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We present a quantal study of the rotationally elastic and inelastic scattering of Ag and N2, with the
nitrogen molecule treated as a rigid rotor. The two-dimensional potential energy surface of the AgN2

complex is obtained ab initio by means of the spin unrestricted coupled-cluster method with single,
double, and perturbative triple excitations. The global minimum is found to be located at an internu-
clear distance of 8.13 a0 and an angle of 127.2◦. The long-range part of the potential is constructed
from the dynamic electric dipole polarizabilities of Ag and N2. Elastic, excitation, and relaxation
cross sections and rates are calculated for energies between 0.1 and 5000 cm−1. The momentum
transfer cross sections and rates are also computed. Finally, we compare the cross sections for Ag–
N2 and Na–N2 to explore the possibility of using silver instead of sodium in experimental tests.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703518]

I. INTRODUCTION

Sodium laser guide stars are currently in operation or
under development at major ground-based telescopes in order
to improve the use of adaptive optics. One of the major diffi-
culties in their implementation is the modeling of the photon
return from the sodium layer present in the mesosphere. In
particular, collisions of Na with N2, O, and O2 and spin ex-
change collisions with O2 change the velocity of the sodium
atoms, hence, these processes must be included in theoretical
models in order to optimize the return flux.1 In addition, it is
also important to consider the effects of these collisions in the
context of the use of mesospheric sodium in remote-detection
magnetometry.2 We have recently performed a theoretical
investigation of Na–N2 collisions using the close-coupling
method for temperatures between 100 and 300 K,3 but the
cross sections for collisions of Na with O and O2 are still
unknown. Furthermore, the experimental determination of
these cross sections is very challenging due to the high
reactivity of sodium. Due to its low chemical reactivity, and
because their electronic structure are similar (in the ground
state, a single s electron outside a filled shell), silver has been
proposed as a possible substitute for sodium in experiments.4

Silver atoms ablated into a dense buffer gas such as
He or N2 at temperatures ranging from a few K to room
temperature have been explored experimentally and pro-
posed as a potential system for a high-sensitivity cryogenic
atomic magnetometer.5 Ag–N2 collisions could also have ap-
plications in the context of spin-exchange optical pumping
(SEOP). It has been recently demonstrated theoretically that
the rate of spin polarization of 3He can be improved by the
use of Ag instead of alkali-metal atoms.6 A typical SEOP ex-
periment consists of a cell containing an alkali-metal and a
noble gas. The alkali-metal is spin polarized by optical pump-
ing, and the spin polarization is transferred to the noble gas

a)Electronic mail: jloreau@cfa.harvard.edu.

during collisions.7 The cell also contains N2, which is used
to quench the excited atoms, and the interaction of nitrogen
with the alkali-metal can have important effects on the SEOP
mechanism.8

The purpose of this work is to describe Ag–N2 collisions
using a fully quantal method. In Sec. II, we present the two-
dimensional potential energy surface of the ground state of
the AgN2 van der Waals complex, calculated using ab initio
methods with the N2 molecule frozen in its equilibrium ge-
ometry. In Sec. III, we calculate the elastic and inelastic (ex-
citation and de-excitation) rotational cross sections, as well as
the differential and momentum transfer cross sections, for en-
ergies in the range 0.1–5000 cm−1. We also calculate the cor-
responding rate constants for temperatures between 1 K and
1000 K, and we compare these results to the calculations re-
cently reported on Na–N2 scattering3 to investigate the possi-
bility of using Ag as a substitute for Na in experimental tests.

II. AB INITIO CALCULATIONS

A. Interaction potential

To parametrize the potential energy surface of the AgN2

complex, we used the three standard Jacobi coordinates (R,
r, θ ). R is the distance between the silver atom and the cen-
ter of mass of the N2 molecule, r denotes the length of the
N–N bond, and θ is the angle between R and r. As the first ex-
cited vibrational state of N2 lies about 2330 cm−1 above the
ground state,9 vibrational excitation is not expected to con-
tribute significantly. The internuclear distance of N2 is there-
fore fixed to the equilibrium geometry, r = 2.4132 a.u. The
ground state configuration of the silver atom is 4d105s1 2S,
while the ground state of the nitrogen molecule is a 1"+

g state.
Therefore, the ground state of the AgN2 van der Waals com-
plex corresponds to the 2A′ representation of the symmetry
group Cs. For the particular geometries θ = 0◦ (linear) and
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θ = 90◦ (T-shaped), the ground state will be, respectively, a
2"+ or a 2A1 state.

The two-dimensional potential energy surface (PES) of
the ground state was calculated using the spin unrestricted
coupled-cluster method with single, double, and perturba-
tive triple excitations (UCCSD(T))10, 11 implemented in the
MOLPRO 2009.1 package.12 The reference wave function em-
ployed in the CC calculations was generated from the spin
restricted Hartree-Fock method. For the Ag atom, we used
the cc-pwCVQZ-PP basis set.13 This basis set consists of a
small-core relativistic pseudopotential, which replaces the 1s
− 3d core and includes scalar and spin-orbit effects,14 and of
a quadruple zeta basis set for the valence electrons, includ-
ing valence plus core-valence correlation. This basis set was
augmented by diffuse functions13 (one for each angular mo-
mentum symmetry) to accurately describe the weakly bound
complex AgN2. For the N atoms, the aug-cc-pwCVQZ basis
set15 was used. In our calculations, we treated the 1s2 elec-
trons of both N atoms as core electrons. In total, 29 electrons
(the 4s24p64d105s1 electrons of the Ag atom and the 2s22p3

electrons of the N atoms) were correlated explicitly in the
UCCSD(T) calculations.

We constructed the two-dimensional PES V (R, θ ) using
an uniform grid of 583 geometries. The grid for the inter-
molecular distance is 3.4 ≤ R ≤ 19 a.u. with a step-length
of 0.3 a.u. while for the θ we used a grid 90◦ ≤ θ ≤ 180◦

with a step size of 10◦, with an additional series of points at
θ = 95◦. The potential for 0◦ ≤ θ < 90◦ is obtained by sym-
metry with respect to θ = π /2. For each geometry, the energy
was corrected to account for the basis set superposition error
(BSSE) using the counterpoise method.16

The ab initio potential energy surface V (R, θ ) is shown
in Fig. 1. It is strongly repulsive at distances smaller than 6
a.u., and weakly attractive for large R. The potential has a
global minimum at θ = 127.2◦ (and at θ = 52.8◦) and the
equilibrium distance is R = 8.13 a.u., with a dissociation en-
ergy De = 81.8 cm−1. As can be seen from Fig. 1, the po-
tential has a saddle point at θ = 90◦. The dissociation energy
of this configuration is 73.1 cm−1, 8.7 cm−1 above the global
minimum, and corresponds to the intermolecular distance R
= 8.07 a.u. In the linear geometry (θ = 0◦ or 180◦), the min-
imum of the potential is shifted toward larger intermolecu-
lar distances (R = 8.83 a.u.) and the dissociation energy is
67.0 cm−1. The distances R for which the interaction energy
is maximal are given in Table I for a series of angles. In par-
ticular, we observe that the equilibrium distance increases as
the complex approaches the linear configuration. The effect of
the BSSE on the dissociation energy at the global minimum
is about 12 cm−1.

B. Long-range interactions

The asymptotic long-range attractive potential Vas is
dominated by the dispersion forces and can be constructed
in an analytical form. We retain here the leading term,

Vas = −C6

R6
. (1)
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FIG. 1. Contour plot of the potential energy surface V (R, θ ) for the AgN2
complex. The energies are in units of cm−1.

In the case of the interaction between an S-state atom and
a linear molecule, the C6 coefficient is given by the sum of an
isotropic and an anisotropic component,17

C6 = C6,0P0(cos θ ) + C6,2P2(cos θ ), (2)

where P0 and P2 are the Legendre polynomials of order 0
and 2, respectively. The isotropic and anisotropic dispersion
coefficients may be derived using the dynamic electric dipole
polarizabilities as

C6,0 = 3
π

∫ ∞

0
αAg(iω)αN2 (iω)dω, (3)

C6,2 = 1
π

∫ ∞

0
αAg(iω)

[
αN2

∥ (iω) − αN2
⊥ (iω)

]
dω , (4)

TABLE I. Equilibrium distances of the Ag–N2 potential V (R, θ ) for various
values of θ and with r = 2.4132 a.u., and corresponding dissociation energies
De. θ = 127.2◦ is the global minimum of the potential.

θ (deg) R (a.u.) De (cm−1)

90 8.07 73.1
100 8.06 74.5
110 8.06 77.8
120 8.07 81.0
127.2 8.13 81.8
130 8.16 81.7
140 8.31 79.2
150 8.50 75.0
160 8.67 70.8
170 8.79 68.0
180 8.83 67.0
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TABLE II. Parameters of the switching function (5).

a b c d

−0.0216922 0.717031 0.124343 19.6663

where α∥(iω) and α⊥(iω) are, respectively, the longitudinal
and transverse dynamical electric dipole polarizabilities, eval-
uated as functions of imaginary frequencies iω, while α is the
average dipole polarizability, α = 1

3 (α∥ + 2α⊥). The expres-
sions (3) and (4) can be calculated efficiently using Gaussian
quadrature.18 As in Ref. 3, the dynamic polarizabilities of the
N2 molecule were evaluated using the time-independent lin-
ear response coupled-cluster theory19 at the third-order in the
fluctuation potential, as implemented in MOLPRO, and a triply
augmented correlation consistent polarized core-valence sex-
tuple zeta (t-aug-cc-pCV6Z) basis set.20

For the Ag atom, we adopted the accurate values reported
in Ref. 21, which include core contributions. The integration
was realized using a 50-point Gaussian quadrature, and we
obtained C6, 0=147.56 a.u. and C6, 2=17.47 a.u. The accuracy
of these dispersion coefficients can be further verified through
direct comparison with the ab initio UCCSD(T) calculations.
Substituting the values of the C6 coefficients into Eq. (1), we
find that the energy difference between the UCCSD(T) cal-
culations and the asymptotic potential (1) at the last point of
our computed grid (R = 19 a.u.) is smaller than 0.2 cm−1,
the largest difference occurring for the linear geometry
(θ = 180◦). In order to smoothly connect the ab initio points
and the asymptotic potential, we used a switching function ex-
pressed as the product of an R-dependent and a θ -dependent
function. It is given by

f (R, θ ) = −(1 + tanh(aR + b)) cos(c(θ + d)). (5)

The four parameters a, b, c, d were optimized with respect to
the ab initio points at large R using a nonlinear least-squares
Marquardt-Levenberg algorithm and are given in Table II. The
root mean square deviation was 3 × 10−3 cm−1. A cubic
spline method was employed to generate the potential for R
< 19 a.u.

In scattering calculations, it is often useful to expand the
intermolecular potential V (R, θ ) in terms of Legendre poly-
nomials of order λ in order to simplify the evaluation of its
matrix elements,

V (R, θ ) =
∑

λ

Vλ(R)Pλ(cos θ ) , (6)

where the Vλ(R) are known as “radial strength functions”. The
first four radial functions Vλ(R) are shown in Fig. 2. Only
even values of λ appear in (6) due to the symmetry of the
intermolecular potential.

III. SCATTERING CALCULATIONS

A. Computational method

We calculated the cross sections for Ag–N2 collisions us-
ing the quantum close-coupling method developed by Arthurs
and Dalgarno,22 which has been described extensively in the
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FIG. 2. The first four radial functions Vλ(R) in the expansion (6) of the in-
termolecular potential V (R, θ ).

literature.23 N2 was held fixed at its equilibrium bond-length
and treated in the rigid-rotor approximation. We represented
the energy of the rotational levels of the nitrogen 1"+

g ground
state using the rotational constants of N2 given in Refs. 9
and 24,

Be = 1.99824 cm−1 , De = 5.76 · 10−6 cm−1 ,

αe = 0.017318 cm−1 .

In the close-coupling method, the total wave function of
the Ag–N2 complex is expanded as a sum of products of radial
and rotational functions. When inserted in the Schrödinger
equation, this leads to a set of second-order coupled differ-
ential equations for the radial functions that must be solved
with appropriate boundary conditions. In these equations, the
coupling between the different channels is represented by ma-
trix elements of the intermolecular potential. It is convenient
to introduce the total angular momentum J = j + l, where j is
the angular momentum of N2 and l is the orbital momentum.
The total angular momentum is conserved during the colli-
sion, so that the coupled equations are block-diagonal in J.
The S matrix elements SJ

j ′l′j l can then be obtained from the
asymptotic behavior of the radial functions, and the cross sec-
tion for the transition from an initial rotational state j to a final
rotational state j′ is given in terms of the S matrix elements as

σj→j ′ = π

(2j + 1)k2
j

∞∑

J=0

|J+j |∑

l=|J−j |

|J+j ′|∑

l′=|J−j ′|

× (2J + 1)|δjj ′δll′ − SJ
j ′l′j l|2, (7)

where k2
j = 2µEc = 2µ(E − ϵj ) is the wavenumber in the

entrance channel with energy ϵj, Ec is the kinetic energy, and
E is the total (kinetic plus rotor) energy.

In addition to the integral cross section, the properties of
the atom-molecule collision are also determined by the mo-
mentum transfer cross section σ tr

j→j ′ (or transport cross sec-
tion). The momentum transfer cross section from an initial
level j to a final level j′ is obtained from the differential cross
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sections dσ /d* as25

σ tr
j→j ′ (Ec) = 2π

∫
dσj→j ′ (Ec, γ )

d*
sin γ ,(Ec, γ )dγ , (8)

where γ is the scattering angle. It differs from the integral
cross section given by Eq. (7) by the function

,(Ec, γ ) = 1 −
√

E′
c/Ec cos γ , (9)

where E′
c is the final kinetic energy, related to the initial ki-

netic energy by

E′
c = Ec + ϵj − ϵj ′ . (10)

The thermal rate coefficient for a transition j → j′ at a
given temperature T is given by the integral of the cross sec-
tion over a Maxwell-Boltzmann distribution of initial energies

kj→j ′(T ) =
( 2
kBT

)3/2 1
√

πµ

∫ ∞

0
Ece

−Ec/kBT σj→j ′ (Ec) dEc,

(11)

where kB is the Boltzmann constant. The rate coefficient for
momentum transfer, ktr(T ), is given by the same expression,
replacing σ (Ec) by σ tr(Ec).

We carried out the scattering calculations for collision
energies between 0.1 and 5000 cm−1 using the nonreactive
scattering code MOLSCAT of Hutson and Green.26 The radial
equations were solved using a hybrid modified log-derivative
Airy propagator.27 The log-derivative matrix is propagated
on a grid of intermolecular distances between Rmin and
Rmax, where the numerical calculations are matched with the
asymptotic solutions and the S matrix elements are extracted.
We used a grid starting at Rmin = 3 a.u., while the Rmax was
in the range 70–150 a.u., depending on the energy of colli-
sion. For a particular energy, the propagation is carried out
until convergence of the sum over the total angular quantum
number J in Eq. (7) is achieved.

B. Cross sections

In this section, we present the integral and momentum
transfer cross sections for elastic and rotationally inelastic
transitions. The elastic and inelastic integral cross sections
starting from the initial rotational levels j = 1, j = 5, and j
= 10 are shown in Figs. 3–5 for energies between 0.1 and
5000 cm−1. We observe resonance structures in the elastic
cross section for the initial rotational level j = 1, as well as
in the inelastic cross sections from j = 1 to j′ = 3 and j′ = 5,
for energies below the depth of the van der Waals potential
(∼80 cm−1). These resonances at low kinetic energy are a
consequence of the attractive potential well, which allows Ag
to be temporarily trapped and hence quasi-bound states to be
formed. These states may arise from the tunneling from the
centrifugal barrier and from excitation of N2 to an asymptot-
ically closed channel where N2 becomes temporarily trapped
in one of the bound states of the potential well.28–30 Com-
pared to the depth of the potential well, the energy spacing
of the N2 rotational structure is small, so that both types of
quasi-bound states occur in the same energy range. Although
the resonances are still present for the initial rotational levels
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j = 5 and j = 10 (see Figs. 4 and 5), they are gradually
suppressed with increase in the initial rotational level, as the
van der Waals potential well supports only a limited number
of excited quasi-bound levels. Levels corresponding to higher
j therefore become virtual states producing no resonances.

In addition to the resonance structure for energies below
80 cm−1, the elastic cross sections present undulations as a
function of the kinetic energy. These undulations are present
for all initial rotational levels, and the position of the maxima
is almost independent of j. This peak structure is characteristic
of glory undulations,31 and the independence of the peak po-
sitions with respect to the initial rotational state indicates that
the rotational time of N2 is short compared to the characteris-
tic translational time. The elastic cross sections are very simi-
lar for all initial rotational levels, although for energies below
80 cm−1, there can be significant differences due to the reso-
nance structure. They become comparable at higher energies,
but for a given energy the cross section increases slightly with
j. At 100 cm−1, the j = 5 and j = 15 cross sections are larger
than the j = 1 cross section by about 3% and 6%, respectively,
while the difference drops to 1% and 5% at 1000 cm−1.

The elastic cross section can be estimated from the
semi-classical Landau-Schiff formula for scattering by a R−n

potential,32

σ = 2π
n

n−1 sin
[π

2
n − 3
n − 1

]
-

[n − 3
n − 1

](-[ n−1
2 ]

-[ n
2 ]

) 2
n−1

(
Cn

v

) 2
n−1

.

(12)
The Landau-Schiff elastic cross section, computed from the
C6 coefficient presented in Sec. II B, is shown in Fig. 6. We
observe a very good agreement with the close-coupling cal-
culations for the rotational state j = 1 illustrated in the figure.
As the elastic cross sections are similar for all initial rotational
levels, the agreement is valid for all values of j.

Over the range of energies considered in this work, the
collision is mostly elastic. As can be seen from Figs. 3–5,
the inelastic cross sections are roughly an order of magni-
tude smaller than the elastic. At low energy, the inelastic pro-
cess is dominated by the relaxation to the rotational level
j′ = j − 2. At higher energy, when several excited rota-
tional levels become energetically available, the inelastic tran-
sitions are dominated by excitation into the rotational levels
j′ > j. The rotational relaxation occurs preferentially through
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the highest rotational level for all energies. In Fig. 7, we
compare the total inelastic (relaxation plus excitation) cross
sections for various initial rotational levels. We observe that
for a given energy, the inelastic cross sections decrease with
increasing initial rotational level. However, at high energies
(above 1000 cm−1), the cross section includes contributions
from many rotational levels and the inelastic cross section be-
comes independent of the initial rotational state.

The elastic and inelastic momentum transfer cross sec-
tions σ tr

j→j ′ , given by Eq. (8) are presented in Fig. 8 for the
initial levels j = 1, j = 5, and j = 10. For energies below the
depth of the potential, the elastic cross sections for the var-
ious initial rotational levels can be quite different. However,
at higher energies they all converge towards the same value.
The elastic momentum transfer cross sections are smaller than
the elastic integral cross sections at all energies, due to the
function ,(Ec, γ ) = 1 −

√
E′

c/Ec cos γ (see Eq. (9)), which
suppresses the contributions from the small angles (forward
scattering) in the differential cross section. The difference be-
tween the two types of elastic cross sections increases with
the energy. This is due to the fact that at low energy, the
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differential cross section is large for all scattering angles.
However, as the energy increases, the contributions from large
γ decrease rapidly and the collisions are dominated by for-
ward scattering. Therefore, the momentum transfer cross sec-
tions σ tr

j→j ′ decrease more quickly than the integral cross
sections σj→j ′ as the energy increases. At low energy, the mo-
mentum transfer cross section is dominated by elastic scatter-
ing. However, as can be seen from Fig. 8, the contribution
of inelastic scattering increases at high energy and the inelas-
tic momentum cross section becomes larger than the elastic at
energies above 103 cm−1. At these energies, the cross sections
for different initial rotational levels become very similar.

C. Rate coefficients

The scattering rate coefficients (11) are presented in
Fig. 9(a) for temperatures between 1 and 1000 K and for the
initial rotational levels j = 1, j = 5, and j = 10. The elastic
rates kjj are very similar for the three initial rotational levels
and grow with increasing temperature. The inelastic rates
(summed over all final rotational levels j′ ̸= j) are displayed
in the same figure. The rates are consistent with the cross
sections discussed above (see Fig. 7) and increase with T.
Over the whole range of temperatures considered, the rate
coefficients are dominated by elastic collisions, as expected
from the previous discussion. The momentum transfer rates
for initial rotational levels j = 1, 5, and 10 are shown in
Fig. 9(b). The elastic rates have comparable magnitudes, al-
though they differ by as much as 50% at T = 1 K. The elastic
momentum transfer rate for j = 1 increases from 1 K to 16 K,
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rate coefficients; (b) momentum transfer rate coefficients. Full lines: elastic
collisions; dashed lines: inelastic collisions.

where it reaches a maximum, and then decreases from 16 K
to 1000 K. The rate for the initial rotational levels j = 5 and j
= 10 presents a similar behavior, but the maximum is shifted
toward higher temperatures. The elastic momentum transfer
rates are smaller than the scattering rates, and the difference
between the two types of rates increases from a factor of 3 at
T = 1 K to a factor of 25 at T = 1000 K. This reflects the fact
that the elastic momentum transfer cross sections decrease
more rapidly than the scattering cross sections when the
energy increases. On the other hand, the inelastic momentum
transfer rates are very similar to the inelastic scattering rates,
so that inelastic transitions play a much more important role
for momentum transfer rates at high temperatures. This be-
havior was also observed in the case of Na–N2 collisions.3 At
temperatures of 1000 K and above, the inelastic momentum
transfer rates are in fact larger than the elastic rates.

D. Comparison with Na–N2 scattering

As Ag has been suggested as a proxy for Na in experi-
ments with N2 and O2,4 it is useful to compare the collisional
properties of both species with N2. In Fig. 10, we show a
comparison of the scattering cross sections and the rate coef-
ficients for the initial rotational level j = 5. We have extended
the results of our previous calculations on Na–N2 collisions
for energies down to 0.1 cm−1 and up to 5000 cm−1 in order
to be able to compare the cross sections (rates) over a large
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range of energies (temperatures). As illustrated in Fig. 10(a),
the elastic cross sections for both processes are of the same
magnitude, while the inelastic cross sections are much more
important in the case of Ag–N2 collisions at low energy. At
energies larger than 103 cm−1, the relaxation cross sections
become similar for the two systems. This can be explained
by observing that the van der Waals potential for AgN2 is
more anisotropic than in the case of NaN2, which can be seen
clearly by comparing the radial functions Vλ for both com-
plexes (see Fig. 2 and Fig. 2 of Ref. 3). We observe that at low
energy, the terms with λ ̸= 0 are larger for the AgN2 complex
than for NaN2 in the classically allowed region, therefore, fa-
voring inelastic transitions in the former system. This discus-
sion is also valid for the momentum transfer cross sections.

The scattering rate coefficients, shown in Fig. 10(b), re-
flect the above discussion on the cross sections. At the lowest
temperature considered in this work (T = 1 K), the inelastic
rate for Ag–N2 collisions is larger than the rate for Na–N2 by
an order of magnitude, while at T = 1000 K the difference
is about a factor of 2. On the other hand, the elastic rate for
Na–N2 is larger than for Ag–N2. This is mainly due to the fact
that the reduced mass of the system, which is larger for AgN2,
appears in the calculation of the rate coefficient (see Eq. (11)).
The total rate (obtained by summing the elastic and inelastic
rates) for the two collisional complexes is also very similar. If
the mass difference between the two systems is neglected, we
find that the rates for Na–N2 and Ag–N2 collisions differ by
at most 10% over the range of temperatures considered in this
work. Therefore, while the contributions of elastic and inelas-
tic transitions are quite different, we conclude that the total
rate coefficient for Ag–N2 collisions can be obtained simply
by scaling the rate for Na–N2 collisions by the square root
of the ratio of the reduced masses of the two systems. These
findings are also valid in the case of the momentum transfer
rate coefficients, except that the difference between the total
rates is of at most 15% instead of 10%.

IV. CONCLUSIONS

We have performed a quantal study of elastic and
inelastic rotational collisions of Ag with N2 for collision
energies between 0.1 and 5000 cm−1. We have obtained the
two-dimensional PES of the ground state of the AgN2 com-
plex by means of the coupled-cluster method implemented
in MOLPRO with the N2 internuclear distance fixed to its
equilibrium geometry. The potential has a minimum at the
geometry R = 8.13 a.u. and θ = 127.2◦, while the maximum
depth of the well is 81.8 cm−1. The asymptotic part of the
potential was constructed analytically by calculating the C6

dispersion coefficient.
We investigated the Ag–N2 collisions using the quantum-

mechanical close-coupling method for energies between 0.1
and 5000 cm−1. We calculated the cross sections for elastic
scattering, as well as for rotational excitation and relaxation,
for various initial rotational levels. Over the range of energies
considered in this work, the elastic cross sections are about
an order of magnitude larger than the inelastic cross sections.
The elastic cross sections present a complicated resonance
structure, which depends on the initial rotational level j for

energies below the depth of the potential well, while for
energies above 80 cm−1 the elastic cross sections are very
similar for all values of j. The inelastic cross sections, on the
other hand, decrease with increasing initial rotational level
but become independent of j at high energy. The elastic mo-
mentum transfer cross sections are smaller than the scattering
cross section, and the difference between the two types of
cross sections increases with energy. However, this is not the
case for the inelastic momentum transfer cross sections, so
that at high energy the momentum transfer occurs primarily
through inelastic collisions. Finally, we calculated the elastic
and inelastic rate coefficients for temperatures between
1 K and 1000 K. The elastic scattering rate increases with
the temperature, while the elastic momentum transfer rate
increases until it reaches a maximum at a temperature, which
depends on the initial rotational level, and then decreases at
higher temperatures.
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