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1 Introduction

Many empirical questions in economics and other social sciences depend on causal effects of
programs or policies. In the last two decades, much research has been done on the econometric
and statistical analysis of the effects of such programs or treatments. This recent theoretical
literature has built on, and combined features of, earlier work in both the statistics and econo-
metrics literatures. It has by now reached a level of maturity that makes it an important tool
in many areas of empirical research in economics and suitable for a review. In this article we
attempt to present such a review. We will focus on practical issues for empirical researchers, as
well as provide an historical overview of the area and give references to more technical research.
This review complements and extends other reviews and discussions by Blundell and Costa-Dias
(2002), Imbens (2004), Angrist and Krueger (2000), and the books by Rosenbaum (1995), Pearl
(2000), Lee (2005a), Rubin (2006), Caliendo (2006), Angrist and Pischke (2008), and Morgan
and Winship (2007). In addition the reviews in Heckman, Lalonde and Smith (2000), Heckman
and Vytlacil (2007a, 2007b), and Abbring and Heckman (2007) provide an excellent overview
of the important theoretical work by Heckman and his coauthors in this area.

The central problem studied in this literature is that of evaluating the effect of the exposure
of a set of units to a program or treatment on some outcome. In economic studies, the units are
typically economic agents such as individuals, households, markets, firms, counties, states or
countries, but in other disciplines where evaluation methods are used the units can be animals,
plots of land, or pieces of material. The treatments can be job search assistance programs,
educational programs, vouchers, laws or regulations, medical drugs, environmental exposure,
or technologies. A critical feature is that, in principle, each unit can be exposed to one or more
different levels of the treatment. An individual may enroll or not in a training program, or he
or she may receive or not receive a voucher, or be subject to a particular regulation or not. The
object of interest is a comparison of the two outcomes for the same unit when exposed, and
when not exposed, to the treatment. The problem is that we can at most observe one of these
outcomes because the unit can be exposed to only one level of the treatment. Holland (1986)
refers to this as the “fundamental problem of causal inference.” In order to evaluate the effect of
the treatment we therefore always need to compare distinct units receiving the different levels
of the treatment. Such a comparison can involve different physical units, or the same physical
unit at different times.

The problem of evaluating the effect of a binary treatment or program is a well studied prob-
lem with a long history in both econometrics and statistics. This is true both in the theoretical
literature as well as in the more applied literature. The econometric literature goes back to early
work by Ashenfelter (1978) and subsequent work by Ashenfelter and Card (1985), Heckman
and Robb (1985), Lalonde (1986), Fraker and Maynard (1987), Card and Sullivan (1988), and
Manski (1990). Motivated primarily by applications to the evaluation of labor market programs
in observational settings, the focus in the econometric literature is traditionally on endogeneity,
or self-selection, issues. Individuals who choose to enroll in a training program are by definition
different from those who choose not to enroll. These differences, if they influence the response,
may invalidate causal comparisons of outcomes by treatment status, possibly even after ad-
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justing for observed covariates. Consequently, many of the initial theoretical studies focused
on the use of traditional methods for dealing with endogeneity, such as fixed effect methods
from panel data analyses and instrumental variables methods. Subsequently, the econometrics
literature has combined insights from the semiparametric literature to develop new estimators
for a variety of settings, requiring fewer functional form and homogeneity assumptions.

The statistics literature starts from a different perspective. This literature originates in
the analysis of randomized experiments by Fisher (1925) and Neyman (1923). From the early
seventies, Rubin (1973a,b, 1974, 1977, 1978), in a series of papers, formulated the now dom-
inant approach to the analysis of causal effects in observational studies. Rubin proposed the
interpretation of causal statements as comparisons of so-called potential outcomes: pairs of
outcomes defined for the same unit given different levels of exposure to the treatment. Models
are developed for the pair of potential outcomes rather than solely for the observed outcome.
Rubin’s formulation of the evaluation problem, or the problem of causal inference, labeled the
Rubin Causal Model (RCM) by Holland (1986), is by now standard in both the statistics and
econometrics literature. One of the attractions of the potential outcomes setup is that from
the outset it allows for general heterogeneity in the effects of the treatment. Such heterogene-
ity is important in practice, and it is important theoretically as it is often the motivation for
the endogeneity problems that concern economists. One additional advantage of the potential
outcome set up is that the parameters of interest can be defined, and the assumptions stated,
without reference to particular parametric models.

Of particular importance in Rubin’s approach is the relationship between treatment assign-
ment and the potential outcomes. The simplest case for analysis is when assignment to treat-
ment is randomized, and thus independent of covariates as well as the potential outcomes. In
such classical randomized experiments, it is straightforward to obtain attractive estimators for
the average effect of the treatment, e.g. the difference in means by treatment status. Random-
ized experiments have been used in some areas in economics. In the seventies, negative income
tax experiments received widespread attention. In the late eighties, following an influential
paper by Lalonde (1986) that concluded econometric methods were unable to replicate experi-
mental results, more emphasis was put on experimental evaluations of labor market programs,
although more recently this emphasis seems to have weakened a bit. In the last couple of years,
some of the most interesting experiments have been conducted in development economics (e.g.,
Miguel and Kremer, 2004; Duflo, 2001; Angrist, Bettinger and Kremer, 2005; Banerjee, Duflo,
Cole and Linden, 2007) and behavioral economics (e.g., Bertrand and Mullainathan, 2004).
Nevertheless, experimental evaluations remain relatively rare in economics. More common is
the case where economists analyze data from observational studies. Observational data gener-
ally create challenges in estimating causal effects, but in one important special case, variously
referred to as unconfoundedness, exogeneity, ignorability, or selection on observables, questions
regarding identification and estimation of the policy effects are fairly well understood. All these
labels refer to some form of the assumption that adjusting treatment and control groups for
differences in observed covariates, or pretreatment variables, remove all biases in comparisons
between treated and control units. This case is of great practical relevance, with many studies
relying on some form of this assumption. The semiparametric efficiency bound has been cal-
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culated for this case (Hahn, 1998) and various semi-parametric estimators have been proposed
(Hahn, 1998; Heckman, Ichimura, and Todd, 1998; Hirano, Imbens and Ridder, 2003; Chen,
Hong, and Tarozzi, 2005; Imbens, Newey and Ridder, 2005; Abadie and Imbens, 2006). We
discuss the current state of this literature, and the practical recommendations coming out of
it, in detail in this review.

Without unconfoundedness there is no general approach to estimating treatment effects.
Various methods have been proposed for special cases, and in this review we will discuss sev-
eral of them. One approach (Rosenbaum and Rubin, 1983; Rosenbaum, 1995) consists of
sensitivity analyses, where robustness of estimates to specific limited departures from uncon-
foundedness are investigated. A second approach, developed by Manski (1990, 2003, 2007),
consists of bounds analyses, where ranges of estimands consistent with the data and the limited
assumptions the researcher is willing to make, are derived and estimated. A third approach, in-
strumental variables, relies on the presence of additional treatments, the so-called instruments,
that satisfy specific exogeneity and exclusion restrictions. The formulation of this method in
the context of the potential outcomes framework is presented in Imbens and Angrist (1994) and
Angrist, Imbens and Rubin (1996). A fourth approach applies to settings where, in its pure
form, overlap is completely absent because the assignment is a deterministic function of covari-
ates, but comparisons can be made exploiting contintuity of average outcomes as a function
of covariates. This setting, known as the regression discontinuity design, has a long tradition
in statistics (see Shadish, Campbell, and Cook, (2002), Cook (2007) for a historical perspec-
tive), but has recently been revived in the economics literature through work by VanderKlaauw
(2002), Hahn, Todd, and VanderKlaauw (2000), Lee (2001), and Porter (2003). Finally, a fifth
approach, referred to as difference—in—differences, relies on the presence of additional data in
the form of samples of treated and control units before and after the treatment. An early
application is Ashenfelter and Card (1985). Recent theoretical work includes Abadie (2005),
Bertrand, Duflo and Mullainathan (2004), Donald and Lang (2008), and Athey and Imbens
(2006).

In this review we will discuss in detail some of the new methods that have been developed
in this literature. We will pay particular attention to the practical issues raised by the im-
plementation of these methods. At this stage, the literature has matured to the extent that
it has much to offer the empirical researcher. Although the evaluation problem is one where
identification problems are important, there is currently a much better understanding of which
assumptions are most useful, as well as a better set of methods for inference given different sets
of assumptions.

Most of this review will be limited to settings with binary treatments. This is in keeping with
the literature, which has largely focused on binary treatment case. There are some extensions
of these methods to multivalued, and even continuous, treatments (e.g., Imbens, 2000; Lechner,
2001; Lechner and Miquel, 2005; Gill and Robins, 2001; Hirano and Imbens, 2004), and some of
these extensions will be discussed in the current review. But the work in this area is ongoing,
and much remains to be done here.

The running example we will use throughout the paper is that of a job market training
program. Such programs have been among the leading applications in the economics litera-
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ture, starting with Ashenfelter (1978) and including Lalonde (1986) as a particularly influential
study. In such settings, a number of individuals enroll or not in a training program, with labor
market outcomes, such as yearly earnings or employment status, as the main outcome of in-
terest. An individual not participating in the program may have choosen not to do so, or may
have been ineligible for various reasons. Understanding the choices made and constraints faced
by the potential participants is a crucial component of any analysis. In addition to observing
participation status and outcome measures, we typically observe individual background charac-
teristics, such as education levels and age, as well as information regarding prior labor market
histories, such as earnings at various levels of aggregation (e.g., yearly, quarterly or monthly).
In addition, we may observe some of the constraints faced by the individuals, including mea-
sures used to determine eligibility, as well as measures of general labor market conditions in the
local labor markets faced by potential participants.

2 The Rubin Causal Model: Potential Outcomes, the Assign-
ment Mechanism, and Interactions

In this section we describe the essential elements of the modern approach to program evalua-
tion, based on the work by Rubin. Suppose we wish to analyze a job training program using
observations on N individuals, indexed by ¢ = 1, ..., N. Some of these individuals were enrolled
in the training program. Others were not enrolled, either because they were ineligible or chose
not to enroll. We use the indicator W; to indicate whether individual ¢ enrolled in the training
program, with W; = 0 if individual ¢ did not, and W; = 1 if individual ¢ did, enroll in the
program. We use W to denote the N-vector with i-th element equal to W;, and Ny and Ny to
denote the number of control and treated units, respectively. For each unit we also observe a
K-dimensional column vector of covariates or pretreatment variables, X;, with X denoting the
N x K matrix with i-th row equal to X/.

2.1 Potential Outcomes

The first element of the RCM is the notion of potential outcomes. For individual i, for ¢ =
1,..., N, we postulate the existence of two potential outcomes, denoted by Y;(0) and Y;(1).
The first, ¥;(0), denotes the outcome that would be realized by individual i if he or she did
not participate in the program. Similarly, Y;(1) denotes the outcome that would be realized by
individual 7 if he or she did participate in the program. Individual ¢ can either participate or not
participate in the program, but not both, and thus only one of these two potential outcomes can
be realized. Prior to the assignment being determined, both are potentially observable, hence
the label potential outcomes. If individual i participates in the program Y;(1) will be realized
and Y;(0) will ez post be a counterfactual outcome. If, on the other hand individual i does not
participate in the program, Y;(0) will be realized and Y;(1) will be the ex post counterfactual.
We will denote the realized outcome by Y;, with Y the N-vector with i-th element equal to Y;.



The preceeding discussion implies that

Y;(0) if Wi =0,

Y; = Yi(W;) =Y;(0>'(1—Wi>+Y%<1>'Wi={ Yi(1) if W = 1.

The potential outcomes are tied to the specific manipulation that would have made one of
them the realized outcome. The more precise the specification of the manipulation, the more
well-defined the potential outcomes are.

This distinction between the pair of potential outcomes (Y;(0), Y;(1)) and the realized out-
come Y; is the hallmark of modern statistical and econometric analyses of treatment effects. We
offer some comments on it. The potential outcomes framework has important precursors in a
variety of other settings. Most directly, in the context of randomized experiments, the potential
outcome framework was introduced by Neyman (1923) to derive the properties of estimators
and confidence intervals under repeated sampling.

The potential outcomes framework also has important antecedents in econometrics. Specif-
ically, it is interesting to compare the distinction between potential outcomes Y;(0) and Y;(1)
and the realized outcome Y; in Rubin’s approach to Haavelmo’s (1943) work on simultaneous
equations models (SEMs). Haavelmo discusses identification of supply and demand models.
He makes a distinction between “any imaginable price 7”as the argument in the demand and
supply functions, ¢%(r) and ¢*(7), and the “actual price p”, which is the observed equilibrium
price satisfying ¢*(p) = ¢%(p). The supply and demand functions play the same role as the
potential outcomes in Rubin’s approach, with the equilibrium price similar to the realized out-
come. Curiously, Haavelmo’s notational distinction between equilibrium and potential prices
has gotten blurred in many textbook discussions of simultaneous equations. In such discussions,
the starting point is often the general formulation YI' + XB = U for N x M vectors of realized
outcomes Y, N x L matrices of exogenous covariates X, and an N x M matrix of unobserved
components U. A nontrivial byproduct of the potential outcomes approach (POA) is that it
forces users of SEMs to articulate what the potential outcomes are, thereby leading to better
applications of SEMs.

Another area where potential outcomes are used explicitly is in the econometric analyses
of production functions. Like the potential outcomes framework, a production function g(z, ¢)
describes production levels that would be achieved for each value of a vector of inputs, some
observed (x) and some unobserved (¢). Observed inputs may be choosen partly as a function
of (expected) values of unobserved inputs. Potential outcomes are also used explicitly in labor
market settings by Roy (1951). Roy models individuals choosing from a set of occupations.
Individuals know what their earnings would be in each of these occupations and choose the
occupation (treatment) that maximizes their earnings. Here we see the explicit use of the
potential outcomes, combined with a specific selection/assignment mechanism, namely, choosing
the treatment with the highest potential outcome.

The potential outcomes framework has a number of advantages over a framework based
directly on realized outcomes. The first advantage of the potential outcome framework is that
it allows us to define causal effects before specifying the assignment mechanism, and without
making functional form or distributional assumptions. The most common definition of the
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causal effect at the unit level is as the difference Y;(1) — Y;(0), but we may wish to look at
ratios Y;(1)/Yi(0), or other functions. Such definitions do not require us to take a stand on
whether the effect is constant or varies accross the population. Further, defining individual-
specific treatment effects using potential outcomes does not require us to assume endogeneity
or exogeneity of the assignment mechanism. By contrast, the causal effects are more difficult
to define in terms of the realized outcomes. Often, researchers write down a regression function
Y; = a+ 7 - W; 4+ ;. This regression function is then interpreted as a structural equation,
with 7 as the causal effect. Left unclear is whether the causal effect is constant or not, and
what the properties of the unobserved component, ¢;, are. The potential outcomes approach
separates these issues, and allows the researcher to first define the causal effect of interest
without considering probabilistic properties of the outcomes or assignment.

The second advantage of the POA 1is that it links the analysis of causal effects to explicit
manipulations. Considering the two potential outcomes forces the researcher to think about
scenarios under which each outcome could be observed, that is, to consider the kinds of ex-
periments that could reveal the causal effects. Doing so clarifies the interpretation of causal
effects. For illustration, consider a couple of recent examples from the economics literature.
First, consider the causal effects of gender or ethnicity on outcomes of job applications. Simple
comparisons of economic outcomes by ethnicity are difficult to interpret. Are they the result of
discrimination by employers, or are they the result of differences between applicants, possibly
arising from discrimination at an earlier stage of life? Now, one can obtain unambiguous causal
interpretations by linking comparisons to specific manipulations. A recent example is the study
by Bertrand and Mullainathan (2004), who compare call-back rates for job applications sub-
mitted with names that suggest African-American or Caucasian ethnicity. Their study has a
clear manipulation — a name change — and therefore a clear causal effect. As a second example,
consider some recent economic studies that have focused on causal effects of individual charac-
teristics such as beauty (Hamermesh and Biddle, 1994), or height. Do the differences in earnings
by ratings on a beauty scale represent causal effects? One possible interpretation is that they
represent causal effects of plastic surgery. Such a manipulation would make differences causal,
but it appears unclear whether cross-sectional correlations between beauty and earnings in a
survey from the general population represent causal effects of plastic surgery.

A third advantage of the POA is that it separates the modelling of the potential outcomes
from that of the assignment mechanism. Modelling the realized outcome is complicated by the
fact that it combines the potential outcomes and the assignment mechanism. The researcher
may have very different sources of information to bear on each. For example, in the labor market
program example we can consider the outcome, say, earnings, in the absence of the program:
Y;(0). We can model this in terms of individual characteristics and labor market histories.
Similarly, we can model the outcome given enrollment in the program, again conditional on
individual characteristics and labor market histories. Then finally we can model the probability
of enrolling in the program given the earnings in both treatment arms conditional on individual
characteristics. This sequential modelling will lead to a model for the realized outcome, but it
may be easier than directly specifying a model for the realized outcome.

A fourth advantage of the potential outcomes approach is that it allows us to formulate
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probabilistic assumptions in terms of potentially observable variables, rather than in terms of
unobserved components. In this approach, many of the critical assumptions will be formulated
as (conditional) independence assumptions involving the potential outcomes. Assessing their
validity requires the researcher to consider the dependence structure if all potential outcomes
where observed. By contrast, models in terms of realized outcomes often formulate the critical
assumptions in terms of errors in regression functions. To be specific, consider again the re-
gression function Y; = a + 7 - W; + ¢;. Typically (conditional independence) assumptions are
made on the relationship between ; and W;. Such assumptions implicitly bundle a number of
assumptions, including functional-form assumptions and substantive exogeneity assumptions.
This bundling makes the plausibility of these assumptions more difficult to assess.

A fifth advantage of the POA is that it clarifies where the uncertainty in the estimators
comes from. Even if we observe the entire (finite) population (as is increasingly common with
the growing availability of administrative data sets) — so we can estimate population averages
with no uncertainty — causal effects will be uncertain because for each unit at most one of
the two potential outcomes is observed. One may still use super population arguments to
justify approximations to the finite sample distributions, but such arguments are not required
to motivate the existence of uncertainty about the causal effect.

2.2 The Assignment Mechanism

The second ingredient of the RCM is the assignment mechanism. This is defined as the condi-
tional probability of receiving the treatment, as a function of potential outcomes and observed
covariates. We distinguish three classes of assignment mechanisms, in order of increasing com-
plexity of the required analysis.

The first class of assignment mechanisms is that of randomized experiments. In randomized
experiments, the probability of assignment to treatment does not vary with potential outcomes,
and is a known function of covariates. The leading case is that of a completely randomized
experiment where, in a population of N units, Ny < N randomly chosen units are assigned
to the treatment and the remaining Ng = N — Nj units are in the control group. There are
important variations on this example, such as pairwise randomization, where initially units
are matched in pairs, and in a second stage one unit in each pair is randomly assigned to
the treatment. Another variant is a general stratified experiment, where randomization takes
place within a finite number of strata. In any case, there are in practice few experiments
in economics, and most of those are of the completely randomized experiment variety, so we
shall limit our discussion to this type of experiment. It should be noted though that if one has
the opportunity to design a randomized experiment, and if pretreatment variables are available,
stratified experiments are at least as good as completely randomized experiments, and typically
better, in terms of expected mean squared error, even in finite samples. See Imbens, King,
McKenzie and Ridder (2008) for more details. The use of formal randomization has become
more widespread in the social sciences in recent years, sometimes as a formal design for an
evaluation and sometimes as an acceptable way of allocating scarce resources. The analysis
of such experiments is often straightforward. In practice, however, researchers have typically
limited themselves to simple mean differences by assignment. Such analyses are valid, but often
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they are not the most powerful tools available to exploit the randomization. We discuss the
analysis of randomized experiments, including more powerful randomization-based methods for
inference, in Section 4.

The second class of assignment mechanisms maintains the restriction that the assignment
probabilities do not depend on the potential outcomes, or

Wi L (¥(0).%(1) | X,

where A I B|C denotes conditional independence of A and B given C. However, in con-
trast to randomized experiments, the assignment probabilities are no longer assumed to be a
known function of the covariates. The precise form of this critical assumption, not tied to func-
tional form or distributional assumptions, was first presented in Rosenbaum and Rubin (1983a).
Following Rubin (1990) we refer to this assignment mechanism as unconfounded assignment.
Somewhat confusingly, this assumption, or variations on it, are in the literature also referred
to by various other labels. These include selection on observables!, exogeneity?, and condi-
tional independence®. Although the analysis of data with such assignment mechanisms is not
as straightforward as that of randomized experiments, there are now many practical methods
available for this case. We review them in Section 5.

The third class of assignment mechanisms contains all remaining assignment mechanisms
with some dependence on potential outcomes.? Many of these create substantive problems for
the analysis, for which there is no general solution. There are a number of special cases that are
by now relatively well understood, and we discuss these in Section 6. The most prominent of
these cases are instrumental variables, regression discontinuity, and differences-in-differences. In
addition, we discuss two general methods that also relax the unconfoundedness assumption but
do not replace it with additional assumptions. The first relaxes the unconfoundedness assump-
tion in a limited way and investigates the sensitivity of the estimates to such violations. The
second drops the unconfoundedness assumption entirely and establishes bounds on estimands
of interest. The latter is associated with the work by Manski (1990, 1995, 2008).

! Although Heckman, Ichimura and Todd (1997, page 611) write that “In the language of Heckman and Robb
(1985) matching assumes that selection is on observables” (their italics), the original definition in Heckman and
Robb (1985, page 163) is not equivalent to unconfoundedness. In the context of a single cross-section version of
their two equation selection model, Y = X3+ W;a +¢; and W; = 1{Z]y + v; > 0}, they define selection bias to
refer to the case where E[e;W;] # 0, and selection-on-observables to the case where selection bias is present and
caused by correlation between ¢; and Z;, rather than by correlation between ¢; and v;.

2 Although X is not exogenous for E[Y;(1) — Y;(0)], according to the definitions in Engle, Hendry and Richard
(1983), because knowledge of its marginal distribution contains information about E[Y;(1) — Y;(0)], standard
usage of the term “exogenous” does appear to capture the notion of unconfoundedness, e.g., Manski, Sandefur,
McLanahan, and Powers (1992), and Imbens (2004).

3E.g., Lechner, 2001; Cameron and Trivedi, 2005.

4This includes some mechanisms where the dependence on potential outcomes does not create any problems
in the analyses. Most prominent in this category are sequential assignment mechanisms. For example, one could
randomly assign the first ten units to the treatment or control group with probability 1/2. From then on one
could skew the assignment probability to the treatment with the most favorable outcomes so far. For example,
if the active treatment looks better than the control treatment based on the first N units, then the (N + 1)th
unit is assigned to the active treatment with probability 0.8 and vice versa. Such assignment mechanisms are
not very common in economics settings, and we ignore them in this discussion.
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2.3 Interactions and General Equilibrium Effects

In most of the literature it is assumed that treatments received by one unit do not affect
outcomes for another unit. Only the level of the treatment applied to the specific individual is
assumed to potentially affect outcomes for that particular individual. In the statistics literature
this assumption is referred to as the Stable-Unit-Treatment-Value-Assumption (SUTVA, Rubin,
1978). In this paper we mainly focus on settings where this assumption is maintained. In the
current section we discuss some of the literature motivated by concerns about this assumption.

This lack-of-interaction assumption is very plausible in many biomedical applications. Whether
one individual receives or does not receive a new treatment for a stroke or not is unlikely to
have a substantial impact on health outcomes for any other individual. However, there are also
many cases in which such interactions are a major concern and the assumption is not plausible.
Even in the early experimental literature, with applications to the effect of various fertilizers
on crop yields, researchers were cognizant of potential problems with this assumption. In order
to minimize leaking of fertilizer applied to one plot into an adjacent plot experimenters used
guard rows to physically separate the plots that were assigned different fertilizers. A different
concern arises in epidimiological applications when the focus is on treatments such as vaccines
for contagious diseases. In that case, it is clear that the vaccination of one unit can affect
the outcomes of others in their proximity, and such effects are a large part of the focus of the
evaluation.

In economic applications, interactions between individual are also a serious concern. It is
clear that a labor market program that affects the labor market outcomes for one individual
potentially has an effect on the labor market outcomes for others. In a world with a fixed
number of jobs, a training program could only redistribute the jobs, and ignoring this constraint
on the number of jobs by using a partial, instead of a general, equilibrium analysis could
lead one to erroneously conclude that extending the program to the entire population would
raise aggregate employment. Such concerns have rarely been addressed in the recent program
evaluation literature. Exceptions include Heckman, Lochner, and Taber (1999) who provide
some simulation evidence for the potential biases that may result from ignoring these issues.

In practice these general equilbrium effects may, or may not, be a serious problem. The
indirect effect on one individual of exposure to the treatment of a few other units is likely to
be much smaller than the direct effect of the exposure of the first unit itself. Hence, with most
labor market programs both small in scope and with limited effects on the individual outcomes,
it appears unlikely that general equilibrium effects are substantial and they can probably be
ignored for most purposes.

One general solution to these problems is to redefine the unit of interest. If the interactions
between individuals are at an intermediate level, say a local labor market, or a classroom, rather
than global, one can analyze the data using the local labor market or classroom as the unit
and changing the no-interaction assumption to require the absence of interactions among local
labor markets or classrooms. Such aggregation is likely to make the no-interaction assumption
more plausible, albeit at the expense of reduced precision.

An alternative solution is to directly model the interactions. This involves specifying which
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individuals interact with each other, and possibly relative magnitudes of these interactions. In
some cases it may be plausible to assume that interactions are limited to individuals within
well-defined, possibly overlapping, groups, with the intensity of the interactions equal within
this group. This would be the case in a world with a fixed number of jobs in a local labor market.
Alternatively, it may be that interactions occur in broader groups but decline in importance
depending on some distance metric, either geographical distance or proximity in some economic
metric.

The most interesting literature in this area views the interactions not as a nuisance but as
the primary object of interest. This literature, which includes models of social interactions and
peer effects, has been growing rapidly in the last decade, following the early work by Manski
(1993). See Manski (2000) and Brock and Durlauf (2000) for recent surveys. Empirical work
includes Kling, Liebman and Katz (2007), who look at the effect of households moving to
neighborhoods with higher average socio-economic status; Sacerdote (2001), who studies the
effect of college roommate behavior on a student’s grades; Glaeser, Sacerdote and Scheinkman
(1996), who study social interactions in criminal behavior; Case and Katz (1991), who look at
neighbourhood effects on disadvantaged youths, Graham (2006), who infer interactions from
the effect of class size on the variation in grades; and Angrist and Lang (2004), who study
the effect of desegregation programs on students’ grades. Many identification and inferential
questions remain unanswered in this literature.

3 What are We Interested In? Estimands and Hypotheses

In this section we discuss some of the questions that researchers have asked in this literature.
A key feature of the current literature, and one that makes it more important to be precise
about the questions of interest, is the accommodation of general heterogeneity in treatment
effects. In contrast, in many early studies it was assumed that the effect of a treatment was
constant, implying that the effect of various policies could be captured by a single parameter.
The essentially unlimited heterogeneity in the effects of the treatment allowed for in the current
literature implies that it is generally not possible to capture the effects of all policies of interest
in terms of a few summary statistics. In practice researchers have reported estimates of the
effects of a few focal policies. In this section we describe some of these estimands. Most
of these estimands are average treatment effects, either for the entire population or for some
subpopulation, although some correspond to other features of the joint distribution of potential
outcomes.

Most of the empirical literature has focused on estimation. Much less attention has been
devoted to testing hypotheses regarding the properties or presence of treatment effects. Here we
discuss null and alternative hypotheses that may be of interest in settings with heterogeneous
effects. Finally, we discuss some of the recent literature on decision-theoretic approaches to
program evaluation that ties estimands more closely to optimal policies.



3.1 Average Treatment Effects

The econometric literature has largely focused on average effects of the treatment. The two
most prominent average effects both rely on a superpopulation perspective. The sample of size
N is viewed as a random sample from a large (super-)population, and interest is in the average
effect in the superpopulation. The most popular one is the Population Average Treatment
Effect (PATE), the population expectation of the unit-level causal effect, Y;(1) — ¥;(0):

Tpate = E [Y;(l) - Y;(O)] :

If the policy under consideration would expose all units to the treatment or none at all, this
is the most relevant quantity. Another popular estimand is the Population Average Treatment
effect on the Treated (PATT), the average over the subpopulation of treated units:

Tpatt = E[Yi(1) = Yi(0)[W; = 1] .

In many observational studies 7yt is a more interesting estimand than the overall average effect.
As an example, consider the case where a well defined population was exposed to a treatment,
say a job training program. There may be various possibilities for a comparison group, including
subjects drawn from public use data sets. In that case it is generally not interesting to consider
the effect of the program for the comparison group: for many members of the comparison group
(e.g., individuals with stable, high-wage jobs) it is difficult and uninteresting to imagine their
being enrolled in the labor market program. (Of course, the problem of averaging across units
that are unlikely to receive future treatments can be mitigated by more carefully constructing
the comparison group to be more like the treatment group, making 7pate a more meaningful
parameter. See the discussion below.) A second case where Tpu¢¢ is the estimand of most
interest is in the setting of a voluntary program where those not enrolled will never be required
to participate in the program. A specific example is the effect of serving in the military where
an interesting question concerns the foregone earnings for those who served (Angrist, 1998).

In practice, there is typically little motivation presented for the focus on the overall average
effect or the average effect for the treated. Take a job training program. The overall average
effect would be the parameter of interest if the policy under consideration is a mandatory
exposure to the treatment versus complete elimination. It is rare that these are the alternatives,
with more typically exemptions granted to various subpopulations. Similarly the average effect
for the treated would be informative about the effect of entirely eliminating the current program.
More plausible regime changes would correspond to a modest extension of the program to other
jurisdictions, or a contraction to a more narrow population.

A somewhat subtle issue is that we may wish to separate the extrapolation from the sample
to the superpopulation fromthe problem of inference for the sample at hand. This suggests
that, rather than focusing on PATE or PATT, we might first focus on the average causal effect
conditional on the covariates in the sample,

1 N
Tcate = N ZE [Y;(l) - Y;(O)| XZ] )
=1
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and, similarly, the average over the subsample of treated units:

e = - 32 E[¥i(1) - %(0)] X,

Lawi=1

If the effect of the treatment or intervention is constant (Y;(1) — Y;(0) = 7 for some constant
7), all four estimands, Tpate, Tpatts Tcate; and Teatt, are obviously identical. However, if there is
heterogeneity in the effect of the treatment, the estimands may all be different. The difference
between Tpate and Teate (and between Tpaer and 7eart) is relatively subtle. Most estimators that
are attractive for the population treatment effect are also attractive for the corresponding con-
ditional average treatment effect, and vice versa. Therefore, we do not have to be particularly
concerned with the distinction between the two estimands at the estimation stage. However,
there is an important difference between the population and conditional estimands at the infer-
ence stage. If there is heterogeneity in the effect of the treatment, we can estimate the sample
average treatment effect 7., more precisely than the population average treatment effect matec.
When one estimates the variance of an estimator 7 — which can serve as an estimate for ma¢e or
Teate — ONE therefore needs to be explicit about whether one is interested in the variance relative
to the population or to the conditional average treatment effect. We will return to this issue in
Section 5.

A more general class of estimands includes average causal effects for subpopulations and
weighted average causal effects. Let A be a subset of the covariate space X, and let Tcatea
denote the conditional average causal effect for the subpopulation with X; € A:

1
Tcate,A = 77— E [Y;(l) - Y;(O)| XZ] )
N Sen
X,

where Ny is the number of units with X; € A. Crump, Hotz, Imbens and Mitnik (2008a) argue
for considering such estimands. Their argument is not based on the intrinsic interest of these
subpopulations. Rather, they show that such estimands may be much easier to estimate than
Teate (OT Teatt). Instead of solely reporting an imprecisely estimated average effect for the overall
population, they suggest it may be informative to also report a precise estimate for the average
effect of some subpopulation. They then propose a particular set A for which the average effect
is most easily estimable. See Section 5.10.2 for more details. The Crump et al estimates would
not necessarily have as much external validity as estimates for the overall population, but they
may be much more informative for the sample at hand. In any case, in many instances the larger
policy questions concern extensions of the interventions or treatments to other populations, so
that external validity may be elusive irrespective of the estimand.

In settings with selection on unobservables the enumeration of the estimands of interest
becomes more complicated. A leading case is instrumental variables. In the presence of het-
erogeneity in the effect of the treatment one can typically not identify the average effect of
the treatment even in the presence of valid instruments. There are two new approaches in the
recent literature. Onme is to focus on bounds for well-defined estimands such as the average
effect Tpate OF Tcate- Manski (1990, 2003) developed this approach in a series of papers. An
alternative is to focus on estimands that can be identified under weaker conditions than those
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requird for the average treatment effect. Imbens and Angrist (1994) show that one can, under
much weaker conditions than required for identification of Tpate, identify the average effect for
the subpopulation of units whose treatment status is affected by the instrument. They refer
to this subpopulation as the compliers. This does not directly fit into the classification above
since the subpopulation is not defined solely in terms of covariates. We discuss this estimand
in more detail in Section 6.3.

3.2 Quantile and distributional Treatment Effects and other estimands

An alternative class of estimands concerns quantile treatment effects. These have only recently
been studied and applied in the economics literature, although they were introduced in the
statistics literature in the seventies. Doksum (1974) and Lehman (1974) define

Tq = F;(ll)(Q) - F;(lo)(Q)v (1)

as the g-th quantile treatment effect. There are some important issues in interpreting these
quantile treatment effects. First, note that these quantiles effects are defined as differences
between quantiles of the two marginal potential outcome distributions, rather than as quantiles
of the unit level effect,

T = Fy v (0)(@)- (2)

In general the quantile of the difference, 7,, differs from the difference in the quantiles, 7,, unless
there is perfect rank correlation between the potential outcomes Y;(0) and Y;(1) (the leading
case of this is the constant additive treatment effect). The quantiles of the treatment effect,
74, have received much less attention than the quantile treatment effects, 7;,. The main reason
is that the 7, are generally not identified without assumptions on the rank correlation between
the potential outcomes, even with data from a randomized experiment. Note that this issue
does not arise if we look at average effects because the mean of the difference is equal to the
difference of the means: E[Y;(1) — Y;(0)] = E[Y;(1)] — E[Y;(0)].

A complication facing researchers interested in quantile treatment effects is that the differ-
ence in a marginal quantile, 7, is in general not equal to the average difference in the conditional
quantiles, where the latter are defined as

Tq($) = F;(11)|X(Q|$) - F;(10)|X(Q|$)'

In other words, even if we succeed in estimating 7,(x), we cannot simply average 7,(X;) across
ito consistently estimate 7,. Bitler, Gelbach, and Hoynes (2002) estimate quantile treatment
effects in a randomized evaluation of a job training program. Firpo (2006) develops methods
for estimating 7, in observational studies given unconfoundedness. Abadie, Angrist and Imbens
(2002) and Chernozhukov and Hansen (2005) study quantile treatment effects in instrumental
variables settings.



3.3 Testing

The literature on hypothesis testing in program evaluation is relatively limited. Most of the
testing in applied work has focused on the null hypothesis that the average effect of interest is
zero. Because many of the commonly used estimators for average treatment effects are asymp-
totically normally distributed with zero asymptotic bias, it follows that standard confidence
intervals (the point estimate plus or minus a constant times the standard error) can be used
for testing such hypotheses. However, there are other interesting hypotheses to consider.

One question of interest is whether there is any effect of the program, that is whether the
distribution of Y;(1) differs from that of Y;(0). This is equivalent to the hypothesis that not just
the mean, but all moments, are identical in the two treatment groups. Abadie (2002) studies
such tests in the settings with randomized experiments as well as settings with instrumental
variables using Kolmogorov-Smirnov type testing procedures.

A second set of questions concerns treatment effect heterogeneity. Even if the average
effect is zero, it may be important to establish whether a targeted implementation of the
intervention, with only those who can expect to benefit from the intervention assigned to it,
could improve average outcomes. In addition, in cases where there is not sufficient information
to obtain precise inferences for the average causal effect Tpatc, it may still be possible to establish
whether there are any subpopulations with an average effect positive or different from zero, or
whether there are subpopulations with an average effect exceeding some threshold. It may also
be interesting to test whether there is any evidence of heterogeneity in the treatment effect
by observable characteristics. This bears heavily on the question whether the estimands are
useful for extrapolation to other populations which may differ in terms of some observable
characteristics. Crump, Hotz, Imbens and Mitnik (2008b) study these questions in settings

with unconfounded treatment assignment.

3.4 Decision-theoretic Questions

Recently, a small but very innovative literature has started to move away from the focus on sum-
mary statistics of the distribution of treatment effects or potential outcomes to directly address
policies of interest. This is very much a literature in progress. Manski (2000, 2002, 2004), De-
hejia (2005), and Hirano and Porter (2005) study the problem faced by program administrators
who can assign individuals to the active treatment or to the control group. These administra-
tors have available two pieces of information. First, covariate information for these individuals,
and second, information about the efficacy of the treatment based on a finite sample of other
individuals for whom both outcome and covariate information is available. The administrator
may care about the entire distribution of outcomes, or solely about average outcomes, and may
also take into account costs associated with participation. If the administrator knew exactly the
conditional distribution of the potential outcomes given the covariate information this would be
a simple problem: the administrator would simply compare the expected welfare for different
rules and choose the one with the highest value. However, the administrator does not have
this knowledge and needs to make a decision given uncertainty about these distributions. In
these settings, it is clearly important that the statistical model allows for heterogeneity in the
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treatment effects.

Graham, Imbens, and Ridder (2006) extend the type of problems studied in this literature
by incorporating resource constraints. They focus on problems that include as a special case
the problem of allocating a fixed number of slots in a program to a set of individuals on the
basis of observable characteristics of these individuals given a random sample of individuals for

whom outcome and covariate information is available.

4 Randomized Experiments

Experimental evaluations have traditionally been rare in economics. The few experiments that
have been conducted have generally been influential, including some of the labor market training
programs. More recently, many small scale experiments have been conducted in development
economics. We discuss some of these in Section 4.1.

With experimental data the statistical analysis is generally straightforward. Differencing
the means by treatment status or, equivalently, regressing the outcome on an intercept and
an indicator for the treatment, leads to an unbiased estimator for the average effect of the
treatment. Adding covariates to the regression function typically improves precision without
jeopardizing consistency because the randomization implies that in large samples the treatment
indicator and the covariates are independent. In practice, researchers have rarely gone beyond
basic regression methods. In principle, however, there are additional methods that can be useful
in these settings. In Section 4.2 we review one important experimental technique, Fisher’s
method for calculating exact p-values, that deserves wider usage.

4.1 Randomized Experiments in Economics

Randomized experiments have a long tradition in biostatistics. In this literature they are often
viewed as the only credible approach to establishing causality. For example, the US Food
and Drug Administration requires evidence from randomized experiments in order to approve
new drugs and medical procedures. A first comment concerns the fact that even randomized
experiments rely to some extent on substantive knowledge. It is only once the researcher is
willing to limit interactions between units that randomization can establish causal effects. In
settings with potentially general interactions between units, randomization by itself cannot
solve the identification problems required for establishing causality. In biomedical settings,
where such interaction effects are often arguably absent, randomized experiments are therefore
attractive. Moreoever, it is often possible to keep the units ignorant of their treatment status,
further enhancing the interpretation of the estimated effects as causal effects of the treatment,
and thus improving the external validity.

In the economics literature randomization has played a much less prominent role. At various
times social experiments have been conducted, but they have never been viewed as the sole
method for establishing causality, and in fact they have often been regarded with some suspicion
concerning the relevance of the results for policy purposes. Part of this may be due to the fact
that for the treatments of interest to economists, e.g., education and labor market programs,
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it is generally impossible to do blind or double-blind experiments, creating the possibility of
placebo effects that compromise the external validity of the estimates.

Among the early social experiments in economics were the negative income tax experiments
in Seattle and Denver in the early seventies, formallly referred to as the Seattle and Denver In-
come Maintenance Experiments (SIME and DIME). In the eighties, a number of papers called
into question the reliability of econometric and statistical methods for estimating causal ef-
fects in observational studies. In particular, Lalonde (1986) and Fraker and Maynard (1987),
using data from the National Supported Work (NSW) programs, suggested that widely used
econometric methods were unable to replicate the results from experimental evaluations. These
conclusions encouraged government agencies to include experimental evaluation components in
job training programs. Examples of such programs include the Greater Avenues to INdepen-
dence (GAIN) programs (e.g., Riccio and Friedlander, 1992, the WIN programs (e.g., Gueron
and Pauly, 1991; Friedlander and Gueron, 1992), the Self Sufficiency Project (SPP) in Canada
(Card and Hyslop, 2005), and the Statistical Assistance for Programme Selection (SAPS) in
Switzerland (Behncke, Froelich, and Lechner, 2006). Like the NSW evaluation, these experi-
ments have been useful not merely in establishing the effects of particular programs, but also
in providing fertile testing grounds for new evaluations methods.

Recently there has been a large number of experiments in development economics. These
range from the large scale Progressa school subsidy program in Mexico (see Schulz, 2001;
Attansio, Meghir and Santiago, 2001) to much smaller experiments, such as the teacher incentive
study by Duflo and Hanna (2006) and the corruption study by Olken (2007). Many of these
address questions in education (e.g., Banerjee, Duflo, Cole, and Linden, 2007; Miguel and
Kremer, 2003). In a number of these experiments, economists have been involved from the
beginning in the design of the evaluations, raising questions of optimal design. These issues are
discussed in Duflo, Glennester and Kremer (2007), Bruhn and McKenzie (2007), and Imbens,
King, McKenzie and Ridder (2008).

4.2 Fisher’s Exact P-values

Fisher (1925) was interested in calculating p-values for hypotheses regarding the effect of treat-
ments. The aim is to provide exact inferences for a finite population of size IN. This finite
population may be a random sample from a large superpopulation, but that is not exploited in
the analysis. The inference is nonparametric in that it does not make functional form assump-
tions regarding the effects; it is exact in that it does not rely on large sample approximations.
In other words, the p-values coming out this analysis are exact and valid irrespective of the
sample size.

The most common null hypothesis in Fisher’s framework is that of no effect of the treatment
for any unit in this population, against the alternative that, at least for some units, there is a

non-zero effect:
Hy: Y;(0)=Yi(1), Vi=1,...,N, against H, : Ji such that Y;(0) # Y;(1).

It is not important that the null hypothesis is that the effects are all zero. What is essential is
that the null hypothesis is sharp, that is, the null hypothesis specifies the value of all unobserved
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potential outcomes for each unit. A more general null hypothesis could be that Y;(0) = Y;(1)+c¢
for some pre-specified ¢, or that Y;(0) = Y;(1) + ¢; for some set of pre-specified ¢;. Importantly,
this framework cannot accommodate null hypotheses such as the average effect of the treatment
is zero, against the alternative hypothesis of a non-zero average effect, or

H) %Z(Yi(l) - y;-(o)) —0, against H - %Z(Yi(l) —Y;-(O)) £0.

Whether the null of no effect for any unit versus the null of no effect on average is more
interesting was the subject of a testy exchange between Fisher (who focused on the first) and
Neyman (who thought the latter was the interesting hypothesis, and who stated that the first
was only of “academic” interest) in Neyman (1923). Putting the argument about its ultimate
relevance aside, Fisher’s test is a powerful tool for establishing whether a treatment has any
effect. It is not essential in this framework that the probabilities of assignment to the treatment
group are equal for all units. It is crucial, however, that the probability of any particular
assignment vector is known. These probabilities may differ by unit provided the probabilities
are known.

The implication of Fisher’s framework is that, under the null hypothesis, we know the exact
value of all the missing potential outcomes. Thus there are no nuisance parameters under the
null hypothesis. As a result, we can deduce the distribution of any statistic, that is, any function
of the realized values of (Y, Wi)f\il, generated by the randomization. For example, suppose the
statistic is the average difference between treated and control outcomes, T(W,Y) =Y — Y,
where Y, = > iWi=w Yi/Nuw, for w = 0,1. Now suppose we had assigned a different set of
units to the treatment. Denote the vector of alternative treatment assignments by W. Under
the null hypothesis we know all the potential outcomes and thus we can deduce what the value
of the statistic would have been under that alternative assignment, namely T' (W, Y). We can
infer the value of the statistic for all possible values of the assignment vector W, and since
we know the distribution of W we can deduce the distribution of T(W,Y). The distribution
generated by the randomization of the treatment assignment is referred to as the randomization
distribution. The p-value of the statistic is then calculated as the probability of a value for the
statistic that is at least as large, in absolute value, as that of the observed statistic, T(W,Y).

In moderately large samples it is typically not feasible to calculate the exact p-values for
these tests. In that case one can approximate the p-value by basing it on a large number of
draws from the randomization distribution. Here the approximation error is of a very different
nature than that in typical large sample approximations: it is controlled by the researcher, and
if more precision is desired one can simply increase the number of draws from the randomization
distribution.

In the form described above, with the statistic equal to the difference in averages by treat-
ment status, the results are typically not that different from those using Wald tests based on
large sample normal approximations to the sampling distribution to the difference in means
Y, — Yy, as long as the sample size is moderately large. The Fisher approach to calculating
p-values is much more interesting with other choices for the statistic. For example, as advo-
cated by Rosenbaum in a series of papers (Rosenbaum 1984a, 1995), a generally attractive
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choice is the difference in average ranks by treatment status. First the outcome is converted
into ranks (typically with, in case of ties, all possible rank orderings averaged), and then the
test is applied using the average difference in ranks by treatment status as the statistic. The
test is still exact, with its exact distribution under the null hypothesis known as the Wilcoxon
distribution. Naturally, the test based on ranks is less sensitive to outliers than the test based
on the difference in means.

If the focus is on establishing whether the treatment has some effect on the outcomes,
rather than on estimating the average size of the effect, such rank tests are much more likely
to provide informative conclusions than standard Wald tests based differences in averages by
treatment status. To illustrate this point, we took data from eight randomized evaluations of
labor market programs. Four of the programs are from the WIN demonstration programs. The
four evaluations took place in Arkansas, Baltimore, San Diego, and Virginia. See Gueron and
Pauly (1991), Friedlander and Gueron (1992), Greenberg and Wiseman (1992), and Friedlander
and Robins (1995) for more detailed discussions of each of these evaluations. The second set
of four programs is from the GAIN programs in California. The four locations are Alameda,
Los Angeles, Riverside, and San Diego. See Riccio and Friedlander (1992), Riccio, Friedlander,
and Freeman (1994) for more details on these programs and their evaluations. In each location
we take as the outcome total earnings for the first (GAIN) or second (WIN) year following
the program, and we focus on the subsample of individuals who had positive earnings at some
point prior to the program. For each location we calculate three p-values. The first p-value is
based on the normal approximation to the t-tstatistic calculated as the difference in average
outcomes for treated and control individuals divided by the estimated standard error. The
second p-value is based on randomization inference using the difference in average outcomes by
treatment status. And the third p-value is based on the randomization distribution using the
difference in average ranks by treatment status as the statistic. The results are in Table 1.

In all eight cases the p-values based on the t-test are very similar to those based on ran-
domization inference. This outcome is not surprising given the reasonably large sample sizes,
ranging from 71 (Arkansas, WIN) to 4,779 (San Diego, GAIN). However, in a number of cases
the p-value for the rank test is fairly different from that based on the level difference. In both
sets of four locations there is one location where the rank test suggests a clear rejection at the
5% level whereas the level-based test would suggest that the null hypothesis of no effect should
not be rejected at the 5% level. In the WIN (San Diego) evaluation, the p-value goes from 0.068
(levels) to 0.024 (ranks), and in the GAIN (San Diego) evaluation, the p-value goes from 0.136
(levels) to 0.018 (ranks). It is not surprising that the tests give different results. Earnings data
are very skewed. A large proportion of the populations participating in these programs have
zero earnings even after conditioning on positive past earnings, and the earnings distribution
for those with positive earnings is skewed. In those cases a rank-based test is likely to have
more power against alternatives that shift the distribution towards higher earnings than tests
based on the difference in means.

As a general matter it would be useful in randomized experiments to include such results
for rank-based p-values, as a generally applicable way of establishing whether the treatment
has any effect. As with all omnibus tests, one should use caution in interpreting a rejection, as
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the test can pick up interesting changes in the distribution (such as a mean or median effect)
but also less interesting changes (such as higher moments about the mean).

5 Estimation and Inference under Unconfoundedness

Methods for estimation of average treatment effects under unconfoundedness are the most
widely used in this literature. Often this assumption, which requires that conditional on ob-
served covariates there are no unobserved factors that are associated both with the assignment
and with the potential outcomes, is controversial. Nevertheless, in practice, where often data
have been collected in order to make this assumption more plausible, there are many cases
where there is no clearly superior alternative, and the only alternative is to abandon the at-
tempt to get precise inferences. In this section we discuss some of these methods and the issues
related to them. A general theme of this literature is that the concern is more with biases than
with efficiency.

This setting is closely related to that underlying standard multiple regression analysis with
a rich set of controls. Unconfoundedness implies that we have a sufficiently rich set of predictors
for the treatment indicator, contained in the vector of covariates X;, such that adjusting for
differences in these covariates leads to valid estimates of causal effects. Combined with lin-
earity assumptions of the conditional expectations of the potential outcomes given covariates,
the unconfoundedness assumption justifies linear regression. But in the last fifteen years the
literature has moved away from the earlier emphasis on regression methods. The main reason
is that, although locally linearity of the regression functions may be a reasonable approxima-
tion, in many cases the estimated average treatment effects based on regression methods can
be severely biased if the linear approximation is not accurate globally. To assess the poten-
tial problems with (global) regression methods, it is useful to report summary statistics of the
covariates by treatment status. In particular, one may wish to report, for each covariate, the
difference in averages by treatment status, scaled by the square root of the sum of the variances,
as a scale-free measure of the difference in distributions. To be specific, one may wish to report
the normalized difference

Ay =210 (3)
V' Sg + 57

where for w = 0,1, S2 = D i (Xi — Xw)%/(Ny — 1), the sample variance of X; in the
subsample with treatment W; = w. Imbens and Rubin (2007) suggest as a rule of thumb
that with a normalized difference exceeding one quarter, linear regression methods tend to be
sensitive to the specification. Note the difference with the often reported t-statistic for the null
hypothesis of equal means,

r= VSZ/No + SZ/N; W

The reason for focusing on the normalized difference, (3), rather than on the t-statistic, (4),
as a measure of the degree of difficulty in the statistical problem of adjusting for differences in
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covariates, comes from their relation to the sample size. Clearly, simply increasing the sample
size does not make the problem of inference for the average treatment effect inherently more
difficult. However, quadrupling the sample size leads, in expectation, to a doubling of the t-
statistic. In contrast, increasing the sample size does not systematically affect the normalized
difference. In the landmark Lalonde (1986) paper the normalized difference in mean exceeds
unity for many of the covariates, immediately showing that standard regression methods are
unlikely to lead to credible results for those data, even if one views unconfoundedness as a
reasonable assumption.

As a result of the concerns with the sensitivity of results based on linear regression methods
to seemingly minor changes in specification, the literature has moved to more sophisticated
methods for adjusting for differences in covariates. Some of these more sophisticated methods
use the propensity score — the conditional probability of receiving the treatment — in various
ways. Others rely on pairwise matching of treated units to control units, using values of the
covariates to match. Although these estimators appear at first sight to be quite different, many
(including nonparametric versions of the regression estimators) in fact achieve the semipara-
metric efficiency bound; thus, they would tend to be similar in large samples. Choices among
them typically rely on small sample arguments, which are rarely formalized, and which do not
uniformly favor one estimator over another.

Most estimators currently in use can be written as the difference of a weighted average of
the treated and control outcomes, with the weights in both groups adding up to one:

N
=3 NV with > A =1, > on=-L
=1

wW;=1 1:W;=0

The estimators differ in the way the weights A\; depend on the full vector of assignments and
matrix of covariates (including those of other units). For example, some estimators implicitly
allow the weights to be negative for the treated units and positive for controls units, whereas
others do not. In addition, some depend on essentially all other units whereas others depend
only on units with similar covariate values. Nevertheless, despite the commonalities of the esti-
mators and large sample equivalence results, in practice the performance of the estimators can
be quite different, particularly in terms of robustness and bias. On a more positive note, some
understanding has been reached regarding the sensitivity of specific estimators to particular
configurations of the data, such as limited overlap in covariate distributions. Currently, the
best practice is to combine linear regression with either propensity score or matching methods
in ways that explicitly rely on local rather than global linear approximations to the regression
functions.

In this section, we first discuss the key assumptions underlying an anlysis based on uncon-
foundedness. We then review some of the efficiency bound results for average treatment effects.
Next, in Sections 5.3 to 5.5 we briefly review the basic methods relying on regression, propensity
score methods, and matching. Although still fairly widely used, we do not recommend these
methods in practice. In Sections 5.6 to 5.8 we discuss three of the combination methods that
we view as more attractive and recommend in practice. In Section 5.9 we discuss estimating

variances. Next we discuss implications of lack of overlap in the covariate distributions. In
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particular, we discuss two general methods for constructing samples with improved covariate
balance. In Section 5.11 we describe methods that can be used to assess the plausibility of the
unconfoundedness assumption, even though this assumption is not directly testable. In Section
5.12 we discuss methods for testing for the presence of average treatment effects and for the
presence of treatment effect heterogeneity under unconfoundedness.

5.1 Identification

The key assumption is unconfoundedness, introduced by Rosenbaum and Rubin (1983),
Assumption 1 (UNCONFOUNDEDNESS)
W; L <Yi(0)a Yz(1)> ‘ Xi.

The unconfoundedness assumption is often controversial, as it assumes that beyond the
observed covariates X; there are no (unobserved) characteristics of the individual associated
both with the potential outcomes and the treatment. Nevertheless, this kind of assumption is
used routinely in multiple regression analysis. In fact, suppose we assume that the treatment
effect, 7, is constant, so that, for each random draw ¢, 7 = Y;(1) — Y;(0). Further, assume that
Y:(0) = a+ 3 X, +¢;, where ; = Y;(0) —E[Y;(0)]| X;] is the residual capturing the unobservables
affecting the response in the absense of treatment. Then, with the observed outcome defined
as Y; = (1 —W;) - Yi(0) + W; - Y;(1), we can write

Y;:a+T'Wi+ﬁ/Xi+€i,

and unconfoundedness is equivalent to independence of €; and of Wj;, conditional on X;. Imbens
(2004) discusses some economic models that imply unconfoundedness. These models assume
agents choose to participate in a program if the benefits, equal to the difference in potential
outcomes, exceed the costs associated with participation. Unconfoundedness is implied by
independence of the costs and benefits, conditional on observed covariates.

The second assumption used to identify treatment effects is that for all possible values of
the covariates, there are both treated and control units.

Assumption 2 (OVERLAP)
O<pr(W;=1|X;=2) <1, for all z.

We call this the overlap assumption as it implies that the support of the conditional distribution
of X; given W; = 0 overlaps completely with that of the concditional distribution of X; given
W, =1.

With a random sample (W;, X;)%, we can estimate the propensity score e(z) = pr(W; =
1|X; = ), and this can provide some guidance for determining whether the overlap assumption
holds. Of course common parametric models, such as probit and logit, ensure that all estimated
probabilities are strictly between zero and one, and so examining the fitted probabilities from
such models can be misleading. We discuss approaches for improving overlap in 5.10.
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The combination of unconfoundedness and overlap was referred to by Rosenbaum and Ru-
bin’s (1983) as strong ignorability. There are various ways to establish identification of var-
ious average treatment effects under strong ignorability. Perhaps the easiest is to note that
7(z) = E[Y;(1) — Y;(0)| X; = z] is identified for x in the support of the covariates:

m(z) = E[Yi(1)|X;=z] - E[Y;(0)|X; = 1]
= E[Y;(1)|W; =1, X; = 2] - E[Y;(0)[W; = 0, X; = ]
= E[Y;|W; =1,X;=2] - E[Y;|W; =0, X; = 2], (5)

where the second equality follows by unconfoundedess: E[Y;(w)|W; = w, X;] does not depend
on w. By the overlap assumption, we can estimate both terms in the last line, and therefore
we can identify 7(z). Given that we can identify 7(x) for all z, we can identify the expected
value across the population distribution of the covariates,

Tpate = E[T(X3)], (6)

as well as Tpaty and other estimands.

5.2 Efficiency Bounds

Before discussing specific estimation methods, it is useful to see what we can learn about the
parameters of interest, given just the strong ignorability of treatment assignment assumption,
without functional form or distributional assumptions. In order to do so, we need some ad-
ditional notation. Let o3(z) = V(Y;(0)|X; = x) and o?(x) = V(Y;(1)|X; = ) denote the
conditional variances of the potential outcomes given the covariates. Hahn (1998) derives the
lower bounds for asymptotic variances of v/N-consistent estimators for Tpate S

AX) | _ob(X)

Vpate = E
pat e(X:)  1—e(Xy)

+(1(Xs) = 7)?| (7)

where p = E[e(X;)] is the unconditional treatment probability. Interestingly, this lower bound
holds irrespective of whether the propensity score is known or not. The form of this variance
bound is informative. It is no surprise that 7,¢c is more difficult to estimate the larger are the
variances o3(r) and o3 (z). However, as shown by the presence of the third term, it is also more
difficult to estimate Tpate, the more variation there is in the average treatment effect conditional
on the covariates. If we focus instead on estimating 7cate, the conditional average treatment
effect, the third term drops out, and the variance bound for 7¢,e is

A(X) | _ob(X)

Veate = E B(XZ) 1— B(XZ) . (8)

Still, the role of heterogeneity in the treatment effect is potentially important. Suppose we
actually had prior knowledge that the average treatment effect conditional on the covariates is
constant, or 7(x) = Tpate for all z. Given this assumption the model is closely related to the

[22]



partial linear model (Robinson, 1988; Stock, 1989). Given this prior knowledge, the variance
bound is

(g [(Ax) g Y
Vconst— (E [( B(XZ) +1—€(XZ)> ]) . (9)

This variance bound can be much lower than (8) if there is variation in the propensity score.

Knowledge of lack of variation in the treatment effect can be very valuable, or, conversely,
allowing for general heterogeneity in the treament effect can be expensive in terms of precision.

In addition to the conditional variances of the counterfactual outcomes, a third important
determinant of the efficiency bound is the propensity score. Because it enters in (7) in the
denominator, the presence of units with the propensity score close to zero or one will make it
difficult to obtain precise estimates of the average effect of the treatment. One approach to
address this problem, developed by Crump, Hotz, Imbens and Mitnik (2008a) and discussed
in more detail in Section 5.10, is to drop observations with the propensity score close to zero
and one, and focus on the average effect of the treatment in the subpopulation with propensity
scores away from zero. Suppose we focus on Tcate o, the average of 7(X;) for X; € A. Then the
variance bound is

IR SR 0 0 S B (0.
pr(X; € A) e(X;) 1 —e(X;)

Va

X; € A] ) (10)

By excluding from the set A subsets of the covariate space where the propensity score is close
to zero or one, we may be able to estimate Tcate s more precisely than 7eate. (If we are instead
interested in Tc,t, we only need to worry about covariate values where e(x) is close to one.)

Having displayed these lower bounds on variances for the average treatment effects, a natural
question is: Are there estimators that achieve these lower bounds that do not require parametric
models or functional form restrictions on either the conditional means or the propensity score?
The answer in general is yes, and we now consider different classes of estimators in turn.

5.3 Regression Methods

To describe the general approach to regression methods for estimating average treatment effects,
define po(z) and p1(z) to be the two regression functions for the potential outcomes.

o) = E[Y;(0)] X; = o] and g () = E[Y;(1)|X; = a].

By definition, the average treatment effect conditional on X = x is 7(x) = p1(x) — po(z). As
we discussed in the identification subsection, under the unconfoundedness assumption, po(x) =
E[Y;|W; = 0, X; = z] and p;1(x) = E[Y;|W; = 1, X; = z], which means we can estimate pg(-)
using regression methods for the untreated subsample and puq(-) using the treated subsample.
Given consistent estimators fi(-) and fi1(-), a consistent estimator for either Tpate O Tcate 1S

N
Fos = 37 2 (%) — (X)) (1)



Given parametric models for pg(-) and pi(-), estimation and inference are straightforward. In
the simplest case, we assume each conditional mean can be expressed as functions linear in
parameters, say

po(x) = ao + Bo(r — ¥x), pi(x) = a1 + By (@ — x), (12)

where we take deviations from the overall population covariate mean ¥ x so that the treatment
effect is the difference in intercepts. (Naturally, as in any regression context, we can replace x
with general functions of z.) Of course, we rarely know the population mean of the covariates
is rarely known, so in estimation we replace 1 x with the sample average across all units, X.
Then 7.qg is simply

Treg = Q1 — Q. (13)

This estimator is also obtained from the coeflicient on the treatment indicator W; in the re-
gression Y; on 1, W;, X;, W; - (X; — X). Standard errors can be obtained from standard least
square regression output. (As we show below, in the case of estimating pate, the usual standard
errors, whether or not they are made robust to heteroskedasticity, ignore the estimation error
in X as an estimator of ¢y, and so formally the conventional standard errors are only valid for
Teate ald not for Tpate.)

A different representation of 7..¢ is useful in order to illustrate some of the concerns with
regression estimators in this setting. Suppose we do use the linear model in (12). It can be
shown that
Ny

B+ —ﬁ> (X1 - Xo). (14)

. v 0
—YV, - Yo [0 .
Treg 1 0 (NO _1_]\71 NO _1_]\71

To adjust for differences in covariates between treated and control units, the simple difference
in average outcomes, Y1 — Y, is adjusted by the difference in average covariates, X1 — Xo,
multiplied by the weighted average of the regression coefficients 3y and (1 in the two treatment
regimes. This is a useful representation. It shows that if the averages of the covariates in the
two treatment arms are very different, then the adjustment to the simple mean difference can
be large. We can see that even more clearly by inspecting the predicted outcome for the treated
units had they been subject to the control treatments:

E[Y;(1)|W; = 0] = Yo + B5(X1 — Xo).

The regression parameter Bo is estimated on the control sample, where the average of the
covariates is equal to X . It therefore likely provides a good approximation to the conditional
mean function around that value. However, this estimated regression function is then used to
predict outcomes in the treated sample, where the average of the covariates is equal to X;.
If these covariate averages are very different, and thus the regression model is used to predict
outcomes far away from where the parameters were estimated, the results can be sensitive to
minor changes in the specification. Unless the linear approximation to the regression function is
globally accurate, regression may lead to severe biases. Another way of interpreting this problem
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is as a multicollinearity problem. If the averages of the covariates in the two treatment arms are
very different, the correlation between the covariates and the treatment indicator is relatively
high. Although conventional least squares standard errors take the degree of multicollinearity
into account, they do so conditional on the specification of the regression function. Here the
concern is that any misspecification may be exacerbated by the collinearity problem. As noted
in the introduction to Section 5, an easy way to establish the severity of this problem is to
inspect the normalized differences (X1 — X¢)/+/Sa + S%).

In the case of the standard regression estimator it is straightforward to derive and to estimate
the variance when we view the estimator as an estimator of 7¢,t.. Assuming the linear regression
model is correctly specified, we have

VN (Freg — Teate) — N(0, Vo + V1), where V, = N -E [(dw _ aw)ﬂ , (15)

which can be obtained directly from standard regression output. Estimating the variance when
we view the estimator as an estimator of Tt requires adding a term capturing the variation
in the treatment effect conditional the covariates. The form is then

VN (Freg — Tyate) —— N(0, Vo + Vi + V5,
where the third term in the normalized variance is

Ve = (81— B0) E [(X; — E[Xi]) (X; — E[X3])] (B1 — Bo) »
which can be estimated as

. Y. N _ — /A .
v, = (ﬁl —ﬁo> %Z (Xi - X) (X, - X)' (ﬁl —ﬁo> -
i—
In practice this additional term is rarely incorporated, and researcher instead report the variance
corresponding to 7Tcate. In cases where the slope coefficients do not differ substantially across the
two regimes — equivalently, the coefficients on the interaction terms W; - (X; — X) are “small”
— this last term is likely to be swamped by the variances in (15).

In many cases researchers have sought to go beyond simple parametric models for the
regression functions. Two general directions have been explored. The first relies on local
smoothing, and the second on increasingly flexible global approximations. We discuss both in
turn.

Heckman, Ichimura, and Todd (1997) and Heckman, Ichimura, Smith, and Todd (1998)
consider local smoothing methods for estimate the two regression functions. The first method
they consider is kernel regression. Given a kernel K (-), and a bandwith &, the kernel estimator

) 2R ()

Although the rate of convergence of the kernel estimator to the regression function is slower than

for gy, () is
Xi

(@)= Y Vi N with weight \; = K(
i W=w

the conventional parametric rate N ~1/2, the rate of convergence of the implied estimator for the
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average treatment effect, 7yg in (11), is the regular parametric rate under regularity conditions.
These conditions include smoothness of the regression functions and require the use of higher
order kernels (with the order of the kernel depending on the dimension of the covariates). In
practice researchers have not used higher order kernels, and with positive kernels the bias for
kernel estimators is a more severe problem than for the matching estimators discussed in Section
5.5.

Kernel regression of this type can be interpreted as locally fitting a constant regression
function. A general alternative is to fit locally a polynomial regression function. The leading
case of this is local linear regression (Fan and Gijbels, 1996), applied to estimation of average
treatment effects by Heckman, Ichimura, and Todd (1997) and Heckman, Ichimura, Smith, and
Todd (1998). Define &(z) and 3(x) as the local least squares estimates, based on locally fitting
a linear regression function:

N
(d(:n), B(:c)) - argrgiﬁnz/\i (Yi—a— (X — ),
=1

with the same weights \; as in the standard kernel estimator. The regression function at x is
then estimated as fi(x) = &(x). In order to achieve convergence at the best possible rate for
Treg, One needs to use higher order kernels, although the order required is less than that for the
standard kernel estimator.

For both the standard kernel estimator and the local linear estimator an important choice
is that of the bandwidth h. In practice, researchers have used ad hoc methods for bandwidth
selection. Formal results on bandwidth selection from the literature on nonparametric regression
are not directly applicable. Those results are based on minimizing a global criterion such
as the expected value of the squared difference between the estimated and true regression
function, with the expectation taken with respect to the marginal distribution of the covariates.
Thus, they focus on estimating the regression function well everywhere. Here the focus is
on a particular scalar functional of the regression function, and it is not clear whether the
conventional methods for bandwidth choices have good properties.

Although formal results are given for the case with continuous regressors, modifications have
been developed that allows for both continuous and discrete covariates (Qi and Racine, 2004).
All such methods require choosing the degree of smoothing (often known as bandwidths), and
there has not been much work on choosing bandwidths for the particular problem of estimating
average treatment effects where the parameter of interest is effectively the average of a regression
function, and not the entire function. See Imbens (2004) for more discussion. Although the
estimators based on local smoothing have not been shown to attain the variance efficiency
bound, it is likely that they can be constructed to do so under sufficient smoothness conditions.

An alternative to local smoothing methods are global smoothing methods, such as series or
sieve estimators. Such estimators are parametric for a given sample size, with the number of
parameters and the flexibility of the model increasing with the sample size. One attraction of
such methods is that often estimation and inference can proceed as if the model is completely
parametric. The amount of smoothing is determined by the number of terms in the series, and
the large-sample analysis is carried out with the number of terms growing as a function of the
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sample size. Again, little is known about how to choose the number of terms when interest lies
in average treatment effects. For the average treatment case Hahn (1998), Imbens, Newey, and
Ridder (2004), and Chen, Hong, and Tarozzi (2007) have developed estimators of this type.
Hahn shows that estimators in this class can achieve the variance lower bounds for estimating
Tpate- For a simple version of such an estimator, suppose that X; is a scalar. Then we can
approximate i, (x) by a K-th order polynomial

K
po i (2) = B - 2.
k=0

We then estimate (3, by least squares regression, and estimate the average treatment effect
using (11). This is a special case of the estimator discussed in Imbens, Newey and Ridder (2004)
and Chen, Hong and Tarozzi (2007), with formal results presented for the case with general
X;. Imbens, Newey and Ridder (2004) also discuss methods for choosing the number of terms
in the series based on expected squared error for the average treatment effect.

If the outcome is binary, or more generally of a limited dependent variable form, a linear
series approximation to the regression function is not necessarily attractive. It is likely that
one can use increasingly flexible approximations based on models that exploit the structure of
the outcome data. For the case with binary outcomes, Hirano, Imbens and Ridder (2003) show
how using a polynomial approximation to the log odds ratio leads to an attractive estimator for
the conditional mean. See Chen (2007) for general discussion of such models. One can imagine
that in cases with nonnegative response variables, exponential regression functions, or those
derived from specific models, such as Tobit (when the response can pile up at zero), combined
with polynomial approximations in the linear index function, might be useful.

Generally, methods based on global approximations suffer from the same drawbacks as
linear regression. If the covariate distributions are substantially different in both treatment
groups, estimates based on such methods rely, perhaps more than is desired, on extrapolation.
Using these methods in cases with substantial differences in covariate distributions is therefore
not recommended (except possibly in cases where the sample has been trimmed so that the
covariates across the two treatment regimes have sufficient considerable overlap).

Before we turn to propensity score methods, we should comment on estimating the aver-
age treatment effects on the treated, Tpatt and 7carr. In this case, 7(X;) gets averaged across
observations with W; = 1, rather than across the entire sample as in (11) Because fi;(x) is
estimated on the treated subsample, in estimating ATT or ATT there is no problem if p(x)
is poorly estimated at covariate values that are common in the control group but scarce in the
treatment group. But we must have a good estimate of ug(z) at covariate values common in
the treatment group, and this is not ensured because we can only use the control group to
obtain fig(x). Nevertheless, in many settings po(x) can be estimated well over the entire range
of covariates because the control group often includes units that are similar to those in the
treatment group. By contrast, often many units in the control group are quite different from
any units in the control group, and this is what makes the ATE parameters considerably more
difficult to estimate than ATT parameters in many applications.
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5.4 Methods Based on the Propensity Score

The first set of alternatives to regression estimators relies on estimates of the propensity score.
An important result here is due to Rosenbaum and Rubin (1983a). They show that under
unconfoundedness, independence of potential outcomes and treatment indicators also holds
after conditioning solely on the propensity score, e(z) = pr(W; = 1|X; = x):

Wi L (Vo) | X = w1 (Y0, %) | e(x).

The basic insight is that for any binary variable W;, and any random vector X, it is true
(without assuming unconfoundedness) that

Hence, within subpopulations with the same value for the propensity score, covariates are
independent of the treatment indicator and thus cannot lead to biases (the same way in a
regression framework omitted variables that are uncorrelated with included covariates do not
introduce bias). Since under unconfoundedness all biases can be removed by adjusting for
differences in covariates, this means that within subpopulations homogenous in the propensity
score there are no biases in comparisons between treated and control units.

Given the Rosenbaum-Rubin result, it is sufficient, under the maintained assumption of
unconfoundedness, to adjust solely for differences in the propensity score between treated and
control units. This result can be exploited in a number of ways. Here we discuss three of
these that have been used in practice. The first two of these methods exploit the fact that the
propensity score can be viewed as a covariate that is sufficient to remove biases in estimation
of average treatment effects. For this purpose, any one-to-one function of the propensity score
could also be used. The third method further uses the fact that the propensity score is the
conditional probability of receiving the treatment.

The first method simply uses the propensity score in place of the covariates in regression
analysis. Define 1v,(e) = E[Y;|W; = w,e(X;) = €). Unconfoundedness in combination with
the Rosenbaum-Rubin result implies that v, (e) = E[Y;(w)|e(X;) = e]. Then we can estimate
vy (e) very generally using kernel or series estimation on the propensity score, something which
is greatly simplified by the fact that the propensity score is a scalar. Heckman, Ichimura, and
Todd (1998) consider local smoothers and Hahn (1998) considers a series estimator. In either
case we have the consistent estimator

N
Ao = 77 2 (7 (e0X0) ~ 50 (e

which is simply the average of the differences in predicted values for the treated and untreated
outcomes. Interestingly, Hahn shows that, unlike when we use regression to adjust for the full
set of covariates, the series regression estimator based on adjusting for the known propensity
score does not achieve the efficiency bound.

Although methods of this type have been used in practice, probably because of their sim-
plicity, regression on simple functions of the propensity score is not recommended. Because the
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propensity score does not have a substantive meaning, it is difficult to motivate a low order
polynomial as a good approximation to the conditional expectation. For example, a linear
model in the propensity score is unlikely to provide a good approximation to the conditional
expectation: individuals with propensity scores of 0.45 and 0.50 are likely to be much more
similar than individuals with propensity scores equal to 0.01 and 0.06. Moreover, no formal
asymptotic properties have been derived for the case with the propensity score unknown.

The second method, variously referred to as blocking, subclassification, or stratification, also
adjusts for differences in the propensity score in a way that can be interpreted as regression,
but in a more flexible manner. Originally suggested by Rosenbaum and Rubin (1983), the idea
is to partition the sample into strata by (discretized) values of the propensity score, and then
analyse the data within each stratum as if the propensity score were constant and the data could
be interpreted as coming from a completely randomized experiment. This can be interpreted
as approximating the conditional mean of the potential outcomes by a step function. To be
more precise, let 0 = cp < ¢1 < c2 < ... < ¢y =1 be boundary values. Then define B;;, for
i=1,...,N,and j =1,...,J — 1, as the indicators

J-1

o 1 if Cj—1 < G(XZ) < Cj S 3
Bij = { 0 otherwise and By =1 2; Bij-
‘7:

Now estimate within stratum j the average treatment effect 7; = E[Y;(1) — Y;(0)|B;; = 1] as

N N
o - 1 > S
Tj == le - Yj(] Where Yjw == N— Bij . YVZ', and Njw == Bzy
Jw iWi=w :W;=w

If J is sufficiently large, and the differences ¢; — ¢j_1 small, there is little variation in the
propensity score within a stratum or block, and one can analyze the data as if the propensity
score is constant, and thus as if the data within a block were generated by a completely ran-
domized experiment (with the assignment probabilities constant within a stratum, but varying
between strata). The average treatment effect is then estimated as the weighted average of the
within-stratum estimates:

J
) _ [Nj+N;
Tblock = g T - <7JON J1>.
i=1

With J large, the implicit step function approximation to the regression functions v, (e) will
be accurate. Cochran (1969) shows in a Gaussian example that with five equal-sized blocks the
remaining bias is less than 5% of the bias in the simple difference between average outcomes
among treated and controls. Motivated by Cochran’s calculations, researchers have often used
five strata, although depending on the sample size and the joint distribution of the data, fewer
or more blocks will generally lead to a lower expected mean squared error.

The variance for this estimator is typically calculated conditional on the strata indicators,
and assuming random assignment within the strata. That is, for stratum j, the estimator is 7;,
and its variance is estimated as T7J = Vjo + ‘7j1, where

R 52 1 N
2
w = —]\él:), where Sjw = —Nj E (YZ — Yjw) .

Y :Bi=1,W;=w
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The overall variance is then estimated as

J

R R N.g+ N, 2
V(Tolock) Z (V(]j + V1j> : (%)
J=1

This variance estimator is appropriate for Tcate, although it ignores biases arising from variation
in the propensity score within strata.

The third method exploiting the propensity score is based on weighting. Recall that mpac =
E[Y;(1) —Y;(0)] = E[Yi(1)] — E[Y;(0)]. We consider the two terms separately. Because W; -Y; =
W; - Yi(1), we have

. [Wi - Y] . [Wi - m)] . [E [W e IXH . [E<Wi|xi> E(Y(1)[X)
e(X3) e(Xi) e(X3)

_ e(X;) - E(Y;(1)]X5)
- E[ o(Xs)

] — B[E(Y;(1)| X}] = E[Y;(1)],

where the second and final inequalities follow by iterated expectations and the third equality
holds by unconfoundedness. The implication is that weighting the treated population by the
inverse of the propensity score recovers the expectation of the unconditional response under
treatment. A similar calculation shows E[((1 — W;)Y;)/(1 — e(X;))] = E[Y;(0)], and together
these imply

Equation (16) suggests an obvious estimator of Tpate:
) 1 N [Wi- Y, (1-W)-Y
s = [ty e ) o

which, as a sample average from a random sample, is consistent for 7 and VN asymptotically
normally distributed. The estimator in (17) is essentially due to Horvitz and Thompson (1952).

In practice (17) is not a feasible estimator because it depends on the propensity score
function e(-), which is rarely known. A surprising result is that, even if we know the propensity
score, Tweight does not achieve the efficiency bound given in (7). It turns out to be better, in
terms of large sample efficiency, to weight using the estimated rather than the true propensity
score. Hirano, Imbens, and Ridder (2003) establish conditions under which replacing e(-) with
a logistic sieve estimator results in a weighted propensity score estimator that achieves the
variance bound. The estimator is practically simple to compute, as estimation of the propensity
score involes a straightforward logit estimation involving flexible functions of the covariates.
Theoretically, the number of terms in the approximation should increase with the sample size.
In the second step, given the estimated propensity score é(z), one estimates

N s

=1

WY

Tipw =
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We refer to this as the inverse probability weighting (IPW) estimator. See Hirano, Imbens, and
Ridder (2003) for intuition as to why estimating the propensity score leads to a more efficient
estimator, asymptotically, than knowing the propensity score.

Ichimura and Linton (2001) studied fipw when é(-) is obtained via kernel regression, and
they consider the problem of optimal bandwidth choice when the object of interest is Tpate.
More recently, Li, Racine, and Wooldridge (2008) consider kernel estimation for discrete as
well as continuous covariates. The estimator proposed by Li, Racine and Wooldridge achieves
the variance lower bound. See Hirano, Imbens and Ridder (2006) and Wooldridge (2007) for
methods for estimating the variance for these estimators.

Note that the blocking estimator can also be interpreted as a weighting estimator. Consider
observations in block j. Within the block the Nj; treated observations all get equal weight
1/Nji. In the estimator for the overall average treatment effect this block gets weight (Njo +
Nj1)/N, so we can write 7 = Zf\i 1 i - Y;, where for treated observations in block j the weight
normalized by N is N - A; = (Njo + Nj1)/Nj1), and for control observations it is N - A\; =
(Njo + Nj1)/Njo). Implicitly this estimator is based on an estimate of the propensity score
in block j equal to Nj1/(Njo + Nj1). Compared to the ipw estimator the propensity score is
smoothed within the block. This has the advantage of avoiding particularly large weights, but
comes at the expense of introducing bias if the propensity score is correctly specified.

A particular concern with IPW estimators arises again when the covariate distributions are
substantially different for the two treatment groups. That implies that the propensity score gets
close to zero or one for some values of the covariates. Small or large values of the propensity score
raises a number of issues. One concern is that alternative parametric models for the binary data,
such as probit and logit models that can provide similar approximations in terms of estimated
probabilities over the middle ranges of their arguments, tend to be more different when the
probabilities are close to zero or one. Thus the choice of model and specification becomes more
important, and it is often difficult to make well motivated choices in treatment effect settings.
A second concern is that for units with propensity scores close to zero or one, the weights
can be be large, making those units particularly influential in the estimates of the average
treatment effects, and thus making the estimator imprecise. These concerns are less serious
than those regarding regression estimators because at least the IPW estimates will accurately
reflect uncertainty. Still, these concerns make the simple ipw estimators less attractive. (As
for regression cases, the problem can be less severe for the ATT parameters because propensity
score values close to zero play no role. Problems for estimating ATT arise when some units, as
described by their observed covariates, are almost certain to receive treatment.)

5.5 Matching

Matching estimators impute the missing potential outcomes using only the outcomes of a few
nearest neighbors of the opposite treatment group. In that sense, matching is similar to non-
parametric kernel regression, with the number of neighbors playing the role of the bandwidth
in the kernel regression. A formal difference with kernel methods is that the asymptotic dis-
tribution for matching estimators is derived conditional on the implicit bandwidth, that is, the
number of neighbors, often fixed at a small number, e.g., one. Using such asymptotics, the
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implicit estimate fi,, () is (close to) unbiased, but not consistent, for p,,(z). In contrast, the
kernel regression estimators discussed in the previous section implied consistency of fi, ().

Matching estimators have the attractive feature that the smoothing parameters are easily
interpretable. Given the matching metric, the researcher only has to choose the number of
matches. Using only a single match leads to the most credible inference with the least bias,
at the cost of sacrificing some precision. This sits well with the focus in the literature on
reducing bias rather than variance. It also can make the matching estimator easier to use than
those estimators that require more complex choices of smoothing parameters, and this may be
another explaination for its popularity.

Matching estimators have been widely studied in practice and theory (e.g., Gu and Rosen-
baum, 1993; Rosenbaum, 1989, 1995, 2002; Rubin, 1973b, 1979; Rubin and Thomas, 1992ab,
1996, 2000; Heckman, Ichimura and Todd, 1998; Dehejia and Wahba, 1999; Abadie and Imbens,
2002). Most often they have been applied in settings where, (i) the interest is in the average
treatment effect for the treated, and (ii) there is a large reservoir of potential controls, although
recent work (Abadie and Imbens, 2006) shows that matching estimators can be modified to es-
timate the overall average effect. The setting with many potential controls allows the researcher
to match each treated unit to one or more distinct controls, hence the label “matching without
replacement.” Given the matched pairs, the treatment effect within a pair is estimated as the
difference in outcomes, and the overall average as the average of the within-pair difference.
Exploiting the representation of the estimator as a difference in two sample means, inference is
based on standard methods for differences in means or methods for paired randomized experi-
ments, ignoring any remaining bias. Fully efficient matching algorithms that take into account
the effect of a particular choice of match for treated unit 4 on the pool of potential matches for
unit j are computationally cumbersome. In practice, researchers use greedy algorithms that
sequentially match units. Most commonly the units are ordered by the value of the propensity
score with the highest propensity score units matched first. See Gu and Rosenbaum (1993) and
Rosenbaum (1995) for discussions.

Abadie and Imbens (2006) study formal asymptotic properties of matching estimators in a
different setting, where both treated and control units are (potentially) matched and matching is
done with replacement. Code for the Abadie-Imbens estimator is available in Matlab and Stata
(see Abadie, Drukker, Herr, and Imbens, 2003).> Formally, given a sample, {(Y;, X;, W;)} Y,
let ¢1(i) be the nearest neighbor to i, that is, ¢1(i) is equal to the nonnegative integer j, for
je{l,....N}, it W; #W;, and

I = Xl = min 1%~ X4
More generally, let £,,(i) be the index that satisfies W, ;) # W; and that is the m-th closest
to unit :

> {I1X = Xl < X — Xill } = m,
LW #W;

®See Becker and Ichino (2002) and Sianesi (2001) for alternative Stata implementations of matching estimators.

[32]



where 1{-} is the indicator function, equal to one if the expression in brackets is true and zero
otherwise. In other words, ¢,,(4) is the index of the unit in the opposite treatment group that

is the m-th closest to unit 7 in terms of the distance measure based on the norm || - ||. Let
Jm (i) € {1,...,N} denote the set of indices for the first M matches for unit i: Jp () =
{l1(3),...,€n(7)}. Now impute the missing potential outcomes as the average of the outcomes
for the matches, by defining Y;(0) and Y;(1) as
. Y; if W;=0 . L3 Z Y if Wi=0
Y;(0) = . ’ Yi(1) = M £«jedm(i) 77 ¢ ’
Z( ) { ﬁ Zjej]\/[(i) ij if WZ — 1’ Z( ) { sz if WZ - 1.

The simple matching estimator discussed in Abadie and Imbens is then
N
Tmatch = N 2; (Y;(l) - Y;(O)> . (19)
1=

Abadie and Imbens show that the bias of this estimator is of order O(N~/X), where K is the
dimension of the covariates. Hence, if one studies the asymptotic distribution of the estimator by
normalizing by v/N (as can be justified by the fact that the variance of the estimator is of order
O(1/N)), the bias does not disappear if the dimension of the covariates is equal to two, and will
dominate the large sample variance if K is at least three. To put this result in perspective, it is
useful to relate it to bias properties of estimators based on kernel regression. Kernel estimators
can be viewed as matching estimators where all observations within some bandwidth hy receive
some weight. As the sample size N increases, the bandwidth Ay shrinks, but sufficiently slow in
order to ensure that the number of units receiving non-zero weights diverges. If all the weights
are positive, the bias for kernel estimators would generally be worse. In order to achieve root—IN
consistency it is therefore critical that some weights are negative through the device of higher
order kernels, with the exact order required dependent on the dimension of the covariates (see,
e.g., Heckman, Ichimura and Todd, 1998). In practice, however, researchers have not used
higher order kernels, and so bias concerns for nearest-neighbor matching estimators are even
more relevant for kernel matching methods.

There are three caveats to the Abadie-Imbens bias result. First, it is only the continuous
covariates that should be counted in the dimension of the covariates. With discrete covariates
the matching will be exact in large samples, and as a result such covariates do not contribute
to the order of the bias. Second, if one matches only the treated, and the number of potential
controls is much larger than the number of treated units, one can justify ignoring the bias by
appealling to an asymptotic sequence where the number of potential controls increases faster
with the sample size than the number of treated units. Specifically, if the number of controls,
Ny, and the number of treated, Ny, satisfy Nl/Ng/K — 0, then the bias disappears in large
samples after normalization by v/N1. Third, even though the order of the bias may be high, the
actual bias may still be small if the coefficients in the leading term are small. This is possible if
the biases for different units are at least partially offsetting. For example, the leading term in the
bias relies on the regression function being nonlinear, and the density of the covariates having
a nonzero slope. If either the regression function is well approximated by a linear function, or
the density is approximately flat, the bias may be fairly limited.
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Abadie and Imbens (2006) also show that matching estimators are generally not efficient.
Even in the case where the bias is of low enough order to be dominated by the variance, the
estimators do not reach the efficiency bound given a fixed number of matches. To reach the
bound the number of matches would need to increase with the sample size. If M — oo, with
M/N — 0, then the matching estimator is essentially like a nonparametric regression estimator.
However, it is not clear that using an approximation based on a sequence with an increasing
number of matches improves the accuracy of the approximation. Given that in an actual data
set one uses a specific number of matches, M, it would appear appropriate to calculate the
asymptotic variance conditional on that number, rather than approximate the distribution as if
this number is large. Calculations in Abadie and Imbens show that the efficiency loss from even
a very small number of matches is quite modest, and so the concerns about the inefficiency of
matching estimators may not be very relevant in practice. Little is known about the optimal
number of matches, or about data-dependent ways of choosing it.

All of the distance metrics used in practice standardize the covariates in some manner.
Abadie and Imbens use a diagonal matrix with each diagional element equal to the inverse of
the corresponding covariate variance. The most common metric is the Mahalanobis metric,
which is based on the inverse of the full covariance matrix. Zhao (2004), in an interesting
discussion of the choice of metrics, suggests some alternatives that depend on the correlation
between covariates, treatment assignment, and outcomes. So far there is little experience with
any metrics beyond inverse-of-the-variances and the Mahalanobis metrics. Zhao (2004) reports
the results of some simulations using his proposed metrics, finding no clear winner given his
specific design.

5.6 Combining Regression and Propensity Score Weighting

In the Sections 5.3 and 5.4, we described methods for estimating average causal effects based
on two strategies: the first is based on estimating p,,(x) = E[Y;(w)|X; = 2] for w = 0,1 and
averaging the difference as in (11), and the second is based on estimating the propensity score
e(x) = pr(W; = 1|X; = ) and using that to weight the outcomes as in (18). For each approach
we have discussed estimators that achieve the asymptotic efficiency bound. If we have large
sample sizes, relative to the dimension of X;, we might think our nonparametric estimators
of the conditional means or propensity score are sufficiently accurate to invoke the asymptotic
efficiency results described above.

In other cases, however, we might choose flexible parametric models without being confi-
dent that they necessarily approximate the means or propensity score well. As we discussed
earlier, one reason for viewing estimators of conditional means or propensity scores as flexible
parametric models is that it greatly simplifies standard error calculations for treatment effect
estimates. In such cases, one might want to adopt a strategy that combines regression and
propensity score methods in order to achieve some robustness to misspecification of the para-
metric models. It may be helpful to think about the analogy to omitted variable bias. Suppose
we are interested in the coefficient on W; in the (long) linear regression of Y; on a constant, W;
and X;. Suppose we omit X; from the long regression, and just run the short regression of Y; on
a constant and W;. The bias in the estimate from the short regression is equal to the product of
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the coefficient on X; in the long regression, and the coefficient on X; in a regression of W; on a
constant and X;. Weighting can be interpreted as removing the correlation between W; and X,
and regression as removing the direct effect of X;. Weighting therefore removes the bias from
omitting X; from the regression. As a result, combining regression and weighting can lead to
additional robustness by both removing the correlation between the omitted covariates, and by
reducing the correlation between the omitted and included variables. This is the idea behind
the doubly-robust estimators developed in Robins and Rotnitzky (1995), Robins, Rotnitzky
and Zhao (1995), and Van Der Laan and Robins (2003).

Suppose we model the two regression functions as ji,(z) = ay, + B, (x — X), for w = 0,1
(where we abuse notation a bit and insert the sample averages of the covariates for their
population means). More generally, we may use a nonlinear model for the conditional ex-
pectation, or just a more flexible linear approximation. Suppose we model the propensity
score as e(x) = p(x;7), for example as p(z;7vy) = exp(vo + 2'v1)/(1 + exp(vo + 2'v1)). In the
first step we estimate v by maximum likelihood and obtain the estimated propensity scores as
é(X;) = p(x;%). In the second step, we use linear regression, where we weight the objective
function by the inverse probability of treatment or non-treatment. Specifically, to estimate
(o, Bp) and (o, £1), we would solve the weighted least squares problems

(Y; — a0 — By(Xi — X)) . (Y; — a1 — B1(X; — X))
) e ) R

. (20)

min

2080 7o
Given the estimated conditional mean functions, we estimate Tpate, using the expression for
Treg = G1 — Gy as in equation (13). But what is the motivation for weighting by the inverse
propensity score when we did not use such weighting in Section 5.37 The motivation is the
double robustness result due to Robins and Rotznitzky (1995); see also Scharfstein, Rotnitzky,
and Robins (1999).

First, suppose that the conditional expectation is indeed linear, or E[Y;(w)|X; = z| =
aw + By (x — X). Then, as discussed in the treatment effect context by Wooldridge (2007),
weighting the objective function by any nonnegative function of X; does not affect consistency
of least squares.® As a result, even if the logit model for the propensity score is misspecified,
the binary response MLE 4 still has a well-defined probability limit, say v*, and the IPW
estimator that uses weights 1/p(X;;4) for treated observations and 1/(1 — p(X;;4)) for control
observations is asymptotically equivalent to the estimator that uses weights based on *.” Tt
does not matter that for some x, e(x) # p(z;~*). This is the first part of the double robustness
result: if the parametric conditional means for E[Y (w)|X = x] are correctly specified, the model
for the propensity score can be arbitrarily misspecified for the true propensity score. Equation
(20) still leads to a consistent estimator for Tpate.

When the conditional means are correctly specified, weighting will generally hurt in terms of
asymptotic efficiency. The optimal weight is the inverse of the variance, and in general there is

5More generally, it does not affect the consistency of any quasi-likelihood method that is robust for estimating
the parameters of the conditional mean. These are likelihoods in the linear exponential family, as described in
Gourieroux, Monfort and Trognon (1984).

"See Wooldridge (2007).



no reason to expect that weighting the inverse of (one minus) the propensity score gives a good
approximation to that. Specifically, under homoskedasticity of Y;(w) so that 02 = 02(x), in the
context of least squares — the IPW estimator of (o, By) is less efficient than the unweighted
estimator; see Wooldridge (2007). The motivation for propensity score weighting is different:
it offers a robustness advantage for estimating mpate.

The second part of the double robustness result assumes that the logit model (or an
alternative binary response model) is correctly specified for the propensity score, so that
e(r) = p(z;~*), but allows the conditional mean functions to be misspecified. The result
is that in that case &, — E[Y;(w)], and thus 7 = &1 — & — E[Yi(1)] — E[Y;(0)] = Tpate
and the estimator is still consistent. Let the weight for control observations be A\; = (1 —
p( X)L/ Zj:szo(l —p(Xi;7%)) L. Then the least squares estimator for dq is

N
Go =Y (1=Wy) - A (Y= B(Xi = X)) - (21)
i=1
The weights imply that E [(1 — W;)A;Y;] = E[Y;(0)] and E [(1 — Wi)Ai(X; — X)] = E[X; - X]| =
0, and as a result &y — E[Y;(0)]. Similarly, the average of the predicted values for Y;(1)
converges to E[Y;(1)], and so the resulting estimator 7ipw = &1 — &g is consistent for mpate and
Teate irrespective of the shape of the regression functions. This is the second part of the double
robustness part, at least for linear regression.

For certain kinds of responses, including binary responses, fractional responses, and count
responses, linearity of E[Y;(w)|X; = z] is a poor assumption. Using linear conditional expecta-
tions for limited dependent variables effectively abdicates the first part of the double robustness
result. Instead, we should use coherent models of the conditional means, as well as a sensible
model for the propensity score, with the hope that the mean functions, propensity score, or
both are correctly specified. Beyond specifying logically coherent for E[Y;(w)|X; = x| so that
the first part of double robustness has a chance, for the second part we need to choose func-
tional forms and estimators with the following property: even when the mean functions are
misspecified, E[Y;(w)] = E[u(X;, 6%)], where &% is the probability limit of 8. Fortunately, for
the common kinds of limited dependent variables used in applications, such functional forms
and estimators exist; see Wooldridge (2007) for further discussion.

Once we estimate 7 based on (20), how should we obtain a standard error? The normalized
variance still has the form Vg + Vi, where Vi, = E[(éy — ptw)?]. One option is to exploit the
representation of &y as a weighted average of Y; + BO(XZ- — X), and use the naive variance
estimator based on weighted least squares with known weights:

To= S A7 (¥t (X~ %)~ do) (22
:W;=0

and similar for V. In generally we may again want to adjust for the estimation of the parameters
in . See Wooldridge (2007) for details.

Although combining weighting and regression is more attractive then either weighting or
regression on their own, it still requires at least one of the two specifications to be accurate
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globally. It has been used regularly in the epidemiology literature, partly through the efforts of
Robins and his coauthors, but has not been widely used in the economics literature.

5.7 Subclassification and Regression

We can also combine subclassification with regression. The advantage relative to weighting and
regression is that we do not use global approximations to the regression function. The idea
is that within stratum j, we estimate the average treatment effect by regressing the outcome
on a constant, an indicator for the treatment, and the covariates, instead of simply taking the
difference in averages by treatment status as in Section 5.4. The latter can be viewed as a
regression estimate based on a regression with only an intercept and the treatment indicator.
The further regression adjustment simply adds (some of) the covariates to that regression.
The key difference with using regression in the full sample is that, within a stratum, the
propensity score varies relatively little. As a result, the covariate distributions are similar, and
the regression function is not used to extrapolate far out of sample.
To be precise, we estimate on the observations with B;; = 1, the regression function

Yizaj—i—Tj'Wi—l-ﬁ;Xi—l—Ei,

by least squares, obtaining the estimates 7; and estimated variances VJ Dropping X; from this
regression leads to 7; = le — on, which is the blocking estimator we discussed in Section 5.4
We average the estimated stratum-specific average treatment effects, weighted by the relative
stratum size:

. (N +Na\ . . . o KN+ Na\?
T= Z (T) -7, with estimated variance V = Z (T) - Vj.

J=1 J=1

With a modest number of strata, this already leads to an estimator that is considerably more
flexible and robust than either subclassification alone, or regression alone. It is probably one of
the more attractive estimators in practice. Imbens and Rubin (2008) suggest data-dependent

methods for choosing the number of strata.

5.8 Matching and Regression

Once we have the N pairs (¥;(0), Yj(1)), the simple matching estimator given in (19) averages
the difference. This estimator may still be biased due to discrepancies between the covariates
of the matched observations and their matches. One can attempt to reduce this bias by using
regression methods. This use of regression is very different from using regression methods on
the full sample. Here the covariate distributions are likely to be similar in the matched sample,
and so regression is not used to extrapolate far out of sample.
The idea behind the regression adjustment is to replace Y;(0) and Y;(1) by
no-{ ¥ R
M ZjejM(i) (Y + Bo(Xs — X)) if Wi =1,
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Yi(1) = 3 ey (Vi + Bu(Xi = X5)) if Wi=0,
Z Y; if W;=1,

where the average of the matched outcomes is adjusted by the difference in covariates relative to
the matched observation. The only question left is how to estimate the regression coefficients
Bo and (1. For various methods see Quade (1982), Rubin (1979), and Abadie and Imbens
(2006). The methods differ in whether the difference in outcomes is modeled as linear in the
difference in covariates, or the original conditional outcome distributions are approximated by
linear regression functions, and on what sample the regression functions are estimated.

Here is one simple regression adjustment. To be clear, it is useful to introduce some addi-
tional notation. Given the set of matching indices Jas(i), define

5 X; if W;=0 5 LS X if Wi=0
X; = ¢ . v ’ X;(1) = M ZajeTp (i) <2 i )
v {ﬁxwwﬁjﬁm:L (){& it Wi =1,

and let (3, be based on a regression of ¥;(w) on a constant and X;(w):

. -1 ~
dw \ i 1 A(w)! Y (w)
Bo )\ =\ Xi(w) Xi(w)Xi(w) Xi(w)Yi(w) )
Like the combination of subclassification and regression, this leads to relatively robust estima-

tors. Abadie and Imbens (2008) find that the method works well in simulations based on the
Lalonde data.

5.9 A General Method for Estimating Variances

For some of the estimators discussed in the previous sections, particular variance estimators
have been used. Assuming that a particular parametric model is valid, one can typically use
standard methods based on likelihood theory or generalized method of moments theory. Often,
these methods rely on consistent estimation of components of the variance. Here we discuss
two general methods for estimating variances that apply to all estimators.

The first approach is to use bootstrapping (Efron and Tibshirani, 1993; Davison and Hinkley,
1997; Horowitz, 2002). Bootstrapping has been widely used in the treatment effects literature,
as it is straightforward to implement. It has rarely been formally justified, although in many
cases it is likely to be valid given that many of the estimators are asymptotically linear. However,
in some cases it is known that bootstrapping is not valid. Abadie and Imbens (2008) show that,
for a fixed number of matches, bootstrapping is not valid for matching estimators. It is likely
that the problems that invalidate the bootstrap disappear if the number of matches increases
with the sample size (thus, the bootstrap might be valid for kernel estimators). Nevertheless,
because in practice researchers often use a small number of matches, or nonnegative kernels,
it is not clear whether the bootstrap is an effective method for obtaining standard errors and
constructing confidence intervals. In cases where bootstrapping is not valid, often subsampling
(Politis and Romano, 1999) remains valid, but this has not been applied in practice.

There is an alternative, general, method for estimating variances of treatment effect estima-
tors, developed by Abadie and Imbens (2006), that does not require additional nonparametric
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estimation. First, recall that most estimators are of the form

N
=Y N-v, with Y =1, > =1,
=1

wW;=1 :W;=0

with the weights \; generally functions of all covariates and all treatment indicators. Conditional
on the covariates and the treatment indicators (and thus relative to 7cate), the variance of such

an estimator is

N
V(# X1, X, W, W) = DA - oy, (X).
=1

In order to use this representation, we need estimates of U%Vi(Xi), for all 7. Fortunately, these
need not be consistent estimates, as long as the estimation errors are not too highly correlated so
that the weighted average of the estimates is consistent for the weighted average of the variances.
This is similar in the way robust (Huber-Eicker-White) standard errors allow for general forms
of heteroskedasticity without having to consistently estimate the conditional variance function.

Abadie and Imbens (2006) suggested using a matching estimator for U%Vi (X;). The idea
behind this matching variance estimator is that if we can find two treated units with X; = «,
we can estimate o7 () as 67(x) = (V; — Y;)? /2. In general, it is difficult to find exact matches,
but, again, this is not necessary. Instead, one uses the closest match within the set of units with
the same treatment status. Let v(i) be the unit closest to i, with the same treatment indicator
(W,iy = W), so that

[ X = Xill = min_1X; - Xil.
Then we can estimate U%Vi(Xi) as

. 2

61y, (Xi) = (Yi =Y, ))" /2.

This way we can estimate U%Vi (X;) for all units. Note that these are not consistent estimators
of the conditional variances. As the sample size increases, the bias of these estimators will
disappear, just as we saw that the bias of the matching estimator for the average treatment
effect disappears under similar conditions.

We then use these estimates of the conditional variance to estimate the variance of the

estimator:
N
V(F) =Y A} 61, (X))
i=1

5.10 Overlap in Covariate Distributions

In practice a major concern in applying methods under the assumption of unconfoundedness is
lack of overlap in the covariate distributions. In fact, once one is committed to the unconfound-
edness assumption, this may well be the main problem facing the analyst. The overlap issue was
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highlighted in papers by Dehejia and Wahba (1999) and Heckman, Ichimura, and Todd (1998).
Dehejia and Wahba re-analyzed data on a job training program originally analyzed by Lalonde
(1986). Lalonde (1986) had attempted to replicate results from an experimental evaluation of
a job training program, the National Supported Work (NSW) program, using a comparison
group constructed from two public use data sets, the Panel Study of Income Dynamics (PSID)
and the Current Population Survey (CPS). The NSW program targeted individuals who were
disadvantaged with very poor labor market histories. As a result, they were very different from
the raw comparison groups constructed by Lalonde from the CPS and PSID. Lalonde partially
addressed this problem by limiting his raw comparison samples based on single covariate criteria
(e.g., limiting it to individuals with zero earnings in the year prior to the program). Dehejia
and Wahba looked at this problem more systematically and find that a major concern is the
lack of overlap in the covariate distributions.

Traditionally, overlap in the covariate distributions was assessed by looking at summary
statistics of the covariate distributions by treatment status. As discussed before in the in-
troduction to Section 5, it is particularly useful to report differences in average covariates
normalized by the square root of the sum of the within-treatment group variances. In Table
2 we report, for the Lalonde data, averages and standard deviations of the basic covariates,
and the normalized difference. For four out of the ten covariates the means are more than a
standard deviation apart. This immediately suggests that the technical task of adjusting for
differences in the covariates is a challenging one. Although reporting normalized differences in
covariates by treatment status is a sensible starting point, inspecting differences one covariate
at a time is not generally sufficient. Even if all these differences are small, there may still be
areas with limited overlap. Formally, we are concerned with regions in the covariate space where
the density of covariates in one treatment group is zero and the density in the other treatment
group is not. This corresponds to the propensity score being equal to zero or one. Therefore,
a more direct way of assessing the overlap in covariate distributions is to inspect histograms of
the estimated propensity score by treatment status.

Once it has been established that overlap is a concern, several strategies can be used. We
briefly discuss two of the earlier specific suggestions, and then describe in more detail two general
methods. In practice, researchers have often simply dropped observations with propensity score
close to zero or one, with the actual cutoff value chosen in an ad hoc fashion. Dehejia and
Wahba (1999) focus on the average effect for the treated. After estimating the propensity
score, they find the smallest value of the estimated propensity score among the treated units,
e; = mingw,—1 é(X;). They then drop all control units with an estimated propensity score
lower than this threshold e;. The idea behind this suggestion is that control units with very
low values for the propensity score may be so different from treated units that including them in
the analysis is likely to be counterproductive. (In effect, the population over which the treatment
effects are calculated is redefined.) A concern is that the results may be sensitive to the choice
of specific threshold e;. If, for example, one used as the threshold the K-th order statistic of
the estimated propensity score among the treated (Lechner, 2002ab), the results might change
considerably. In the sixth column of Table 2 we report the normalized difference (normalized
using the same denominator equal to the square root of the sum of the within treatment
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group sample variances) after removing 9891 (out of a total 16177) control observations whose
estimated propensity score was smaller than the smallest value of the estimated propensity
score among the treated, e; = 0.00051. This improves the covariate balance, but many of the
normalized differences are still substantial.

Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998)
develop a different method. They focus on estimation of the set where the density of the
propensity score conditional on the treatment is bounded away from zero for both treatment
regimes. Specifically, they first estimate the density functions f(e|W = w), for w = 0,1,
nonparametrically. They then evaluate the estimated density f(&(X;)|W; = 0) for all N values
X;, and the same for the estimated density f(é(X;)|W; = 1) for all N values X;. Given these 2N
values they calculate the 2V -q order statistic of these 2N estimated densities. Denote this order
statistic by fq. Then, for each unit i, they compare the estimated density f (e(X;)|W; = 0) to
fq and f(é(X;)|W; = 1) to f,. If either of those estimated densities is below the order statistic,
the observation gets dropped from the analysis. Smith and Todd (2005) implement this method
with ¢ = 0.02, but provide no motivation for the choice of the threshold.

5.10.1 Matching to Improve Overlap in Covariate Distributions

A systematic method for dropping control units who are different from the treated units is to
construct a matched sample. This approach has been pushed by Rubin in a series of studies,
see Rubin (2006). It is designed for settings where the interest is in the average effect for the
treated (e.g., as in the Lalonde application). It relies on the control sample being larger than
the treated sample, and works especially well when the control sample is much larger.

First, the treated observations are ordered, typically by decreasing values of the estimated
propensity score, since treated observations with high values of the propensity score are gener-
ally more difficult to match. Then the first treated unit (e.g., the one with the highest value for
the estimated propensity score) is matched to the nearest control unit. Next, the second treated
unit is matched to the nearest control unit, excluding the control unit that was used as a match
for the first treated unit. Matching without replacement all treated units in this manner leads
to a sample of 2- Ny units, (where N7 is the size of the original treated subsample), half of them
treated and half of them control units. Note that the matching is not necessarily used here as
the final analysis. We do not propose to estimate the average treatment effect for the treated
by averaging the differences within the pairs. Instead, this is intended as a preliminary analysis,
with the goal being the construction of a sample with more overlap. Given a more balanced
sample, one can use any of the previously discussed methods for estimating the average effect
of the treatment, including regression, propensity score methods, or matching. Using those
methods on the balanced sample is likely to reduce bias relative to using the simple difference
in averages by treatment status.

The last two columns in Table 2 report the balance in the ten covariates after constructing
a matched sample in this fashion. In both cases the treated units were matched in reverse order
of the estimated propensity score. The seventh column is based on matching on the estimated
propensity score, and the last column is based on matching on all the covariates, using the
Mahalanobis metric (the inverse of the covariance matrix of the covariates). Matching, either
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on the estimated propensity score or on the full set of covariates dramatically improves the
balance. Whereas before some of the covariates differed by as much as 1.7 times a standard
deviation, now the normalized differences are all less than one tenth of a standard deviation.
The remaining differences are not negligible, however. For example, average differences in 1974
earnings are still on the order of $700, which, given the experimental estimate from the Lalonde
(1986) paper of about $2000 is substantial. As a result, simple estimators such as the average
of the within-matched-pair differences are not likely to lead to credible estimates. Nevertheless,
maintaining unconfoundedness, this matched sample is sufficiently well balanced that one may
be able to obtain credible and robust estimates from it in way that the original sample would
not allow.

5.10.2 Trimming to Improve Overlap in Covariate Distributions

Matching with replacement does not work if the estimand of interest is the overall average
treatment effect. For that case Crump, Hotz, Imbens and Mitnik (2008a) suggest an easily
implementable way of selecting the subpopulation with overlap, consistent with the current
practice of dropping observations with propensity score values close to zero or one. Their
method is generally applicable and in particular does not require that the control sample is
larger than the treated sample. They consider estimation of the average treatment effect for
the subpopulation with X; € A. They suggest choosing the set A from the set of all subsets
of the covariate space to minimize the asymptotic variance of the efficient estimator of the
average treatment effect for that set. Under some conditions (in particular homoskedasticity),
they show that the optimal set A* depends only on the value of the propensity score. This
method suggests discarding observations with a propensity score less than o away from the two
extremes, zero and one:

A*:{$EX|a§e($)§1—a},

where « satisifies a condition based on the marginal distribution of the propensity score:

_
a-(1-a)

1
e(X) - (1 —e(X))

1 < 1
e(X)-(1—e(X)) a-(1-a)

ZQ.E[

Based on empirical examples and numerical calculations with Beta distributions for the propen-
sity score, Crump, Hotz, Imbens and Mitnik (2008a) suggest that the rule-of-thumb fixing « at
0.10 gives good results.

To illustrate this method, Table 3 presents summary statistics for data from Imbens, Rubin
and Sacerdote (2001) on lottery players, including “winners” who won big prizes, and “losers”
who did not. Even though winning the lottery is obviously random, variation in the number
of tickets bought, and nonresponse, creates imbalances in the covariate distributions. In the
full sample (sample size N = 496), some of the covariates differ by as much as 0.64 stan-
dard deviations. Following the Crump-Hotz-Imbens-Mitnik calculations leads to a bound of
0.0914. Discarding the observations with an estimated propensity score outside the interval
[0.0914, 0.9086] leads to a sample size 388. In this subsample the largest normalized difference
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is 0.35, about half of what it is in the full sample, with this improvement obtained by dropping
approximately 20% of the original sample.

A potentially controversial feature of all these methods is that they change what is being
estimated. Instead of estimating Tpate, the Crump, Hotz, Imbens and Mitnik (2008a) approach
estimates 7Tcate,a. This results in reduced external validity, but it is likely to improve internal
validity.

5.11 Assessing the Unconfoundedness Assumption

The unconfoundedness assumption used in Section 5 is not testable. It states that the con-
ditional distribution of the outcome under the control given receipt of the active treatment
and covariates, is identical to the distribution of the control outcome conditional on being in
the control and covariates. A similar assumption is made for the distribution of the treatment
outcome. Yet since the data are completely uninformative about the distribution of Y;(0) for
those who received the active treatment and of Y;(1) for those receiving the control, the data
can never reject the unconfoundedness assumption. Nevertheless, there are often indirect ways
of assessing this assumption. The most important of these were developed in Rosenbaum (1987)
and Heckman and Hotz (1989). Both methods rely on testing the null hypothesis that an av-
erage causal effect is zero, where the particular average causal effect is known to equal zero. If
the testing procedure rejects the null hypothesis, this is interpreted as weakening the support
for the unconfoundedness assumption. These tests can be divided into two groups.

The first set of tests focuses on estimating the causal effect of a treatment that is known
not to have an effect. It relies on the presence of two or more control groups (Rosenbaum,
1987). Suppose one has two potential control groups, for example eligible nonparticipants and
ineligibles, as in Heckman, Ichimura and Todd (1997). One can estimate a “pseudo” average
treatment effect by analyzing the data from these two control groups as if one of them is the
treatment group. In that case the treatment effect is known to be zero, and statistical evidence of
a non-zero effect implies that at least one of the control groups is invalid. Again, not rejecting
the test does not imply the unconfoundedness assumption is valid (as both control groups
could suffer the same bias), but non-rejection in the case where the two control groups could
potentially have different biases makes it more plausible that the unconfoundness assumption
holds. The key for the power of this test is to have available control groups that are likely to
have different biases, if they have any at all. Comparing ineligibles and eligible nonparticipants
as in Heckman, Ichimura and Todd (1997) is a particularly attractive comparison. Alternatively
one may use geographically distinct comparison groups, for example from areas bordering on
different sides of the treatment group.

To be more specific, let G; be an indicator variable denoting the membership of the group,
taking on three values, G; € {—1,0,1}. For units with G; = —1 or 0, the treatment indicator
W; is equal to O:

Wi:{o if G; = —1,0,

1 if G; =1.



Unconfoundedness only requires that

Yi(0),Yi(1) L Wi | X5, (23)

and this is not testable. Instead we focus on testing an implication of the stronger conditional
independence relation

Yi(0),Y;(1) L Gi | X;. (24)

This independence condition implies (23), but in contrast to that assumption, it also implies
testable restrictions. In particular, we focus on the implication that

Y;(0) L G; | X;,G; € {-1,0} < Y; L G;| X;,G,; €{-1,0}, (25)

because G; € {—1,0} implies that Y¥; = Y;(0).

Because condition (24) is slightly stronger than unconfoundedness, the question is whether
there are interesting settings where the weaker condition of unconfoundedness holds, but not the
stronger condition. To discuss this question, it is useful to consider two alternative conditional
independence conditions, both of which are implied by (24):

(Y;(O),Y;-(l)) LW | Xi,Gie {—1,1}, (26)

and

(y;-(o),yg-u)) L Wi | X, Gi e {0,1}. (27)

If (26) holds, then we can estimate the average causal effect by invoking the unconfoundedness
assumption using only the first control group. Similarly, if (27) holds, then we can estimate
the average causal effect by invoking the unconfoundedness assumption using only the second
control group. The point is that it is difficult to envision a situation where unconfoundedness
based on the two comparison groups holds — that is, (23) holds — but it does not hold using only
one of the two comparison groups at the time. In practice, it seems likely that if unconfound-
edness holds then so would the stronger condition (24), and we have the testable implication
(25).

Next, we turn to implementation of the tests. We can simply test whether there is a
difference in average values of Y; between the two control groups, after adjusting for differences
in X;. That is, we effectively test whether

E[E lY;|G, = -1, X;] —EY;|G; = O,XZ-]] = 0.
More generally we may wish to test

E[E[YHGZ':_17Xi:$]_E[Yi|Gi:07Xi:$]:| =0
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for all x in the support of X;, using the methods discussed in Crump, Hotz, Imbens adn Mitnik
(2008b). We can also include transformations of the basic outcomes in the procedure to test
for difference in other aspects of the conditional distributions.

A second set of tests of unconfoundedness focuses on estimating the causal effect of the
treatment on a variable known to be unaffected by it, typically because its value is determined
prior to the treatment itself. Such a variable can be time-invariant, but the most interesting
case is in considering the treatment effect on a lagged outcome. If it is not zero, this implies
that the treated observations are distinct from the controls; namely that the distribution of
Y;(0) for the treated units is not comparable to the distribution of Y;(0) for the controls.
If the treatment is instead zero, it is more plausible that the unconfoundedness assumption
holds. Of course this does not directly test the unconfoundedness assumption; in this setting,
being able to reject the null of no effect does not directly reflect on the hypothesis of interest,
unconfoundedness. Nevertheless, if the variables used in this proxy test are closely related to
the outcome of interest, the test arguably has more power. For these tests it is clearly helpful
to have a number of lagged outcomes.

First partition the vector of covariates X; into two parts, a (scalar) pseudo outcome, denoted
by X7, and the remainder, denoted by X}, so that X; = (X!, X)". Now we will assess whether
the following conditional independence relation holds:

XP 1w | X! (28)

The two issues are, first, the interpretation of this condition and its relationship to the uncon-
foundedness assumption, and second, the implementation of the test.

The first issue concerns the link between the conditional independence relation in (28) and
original unconfoundedness. This link, by necessity, is indirect, as unconfoundedness cannot be
tested directly. Here we lay out the arguments for the connection. First consider a related

condition:
Yi(0),Yi(1) L Wi | X;. (29)

If this modified unconfoundedness condition were to hold, one could use the adjustment meth-
ods using only the subset of covariates X;. In practice, though not necesarily, this is a stronger
condition than the original unconfoundedness condition which requires conditioning on the full
vector X;. One has to be careful here, because it is theoretically possible that conditional on a
subset of the covariates unconfoundedness holds, but at the same time unconfoundedness does
not hold conditional on the full set of covariates. In practice this situation is rare though. For
example, it is difficult to imagine in an evaluation of a labor market program that unconfound-
edness would hold given age and the level of education, but not if one additionally conditions
on gender. Generally making subpopulations more homogenous in pretreatment variables tends
to improve the plausibility of unconfoundedness.

The modified unconfoundedness condition (29) is not testable for the same reasons the
original unconfoundedness assumption is not testable. Nevertheless, if one has a proxy for
either of the potential outcomes, and in particular a proxy that is observed irrespective of
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the treatment status, one can test independence for that proxy variable. We use the pseudo
outcome X! as such a proxy variable. That is, we view X as a proxy for, say, Y;(0), and assess
(29) by testing (28).

The most convincing applications of these assessments are settings where the two links are
plausible. One of the leading examples is where X; contains multiple lagged measures of the
outcome. For example, in the evaluation of the effect of a labor market program on annual
earnings, one might have observations on earnings for, say, six years prior to the program.
Denote these lagged outcomes by Y; _1,...,Y; _¢, where Y; _; is the most recent and Y; _¢ is
the most distant pre-program earnings measure. One could implement the above ideas using
earnings for the most recent pre-program year Y; _1 as the pseudo outcome X?, so that the
vector of remaining pretreatment variables X; would still include the five prior years of pre-
program earnings Y; _o,...,Y; ¢ (ignoring additional pre-treatment variables). In that case
one might reasonably argue that if unconfoundedness holds given six years of pre-program
earnings, it is plausible that it would also hold given only five years of pre-program earnings.
Moreoever, under unconfoundedness Y;(c) is independent of W; given Y; _q,...,Y; _¢, which
would suggest that it is plausible that Y; _; is independent of W; given Y; _o,...,Y; _g. Given
those arguments, one can plausibly assess unconfoundedness by testing whether

YVi,—l 1 WZ Yvi,—27"'7yvi—6'

)

The implementation of the tests is the same as in the first set of tests for assessing un-
confoundedness. We can simply test whether estimates of the average difference between the
groups adjusted for differences in X are zero, or test whether the average difference is zero for
all values of the covariates (e.g., Crump, Hotz, Imbens and Mitnik, 2008b).

5.12 Testing

Most of the focus in the evaluation literature has been on estimating average treatment effects.
Testing has largely been limited to the null hypothesis that the average effect is zero. In that
case testing is straightforward since many estimators exist for the average treatment effect that
are approximately normally distributed in large samples with zero asymptotic bias. In addition
there is some testing based on the Fisher approach using the randomization distribution. In
many cases, however, there are other null hypotheses of interest. Crump, Hotz, Imbens and
Mitnik (2008b) develop tests of the null hypotheses of zero average effects conditional on the
covariates, and of a constant average effect conditional on the covariates. Formally, in the first
case the null hypothesis

Hy: 7(x)=0, YV, (30)
against the alternative hypothesis
H,: 7(x) # 0, for some x.

Recall that 7(x) = E[Y;(1) — Y;(0)|X; = z] is the average effect for the subpopulation with
covariate value x. The second hypothesis studied by Crump, Hotz, Imbens and Mitnik is

Hy: 7(x) = Tpates V @, (31)
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against the alternative hypothesis
H,: 7(x) # Tpate, for some z.

Part of their motivation is that in many cases there is substantive interest in whether the
program is beneficial for some groups, even if on average it does not affect outcomes.® They
show that in some data sets they reject the null hypothesis (30) even though they cannot reject
the null hypothesis of a zero average effect.

Taking the motivation in Crump, Hotz, Imbens and Mitnik (2008b) one step further, one
may also be interested in testing the null hypothesis that the conditional distribution of Y;(0)
given X; = z is the same as the conditional distribution of Y;(1) given X; = z. Under the
maintained hypothesis of unconfoundedness, this is equivalent to testing the null hypothesis
that

H()Z Y; JLWZ XZ',

against the alternative hypothesis that Y; is not independent of W; given X;. Tests of this
type can be implemented using the methods of Gozalo and Linton (2003). There have been no
applications of these tests in the program evaluation literature.

5.13 Selection of Covariates

A very important set of decisions in implementing all of the methods described in this section
involves the choice of covariates to be included in the regression functions or the propensity
score. Here the literature has not been very helpful, and as a result researchers have just included
all covariates linearly, without much systematic effort to find more compelling specifications.
Most of the technical results using nonparametric methods include rates at which the smoothing
parameters should change with the sample size. For example, using regression estimators, one
would have to choose the bandwidth if using kernel estimators, or the number of terms in
the series if using series estimators. The program evaluation literature does not provide much
guidance as to how to choose these smoothing parameters in practice. More generally, the
nonparametric estimation literature has little to offer in this regard. Most of the results in this
literature offer optimal choices for smoothing parameters if the criterion is integrated squared
error. In the current setting the interest is in a scalar parameter, and the choice of smoothing
parameter that is optimal for the regression function itself need not be close to optimal for the
average treatment effect.

Hirano and Imbens (2001) consider an estimator that combines weighting with the propen-
sity score and regression. In their application they have a large number of covariates, and they
suggest deciding which ones to include on the basis of t-statistics. They find that the results are
fairly insensitive to the actual cutoff point if they use the weight /regression estimator, but find
more sensitivity if they only use weighting or regression. They do not provide formal properties
for these choices.

8 A second motivation is that it may be impossible to obtain precise estimates for Tpate €ven in cases where
one can convincingly reject some of the hypotheses regarding 7(x).
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Ichimura and Linton (2005) consider inverse probability weighting estimators and analyze
the formal problem of bandwidth selection with the focus on the average treatment effect.
Imbens, Newey and Ridder (2006) look at series regression estimators and analyze the choice
of the number of terms to be included, again with the objective being the average treatment
effect. Imbens and Rubin (2008) discuss some stepwise covariate selection methods for finding
a specification for the propensity score.

It is clear that more work needs to be done in this area, both for the case where the choice
is which covariates to include from a large set of potential covariates, and in the case where the
choice concerns functional form and functions of the a small set of covariates.

6 Selection on Unobservables

In this section we discuss a number of methods that relax the pair of assumptions made in
Section 5. Unlike in the setting under unconfoundedness, there is not a unified set of methods
for this case. In a number of special cases there are well-understood methods, but there are many
cases without clear recommendations. We will highlight some of the controversies and different
approaches. First we discuss some methods that simply drop the unconfoundedness assumption.
Next, in Section 6.2, we discuss sensivitity analyses that relax the unconfoundedness assumption
in a more limited manner. In Section 6.3 we discuss instrumental variables methods. Then, in
Section 6.4 we discuss regression discontinuity designs, and in Section 6.5 we discuss difference-
in-differences methods.

6.1 Bounds

In a series of papers and books, Manski (1990, 1995, 2003, 2005, 2007) has developed a general
framework for inference in settings where the parameters of interest are not identified. Manski’s
key insight is that even if in large samples one cannot infer the exact value of the parameter,
one may be able to rule out some values that one could not rule out a priori. Prior to Manski’s
work, researchers had typically dismissed models that are not point-identified as not useful
in practice. This framework is not restricted to causal settings, and the reader is referred to
Manski (2007) for a general discussion of the approach. Here we limit the discussion to program
evaluation settings.

We start by discussing Manksi’s perspective in a very simple case. Suppose we have no
covariates and a binary outcome Y; € {0,1}. Let the goal be inference for the average effect in
the population, mpate. We can decompose the population average treatment effect as

Tpate = E[Yi(1)[Wi = 1] - pr(W; = 1) + E[Y;(1)[W; = 0] - pr(W; = 0)

—[E[Y;(0)[Wi = 1] - pr(W; = 1) + E[Y;(0)[W; = 0] - pr(W; = 0)].

Of the eight components of this expression, we can estimate six. The data contain no infor-
mation about the remaining two, E[Y;(1)|W; = 0] and E[Y;(0)|W; = 1]. Because the outcome
is binary, and before seeing any data, we can deduce that these two conditional expectations
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must lie inside the interval [0, 1], but we cannot say any more without additional assumptions.
This implies that without additional assumptions we can be sure that

Tpate € [T, Tul ,
where we can express the lower and upper bound in terms of estimable quantities,
= E[Y;(1)|W; = 1] - pr(W; = 1) — pr(W; = 1) — E[Y;(0)|W; = 0] - pr(W; = 0),
and
7 = E[Y;(1)[W; = 1] - pr(W; = 1) + prW; = 0) — E[Y;(0)[W; = 0] - pr(W; = 0).

In other words, we can bound the average treatment effect. In this example the bounds are tight,
meaning that without additional assumptions we cannot rule out any value inside the bounds.
For an empirical example of these particular bounds, see Manski, Sandefur, McLanahan, and
Powell (1992).

In this specific case the bounds are not particularly informative. The width of the bounds,
the difference in 7, — 7, with 7; and 7, given above, is always equal to one, implying we can
never rule out a zero average treatment effect. (In some sense this is obvious: if we refrain
from making any assumptions regarding the treatment effects we cannot rule out that the
treatment effect is zero for any unit.) In general, however, we can add some assumptions,
short of making the type of assumption as strong as unconfoundedness that gets us back to
the point-identified case. With such weaker assumptions we may be able to tighten the bounds
and obtain informative results, without making the strong assumptions that strain credibility.
The presence of covariates increases the scope for additional assumptions that may tighten the
bounds. Examples of such assumptions include those in the spirit of instrumental variables,
where some covariates are known not to affect the potential outcomes (e.g., Manski, 2007), or
monotonicity assumptions where expected outcomes are monotonically related to covariates or
treatments (e.g., Manski and Pepper, 2000). For an application of these methods, see Hotz,
Mullin, and Sanders (1997). We return to some of these settings in Section 6.3.

This discussion has focused on identification and demonstrated what can be learned in large
samples. In practice these bounds need to be estimated which leads to additional uncertainty
regarding the estimands. A fast developing literature (e.g., Horowitz and Manski, 2000;Imbens
and Manski, 2004; Chernozhukov, Hong and Tamer, 2007; Beresteanu, and Molinari, 2006;
Romano and Shaikh, 2006ab; Pakes, Porter, Ho and Ishii, 2006; Rosen, 2007; Andrews and
Soares, 2007; Canay, 2007; and Stoye, 2007) discusses construction of confidence intervals in
general settings with partial identification. One point of contention in this literature has been
whether the focus should be on confidence intervals for the parameter of interest (Tpate in this
case), or for the identified set. Imbens and Manski (2004) develop confidence sets for the
parameter. In large samples, and at a 95% confidence level the Imbens-Manski confidence
intervals amount to taking the lower bound minus 1.645 times the standard error of the lower
bound and the upper bound plus 1.645 times its standard error. The reason for using 1.645
rather than 1.96 is to take account of the fact that even in the limit the width of the confidence
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set will not shrink to zero, and therefore one only needs to be concerned with one-sided errors.
Chernozhukov, Hong, and Tamer (2007) focus on confidence sets that include the entire partially
identified set itself with fixed probability. For a given confidence level the latter approach
generally leads to larger confidence sets than the Imbens-Manski approach. See also Romano
and Shaikh (2006ab) for subsampling approaches to inference in these settings.

6.2 Sensitivity Analysis

Unconfoundedness has traditionally been seen as an all or nothing assumption: either it is
satisfied and one proceeds accordingly using the methods appropriate under unconfoundedness,
such as matching, or the assumption is deemed implausible and one considers alternative meth-
ods. The latter include the bounds approach discussed in Section 6.1, as well as approaches
relying on alternative assumptions, such as instrumental variables, which will be discussed in
Section 6.3. However, there is an important alternative that has received much less attention
in the economics literature. Instead of completely relaxing the unconfoundedness assumption,
the idea is to relax it slightly. More specifically, violations of unconfoundedness are inter-
preted as evidence of the presence of unobserved covariates that are correlated, both with the
potential outcomes and with the treatment indicator. The size of bias these violations of un-
confoundedness can induce depends on the strength of these correlations. Sensitivity analyses
investigate whether results obtained under the maintained assumption of unconfoundedness can
be changed substantially, or even overturned entirely, by modest violations of the unconfound-
edness assumption.

To be specific, consider a job training program with voluntary enrollment. Suppose that
we have monthly labor market histories for a two year period prior to the program. We may
be concerned that individuals choosing to enroll in the program are more motivated to find a
job than those that choose not to enroll in the program. This unobserved motivation may be
related to subsequent earnings both in the presence and in the absence of training. Conditioning
on the recent labor market histories of individuals may limit the bias associated with this
unobserved motivation, but it need not eliminate it entirely. However, we may be willing to
limit how highly correlated unobserved motivation is with the enrollment decision and the
earnings outcomes in the two regimes, conditional on the labor market histories. For example,
if we compare two individuals with the same labor market history for the last two years, e.g.,
not employed the last six months and working the eighteen months before, and both with one
two-year old child, it may be reasonable to assume that these cannot differ radically in their
unobserved motivation given that their recent labor market outcomes have been so similar.
The sensitivity analyses developed by Rosenbaum and Rubin (1983) formalize this idea and
provides a tool for making such assessments. Imbens (2003) applies this sensitivity analysis to
data from labor market training programs. The second approach is associated with work by
Rosenbaum (1995). Similar to the Rosenbaum-Rubin approach Roseenbaum’s method relies
on an unobserved covariate that generates the deviations from unconfoundedness. The analysis
differs in that sensitivity is measured using only the relation between the unobserved covariate
and the treatment assignment, with the focus on the correlation required to overturn, or change
substantially, p-values of statistical tests of no effect of the treatment.

[50]



6.2.1 The Rosenbaum-Rubin Approach to Sensitivity Analysis

The starting point is that unconfoundedness is satisfied only conditional on the observed co-
variates X; and an unobserved scalar covariate U;:

Y;(0),Yi(1) L W; | X;, Ui

This set up in itself is not restrictive, although once parametric assumptions are made the
assumption of a scalar unobserved covariate Uj; is resctritive.

Now consider both the conditional distribution of the potential outcomes given observed
and unobserved covariates and the conditional probability of assignment given observed and
unobserved covariates. Rather than attempting to estimate both these conditional distributions,
the idea behind the sensitivity analysis is to specify the form and the amount of dependence of
these conditional distributions on the unobserved covariate, and estimate only the dependence
on the observed covariate. Conditional on the specification of the first part estimation of the
latter is typically straightforward. The idea is then to vary the amount of dependence of the
conditional distributions on the unobserved covariate and assess how much this changes the
point estimate of the average treatment effect.

Typically the sensitivity analysis is done in fully parametric settings, although since the
models can be arbitrarily flexible, this is not particularly restrictive. Following Rosenbaum and
Rubin (1984) we illustrate this approach in a setting with binary outcomes. See Imbens (2003)
for an example with continuous outcomes. Rosenbaum and Rubin (1984) fix the marginal
distribution of the unobserved covariate to be binomial with p = pr(U; = 1), and assume
independence of U; and X;. They specify a logistic distribution for the treatment assignment:

exp(ao + oz + ag - u)
‘/‘/ N — 1 X pr— U pr— pr— .
pr(Wi |Xi =2,Ui =) 1+ exp(ap + o)z + ag - )

They also specify logistic regression functions for the two potential outcomes:

eXp(ﬁwO + ﬁ:ulin + ﬁw2 : U)
pr(Yi(w) =1 z,U; = u) T+ exp(Buo 1 Bt 1 Bun - 1)

For the subpopulation with X; = x and U; = u, the average treatment effect is

1)V oo exp(Bot+Bur+Biz-u)  exp(Boo + Bpiw + Boz - w)
E[E(l) Y;(0|Xz =z, U, = U] = 1+ eXp(ﬁlO +ﬁ11$ + ﬁ12 . ’LL) 1+ eXp(ﬁoo + ﬁéy’n +ﬁ02 - ’LL) .

The average treatment effect 7..;c can be expressed in terms of the parameters of this model
and the distribution of the observable covariates by averaging over X;, and integrating out the
unobserved covariate U:

T = 7(p, a2, Bo2, B12, 20, a1, Boo, Pot, 1o, Fi1)

1 f: ( exp(Bio + B Xi + B12)  exp(Boo + BpiXi + Bo2) >
1 +exp(fro + 011 Xi + B12) 1+ exp(Boo + By Xi + Boz2)

i=1
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(1= p) ( exp(Bio + 011Xi) ~_exp(Boo + B61X:) >}
1+exp(Bio+ 01 Xs) 1+ exp(Boo+ 651 Xi) /) )

We do not know the values of the parameters (p, , 3), but the data are somewhat informative
about them. One conventional approach would be to attempt to estimate all parameters, and
then use those estimates to obtain an estimate for the average treatment effect. Given the
specific parametric model this may be possible, although in general this would be difficult given
the inclusion of unobserved covariates in the basic model. A second approach, as discussed in
Section 6.1, is to derive bounds on 7 given the model and the data. A sensivitity analysis offers
a third approach.

The Rosenbaum-Rubin sensitivity analysis proceeds by dividing the parameters into two
sets. The first set includes the parameters that would be set to boundary values under un-
confoundedness, (ag, Bo2, F12), plus the parameter p capturing the marginal distribution of
the unobserved covariate U;. Together we refer to these as the sensitivity parameters, Ogens =
(p, a2, Bo2, B12). The second set consists of the remaining parameters, Oother = (o, @1, Boo, Bo1, 510, 511)-
The idea is that fges is difficult to estimate. Estimates of the other parameters under uncon-
foundedness could be obtained by fixing as = Bgo = $12 = 0 and p at an arbitrary value. The
data are not directly informative about the effect of an unobserved covariate in the absence
of functional form assumptions, and so attempts to estimate fyens are therefore unlikely to be
effective. Given Oyons, however, estimating the remaining parameters is considerably easier. In
the second step the plan is therefore to fix the first set of parameters and estimate the others
by maximum likelihood, and then translate this into an estimate for 7. Thus, for fixed Ogeps,
we first estimate the remaining parameters through maximum likelihood:

Hothor ( Hsons) = arg max L ( Hothor | Hsons) s

other

where L(-) is the logarithm of the likelihood function. Then we consider the function

T ( Hsons) =T ( Hsons s Hothor ( Hsons) ) s

Finally, in the third step, we consider the range of values of the function 7(fgeps) for a reasonable
set of values for the sensitivity parameters (fsens), and obtain a set of values for T¢ate.

The key question is how to choose the set of reasonable values for the sensitivity parameters.
If we do not wish to restrict this set at all, we end up with unrestricted bounds along the lines of
Section 6.1. The power from the sensitivity approach comes from the researcher’s willingness to
put real limits on the values of the sensitivity parameters (p, asg, 52, 312). Among these param-
eters it is difficult to put real limits on p, and typically it is fixed at 1/2, with little sensitivity
to its choice. The more interesting parameters are (ag, Bp2, F12). Let us assume that the effect
of the unobserved covariate is the same in both treatment arms, G2 = (Byp2 = 21, so that there
are only two parameters left to fix, ay and (3. Imbens (2003) suggests linking the parameters
to the effects of the observed covariates on assignment and potential outcomes. Specifically
he suggests to calculate the partial correlations between observed covariates and the treatment
and potential outcomes, and then as a benchmark look at the sensitivity to an unobserved
covariate that has partial correlations with treatment and potential outcomes as high as any of
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the observed covariates. For example, Imbens considers, in the labor market training example,
what the effect would be of omitting unobserved motivation, if in fact motivation had as much
explanatory power for future earnings and for treatment choice as did earnings in the year prior
to the training program. A bounds analysis, in contrast, would implicitly allow unobserved
motivation to completely determine both selection into the program and future earnings. Even
though putting hard limits on the effect of motivation on earnings and treatment choice may
be difficult, it may be reasonable to put some limits on it, and the Rosenbaum-Rubin sensivity
analysis provides a useful framework for doing so.

6.2.2 Rosenbaum’s Method for Sensitivity Analysis

Rosenbaum (1995) developed a slightly different approach. The advantage of his approach is
that it requires fewer tuning parameters than the Rosenbaum-Rubin approach. Specifically,
it only requires the researcher to consider the effect unobserved confounders may have on
the probability of treatment assignment. Rosenbaum’s focus is on the effect the presence of
unobserved covariates could have on the p-value for the test of no effect of the treatment based
on the unconfoundedness assumption, in contrast to the Rosenbaum-Rubin focus on point
estimates for average treatment effects. Consider two units ¢ and j with the same value for the
covariates, x; = x;. If the unconfoundedness assumption conditional on X; holds, both units
must have the same probability of assignment to the treatment, e(x;) = e(x;). Now suppose
unconfoundedness only holds conditional on both X; and a binary unobserved covariate Us;.
In that case the assignment probabilities for these two units may differ. Rosenbaum suggest
bounding the ratio of the odds ratios e(z;)/(1 — e(z;)) and e(x;)/(1 — e(x;)):

e(xi) - (1 — e(x5))
(1 —e(xi)) - e(x)

If ' = 1 we are back in the setting with unconfoundedness. If we allow I' = oo we are

<T.

not restricting the association between the treatment indicator and the potential outcomes.
Rosenbaum investigates how much the odds would have to be different in order to substantially
change the p-value. Or, starting from the other side, he investigates for fixed values of I" what
the implication is on the p-value.

For example, suppose that a test of the null hypothesis of no effect has a p-value of 0.0001
under the assumption of unconfoundedness. If the data suggest it would take the presence of an
unobserved covariate that changes the odds of participation by a factor ten in order to increase
that p-value to 0.05, then one would likely consider the result to be very robust. If instead a
small change in the odds of participation, say with a value of I' = 1.5, would be sufficient for a
change of the p-value to 0.05, the study would be much less robust.

6.3 Instrumental Variables

In this section we review the recent literature on instrumental variables. We focus on the
part of the literature concerned with heterogenous effects. In the current section we limit
the discussion to the case with a binary endogenous variable. The early literature focused on
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identification of the population average treatment effect and the average effect on the treated.
Identification of these estimands ran into serious problems once researchers wished to allow
for unrestricted heterogeneity in the effect of the treatment. In an important early result,
Bloom (1984) showed that if eligibility for the program is used as an instrument, then one
can identify the average effect of the treatment for those who received the treatment. Key for
the Bloom result is that the instrument changes the probability of receiving the treatment to
zero. In order to identify the average effect on the overall population, the instrument would
also need to shift the probability of receiving the treatment to one. This type of identification
is sometimes referred to as identification at infinity (Chamberlain, 1986; Heckman, 1990) in
settings with a continuous instrument. The practical usefulness of such identification results is
fairly limited outside of cases where eligibility is randomized. Finding a credible instrument is
typically difficult enough, without also requiring that the instrument shifts the probability of
the treatment close to zero and one. In fact, the focus of the current literature on instruments
that can credibly be expected to satisfy exclusion restrictions makes it even more difficult to
find instruments that even approximately satisfy these support conditions. Imbens and Angrist
(1994) got around this problem by changing the focus to average effects for the subpopulation
that is affected by the instrument.

Initially we focus on the case with a binary instrument. This case provides some of the
clearest insight into the identification problems. In that case the identification at infinity
arguments are obviously not satisfied and so one cannot (point-)identify the population average
treatment effect.

6.3.1 A Binary Instrument

Imbens and Angrist adopt a potential outcome notation for the receipt of the treatment, as well
as for the outcome itself. Let Z; denote the value of the instrument for individual 7. Let WW;(0)
and W;(1) denote the level of the treatment received if the instrument takes on the values 0
and 1 respectively. As before, let Y;(0) and Y;(1) denote the potential values for the outcome of
interest. The observed treatment is, analogously to the relation between the observed outcome
Y; and the potential outcomes Y;(0) and Y;(1), is

W;(0) if Z; =0,

Wi =W;(0)- (1 - 2Z;) + Wi(1)- Z; = { w;(1) if Z, =1.

Exogeneity of the instrument is captured by the assumption that all potential outcomes are
independent of the instrument, or

(Yi(0), Ya(1), Wi(0), Wi(1)) L Z;

Formulating exogeneity in this way is attractive compared to conventional residual-based defi-
nitions, as it does not require the researcher to specify a regression function in order to define
the residuals. This assumption captures two properties of the instrument. First, it captures
random assignment of the instrument so that causal effects of the instrument on the outcome
and treatment received can be estimated consistently. This part of the assumption, which is im-
plied by explicitly randomization of the instrument, as for example in the seminal draft lottery
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study by Angrist (1990), is not sufficient for causal interpretations of instrumental variables
methods. The second part of the assumption captures an exclusion restriction that there is no
direct effect of the instrument on the outcome. This second part is captured by the absence of z
in the definition of the potential outcome Y;(w). This part of the assumption is not implied by
randomization of the instrument and it has to be argued on a case by case basis. See Angrist,
Imbens and Rubin (1996) for more discussion on the distinction between these two assumptions,
and for a formulation that separates them.

Imbens and Angrist introduce a new concept, the compliance type of an individual. The type
of an individual describes the level of the treatment that an individual would receive given each
value of the instrument. In other words, it is captured by the pair of values (W;(0), W;(1)). With
both the treatment and instrument binary, there are four types of responses for the potential
treatment. It is useful to define the compliance types explicitly:

never — taker it W;(0) =W;(1) = 0

T — complier if W;(0) =0, W;(1) =
") defier if W;(0)=1,W;(1) =
always — taker if W;(0) =W;(1) = 1

The labels never-taker, complier, defier and always-taker (e.g., Angrist, Imbens and Rubin,
1996) refer to the setting of a randomized experiment with noncompliance, where the instrument
is the (random) assignment to the treatment and the endogenous regressor is an indicator for
the actual receipt of the treatment. Compliers are in that case individuals who (always) comply
with their assignment, that is, take the treatment if assigned to it and not take it if assigned to
the control group. One cannot infer from the observed data (Z;, W, Y;) whether a particular
individual is a complier or not. It is important not to confuse compliers (who comply with their
actual assignment and would have complied with the alternative assignment) with individuals
who are observed to comply with their actual assignment: that is, individuals who complied
with the assignment they actually received Z; = W;. For such individuals we do not know what
they would have done had their assignment been different, that is we do not know the value of
Wi(1—Z;).

Imbens and Angrist then invoke an additional assumption they refer to as monotonicity.
Monotonicity requires that W;(1) > W;(0) for all individuals, or that increasing the level of
the instrument does not decrease the level of the treatment. This assumption is equivalent to
ruling out the presence of defiers, and it is therefore sometimes referred to as the “no-defiance”
assumption (Balke and Pearl, 1994; Pearl, 2000). Note that in the Bloom set up with one-sided
noncompliance both always-takers and defiers are absent by assumption.

Under these two assumptions, independence of all four potential outcomes (Y;(0), Y;(0), W;(0), Wi(1))
and the instrument Z;, and monotonicity, Imbens and Angrist show that one can identify the
average effect of the treatment for the subpopulation of compliers. Before going through their
argument, it is useful to see why we cannot generally identify the average effect of the treatment
for others subpopulations. Clearly, one cannot identify the average effect of the treatment for
never-takers because they are never observed receiving the treatment, and so E[Y;(1)|T; = n]
is not identified. Thus, only compliers are observed in both treatment groups, so only for this
group is there any chance of identifying the average treatment effect. In order to understand the
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positive component of the Imbens-Angrist result, that we can identify the average effect for com-
pliers, it is useful to consider the subpopulations defined by instrument and treatment. Table 4
shows the information we have about the individual’s type given the monotonicity assumption.
Consider individuals with (Z; = 1, W; = 0). Because of monotonicity such individuals can only
be never-takers. Similarly, individuals (Z; = 0, W; = 1) can only be always-takers. However,
consider individuals with (Z; = 0, W; = 0). Such individuals can be either compliers or never-
takers. We cannot infer the type of such individuals from the observed data alone. Similarly,
individuals with (Z; = 1, W; = 1) can be either compliers or never-takers.

The intuition for the identification result is as follows. The first step is to see that we can
infer the population proportions of the three remaining subpopulations, never-takers, alway-
stakers and compliers (using the fact that the monotonicity assumption rules out the presence
of defiers). Call these population shares P, = pr(7; = t), for t € {n,a,c}. Consider the
subpopulation with Z; = 0. Within this subpopulation we observe W; = 1 only for always-
takers. Hence the conditional probability of W; = 1 given Z; = 0 is equal to the population
share of always-takers: P, = pr(W; = 1|Z; = 0). Similarly, in the subpopulation with Z; = 1
we observe W; = 0 only for never-takers. Hence the population share of never-takers is equal to
the conditional probability of W; = 0 given Z; = 1: P, = pr(W; = 0|Z; = 1). The population
share of compliers is then obtained by subtracting the population shares of never-takers and
always-takers from one: P. =1 — P, — P,. The second step uses the distribution of Y; given
(Z;,W;). We can infer the distribution of Y;|W; = 0,7; = n from the subpopulation with
(Zi,W;) = (1,0) since all these individuals are known to be never-takers. Then we use the
distribution of Y;|Z; = 0, W; = 0. This is a mixture of the distribution of Y;|W; = 0,T; = n and
the distribution of Y;|W; = 0, T; = ¢, with mixture probabilities equal to the relative population
shares, P,/(P.+ P,) and P./(P.+ P,), respectively. Since we already inferred the population
shares of the never-takers and compliers as well as the distribution of Y;|W; = 0,T; = n, we can
back out the conditional distribution of Y;|W; = 0, T; = ¢. Similarly we can infer the conditional
distribution of Y;|W; = 1,T; = ¢. The difference between the means of these two conditional
distributions is the Local Average Treatment Effect (LATE, Imbens and Angrist, 1994):

Tate = E[Y;(1) — ¥;3(0)[W;(0) = 0, W;(1) = 1] = E[Y;(1) — Y;(0)|T; = complier].

In practice one need not estimate the local average treatment effect by decomposing the mixture
distributions directly. Imbens and Angrist show that LATE equals the standard instrumental
variables estimand, the ratio of the covariance of Y; and Z; and the covariance of W; and Z;:

E[Y;|Z; = 1] - E[Y;|Z; = 0] E[Y; - (Z; — E[Z;])]

Tlate = =

E(Wi|Z; = 1] - E[W;|Z; = 0] E[W; - (Z; — E[Z)])]’

which can be estimated using two-stage-least-squares.

Earlier we argued that one cannot consistently estimate the average effect for either never-
takers or always-takers in this setting. Nevertheless, we can still use the bounds approach from
Manski (1990, 1995) to bound the average effect for the full population. To understand the
nature of the bound, it is useful to decomponse the average effect 7,ate by compliance type
(maintaining monotonicity, so there are no defiers):

Tpate = P - E[Yi(1) = Yi(0)|T; = n] + Py - E[Y;(1) = Yi(0)|T; = a] + P E[Y;(1) = Y;(0)[T; = c].
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The only quantities not consistently estimable are the average effects for never-takers and
always-takers. Even for those we have some information. For example, we can write E[Y;(1) —
Yi(0)|T; = n] = E[Y;(1)|T; = n] — E[Y;(0)|7; = n]. The second term we can estimate, and the
data are completely uninformative about the first term. Hence if there are natural bounds on
Y;(1) (for example, if the outcome is binary), we can use that to bound E[Y;(1)|7; = n|, and
then in turn use that to bound 7pate. These bounds are tight. See Manski (1990), and Balke
and Pearl (1994).

6.3.2 Multi-valued Instruments and Weighting Local Average Treatment Effects

The previous discussion was in terms of a single binary instrument. In that case there is no other
average effect of the treatment that can be estimated consistently other than the local average
treatment effect, mate. With a multi-valued instrument, or with multiple binary instruments
(still maintaining the setting of a binary treatment), we can estimate a variety of local average
treatment effects. Let Z = {z1, ..., zx} denote the set of values for the instruments. Initially
we take the set of values to be finite. Then for each pair (zx, z;) with pr(W; = 1|Z; = z) >
pr(W; = 1|Z; = z;) one can define a local average treatment effect:

Tlate (25, 21) = E[Yi(1) — Yi(0)|[Wi(z) = 0, Wi(z) = 1].
We can combine these to estimate any weighted average of these local average treatment effects:

ate,A — U Tlate ) .
TlateA = > Akl Tlate(Zks 21)
ol

Imbens and Angrist show that the standard instrumental variables estimand, using g(Z;) as an
instrument for W;, is equal to a particular weighted average:

E[Y: - (9(Z) —Elg(Z)D] _
E[WZ . (Q(ZZ) — E[Q(ZZ)])] ate,\s

for a particular set of nonnegative weights as long as E[W;|g(Z;) = ¢g] increases in g.

Heckman and Vytlacil (2005), and Heckman, Urzua, and Vytlacil (2006) study the case with
a continuous instrument. They use an additive latent single index setup where the treatment
received is equal to

W; = 1{h(Z;) + V; > 0},

where h(-) is strictly monotonic, and the latent type V; is independent of Z;. In general, in
the presence of multiple instruments, this latent single index framework imposes substantive

9 Without loss of generality we can take the marginal distribution of V; to be

restrictions.
uniform. Given this framework, Heckman, Urzua and Vytlacil (2006) define the marginal

treatment effect as a function of the latent type v of an individual,

Tmto('U) = E[sz(l) - Y;(O)|‘/Z = U]'

9See Vytlacil (2002) for a discussion in the case with binary instruments where the latent index set up implies
no loss of generality.
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In the single continuous instrument case, Tyt (v) is, under some differentiability and invertibility
conditions, equal to a limit of local average treatment effects:

Tmte (V) = Zlfl}r{l@) Tate(R 1 (), 2).

A parametric version of this concept goes back to work by Bjorklund and Moffitt (1987). All
average treatment effects, including the overall average effect, the average effect for the treated,
and any local average treatment effect can now be expressed in terms of integrals of this marginal
treatment effect, as shown in Heckman and Vytlacil (2005). For example, Tpate = fol Tmte(V)dv.
A complication in practice is that not necessarily all the marginal treatment effects can be
estimated. For example, if the instrument is binary, Z; € {0, 1}, then for individuals with
Vi < min(—h(0), —h(1)), it follows that W; = 0, and for these never-takers we cannot estimate
Tmte(V). Any average effect that requires averaging over such values of v is therefore also not
point-identified. Moreover, average effects that can be expressed as integrals of Tyyte(v) may be
identified even if some of the 7e(v) that are being integrated over are not identified. Again,
in a binary instrument example with pr(W; = 1|Z; = 1) = 1, and pr(W; = 1|Z; = 0) = 0, the
average treatment effect Tate is identified, but 7Tite(v) is not identified for any value of v.

6.4 Regression Discontinuity Designs

Regression discontinuity methods have been around for a long time in the psychology and
applied statistics literature, going back to the early sixties. For discussions and references
from this literature, see Thistlewaite and Campbell, 1960; Trochim, 2001; Shadish, Cook, and
Campbell, 2002; Cook, 2008. Except for some important foundational work by Goldberger
(1972a,b), it is only recently that these methods have attracted much attention in the eco-
nomics literature. For some of the recent applications, see Van der Klaauw (2002), Lee (2008),
Angrist and Lavy (1999), DiNardo and Lee (1994), Chay and Greenstone (2005), Card, Mas
and Rothstein (2006), Lee, Moretti, and Butler (2004), Ludwig and Miller (2007), McEwan and
Shapiro (2007), Black (1999), Chen and VanderKlaauw (2008), Jin and Leslie (2003), and Van-
derKlaauw (2008). Key theoretical and conceptual contributions include the interpretation of
estimates for fuzzy regression discontinuity designs allowing for general heterogeneity of treat-
ment effects (Hahn, Todd and Van der Klaauw 2001, HTV from hereon), adaptive estimation
methods (Sun, 2005), methods for bandwidth selection tailored to the RD setting, (Ludwig and
Miller, 2005; Imbens and Kalyanaraman, 2008) and various tests for discontinuities in means
and distributions of non-affected variables (Lee, 2007; McCrary, 2007). For recent reviews in
the economics literature, see Van Der Klaauw (2007), Imbens and Lemieux (2007), and Lee and
Lemieux (2008).

The basic idea behind the RD design is that assignment to the treatment is determined,
either completely or partly, by the value of a predictor (the forcing variable X;) being on either
side of a common threshold. This generates a discontinuity, sometimes of size one, in the
conditional probability of receiving the treatment as a function of this particular predictor.
The forcing variable is often itself associated with the potential outcomes, but this association
is assumed to be smooth. As a result any discontinuity of the conditional distribution of
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the outcome as a function of this covariate at the threshold is interpreted as evidence of a
causal effect of the treatment. The design often arises from administrative decisions, where
the incentives for individuals to participate in a program are rationed for reasons of resource
constraints, and clear transparent rules, rather than discretion, by administrators are used for
the allocation of these incentives.

It is useful to distinguish between two general settings, the Sharp and the Fuzzy Regression
Discontinuity designs (e.g., Trochim, 1984, 2001; HTV; Imbens and Lemieux, 2007; Lee and
Lemieux, 2008; Van der Klaauw, 2007).

6.4.1 The Sharp Regression Discontinuity Design

In the Sharp Regression Discontinuity (SRD) design, the assignment W; is a deterministic
function of one of the covariates, the forcing (or treatment-determining) variable X;:

WZ' = 1[XZ Z C],

where 1[-] is the indicator function, equal to one if the even in brackets is true and zero otherwise.
All units with a covariate value of at least ¢ are in the treatment group (and participation is
mandatory for these individuals), and all units with a covariate value less than ¢ are in the
control group (members of this group are not eligible for the treatment). In the SRD design
we focus on estimation of

Terd = E[Y;(1) — Y;(0)| X; = ¢]. (32)

(Naturally, if the treatment effect is constant, then 7yq = Tpate.) Writing this expression as
E[Y;(1)|X; = ¢] — E[Yi(0)|X; = ¢|, we focus on identification of the two terms separately. By
design there are no units with X; = ¢ for whom we observe Y;(0). To estimate E[Y;(w)|X; = ]
without making functional form assumptions, we exploit the possibility of observing units with
covariate values arbitrarily close to ¢.! In order to justify this averaging we make a smoothness
assumption that the two conditional expectations E[Y;(w)|X; = x|, for w = 0, 1, are continuous
in . Under this assumption, E[Y;(0)|X; = ¢] = lim,;.E[Y;(0)|X; = 2] = limy E[Y;|X; = z],
implying that

Tord = I E[Y;| X; = 2] — Im E[Y;|X; = 2],
zle zTc

where this expression uses the fact that W; is a deterministic function of X; (a key feature of
the SRD). The statistical problem becomes one of estimating a regression function nonpara-

metrically at a boundary point. We discuss the statistical problem in more detail in Section
6.4.4.

10 Although in principle the first term in the difference in (32) would be straightforward to estimate if we
actually observe individuals with X; = =z, with continuous covariates we also need to estimate this term by
averaging over units with covariate values close to c.



6.4.2 The Fuzzy Regression Discontinuity Design

In the Fuzzy Regression Discontinuity (FRD) design, the probability of receiving the treat-
ment need not change from zero to one at the threshold. Instead the design only requires a
discontinuity in the probability of assignment to the treatment at the threshold:

limpr(W; = 1|X; = z) # limpr(W; = 1|X; = z).

zlc zle
In practice the discontinuity needs to be sufficiently large that typically it can be seen easily
in simple graphical analyses. These discontinuities can arise if incentives to participate in a
program change discontinuously at a threshold, without these incentives being powerful enough
to move all units from nonparticipation to participation.

In this design we look at the ratio of the jump in the regression of the outcome on the

covariate to the jump in the regression of the treatment indicator on the covariate as an average
causal effect of the treatment. Formally, the functional of interest is

lim o B[Y;| X = o] — limap B[Yi|.X; = 2]

Tfrd =

HTYV exploit the instrumental variables connection to interpret the fuzzy regression disconti-
nuity design when the effect of the treatment varies by unit. They define complier to be units
whose participation is affected by the cutoff point. That is, a complier is someone with a value
of the forcing variable X close to ¢, and who would participate if ¢ were choose to be just
below X;, and not participate if ¢ were choosen to be just above X;. HTV then exploit that
structure to show that in combination with a monotonicity assumption,

Tred = E[Y;(1) — Y;(0)|unit ¢ is a complier and X; = ¢].

The estimand 754 is an average effect of the treatment, but only averaged for units with X; = ¢
(by regression discontinuity), and only for compliers (people who are affected by the threshold).
Clearly the analysis generally does not have much external validity. It is only valid for the
subpopulation who is complier at the threshold, and it is only valid for the subpopulation with
X; = c. Nevertheless, the FRD analysis may do well in terms of internal validity.

It is useful to compare the RD method in this setting with standard methods based on
unconfoundedness. In contrast to the Sharp RD case, an unconfoundedness-based analysis is
possible in the Fuzzy RD setting because some treated observations will have X; < ¢, and
some control observations will have X; > c¢. Ignoring the FRD setting — that is, ignoring the
discontinuity in E[W;|X; = x| at = ¢ — and acting as if unconfoundedness holds, would lead
to estimating the average treatment effect at X; = ¢ based on the expression

Tunconf = E[Y”Xz = C, Wz = 1] - E[Y;|Xz = C, WZ = 0]7

which equals E[Y;(1) — Y;(0)|X; = ¢] under unconfoundedness. In fact, under unconfounded-
ness one can estimate the average effect E[Y;(1) — Y;(0)|X; = z] at values of = different from
c. However, an interesting result is that if unconfoundedness holds, the FRD also estimates
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E[Y;(1) — Y;(0)| X; = ¢], as long as the potential outcomes have smooth expectations as a func-
tion of the forcing variable around x = c. A special case of this is discussed in HT'V, who assume
only that treatment is unconfounded with respect to the individual-specific gain. Therefore, in
principle, there are situations where even if one believes that unconfoundedness holds, one may
wish to use the FRD approach. In particular, even if we maintain unconfoundedness, a stan-
dard analysis based on Tuncont can be problematic because the potential discontinuities in the
regression functions (at x = ¢) under the FRD design invalidate the usual statistical methods
that treat the regression functions as continuous at z = c.

Although unconfoundedness in the FRD setting is possible, its failure makes it difficult to
interpret Tuncont. By contrast, provided monotocity holds, the FRD parameter, 74, identifies
the average treatment effect for compliers at x = ¢. In other words, approaches that exploit
the FRD nature of the design identify an interesting parameter both when unconfoundedness
holds and in a leading case (monoticity) when unconfoundedness fails.

6.4.3 Graphical Methods

Graphical analyses are typically an integral part of any RD analysis. RD designs suggest that
the effect of the treatment of interest can be measured by the value of the discontinuity in the
conditional expectation of the outcome as a function of the forcing variable at a particular point.
Inspecting the estimated version of this conditional expectation is a simple yet powerful way to
visualize the identification strategy. Moreover, to assess the credibility of the RD strategy, it
can be useful to inspect additional graphs, as discussed below in Section 6.4.5. For strikingly
clear examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (2008), and Lee (2008).

The main plot in a Sharp RD setting is a histogram-type estimate of the average value
of the outcome by the forcing variable. For some binwidth A, and for some number of bins
Ky and K to the left and right of the cutoff value, respectively, construct bins (bg, bg+1], for
k=1,...,K = Ko+ Ky, where by = ¢ — (Ko — k + 1) - h. Then calculate the number of
observations in each bin, and the average outcome in the bin:

1

N
N ZYZ 1{br < Xi < bpi1}.

i=1
The key plot is that of the Yy, for k = 1,..., K against the mid point of the bins, by =
(bg + br+1)/2. The question is whether around the threshold ¢ (by construction on the edge of

N
Ne =l <Xi<bis Y=
=1

one of the bins) there is any evidence of a jump in the conditional mean of the outcome. The
formal statistical analyses discussed below are essentially just sophisticated versions of this, and
if the basic plot does not show any evidence of a discontinuity, there is relatively little chance
that the more sophisticated analyses will lead to robust and credible estimates with statistically
and substantially significant magnitudes.

In addition to inspecting whether there is a jump at this value of the covariate, one should
inspect the graph to see whether there are any other jumps in the conditional expectation of
Y; given X; that are comparable in size to, or larger than, the discontinuity at the cutoff value.
If so, and if one cannot explain such jumps on substantive grounds, it would call into question
the interpretation of the jump at the threshold as the causal effect of the treatment.
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In order to optimize the visual clarity it is recommended to calculate averages that are not
smoothed across the cutoff point c. In addition, it is recommended not to artificially smooth on
either side of the threshold in a way that implies that the only discontinuity in the estimated
regression fuction is at ¢. One should therefore use non-smooth methods such as the histogram
type estimators described above rather than smooth methods such as kernel estimators.

In a Fuzzy RD setting one should also calculate

N
1

Wi = . . ZYZ b < Xi < b},

=1

and plot the W}, against the bin centers by, in the same way as described above.

6.4.4 Estimation and Inference

The object of interest in regression discontinuity designs is a difference in two regression func-
tions at a particular point (in the sharp RD case), and the ratio of two differences of regression
functions (in the fuzzy RD case). These estimands are identified without functional form as-
sumptions, and in general one might therefore like to use nonparametric regression methods that
allow for flexible functional forms. Because we are interested in the behavior of the regression
functions around a single value of the covariate, it is attractive to use local smoothing methods
such as kernel regression rather than global smoothing methods such as sieves or series regres-
sion because the latter will generally be sensitive to behavior of the regression function away
from the threshold. Local smoothing methods are generally well understood (e.g., Stone, 1977;
Bierens, 1987; Hardle, 1991; Pagan and Ullah, 1999). For a particular choice of the kernel, K (),
e.g., a rectangular kernel K(z) = 1_p<,<p, or a Gaussian kernel K (z) = exp(—22/2)/+/(27),
the regression function at z, m(z) = E[Y;|X; = z] is estimated as

- K (%52)
m(z) = Z Yi - i with weights \; =

i=1 S K (%)

An important difference with the primary focus in the nonparametric regression literature is

that in the RD setting we are interested in the value of the regression functions at boundary
points. Standard kernel regression methods do not work well in such cases. More attractive
methods for this case are local linear regression (Fan and Gijbels, 1996; Porter, 2003), where
locally a linear regression function, rather than a constant regression function, is fitted. This
leads to an estimator for the regression function at x equal to

N
m(z) = &, where (d, B) = argmiﬁnzx\i (Y —a—F-(Xi—x))?,
®P =1

with the same weights \; as before. In that case the main remaining choice concerns the band-
width, denoted by h. Suppose one uses a rectangular kernel, K(z) = 1_p<.<, (and typically
the results are relatively robust with respect to the choice of the kernel). The choice of band-
width then amounts to to dropping all observations such that X; ¢ [c — h, ¢+ h]. The question
becomes how to choose the bandwidth h.
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Most standard methods for choosing bandwidths in nonparametric regression, including
both cross-validation and plug-in methods, are based on criteria that integrate the squared error
over the entire distribution of the covariates: [ ((z) — m(z))?fx(z)dz. For our purposes this
criterion does not reflect the object of interest. We are specifically interested in the regression
function at a single point, moreover, this point is always a boundary point. Thus we would like
to choose h to minimize E[(1(c) — m(c))?] (using the data with X; < c only, or using the data
with X; > ¢ only). If the density of the forcing variable is high at the threshold, a bandwidth
selection procedure based on global criteria may lead to a bandwidth that is much larger than
is appropriate.

There are few attempts to formalize to standardize the choice of a bandwidth for such
cases. Ludwig and Miller (2005) and Imbens and Lemieux (2007) discuss some cross-validation
methods that target more directly the object of interest in RD designs. Assuming the density of
X; is continuous at ¢, and that the conditional variance of Y; given X; is continuous and equal
to o2 at X; = ¢, Imbens and Kalyanaram (2008) show that the optimal bandwidth depends on
the second derivatives of the regression functions at the threshold and has the form

1/5
1

Lol
limg, | ( >2 + hmmTC (amz (v ))2

where p is the fraction of observations with X; > ¢, and Ck is a constant that depends on the

hopt:N_l/s'CK'O-z'

kernel. For a rectangular kernel K (z) = 1_p<,<j, the constant equals Cx = 2.70. Imbens and
Kalyanaram propose and implement a plug in method for the bandwidth.!!

If one uses a rectangular kernel, and given a choice for the bandwidth, estimation for the
sharp and fuzzy RD designs can be based on ordinary least squares and two stage least squares,
respectively. If the bandwidth goes to zero sufficiently fast, so that the asymptotic bias can
be ignored, one can also base inference on these methods. See HTV and Imbens and Lemieux
(2007).

6.4.5 Specification Checks

There are two important concerns in the application of RD designs, be they sharp or fuzzy.
These concerns can sometimes be assuaged by investigating various implications of the identi-
fication argument underlying the regression discontinuity design.

A first concern about RD designs is the possibility of other changes at the same threshold
value of the covariate. For example, the same age limit may affect eligibility for multiple pro-
grams. If all the programs whose eligibility changes at the same cutoff value affect the outcome
of interest, an RD analysis may mistakenly attribute the combined effect to the treatment of
interest. The second concern is that of manipulation by the individuals of the covariate value
that underlies the assignment mechanism. The latter is less of a concern when the forcing
variable is a fixed, immutable characteristic of an individual such as age. It is a particular
concern when eligibility criteria are known to potential participants and are based on variables

1 Code in Matlab and Stata for calculating the optimal bandwidth is available on their website.
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that are affected by individual choices. For example, if eligibility for financial aid depends on
test scores that are graded by teachers who know the cutoff values, there may be a tendency
to push grades high enough to make students eligible. Alternatively if thresholds are known
to students they may take the test multiple times in an attempt to raise their score above the
threshold.

There are two sets of specification checks that researchers can typically perform to at least
partly assess the empirical relevance of these concerns. Although the proposed procedures do
not directly test null hypotheses that are required for the RD approach to be valid, it is typically
difficult to argue for the validity of the approach when these null hypotheses do not hold. First,
one may look for discontinuities in average value of the covariates around the threshold. In
most cases, the reason for the discontinuity in the probability of the treatment does not suggest
a discontinuity in the average value of covariates. Finding a discontinuity in other covariates
typically casts doubt on the assumptions underlying the RD design. Specifically, for covariates
Z;, the test would look at the difference

Tz = lmE[Z;| X; = 2] — im E[Z;| X; = z].
zlc zTe

Second, McCrary (2008) suggests testing the null hypothesis of continuity of the density of
the covariate that underlies the assignment at the threshold, against the alternative of a jump
in the density function at that point. A discontinuity in the density of this covariate at the
particular point where the discontinuity in the conditional expectation ocurs is suggestive of
violations of the no-manipulation assumption. Here the focus is on the difference

Tf(x) = 1;?1 fx(z) - gn fx(z).

In both cases a substantially and statistically significant difference in the left and right limits
suggest that there may be problems with the RD approach. In practice more useful than formal
statistical tests are graphical analyses of the type discussed in Section 6.4.3 where histogram-
type estimates of the conditional expectation of E[Z;| X; = x| and of the marginal density fx ()
are graphed.

6.5 Difference-in-Differences Methods

Since the seminal work by Ashenfelter (1978) and Ashenfelter and Card (1985), the use of
Difference-In-Differences (DID) methods has become widespread in empirical economics. Influ-
ential applications include Card (1990), Meyer, Viscusi and Durbin (1995), Card and Krueger
(1993), Eissa and Liebman (1996), Blundell, Duncan and Meghir (1998), and many others. The
simplest setting is one where outcomes are observed for units observed in one of two groups, in
one of two time periods. Only units in one of the two groups, in the second time period, are ex-
posed to a treatment. There are no units exposed to the treatment in the first period, and units
from the control group are never observed to be exposed to the. The average gain over time in
the non-exposed (control) group is substracted from the gain over time in the exposed (treat-
ment) group. This double differencing removes biases in second period comparisons between
the treatment and control group that could be the result from permanent differences between
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those groups, as well as biases from comparisons over time in the treatment group that could
be the result of time trends unrelated to the treatment. We discuss here the conventional set
up, and recent work on inference (Bertrand, Duflo and Mullainathan, 2004; Hansen, 2007a,b;
Donald and Lang, 2007), as well as the recent extensions by Athey and Imbens (2006) who
develop a functional form free version of the difference in difference methodology, and Abadie,
Diamond and Hainmueller (2007), who develop a method for constructing an artificial control
group from multiple non-exposed groups.

6.5.1 Repeated Cross-sections

The standard model for the DID approach is as follows. Individual i belongs to a group,
G; € {0,1} (where group 1 is the treatment group), and is observed in time period T; € {0, 1}.
Fori=1,..., N, a random sample from the population, individual i’s group identity and time
period can be treated as random variables. In the standard DID model we can write the outcome
for individual ¢ in the absence of the intervention, Y;(0) as

Yi(0)=a+8-T;+v-G; + ¢, (33)

with unknown parameters «, (3, and . We ignore the potential presence of other covariates,
which introduce no special complications. The second coeflicient in this specification, (3, rep-
resents the time component common to both groups. The third coefficient, v, represents a
group-specific, time-invariant component. The fourth term, ¢;, represents unobservable charac-
teristics of the individual. This term is assumed to be independent of the group indicator and
have the same distribution over time, i.e. &; 1L (G4, T;), and is normalized to have mean zero.

An alternative set up leading to the same estimator allows for a time-invariant individual-
specific fixed effect, 7;, potentially correlated with G;, and models Y;(0) as

Yi(0) =a+ 8T+ +ei, (34)

See, e.g., Angrist and Krueger (2000). This generalization of the standard model does not affect
the standard DID estimand, and it will be subsumed as a special case of the model we propose.

The equation for the outcome without the treatment is combined with an equation for the
outcome given the treatment: Y;(1) = Y;(0) + 74ig- The standard DID estimand is under this
model equal to

maia = E[Y;(1)] — E[Y;(0)]
= <E[Yi|Gi:17Ti:1]_E[Yi|Gi:17Ti:0]> (35)

—(BYi|G: = 0,7 = 1]~ E[Yi|G; = 0,7 = 0] ).

In other words, the population average difference over time in the control group (G; = 0) is
subtracted from the population average difference over time in the treatment group (G; = 1)
to remove biases associated with a common time trend unrelated to the intervention.
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We can estimate 74;q simply using least squares methods on the regression function for the
observed outcome,

Yi=a+01-Ti+m-Gi+ 1aa- Wi + e,

where the treatment indicator W; is equal to the interaction of the group and time indicators,
I; = T; - G;. Thus the treatment effect is estimated through the coefficient on the interaction
between the indicators for the second time period and the treatment group. This leads to

Tdid = (711 - 710> — (701 — 700>7

where 7915 = Z“ Gimg Ti—t Y;/Ng: is the average outcome among units in group g and time period
t.

6.5.2 Multiple Groups and Multiple Periods

With multiple time periods and multiple groups we can use a natural extension of the two-group
two-time-period model for the outcome in the absence of the intervention. Let T and G denote
the number of time periods and groups respectively. Then:

T G
YiO)=a+) Bi-lr—it+ Y v Lo +ci (36)

t=1 g=1
with separate parameters for each group and time period, 7, and 3;, for ¢ = 1,...,G and
t=1,...,T, where the initial time period coefficient and first group coefficient have implicitly

been normalized to zero. This model is then combined with the additive model for the treatment
effect, Y;(1) = Y;(0) + 74iq, implying that the parameters of this model can still be estimated
by ordinary least squares based on the regression function

G

T
n:a+Zﬁt'1Ti:t+279'1Gi=g +7_did'1i+€i7 (37)
t=1 g=1

where [; is now an indicator for unit ¢ being in a group and time period that was exposed to
the treatment.

This model with more than two time periods, or more than two groups, or both, imposes
testable restrictions on the data. For example, if group g1 and g9 are both not exposed to the
treatment in periods ¢; and to, under this model the double difference

<7927t2 - 792,151) - (791,152 - 791,151)7

should estimate zero, which can be tested using conventional methods — this possibility is
exploited in the next subsection. In the two-period, two-group setting there are no testable
restrictions on the four group/period means.



6.5.3 Standard Errors in the Multiple Group and Multiple Period Case

Recently there has been attention called to the concern that ordinary least square standard
errors for the DID estimator may not be accurate in the presence of correlations between
outcomes within groups and between time periods. This is a particular case of clustering where
the regressor of interest does not vary within clusters. See for a general discussion Moulton
(1990), Moulton and Randolph (1989), and Wooldridge (2002a). The specific problem has been
analyzed recently by Donald and Lang (2007), Bertrand, Duflo and Mullainathan (2004), and
Hansen (2007a,b).
The starting point of these analyses is a particular structure on the error term ¢;:

& = 77G1~,T1~ + Vi,

where v; is an individual-level idiosyncratic error term, and 74 is a group/time specific com-
ponent. The unit level error term v; is independent accross all units, E [v; - v;] = 0 if i # j and
E [1/3] = o2. Now suppose we also assume that 7y ~ N(0, 0%), and all the 74 are independent.
Let us focus initially on the two-group, two-time-period case. With a large number of units in

each group and time period, 7915 — a+ Bt + 79+ lg=1,¢=1 Tdid + Ngt, so that

Tdid = (711 - 71o> - (701 - 700> — Taid + (M1 — 110) — (01 — Moo0) ~ N (7dia, 4 03)-

Thus, in this case with two groups and two time periods, the conventional DID estimator is
not consistent. In fact, no consistent estimator exists because there is no way to eliminate the
influence of the four unobserved components 74;. In this two-group, two-time-period case the
problem is even worse than the absence of a consistent estimator, because one cannot even
establish whether there is a clustering problem: the data are not informative about the value
of U%. If we have data from more than two groups or from more than two time periods, we can
typically estimate 0%, and thus, at least under the normality and independence assumptions for
ng¢, construct confidence intervals for 74;q. Consider, for example, the case with three groups,
and two time periods. If groups G; = 0,1 are both not treated in the second period, then
(Y11 —Y10) — (Yo1 — Yoo) ~ N (0,4 - 03), which can be used to obtain an unbiased estimator
for o7. See Donald and Lang (2007) for details.

Bertrand, Duflo and Mullainathan (2004) and Hansen (2007a,b) focus on the case with
multiple (more than two) time periods. In that case we may wish to relax the assumption that
the 7y are independent over time. Note that with data from only two time period there is no
information in the data that allows one to establish the absence of independence over time.
The typical generalization is to allow for a autoregressive structure on the 74, for example,

Ngt = Q- Ngt—1 + Wy,

with a serially uncorrelated wgy. More generally, with T' time periods, one can allow for an
autoregressive process of order 7' — 2. Using simulations and real data calculations based on
data for 50 states and multiple time periods Bertrand, Duflo and Mullainathan (2004) show
that corrections to the conventional standard errors taking into account the clustering and
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autoregressive structure make a substantial difference. Hansen (2007a,b) provides additional
large sample results under sequences where the number of time periods increases with the
sample size.

6.5.4 Panel Data

Now suppose we have panel data, in the two period, two group case. Here we have N individuals,
indexed i = 1,..., N, for whom we observe (G;, Yo, Yi1, X;0, Xi1), where G; is, as before, group
membership, X;; is the covariate value for unit ¢ at time ¢, and Yj; is the outcome for unit i at
time t.

One option is to proceed with estimation exactly as before, essentially ignoring the fact that
the observations in different time periods come from the same unit. We can now interpret the
estimator as the OLS estimator based on the regression function for the difference outcomes:

Yii — Yio = B+ 7aia - Gi + €,

which leads to the double difference as the estimator for 7qiq: 7aiq = (Y11 —Y10) — (701 — 700) .
This estimator is identical to that discussed in the context of repeated cross-sections, and so
does not exploit directly the panel nature of the data.

A second, and very different, approach with panel data, which does exploit the specific
features of the panel data, would be to assume unconfoundedness given lagged outcomes. Let
us look at the differences between these two approaches in a simple setting, without covariates,
and assuming linearity. In that case the DID approach suggests the regression of Y;; — Y;
on the group indicator, leading to 7q;q. The unconfoundedness assumption would suggest the
regression of the difference Y;1 — Y;o on the group indicator and the lagged outcome Yjq:

Yvil_YViO:ﬁ+7unconf'Gi+5'Y;0+€i-

While it appears that the analysis based on unconfoundedness is necessarily less restrictive
because it allows a free coefficient in Yjg, this is not the case. The DID assumption implies
that adjusting for lagged outcomes actually compromises the comparison because Y;y may
in fact be correlated with ¢;. In the end, the two approaches make fundamentally different
assumptions. Omne needs to choose between them based on substantive knowledge. When
the estimated coefficient on the lagged outcome is close to zero, obviously there will be little
difference between the point estimates. In addition, using the formula for omitted variable
bias in least squares estimation, the results will be very similar if the average outcomes in the
treatment and control groups are similar in the first period. Finally, note that in the repeated
cross-section case the choice between the DID and unconfoundedness approaches did not arise
because the unconfoundedness approach is not feasible: it is not possible to adjust for lagged
outcomes when we do not have the same units available in both periods.

As a practical matter, the DID approach appears less attractive than the unconfoundedness-
based approach in the context of panel data. It is difficult to see how making treated and control
units comparable on lagged outcomes will make the causal interpretation of their difference less
credible, as suggested by the DID assumptions.
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6.5.5 The Changes-in-Changes Model

Now we return to the setting with two groups, two time periods, and repeated cross-sections.
Athey and Imbens (2006) generalize the standard model in several ways. They relax the additive
linear model by assuming that, in the absence of the intervention, the outcomes satisfy

Y;(0) = ho(U;, T3), (38)

with ho(u, t) increasing in u. The random variable U; represents all unobservable characteristics
of individual 4, and (38) incorporates the idea that the outcome of an individual with U; = u
will be the same in a given time period, irrespective of the group membership. The distribution
of U; is allowed to vary across groups, but not over time within groups, so that U; L T; | G;.
Athey and Imbens call the resulting model that changes-in-changes (CIC) model.

The standard DID model in (33) adds three additional assumptions to the CIC model,
namely

UZ’ — E[UZ|GZ] 1L GZ (additivity) (39)

ho(u,t) = p(u+4 - t), (single index model) (40)

for a strictly increasing function ¢(-), and
¢(+) is the identity function. (identity transformation). (41)

In the CIC extension, the treatment group’s distribution of unobservables may be different
from that of the control group in arbitrary ways. In the absence of treatment, all differences
between the two groups can be interpreted as coming from differences in the conditional distri-
bution of U given G. The model further requires that the changes over time in the distribution
of each group’s outcome (in the absence of treatment) arise solely from the fact that hg(u,0)
differs from hg(u, 1), that is, the relation between unobservables and outcomes changes over
time. Like the standard model, the Athey-Imbens approach does not rely on tracking individu-
als over time. Although the distribution of U; is assumed not to change over time within groups,
the model does not make any assumptions about whether a particular individual has the same
realization U; in each period. Thus, the estimators derived by Athey and Imbens will be the
same whether one observes a panel of individuals over time or a repeated cross-section. Just as
in the standard DID approach, if one only wishes to estimate the effect of the intervention on
the treatment group, no assumptions are required about how the intervention affects outcomes.

The average effect of the treatment for the second period treatment group is 7cic = E[Y;(1) —
Yi(0)|G; = 1,T; = 1]. Because the first term of this expression is equal to E[Y;(1)|G; = 1,T; =
1] = ElY;|G; = 1,T; = 1], it can be estimated directly from the data. The difficulty is in
estimating the second term. Under the assumptions of monotonicity of hg(u,t) in u, and
conditional independence of T; and U; given G;, Athey and Imbens show that in fact the full
distribution of Y (0) given G; = T; = 1 is identified through the equality

Fyi, (y) = Fyy (F;(IJ(FYM ), (42)

0



where Fy,,(y) denotes the distribution function of ¥; given G; = g and T; = t. The expected
outcome for the second period treatment group under the control treatment is

E[Yi(0)|Gi = 1,T; = 1] = E [Fy;' (Foo(Yino))] -

To analyze the counterfactual effect of the intervention on the control group, Athey and
Imbens assume that, in the presence of the intervention,

Yi(1) = h (Ui, To)

for some function hj(u,t) that is increasing in w. That is, the effect of the treatment at a
given time is the same for individuals with the same U; = u, irrespective of the group. No
further assumptions are required on the functional form of hq, so the treatment effect, equal to
hi(u, 1) — ho(u, 1) for individuals with unobserved component u, can differ across individuals.
Because the distribution of the unobserved component U can vary across groups, the average
return to the policy intervention can vary across groups as well.

6.5.6 The Abadie-Diamond-Hainmueller Artificial Control Group Approach

Abadie, Diamond, and Hainmueller (2007) develop an alternative approach to the setting with
multiple control groups. See also Abadie and Gardeazabal (2003). Here we discuss a simple
version of their approach, with 7" 4 1 time periods, and G + 1 groups, one treated in the
final period, and G not treated in either period. The Abadie-Diamond-Hainmueller idea is to
construct an artificial control group that is more similar to the treatment group in the initial
period than any of the control groups on their own. Let G; = G denote the treated group, and
G; =0,...,G —1 denote the G control groups. The outcome for the second period treatment
group in the absence of the treatment will be estimated as a weighted average of period T
outcomes in the G control groups,

G-1
E[Y;(0)|T, =T,Gi=G] = > A~ Ygr,
g=0

with weights A, satisfying Zg;:_ol Ag = 1, and Ay > 0. The weights are chosen to make the
weighted control group resemble the treatment group prior to the treatment. That is, the
weights A, are chosen to minimize the difference between the treatment group and the weighted
average of the control groups prior to the treatment, namely,

Yo — Zf:_ol Ag- 790

_ o =
Yar-1—2 g0 Ag- Ygr-1

where || - || denotes a measure of distance. One can also add group level covariates to the
criterion to determine the weights. These group-level covariates may be averages of individual
level covariates, or quantiles of the distribution of within group covariates. The idea is that the
future path of the artificial control group, consisting of the A-weighted average of all the control
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groups, mimics the path that would have been observed in the treatment group in the absence
of the treatment. Applications in Abadie, Diamond and Hainmueller (2007) to estimation of
the effect of smoking legislation in California, and the effect of reunification on West Germany
are very promising.

7 Multi-valued and Continuous Treatments

Most of the recent econometric program evaluation literature has focused on the case with a
binary treatment. As a result this case is now understood much better than it was a decade or
two ago. However, much less is known about settings with multi-valued, discrete or continuous
treatments. Such cases are common in practice. Social programs are rarely homogenous.
Typically individuals are assigned to various activities and regimes, often sequentially, and
tailored to their specific circumstances and characteristics.

To provide some insight into the issues arising in settings with multivalued treatments we
discuss in this review five separate cases. First, the simplest setting where the treatment is
discrete and one is willing to assume unconfoundedness of the treatment assignment. In that
case straightforward extensions of the binary treatment case can be used to obtain estimates
and inferences for causal effects. Second, we look at the case with a continuous treatment
under unconfoundedness. In that case the definition of the propensity score requires some
modification, but many of the insights from the binary treatment case still carry over. Third,
we look at the case where units can be exposed to a sequence of binary treatments. For example,
an individual may remain in a training program for a number of periods. In each period the
assignment to the program is assumed to be unconfounded, given permanent characteristics and
outcomes up to that point. In the last two cases we briefly discuss multi-valued endogenous
treatments. In the fourth case we look at settings with a discrete multi-valued treatment in the
presence of endogeneity. In the final case we allow the treatment to be continuous. The last
two cases tie in closely with the simultaneous equations literature, where, somewhat separately
from the program evaluation literature, there has been much recent work on nonparametric
identification and estimation. Especially in the discrete case many of the results in this literature
are negative in the sense that without unattractive restrictions on heterogeneity or functional
form few objects of interest are point-identified. Some of the literature has turned towards
establishing bounds. This is an area with much ongoing work and considerable scope for
further research.

7.1 Multi-valued Discrete Treatments with Unconfounded Treatment As-
signment

If there are a few different levels of the treatment, rather than just two, essentially all of the
methods discussed before go through in the unconfoundedness case. Suppose, for example, that
the treatment can be one of three leves, say W; € {0,1,2}. In order to estimate the effect
of treatment level 2 relative to treatment level 1, one can simply put aside the data for units
exposed to treatment level 0 if one is willing to assume unconfoundedness. More specifically,
one can estimate the average outcome for each treatment level conditional on the covariates,
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E[Y;(w)|X; = z], using data on units exposed to treatment level w, and average these over the
(estimated) marginal distribution of the covariates, Fy (z). In practice, the overlap assumption
may more likely to be violated with more than two treatments. For example, with three
treatments, it may be that no units are exposed to treatment level 2 if X; is in some subset
of the covariate space. The insights from the binary case directly extend to this multiple (but
few) treatment case. If the number of treatments is relatively large, one may wish to smooth
across treatment levels in order to improve precision of the inferences.

7.2 Continuous Treatments with Unconfounded Treatment Assignment

In the case where the treatment taking on many values, Imbens (2000), Lechner (2001), Hirano
and Imbens (2004), and Flores (2005) extended some of the propensity score methodology
under unconfoundedness. The key maintained assumption is that adjusting for pre-treatment
differences removes all biases, and thus solves the problem of drawing causal inferences. This
is formalized by using the concept of weak unconfoundedness, introduced by Imbens (2000).
Assignment to treatment W; is weakly unconfounded, given pre-treatment variables X;, if

W, L Yi(w)|X;

for all w. Compare this to the stronger assumption made by Rosenbaum &amp; Rubin (1983)
in the binary case:

Wi L (Yi(0),Yi(1)) | X,

which requires the treatment W; to be independent of the entire set of potential outcomes.
Instead, weak unconfoundedness requires only pairwise independence of the treatment with
each of the potential outcomes. A similar assumption is used in Robins (1995). The definition
of weak unconfoundedness is also similar to that of “missing at random” (Rubin, 1976; Little
and Rubin, 1987) in the missing data literature.

Although in substantive terms the weak unconfoundedness assumption is not very different
from the assumption used by Rosenbaum and Rubin (1983), it is important that one does
not need the stronger assumption to validate estimation of the expected value of Y;(w) by
adjusting for X;: under weak unconfoundedness, we have E[Y;(w)|X;] = E[Y;(w)|W; = w, X;] =
E[Y;|W; = w, X;], and expected outcomes can then be estimated by averaging these conditional
means: E[Y;(w)] = E[E[Y;(w)|X;]]. In practice, it can be difficult to estimate E[Y;(w)] in this
manner when the dimension of X; is large, or if w takes on many values, because the first step
requires estimation of the expectation of Y;(w) given the treatment level and all pre-treatment
variables. It was this difficulty that motivated Rosenbaum and Rubin (1983) to develop the
propensity score methodology.

Imbens (2000) introduces the generalized propensity score for the multiple treatment case.
It is the conditional probability of receiving a particular level of the treatment given the pre-

treatment variables:

r(w,z) = pr(W; = w|X; = x).



In the continuous case, where, say, W; takes values in the unit interval, 7(w, z) = Fyy|x (w|r).
Suppose assignment to treatment W; is weakly unconfounded given pre-treatment variables Xj.
Then, by the same argument as in the binary treatment case, assignment is weakly uncon-
founded given the generalised propensity score, as § — 0,

Hw—-6<W; <w+6} L Yi(w) | r(w,X),

for all w. This is the point where using the weak form of the unconfoundedness assumption is
important. There is, in general, no scalar function of the covariates such that the level of the
treatment W; is independent of the set of potential outcomes {Y;(w)}ye[o,1), unless additional
structure is imposed on the assignment mechanism; see for example, Joffe and Rosenbaum
(1999).

Because weak unconfoundedness given all pretreatment variables implies weak unconfound-
edness given the generalised propensity score, one can estimate average outcomes by condi-
tioning solely on the generalised propensity score. If assignment to treatment is weakly uncon-
founded given pre-treatment variables X, then two results follow. First, for all w,

B(w,r) = E[Y;(w)|r(w, X;) = r] = E[Y;|W; = w, r(W;, X;) = r],

which can be estimated using data on Y;, W;, and r(W;, X;). Second, the average outcome
given a particular level of the treatment, E[Y;(w)], can be estimated by appropriately averaging

B(w,r):
ElY;(w)] = E[B(w, r(w, X;))].

As with the implementation of the binary treatment propensity score methodology, the
implementation of the generalised propensity score method consists of three steps. In the first
step the score r(w, x) is estimated. With a binary treatment the standard approach (Rubin
and Rosenbaum, 1984; Rosenbaum, 1995) is to estimate the propensity score using a logistic
regression. More generally, if the treatments correspond to ordered levels of a treatment, such
as the dose of a drug or the time over which a treatment is applied, one may wish to impose
smoothness of the score in w. For continuous W;, Hirano and Imbens (2004) use a lognormal
distribution. In the second step the conditional expectation B(w, r) = E[Y;|W; = w, r(W;, X;) =
r| is estimated. Again, the implementation may be different in the case where the levels of
the treatment are qualitatively distinct than in the case where smoothness of the conditional
expectation function in w is appropriate. Here, some form of linear or nonlinear regression
may be used. In the third step the average response at treatment level w is estimated as the
average of the estimated conditional expectation, /3 (w, r(w, X;)), averaged over the distribution
of the pre-treatment variables, Xi,..., Xn. Note that to get the average E[Y;(w)], the second
argument in the conditional expectation B(w,r) is evaluated at r(w, X;), not at r(W;, X;).

7.2.1 Dynamic Treatments with Unconfounded Treatment Assignment

Multiple-valued treatments can arise because at any point in time individuals can be assigned
to multiple different treatment arms, or because they can be assigned sequentially to different
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treatments. Gill and Robins (2001) analyze this case where they assume that at any point in
time an unconfoundedness assumption holds. Lechner and Miquel (2005) (see also Lechner,
Miquel and Wunsch, 2006) study a related case, where again a sequential unconfoundedness
assumption is maintained to identify the average effects of interest. These methods hold great
promise, but until now there have been few substantive applications.

7.3 Multi-valued Discrete Endogenous Treatments

In settings with general heterogeneity in the effects of the treatment the case with more than
two treatment levels is considerably more challenging than the binary case. There are few
studies investigating identification in these settings. Angrist and Imbens (1995) study the
interpretation of the standard instrumental variable estimand, the ratio of the covariances of
outcome and instrument and treatment and instrument. They show that in general, with a
valid instrument, the instrumental variables estimand can still be interpreted as an average
causal effect, but with a complicated weighting scheme. There are essentially two levels of
averaging going on. First, at each level of the treatment we can only get the average effect of
a unit increase in the treatment for compliers at that level. In addition there is averaging over
all levels of the treatment, with the weights equal to the proportion of compliers at that level.

Imbens (2007) studies in more detail the case where the endogenous treatment takes on
three values, and shows the limits to identification in the case with heterogenous treatment
effects.

7.4 Continuous Endogenous Treatments

Somewhat surprisingly, there are many more results for the case with continuous endogenous
treatments than for the discrete case. Much of the focus has been on triangular systems, with
a single unobserved component of the equation determining the treatment:

where 7; is scalar, and an essentially unrestricted outcome equation:
YVZ’ = g(Wla €i)7

where &; may be a vector. Chernozhukov and Hansen (2005), Imbens and Newey (2006),
and Chesher (2003) study various forms of this set up. Imbens and Newey (2006) show that if
h(z,n) is strictly monotone in 7, then one can identify average effects of the treatment subject to
support conditions on the instrument. They suggest a control function approach to estimation.
First n is normalized to have a uniform distribution on [0, 1] (e.g., Matzkin, 2003). Then 7; is
estimated as 7; = FW| z(W;|Z;). In the second stage Y; is regressed nonparametrically on X;
and 7);. Chesher (2003) studies local versions of this problem.

When the treatment equation has an additive form, say W; = hy(Z;) + n;, where n; is
independent of Z;, Blundell and Powell (2003) derive nonparametric control function methods
for estimating the average structural function, E[g(w, &;)].
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8 Conclusion

Over the last two decades there has been a proliferation of the literature on program evaluation.
This includes theoretical econometrics work, as well as empirical work. Important features of
the modern literature are the convergence of the statistical and econometric literatures, with
the Rubin potential outcomes framework now the dominant framework. The modern literature
has stressed the importance of relaxing functional form and distributional assumptions, and
has allowed for general heterogeneity in the effects of the treatment. This has led to renewed
interest in identification questions, leading to unusual and controversial estimands such as the
local average treatment effect (Imbens and Angrist, 1994), as well as to the literature on partial
identication (Manski, 1990). It has also borrowed heavily from the semiparametric literature,
using both efficiency bound results (Hahn, 1998) and methods for inference based on series and
kernel estimation (Newey, 1994ab). It has by now matured to the point that is is of great use
for practitioners.
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Table 1: P-VALUES FOR FISHER ExXAcT TESTS: RANKS VERSUS LEVELS

sample size p-values
Program Location controls treated t-test FET (levels) FET (ranks)
GAIN Alameda 601 597 0.835 0.836 0.890
GAIN Los Angeles 1400 2995 0.544 0.531 0.561
GAIN Riverside 1040 4405 0.000 0.000 0.000
GAIN San Diego 1154 6978 0.057 0.068 0.018
WIN Arkansas 37 34 0.750 0.753 0.805
WIN Baltimore 260 222 0.339 0.339 0.286
WIN San Diego 257 264 0.136 0.137 0.024
WIN Virginia 154 331 0.960 0.957 0.249




Table 2: BALANCE IMPROVEMENTS IN THE LALONDE DATA (DEHEJIA-WAHBA SAMPLE)

CPS Controls NSW Treated Normalized Difference Treated-Controls

(15992) 185 All é(X;) > e P-score Maha
Covariate mean  (s.d.) mean (s.d.) (16177) (6286) (370) (370)
age 33.23 (11.05) 25.82 (7.16) -0.56 -0.25 -0.08 -0.16
education 12.03 (2.87) 10.35 (2.01) -0.48 -0.30 -0.02 -0.09
married 0.71 (0.45) 0.19 (0.39) -0.87 -0.46 -0.01 -0.20
nodegree 0.30 (0.46) 0.71 (0.46)  0.64 0.42 0.08 0.18
black 0.07  (0.26) 0.84 (0.36) 1.72 1.45 0.02  0.00
hispanic 0.07  (0.26) 0.06 (0.24) -0.04 -0.22 -0.02 0.00
carn 74 14.02  (9.57) 210 (4.89) -1.11 -0.40 0.07  0.00
earn '74 positive  0.88  (0.32)  0.29  (0.46) -1.05 -0.72 -0.07 0.00
earn ’75 13.65 (9.27) 153 (3.22) -1.23 -0.35 002 -0.01
earn '75 positive  0.89  (0.31)  0.40 (0.49) -0.84 -0.54 -0.09 0.00




Table 3: BALANCE IMPROVEMENTS IN THE LOTTERY DATA

Losers Winners Normalized Difference Treated-Controls
(259) (237) All 0.0914 < &(X;) < 0.9086
Covariate mean (s.d.) mean (s.d.) (496) (388)
Year Won 1996.4 (1.0) 1996.1 (1.3) -0.19 -0.13
Tickets Bought 219 (L77) 457 (3.28) 0.64 0.33
Age 53.2  (12.9) 47.0 (13.8) -0.33 -0.19
Male 0.67 (0.47) 0.58 (0.49) -0.13 -0.09
Years of Schooling 14.4 (2.0 13.0  (2.2) -0.50 -0.35
Working Then 0.77 (0.42) 0.80 (0.40) 0.06 -0.02
Earnings Year -6 15.6  (14.5) 12.0 (11.8) -0.19 -0.10
Earnings Year -5 16.0  (15.0) 12.1  (12.0) -0.20 -0.12
Earnings Year -4 16.2  (15.4) 12.0 (12.1) -0.21 -0.15
Earnings Year -3 16.6  (16.3) 12.8 (12.7) -0.18 -0.14
Earnings Year -2 176 (16.9) 13.5  (13.0) -0.19 -0.15
Earnings Year -1 18.0 (17.2) 145 (13.6) -0.16 -0.14
Pos Earnings Year -6 0.69  (0.46) 0.70  (0.46) 0.02 0.05
Pos Earnings Year -5  0.68  (0.47) 0.74 (0.44) 0.10 0.07
Pos Earnings Year -4  0.69  (0.46) 0.73  (0.44) 0.07 0.02
Pos Earnings Year -3 0.68  (0.47) 0.73  (0.44) 0.09 0.02
Pos Earnings Year -2 0.68  (0.47) 0.74  (0.44) 0.10 0.04
Pos Earnings Year -1~ 0.69  (0.46) 0.74 (0.44) 0.07 0.02

Table 4: TYPE BY OBSERVED VARIABLES

Zi
0 1
W; 0 Nevertaker/Complier Nevertaker
1 Alwaystaker Alwaystaker /Complier




