (at leading order in u) the velocity Ṽ = 0, which means that both the
leading order charge and heat currents vanish.

However, at a non-zero value of B, the leading order contribution does not vanish: κzz(B) ∼ u−2. In
particular, as B → 0

κzz(B → 0) ≈
(
h + Ts

ss− 2na

n2

)
B2, (66)

while at larger B (such that n2/s, sn/a, T s2/h� ΓB2, while keeping B � T 2)

κzz ≈
(
h− Ta2

s

)
B2. (67)

2More carefully, if we place our equations on a periodic space, where the transport problem is still well-posed, then
the boundary conditions on ṽia, µ̃a and T̃a are all periodic boundary conditions. Hence, w̃ia, Φ̃a and T̃a all have periodic
boundary conditions and so the change of variables between the linearized equations presented in the main text and (60)
does not affect the transport problem even via non-trivial boundary conditions.

3This is a stronger statement than necessary for this equation to hold for κzz. It is sufficient for the ratio sa/na to be
identical for all valley fluids for (65) to hold. However, this stricter requirement is necessary for (69) to hold.
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Hence, as B → 0, Lzz ∼ B2 is parametrically small, but at larger B it approaches a finite value

Lzz →
h

T s
− a2

s2
. (68)

If (64) does not hold, then we instead find that κzz(B) is finite and O(u−2), just as σzz(B). Hence,
we find that the Lorenz ratio Lzz is generally O(1) and there are no parametric violations. However, the
Wiedemann-Franz law will not hold in any quantitative sense, and Lzz can easily be B-dependent.

In the xy-plane, the Wiedemann-Franz law has a somewhat similar fate. If (64) holds, then we find
that the leading order contributions to the thermal conductivities all vanish at leading order, so that

κxx(B) ∼ κyy(B) ∼ κxy(B) ∼ κyx(B) ∼ O(u0), (69)

at all values of B, and so the corresponding components of κij will be parametrically small. If (64) does
not hold, then κij(B) ∼ u−2 is never parametrically small, and so the Wiedemann-Franz law will not be
violated parametrically, but will be violated by an O(1) B-dependent function.

Weak Intervalley Scattering in a Weakly Interacting Weyl GasG

As noted in the main text, it is possible to employ our hydrodynamic formalism even when the fluids at
each node are weakly interacting. In fact, the only requirement to use our formalism for computing the
anomalous thermoelectric conductivities is that the time scales set by A are the longest time scales in
the problem (in particular: slower than any thermalization time scale within a given valley fluid). Now,
we consider a weakly interacting Weyl semimetal with long lived quasiparticles, but where the intervalley
scattering is weak enough that our formalism nevertheless is valid. We will employ semiclassical kinetic
theory to find relations between R0, S0 and V0 under reasonable assumptions.

For simplicity, as in our simple example above, we will consider a pair of nodes with opposite Berry
flux, but otherwise identical equations of state. We suppose that the two Weyl nodes (located at the same
Fermi energy) are at points K1,2 in the Brillouin zone, with |K1 −K2| � µ, T .

Denote with f(k) the number density of quasiparticles at momentum k. Under very basic assumptions
about the nature of weak scattering off of impurities, assuming all scattering off of impurities is elastic,
one finds the kinetic theory result [50]

df(k)

dt
=

∫
d3k′

(2π)3
W (k,k′)

[
f(k′)− f(k)

]
(70)

where for simplicity we assume spatial homogeneity. W (k,k′) denotes the scattering rate of a quasiparticle
from momentum k to k′ – under the assumptions listed above, this is a symmetric function which may
be perturbatively computed using Fermi’s golden rule [50]. Since scattering is elastic, we have W (k,q) ∼
δ(k − q). Using that4

dn1
dt

= −dn2
dt

=

∫
d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q) [f(q)− f(k)] (71a)

dε1
dt

= −dε2
dt

=

∫
d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q) [f(q)− f(k)] |k| (71b)

In the above integrals, the subscript node 1 implies that the momentum integral is shifted so that k = 0
at the point K1; a similar statement holds for node 2. All low energy quasiparticles are readily identified

4In these equations we have noted that the integrand is odd under exchanging k and q (and thus vanishes upon integration
over k and q) if k and q belong to the same node.
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as either belonging to node 1 or 2. Since we have set vF = 1, the energy of a quasiparticle of momentum
k (near node 1) is simply |k|; a similar statement holds for quasiparticles near node 2.

The simplest possible assumption is that

W (k,q) = W0(k)δ(|k| − |q|), (72)

and we may further take W0 to be a constant if we desire. For our hydrodynamic description to be valid,
nodes 1 and 2 are in thermal equilibrium, up to a relative infinitesimal shift in temperature and chemical
potential. For simplicity suppose that node 1 is at a different β and ν. Then the infinitesimal change in
the rate of charge and energy transfer is

dn1
dt

= −
∫

d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q)nF(βk − ν) (73a)

dε1
dt

= −
∫

d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q)nF(βk − ν)k (73b)

We can now read off

R0 =

∫
d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q)(−n′F(βk − ν)), (74a)

S0 = U0 = −
∫

d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q)(−n′F(βk − ν))k, (74b)

V0 =

∫
d3k

(2π)3

∣∣∣∣
node 1

d3q

(2π)3

∣∣∣∣
node 2

W (k,q)(−n′F(βk − ν))k2. (74c)

Our kinetic theory computation gives S0 = U0, as required by general quantum mechanical principles,
and serves as a consistency check on our kinetic theory approximations.

As is reasonable for many materials, we first approximate that µ � T . Using the Sommerfeld ex-
pansion of the Fermi function, we find that the leading and next-to-leading order terms as T/µ→ 0 are:

R0 ≈ TA(µ) +
A′′(µ)

2

π2

3
T 3, (75a)

S0 ≈ −TµA(µ)− µA
′′(µ)

2

π2

3
T 3 −A′(µ)

π2

3
T 3 (75b)

V0 ≈ Tµ2A(µ) +
π2

3
T 3

(
A(µ) + 2µA′(µ) +

A′′(µ)

2
µ2
)

(75c)

where we have defined

A(µ) =
µ4

4π4
W0(µ). (76)

The leading order anomalous conductivities are:

σzz =
B2

16π4
1

A(µ)
, (77a)

αzz =
π2T

3

∂σzz(µ, T = 0)

∂µ
, (77b)

κ̄zz =
π2T

3
σzz. (77c)

19



0 20 40 60 80 100
0

0.5

1

µ/T

Lanom
zz

L0
kinetic theory

Wiedemann-Franz law

Figure 1: Breakdown of the anomalous Wiedemann-Franz law in the regime where intervalley
exchange of charge and energy occurs via quasiparticle scattering and may be treated with kinetic
theory. The violation of the Wiedemann-Franz law is opposite to what would be expected in
semiconductors or Dirac semimetals such as graphene. We have assumed that W0 is a constant,
though this plot looks qualitatively similar for other choices.

Remarkably, we recover the Wiedemann-Franz law exactly in the limit µ � T . This is rather sur-
prising, as the assumptions that have gone into our derivation are subtly different than the standard
assumptions about metallic transport. In particular, the ordinary derivation of the Wiedemann-Franz
law assumes that elastic scattering off of all disorder is much faster than any thermalization time scale
(hence, the conductivity can be written as the sum of conductivities of quasiparticles at each energy scale
[50]). In our derivation, we have assumed that intravalley thermalization is much faster than intervalley
scattering, which may be the case when the dominant source of disorder is long wavelength [46, 32]. At
a technical level, the integral in the numerator of σanomzz looks much like the standard integral for κ̄zz in
a metal, and vice versa. The Wiedemann-Franz law is restored by a factor of (π2/3)2 coming from the
ratio (2G/C)2. That the Wiedemann-Franz law can arise in a subtle way is emphasized by our interesting
violation of the standard Mott relation, which states that αzz = −(π2T/3)(∂σzz(T = 0)/∂µ). This Mott
relation differs by a minus sign from the result derived above. The origin of this minus sign is that in our
theory, the rate of intervalley scattering is the sum of rates at each quasiparticle energy, as opposed to
the net conductivity.

Let us also mention what happens in the regime µ ∼ T . In an ordinary semiconductor [51], or a Dirac
semimetal such as graphene [55], kinetic theory predicts an O(1) violation of the Wiedemann-Franz law
whereby Lzz > L0. This is called bipolar diffusion, and is due to the fact that multiple bands with opposite
charge carriers are thermally populated, and the thermal conductivity is enhanced by the combined flow
of these carriers. Figure 1 shows the fate of the anomalous Wiedemann-Franz law in a Weyl semimetal
where intervalley scattering is the slowest timescale in the problem. Here we see the opposite effect – the
Wiedemann-Franz law is reduced. The physical explanation of this effect immediately follows from the
previous paragraph – bipolar diffusion applies to the scattering rates and not to the conductivities, and
hence κzz is reduced below σzz as µ/T → 0. This discussion should be taken with a grain of salt – it is
worth keeping in mind that the regime µ/T → 0 is associated with stronger interactions, and so (as in
graphene) the quasiparticle description of transport may completely breakdown [29, 32].
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Memory Matrix FormalismH

So far, our theory of transport has relied entirely on a classical theory of anomalous hydrodynamics.
Nonetheless, we expect that our results can be computed perturbatively using a more general, inherently
quantum mechanical formalism called the memory matrix formalism [45, 39]. The memory matrix for-
malism is an old many-body approach to transport which does not rely on the existence of long-lived
quasiparticles. It is particularly useful in a “hydrodynamic” regime in which only a small number of
quantities are long-lived. In such a regime, memory matrix results can be understood for many purposes
entirely from classical hydrodynamics [46]. Nevertheless, the memory matrix formalism has some distinct
advantages. In particular, it gives microscopic relations for the unknown parameters of the hydrodynamic
theory.

Let us give a simple example of how the memory matrix formalism works, leaving technical details
to [45, 39]. Suppose we have a system in which the momentum operator Pi is almost exactly conserved.
Assuming isotropy, and that there are no other long-lived vector operators, it can be formally shown that
the expectation value of Pi will evolve according according to

d〈Pi〉
dt

= −MPP

χPP
〈Pi〉, (78)

where χPP = Re(GR
PxPx

(k = 0, ω = 0)) is the momentum-momentum susceptibility, and MPP is a
component of the memory matrix, which is schematically given by

MPP ≈ lim
ω→0

Im
(
GR
ṖxṖx

(k = 0, ω)
)

ω
. (79)

More formal expressions may be found in [39, 56]. Note the presence of operator time derivatives (i.e.
Ṗ = i[H,P ], with H the global Hamiltonian) in the expression for MPP . From the hydrodynamic equation
(78), it is clear that the momentum relaxation rate is determined by MPP . For a given microscopic
Hamiltonian H, we can therefore simply evaluate this element of the memory matrix to obtain the value
of the momentum relaxation rate in the hydrodynamic theory.

The memory matrix formalism is very naturally suited to the computation of our hydrodynamic
parameters Rab, Sab, Uab and Vab. As these only affect the conductivities at O(B2), it is sufficient to
evaluate these in the B = 0 state. We assume that we may cleanly divide up the low energy effective
theory for our Weyl semimetal into “node fluids” labeled by indices a, just as in the main text. To each
node fluid, we assign a charge current operator Jµa and a stress tensor Tµνa , which need not be exactly
conserved in the presence of intervalley scattering and anomalies. We then define the valley charge and
energy operators as

na ≡
1

V3

∫
d3x J ta, (80a)

εa ≡
1

V3

∫
d3x T tta , (80b)

respectively. We have assumed that the fluid is at rest when deriving the above. For later reference, we
also define J ia as the zero mode of the operator J ia, and P ia as the zero mode of the operator T tia , analogous
to (80).

Now suppose that we take our Weyl semimetal, and “populate” valley fluids at various chemical
potentials and temperatures. Let us define the vector of operators

xI =

(
na − n0a
εa − ε0a

)
, (81)
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where n0a = 〈na〉 and ε0a = 〈εa〉, with averages over quantum and thermal fluctuations taken in equilibrium.
I indices run over the operators na and εa. Assuming that there are no other long-lived modes operators
in the system which overlap with the charge and energy of each valley fluid, we can use memory matrix
techniques to show that the expectations values of these objects will evolve according to the hydrodynamic
equations

d〈xI〉
dt

= −MIJχ
−1
JK〈xK〉, (82)

where the matrices M and χ have entries

MIJ ≈ lim
ω→0

Im
(
GR
ẋI ẋJ

(k = 0, ω)
)

ω
, (83a)

χIJ = Re
(
GR
xIxJ

(k = 0, ω = 0)
)
. (83b)

These formulae should be valid to leading order in a perturbative expansion in the small intervalley
coupling strength.

The easiest way to compute χIJ is to identify the thermodynamic conjugate variable to xI (let us call
it yI), and then employ the linear response formula

∂〈xI〉
∂yJ

= χIJ . (84)

If the valley fluids interact weakly then we may approximate χJK as a block diagonal matrix to leading
order, with Tνa the canonically conjugate variable to µa, and −Tβa the canonically conjugate variable to
εa. Thus (

〈na〉 − n0a
〈εa〉 − ε0a

)
= χIJ

(
T (νa − ν0a)
−T (βa − β0a)

)
. (85)

Comparing (82), (85) and our hydrodynamic definition of A, we conclude that AIJ , the elements of the
intervalley scattering matrix, are related to microscopic Green’s functions by

AIJ = TMIJ . (86)

Using the symmetry properties of Green’s functions, we see that MIJ = MJI , thus proving that A is
a symmetric matrix, as we claimed previously. From (83), it is clear that global charge and energy
conservation among all valleys enforces

∑
bRab =

∑
b Sab =

∑
b Vab = 0 in the memory matrix formalism.

For completeness, we note that the susceptibility matrix is given by

(χIJ)a indices =

(
(∂µn)a 3na

3na 12Pa

)
, (87)

assuming that the free energy of each fluid depends only on µa and Ta.
We finish by reviewing the well-known microscopic expressions for the other parameters in our hydro-

dynamic theory (see [39] for more details). Using the fact that velocity is conjugate to momentum, and
combining (31) and (84), we obtain

naδ
ij ≡ χJ i

aP
j
a
, (88a)

(εa + Pa)δ
ij ≡ χ

P i
aP

j
a
. (88b)

The Gibbs-Duhem relation implies that (to good approximation if valley fluids nearly decouple)

Tsa = εa + Pa − µna. (89)
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Together with the memory matrix result for the momentum relaxation time

M
P i
aP

j
a

= δijΓa, (90)

we have a microscopic expression for all of the hydrodynamic parameters in our formulas for the conduc-
tivities, written in the main text, via the memory matrix formalism. The expression (47) for Γa that we
derived from hydrodynamics agrees with that obtained by explicitly evaluating MPP [57].

It is possible that the presence of anomalies complicates the memory matrix formalism beyond what is
anticipated above. However, as the anomalous contributions to the hydrodynamic equations vanish in the
absence of external electromagnetic fields, we do not expect any difficulties when the memory matrices
are computed in the absence of background magnetic fields.
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