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The	big	data	problem:	Turning	maps	into	knowledge	

Florian	Engert	

Department	of	Molecular	and	Cellular	Biology,	Harvard	University,	Cambridge	MA	

Abstract:	

	

There	has	been	a	great	deal	of	focus	 in	recent	years	on	efforts	to	map	the	brain.	The	ability	to	record	
from	every	neuron	in	the	brain	of	an	awake,	and	ideally	behaving,	animal	is	unquestionably	immensely	
useful.	 In	 addition,	 having	 a	 wiring	 diagram	 at	 hand	 that	 can	 be	 overlaid	 on	 such	 activity	 maps	 is	
probably	a	dream	come	true	for	most	systems	neuroscientists.	Given	the	vast	number	of	neurons	in	the	
brain,	however,	such	systematic	analysis	could	yield	enormous	reams	of	data.	The	same	could	be	said	
for	efforts	in	the	connectomics	field	to	reconstruct	structural	connections	throughout	the	brain	via	EM.	
Here,	 I	 argue	 that	 “big	data”	and	 the	oft-discussed	challenges	 inherent	 to	 it	 (e.g.,	mining,	 storing	and	
distributing	 it)	 is	 not	 the	 key	 challenge	we	 face	 in	 transitioning	 from	making	 neural	maps	 to	making	
useful	insights	into	brain	function.	I	would	suggest	that	the	essential	ingredient	that	turns	a	useless	map	
into	an	 invaluable	resource	 is	the	experimental	design	employed	to	gather	and	analyze	the	underlying	
data;	 and,	 ultimately,	 the	 thought	 process,	 creativity	 and	 ingenuity	 that	went	 into	 this	 design.	 This	 is	
where	the	hard	work	is	–	in	formulating	precisely	the	question	of	what	we	actually	want	to	know,	what	
an	answer	would	look	like	and	what	kind	of	insight	we	can	take	away	from	the	experiment.		
	
In	this	essay	I	will	focus	on	two	endeavors	that	are	presently	underway	in	the	neurosciences	that	aim	to	
collect	 rather	 large	amounts	of	data	–	 the	Open	Connectome	Project	 (Burns	et	al.,	2013;Kandel	et	al.,	
2013)	and	the	BRAIN	initiative	(Devor	et	al.,	2013;Kandel	et	al.,	2013;Striedter	et	al.,	2014).	While	it	has	
been	 suggested	 that	 a	 critical	 challenge	 to	 be	 addressed	 with	 these	 initiatives	 is	 the	 issue	 of	 “big	
data”(Brinkmann	et	al.,	2009;Choudhury	et	al.,	2014;Swain	et	al.,	2014),	I	will	make	the	argument	that	it	
will	 be	 comparatively	 small	 datasets	 (on	 the	 order	 of	 a	 few	 terabytes	 at	most),	 that	will	 contain	 the	
relevant	 information	 and	 need	 to	 be	 distributed	 and	made	 available	 as	 resources	 to	 the	 community.	
These	small	and	information-rich	datasets	will	include	a	description	of	all	the	neurons	in	the	brain,	their	
activity	and,	ideally,	their	wiring	diagram.	The	development	of	the	methodologies	necessary	to	generate	
these	datasets	is	essential,	it	is	important	-	and	it	is	very	difficult	to	do.	But	the	difficulty	lies	primarily	in	
developing	 the	 right	 technology.	 Overcoming	 these	 problems	 is	 essentially	 the	 goal	 of	 the	 BRAIN	
initiative	and,	in	my	opinion,	a	good	place	for	investing	money,	energy	and	time.		 	
	
Big	Data	in	Neuroscience?	

Big	data	is	a	hot	topic	these	days	and	it’s	not	surprising	that	there	is	discussion	in	the	community	about	
what	to	do	with	the	data	generated	by	these	endeavors.	Big	data	can	be	defined	in	many	ways,	and	the	
continuous	increase	in	computational	power	leads	to	a	somewhat	amorphous	concept	of	what	we	mean	
when	we	talk	about	big	data.	For	the	purposes	of	this	commentary,	I	will	define	as	big	data	anything	that	
exceeds	the	size	of	a	standard	laptop	hard-drive.		



	
It	is	useful	and	important	to	make	a	definitive	distinction	between	big	data	and	complex	data,	however,	
two	concepts	that	frequently	get	mixed	up.	The	former	is	just	that:	big.	The	latter	is	complicated,	hard	to	
interpret	and	-	usually	-	very	hard	to	compress.	It	also	requires	the	application	of	mathematical	tools	and	
quantitative	methods	to	analyze.	Complex	data	sets,	quite	often,	are	not	big	in	the	sense	of	“big	data”,	
but	they	are	ubiquitous	in	modern	science.	
	
How	big	is	a	connectome?	
Let’s	 consider	 the	 respective	 challenges	 of	 converting	 data	 into	 information	 within	 the	 connectome	
project	 and	 the	 BRAIN	 initiative.	 Connectomics	 relies	 on	 recovering	 a	 circuit	 diagram	 by	 imaging	 the	
whole	 region	 of	 interest	 at	 the	 resolution	 of	 an	 electron	 microscope	 (EM)(Briggman	 and	 Bock,	
2012;Kleinfeld	et	al.,	2011;Lichtman	and	Denk,	2011;Randel	et	al.,	2014).	These	EM	datasets	then	need	
to	be	analyzed	by	segmentation	and	reconstruction	of	 the	 individual	neurons,	which	ultimately	allows	
the	identification	of	all	the	synaptic	connections.	The	final	product	is	the	circuit	diagram	of	the	complete	
network	 in	the	volume	under	scrutiny.	The	size	of	the	raw	data	collected	in	such	an	enterprise	 is	truly	
daunting.		
	
Let	us	 look	at	a	 few	numbers:	a	mouse	brain	 imaged	at	5nm	x	5nm	x	40nm	resolution	at	a	volume	of	
approximately	500	mm3	would	generate	a	raw	data	volume	of	500	Petabyte.	Big	data,	indeed.	However,	
what	we	want	to	get	out	of	this	volume	is	the	connectivity	matrix	amongst	the	100	million	neurons	that	
a	 mouse	 brain	 contains.	 If	 we	 assume	 ~1000	 connections	 for	 each	 neuron	 the	 resulting	 connection	
matrix	contains	~1011	entries.	Assuming	a	bit	depth	of	a	few	bytes,	these	1011	entries	result	in	a	dataset	
of	a	few	hundred	Gigabytes,	which	will	fit	comfortably	on	an	ordinary	laptop	hard-drive.	Complex	data,	
but	not	big.	It	is	true	that	we	haven’t	yet	developed	fast,	reliable	and	efficient	segmentation	and	tracing	
algorithms	 to	 actually	 do	 the	 segmentation	 and	 tracing	 -	 and	 as	 such	 this	 particular	 problem	of	 data	
compression	is	far	from	being	solved.	However,	the	solution	to	this	problem	will	come	most	likely	out	of	
machine	 vision	 research	 and	 doesn’t	 quite	 have	 the	 flavor	 of	 “big	 data	 mining”.	 The	 task	 of	
segmentation	 and	 tracing	 itself	 is	 actually	 quite	 straightforward;	 it	 is	 easy	 to	 formulate	 and	 can	 be	
accomplished	by	a	 trained	middle	 school	 student	 (see	 for	example	Eyewire.org);	 it’s	 just	 very	hard	 to	
implement	in	computer	algorithms	at	the	moment(Jain	et	al.,	2010;Turaga	et	al.,	2010).	However,	once	
these	algorithms	have	been	developed,	whole	brain	EM	volume	data	can	be	reduced	and	compressed	by	
six	orders	of	magnitude.	Not	so	big	data	anymore.	It	is	unquestionably	important	to	allocate	resources	
to	 solve	 this	 problem,	 but	 it	 is	 most	 likely	 going	 to	 be	 solved	 -	 in	 the	 end	 -	 by	 a	 handful	 of	 smart	
mathematicians	and	might	not	really	require	a	national	 (or	 international)	effort	and	billions	of	dollars.	
Once	compressed	in	this	manner	–	and	converted	into	information	-	the	datasets	to	be	analyzed	in	the	
context	of	systems	neuroscience	questions	will	comfortably	fit	on	a	flash-drive	that	you	can	carry	in	your	
pocket.	
	
How	big	is	an	activitome?	
If	 we	 consider	 recording	 all	 the	 spikes	 in	 all	 the	 neurons	 of	 the	 brain,	 we	 can	 envision	 a	 similar	
compression.	 If	 we	 achieve	 such	 large-scale	 recording	 through	 some	 technology	 based	 on	 volume	
imaging	 (point-	 or	 sheet-scanning,	 spatial	 light	 modulation,	 etc.)	 coupled	 with	 genetically	 encoded	



activity	 indicators	(GCaMPxx	or	Voltage	Sensitive	Protein),	we	are	 initially	 faced	with	similarly	big	data	
volumes:	a	mouse	brain	contains	500	109	cubic	micron	pixels	(filling	a	volume	of	ca	500	mm3)	and	if	we	
want	to	record	all	of	them	for	twenty	minutes	(1000	seconds)	at	1000Hz,	we	again	have	500	Petabytes	
of	raw	data.	Here,	however,	the	initial	compression	is	much	more	straightforward:	you	isolate	all	the	cell	
bodies	 (100	 million)	 and	 find	 the	 timestamps	 of	 all	 the	 fluorescence	 intensity	 spikes.	 With	 the	
assumption	 that	 all	 the	 neurons	 fire	 at	 an	 average	 rate	 of	 5Hz	 through	 the	 recording	 time	 period	
(probably	an	upper	estimate	since	many	neurons	might	be	silent)	we	again	end	up	with	a	data	volume	of	
500	Gigabytes.	Quite	manageable.	 	Here,	 the	mathematical	 tools	 to	do	 this	 compression	are	more	or	
less	 already	 in	 place.	 Segmentation	 of	 neuronal	 cell	 bodies	 and	 isolation	 of	 spikes	 from	 fluorescent	
traces	 is	presently	only	made	difficult	by	signal	to	noise	problems.	 If	the	signals	are	large,	this	 is	easily	
done	with	the	help	of	standard	and	ubiquitously	available	software.		
	
Thus,	in	both	cases,	the	size	of	the	relevant	data	volumes	can	be	reduced	from	hundreds	of	Petabytes	to	
a	few	hundred	Gigabytes,	and	this	can	be	done	by	relatively	straightforward	analysis	pipelines	that	are	–	
at	least	intellectually	–	very	straightforward.	Furthermore,	this	data	reduction	will	eventually	be	done	on	
the	 fly,	 i.e.	 during	 the	 acquisition	 of	 the	 raw	 data,	 and	 will	 probably	 be	 achieved	 with	 dedicated	
hardware	 in	 the	 form	of	custom	designed	co-processors.	Raw	data	sets	might	be	very	 large,	but	once	
converted	into	information,	the	volumes	aren’t	big	data	anymore.		
	
Large-scale,	small-scale:	A	question	of	style	

I’ve	 argued	 that	 the	 big	 data	 in	 question	 could,	 with	 appropriate	 analysis	 and	 technological	
developments,	be	 relatively	easily	 compressed	 into	 information,	albeit	 complex.	 	But	 the	big	data	 still	
must	be	gathered.	So	what’s	the	best	approach	to	collecting	the	data	that	will	give	us	an	unprecedented	
view	 into	 brain	 function?	 One	 could	 envision	 either	 large-scale,	 industrial	 data	 collection	 or	 the	
traditional	small-scale,	individual	lab	approach.	Here,	I	will	briefly	discuss	the	potential	contributions	of	
both.		
	
Whole	 brain	 imaging	 will	 greatly	 facilitate	 the	 identification	 and	 localization	 of	 essential	 neural	
subnetworks	related	to	a	behavioral	context	under	scrutiny.	The	product	or	“deliverable”	of	whole	brain	
imaging	will	then	be	a	small	and	spatially	identified	subset	of	neurons	that	shows	correlated	activity	with	
all	 -	 or	 any	 -	 aspect	 of	 the	 behavioral	 context.	 This	 is	 probably	 more	 useful	 than	 any	 other	 way	 of	
labeling	subsets	of	cells	if	the	goal	is	to	decipher	the	roles	of	circuits	in	generating	behavior.	It	offers	an	
attractive	 and	 complementary	 approach	 to	 labeling	 neurons	 with	 genetic	 methods	 like	 enhancer	
trapping.		The	catch	is	that	whole	brain	imaging	has	to	be	integrated	into	the	experimental	context	and	
it	has	to	be	designed	and	optimized	for	the	specific	project.	As	such,	it	needs	to	be	turned	into	a	readily	
available	technology	for	all	laboratories	and	accessible	on	the	small	scale.	
	
The	 issues	 are	 slightly	 different	 for	 connectomics,	 which	 has	 the	 goal	 of	 generating	 complete	 wiring	
diagrams	that	–	ideally	-	can	and	should	be	overlaid	onto	previously	acquired	functional	maps.	Such	an	
enterprise	 will	 require	 concerted	 and	 large	 scale	 efforts	 and	 indeed	 might	 best	 be	 accomplished	 by	
industrially	organized	science	at	 the	more	corporate	 level.	 Indeed,	 in	 recent	years	several	voices	have	



been	 raised	 that	argue	–	occasionally	quite	convincingly	–	 for	neuroscience	 to	move	 from	tinkering	 in	
individual	 laboratories	 to	 industrial	 scale	 research	 that	 allows	 for	 the	many	 challenges	 to	 be	 tackled	
systematically	and	in	a	properly	organized	fashion.	
	
I	propose	that	there	 is	equal	space	and	opportunity	for	both:	corporate-style/industrial-size	science	as	
well	 as	 the	 individual,	 small	 scale,	 cottage	 industry	 style.	 Connectomics	 is	 clearly	 an	 example	 that	 is	
begging	 to	 be	 turfed	 out	 to	 a	 contract	 research	 organization	 (CRO),	 equipped	with	 a	 park	 of	 various	
electron	microscopes,	where	 fixed	brains	 can	be	automatically	 sectioned,	mounted,	 imaged	and	even	
segmented.	 Several	 successful	 service	 industries	 come	 to	mind,	 that	 all	 started	out	 as	 relatively	 small	
scale	operations	in	individual	laboratories	and	that	are	now	used	routinely	by	almost	every	laboratory	in	
the	world.	
	
Sequencing	services	are	being	used	ubiquitously	around	the	world,	yet	the	technology	certainly	started	
as	some	form	of	cottage	industry	by	the	likes	of	Sanger	and	colleagues.	Oligonucleotide	synthesis	as	well	
as	protein	sequencing	 is	another	powerful	technology	that	quickly	made	it	 into	a	service	 industry.	The	
generation	of	transgenic	mice	–	a	job	that	used	to	soak	up	a	large	part	of	a	PhD	thesis	–	is	now	in	most	
cases	 outsourced	 to	 CROs.	 It	 is	 frequently	 observed	 that	 even	 the	 outsourcing	 of	 graduate	 student	
supervision	occurs,	in	this	case	to	thesis	advisory	committees	and/or	postdoctoral	fellows.	
	
Whole	Brain	 Imaging	on	the	other	hand	 is	difficult	to	envision	as	an	 industrial-scale,	massively	parallel	
high	throughput	operation.	The	main	reason	for	 this	 is	 that	such	an	operation	usually	 requires	a	clear	
final	product,	a	deliverable	that	can	be	quantitatively	described,	priced,	benchmarked	and	specified	by	
intermediate	milestones.	These	features	seem	quite	feasible	in	the	context	of	generating	connectomes	
but	appear	to	be	ludicrous	in	the	context	of	whole	brain	imaging.	What	would	such	a	product	look	like?	
Here,	 clearly	 the	deliverable	 is	 the	 technology	and	not	 the	 final	data-set	and	as	 such,	 the	aims	of	 the	
BRAIN	initiative	are	perfectly	aligned	with	these	objectives.	
	
Looking	to	the	future	
	
Once	the	data	are	collected	and	compressed	into	information,	the	question	becomes	how	best	to	turn	
this	 information	 into	 knowledge?	 The	 challenge	 in	 the	 neurosciences	 will	 be	 to	 come	 up	 with	 good	
questions	 and	 intelligent	 experimental	 assays	 –	 assays	 that	 ultimately	 will	 have	 to	 be	 anchored	 in	
behavior,	and	that	will	have	to	give	answers	to	questions	of	how	specific	behaviors	are	generated	by	the	
nervous	 system.	 For	 excellent	 specific	 examples	 it	 is	 useful	 to	 go	 further	 back	 in	 the	 history	 of	
neuroscience	 and	 consider	 stories	 like	 the	 jamming	 avoidance	 reflex	 (JAR)	 of	 the	 weakly	 electric	
fish(Heiligenberg,	 1991)	 and	 the	 generation	 of	 rhythmic	 activity	 in	 the	 somatogastric	 ganglion	 of	 the	
lobster(Marder	et	al.,	2014;O'Leary	and	Marder,	2014).	
	
New	technologies	that	allow	us	to	identify	and	isolate	the	neuronal	subtypes	that	are	actually	involved	
in	a	specific	task	will	of	course	be	an	important	boon	to	this	enterprise,	and	they	will	undoubtedly	speed	
up	 the	 collection	 of	 necessary	 data.	 However,	 I	 doubt	 that	 these	 new	 technologies	 will	 lead	 to	 a	
paradigm	shift	or	a	fundamentally	new	way	of	doing	neuroscience.	The	name	of	the	game	will	always	be	



to	think	carefully	and	deeply	about	how	behavioral	features	can	emerge	out	of	neuronally	implemented	
algorithms,	 and	 ideally	 these	 ideas	 ought	 to	 germinate	 and	 take	 shape	well	 before	 we	 actually	 start	
generating	data,	be	it	big	or	small.		
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