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Consistent Use of the Standard Model Effective Potential

Anders Andreassen,∗ William Frost,† and Matthew D. Schwartz‡

Department of Physics, Harvard University, Cambridge, MA 02138, USA

The stability of the Standard Model is determined by the true minimum of the effective Higgs
potential. We show that the potential at its minimum when computed by the traditional method is
strongly dependent on the gauge parameter. It moreover depends on the scale where the potential is
calculated. We provide a consistent method for determining absolute stability independent of both
gauge and calculation scale, order by order in perturbation theory. This leads to a revised stability
bounds mpole

h > (129.4 ± 2.3) GeV and mpole
t < (171.2 ± 0.3) GeV. We also show how to evaluate

the effect of new physics on the stability bound without resorting to unphysical field values.

An intriguing consequence of the recent discovery of
the Higgs boson is that its mass apparently places the
Standard Model (SM) near the border between absolute
stability and metastability [1, 2]. A renowned plot, Fig. 3
of [2], shows the standard model lying close to the end of
a metastability funnel in the Higgs-mass/top-mass plane.
This unanticipated tuning has inspired a fair amount of
speculation about its possible origin and implications.
Stability is normally determined by examining the zero-
temperature effective potential V for the SM [1–5]: if this
potential has a negative minimum at large field values,
the SM is said to be unstable; if the inverse decay rate
for tunneling out of the electroweak minimum is larger
than the lifetime of the universe, the SM is said to be
metastable. While these criteria are physical, the extrac-
tion of numerical bounds within a consistent perturba-
tion expansion is not straightforward.

One complication in making physical predictions with
V is that effective potentials are not gauge-invariant [6].
Although physical quantities extracted from an effective
potential (or more generally from an effective action)
must be gauge-invariant, there have been surprisingly
few explicit checks [7–10]. The traditional approach is
simply to work in Landau gauge where calculations are
easiest and to assume that the approximations used are
self-consistent.

Progress in understanding the gauge-dependence was
made by Nielsen [11] and independently by Kugo and
Fukuda [12] in 1975. One result from these papers is that
the effective potential satisfies a differential equation:(

ξ
∂

∂ξ
+ C(h, ξ)

∂

∂h

)
V (h, ξ) = 0 (1)

where ξ is the gauge parameter in Fermi gauges and
C(h, ξ) is a calculable function. This Nielsen identity
says that the gauge-dependence of the effective potential
can be compensated for by a rescaling of the scalar field
h. Two generic implications are that 1) the value of the
field h can never be physical, since any rescaling of the
field can be compensated by a gauge-change and 2) the
value of V (h, ξ) at an extremum in h should be gauge-
invariant. Gauge-dependent quantities then include the
value of V at any non-extremal point, and the value of

h at any point (extremal or not). It is worth noting that
Eq. (1) is not quite as powerful as it might seem, since
C(h, ξ) can be infinite in perturbation theory [9, 11, 13].

Despite the widespread contentment with Landau
gauge, the gauge dependence of the effective potential has
occasionally caused some discomfort [14–18]. A handful
of papers have proposed field redefinitions to generate a
gauge-independent potential [19–21]. This approach pur-
portedly allows the effective potential to be used like a
classical potential, assigning physical significance to both
field values and the potential at each point. However, it is
not clear why removing the gauge-dependence automat-
ically makes the potential physical. Moreover, for the
field redefinition to be justified it should leave physical
quantities unchanged; in that case, we may as well work
with fields that make the calculations easiest.

The effective potential has another feature which has
not generally been appreciated: it depends on the scale
where it is calculated. To see this, note that V satisfies
a renormalization group equation [22]:(

µ
∂

∂µ
− γh ∂

∂h
+ βi

∂

∂λi

)
V = 0 (2)

This equation says that the explicit µ-dependence of the
potential can be compensated for by rescaling the cou-
plings according to their β-functions and rescaling the
field h according to its anomalous dimension, γ. Thus, if
we know the potential at a scale µ0 in terms of the cou-
plings λi(µ0) we can find it at a scale µ by solving this
equation. Call this method 1. Alternatively, we could
have just computed it at the scale µ to begin with, in
terms of the couplings λi(µ). Call this method 2. Meth-
ods 1 and 2 do not give the same potential, to any order
or to all orders in perturbation theory. They differ by the
rescaling of the field h. This is not a problem, since we
have already concluded from Eq. (1) that physical quan-
tities extracted from V should be independent of field
rescaling. The additional freedom of choosing µ0 illus-
trates that even in a fixed gauge or with gauge-invariant
composite fields, field values are still unphysical.

The unphysical nature of V may be less unsettling after
recalling that the effective potential is the constant-field
limit of the 1PI effective action. The vertices of this
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the γ term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ≈ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
effective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM effective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1√
2

(
0

vEW + h

)
. The traditional perturbation ap-

proach leads to a renormalization-group-improved effec-
tive potential of the form [2]

V (h) =
1

4
h4e4Γ(h)

[
λ

(0)
eff (µ = h) + λ

(1)
eff (µ = h) + · · ·

]
(3)

with Γ(h) ≡
∫ h
mt
γ(µ′)dµ

′

µ′ and 1
4λ

(j)
eff (µ)h4 the j-loop

fixed-order effective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term −m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
β-functions and γ are known to 3-loop order in general
Rξ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (ξ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of

mpole
h > (129.1 ± 1.5) GeV. Using equations from [2],

with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole
t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to λ listed
but not used in [2], we update this traditional-approach

bound to mpole
h > (129.67± 1.5) GeV.

The gauge-dependence of the stability bound at 1-loop
is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for effec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ∼ λh4 can only turn over

due to 1-loop corrections of the form V1 ∼ g4~
16π2h

4 for

some g if λ ∼ g4~
16π2 . Since λ ∼ ~, each factor of λ in a

diagram changes its effective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since λ ∼ ~
it is not the usual loop expansion.

An additional complication is that the effective poten-
tial has terms scaling like inverse powers of ~. For ex-
ample, a term ∼ ~3g10λ−1 appears at 3-loops; since λ
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop effective po-
tential in Rξ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2λ1−j .

The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the effective
potential to order ~ with λ ∼ ~ power counting. This
gives the leading-order (LO) potential:

V (LO)(h) =
1

4
λh4

+ h4 1

2048π2

[
− 5g4

1 + 6(g2
1 + g2

2)2 ln
h2(g2

1 + g2
2)

4µ2

−10g2
1g

2
2−15g4

2 +12g4
2 ln

g2
2h

2

4µ2
+144y4

t −96y4
t ln

y2
t h

2

2µ2

]
(4)

Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV (LO)/dh = 0. Ex-
plicitly µX is the MS scale where the condition

λ =
1

256π2

[
g4

1 + 2g2
1g

2
2 + 3g4

2 − 48y4
t

− 3
(
g2

1 + g2
2

)2
ln
g2

1 + g2
2

4
− 6g4

2 ln
g2

2

4
+ 48y4

t ln
y2
t

2

]
(5)
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values of mh and mt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46× 1010 GeV (6)

µmin
X = 3.43× 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with λ ∼ ~ scaling:

V (1,NLO)(h) =
−1

256π2

[
ξBg

2
1

(
ln
λh4(ξBg

2
1 + ξW g

2
2)

4µ4
− 3

)
+ξW g

2
2

(
ln
λ3h12ξ2

W g
4
2(ξBg

2
1 + ξW g

2
2)

64µ12
− 9

)]
λh4 (8)

Another contribution V (2,NLO)(h) comes from the λ0 and
lnλ terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as λ
(2)
eff in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of λ. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(ξB = ξW = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved effective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

2 loops, traditional method (Landau gauge)

1-loop, traditional method

0 100 200 300 400 500
1×1010

2×1010

3×1010

4×1010

5×1010

ξt

Λ
I

FIG. 2. Gauge dependence of the instability scale ΛI , defined
by V (ΛI) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t − 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and αs uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h − 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) Rξ gauge pa-
rameters equal to ξt when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (ξ = ∞) may be due to
much (but not all) of the gauge-dependence being in the
e4Γ prefactor in Eq. (3) which drops out of the V = 0
condition.

Fig. 2 shows the gauge dependence of the instability
scale ΛI , defined by V (ΛI) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.

Fig. 3 shows the value of Vmax computed by various
approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ξt in the traditional
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2-loops, traditional method (Landau gauge)

NLO, consistent method

LO, consistent method

1-loop, traditional method
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FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole
t = 173.34 GeV.

approach at 1-loop. Decent fits are (12)(
V 1-loop, trad.

max

)1/4 ≈ (2.50× 109 GeV)e−0.02ξt+0.0003ξ2t(
−V 1-loop, trad.

min

)1/4

≈ (3.08× 1029 GeV)e0.001ξt−0.0001ξ2t

The consistent gauge-invariant values at NLO are(
V NLO

max

)1/4
= 2.88× 109 GeV (13)(

−V NLO
min

)1/4
= 2.40× 1029 GeV

Note that −Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be effected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale ΛI > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ≡ 1

Λ2
NP
h6 be comparable

to Vmin when h = 〈h〉. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its effect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coefficients. For example,
taking ΛNP = MPl = 1.22 × 1019 GeV, we find that
µmin
X = 6.0 × 1017 GeV and Vmin = −(1.1 × 1017 GeV)4.

Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = −(0.01 ΛNP)4, ΛNP & 1012 GeV (14)

When ΛNP < 3.6×1012 GeV, Vmin becomes positive and
for ΛNP < 3.1 × 1012 GeV the maximum and minimum

Metastability

Rapid instability

Absolute stability

HPlanck-sensitiveL
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FIG. 4. Boundaries of absolute stability (lower band, NLO)
and metastability (upper line, LO). The thickness of the
lower boundary indicates perturbative and αs uncertainty.
The theoretical uncertainty of the metastability boundary is
unknown. The elliptical contours are 68%, 95% and 99%
confidence bands on the Higgs and top masses: mpole

h =

(125.14±0.23) GeV and mpole
t = (173.34±1.12) GeV. Dotted

lines are scales in GeV at which Vmin can be lifted positive by
new physics.

disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.

If we vary the Higgs and top masses in the Standard
Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of ΛNP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when ΛNP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
λ( 1

R )−1 < −14.53 + 0.153 ln[RGeV] for all R [30]. Since
λ(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].

In this paper, we have only discussed a single physical
feature of the effective action: the value of the effective
potential at its extrema. There is of course much more
content in the effective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the effective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the
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FIG. 5. Same as previous figure but zoomed out. Theory
uncertainties on the absolute and metastability bounds are
not shown.

gauge-dependence of various quantities associated with
the electroweak phase transition were discussed [16] and
various predictions of Higgs inflation models [32] in [17].

Since observables such as the gravitational wave spec-
trum or the size of tensor fluctuations in the cosmic mi-
crowave background can in principle be predicted within
quantum field theory, it should be possible to at least set
up such calculations in a way that does not depend on
arbitrary gauge or scale choices in the effective action.
Questions which involve other parts of the effective ac-
tion besides the potential provide new opportunities for
cancellation. For example, after the Z-factors are added
according to the LSZ reduction theorem, S-matrix ele-
ments calculated from the effective action are appropri-
ately invariant. It would be interesting to see pertur-
bative demonstrations of the gauge-invariance of other
derived quantities from the effective action.
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