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Abstract

This paper explains the size and value “anomalies” in stock returns using an
economically motivated two-beta model. We break the CAPMbeta of a stock with the
market portfolio into two components, one reflecting news about the market’s future
cash flows and one reflecting news about the market’s discount rates. Intertemporal
asset pricing theory suggests that the former should have a higher price of risk; thus
beta, like cholesterol, comes in “bad” and “good” varieties. Empirically, we find that
value stocks and small stocks have considerably higher cash-flow betas than growth
stocks and large stocks, and this can explain their higher average returns. The poor
performance of the CAPM since 1963 is explained by the fact that growth stocks and
high-past-beta stocks have predominantly good betas with low risk prices.

JEL classification: G12, G14, N22



1 Introduction

How should a rational investor measure the risks of stock market investments? What
determines the risk premium that will induce a rational investor to hold an individual
stock at its market weight, rather than overweighting or underweighting it? Accord-
ing to the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965),
a stock’s risk is summarized by its beta with the market portfolio of all invested
wealth. Controlling for beta, no other characteristics of a stock should influence the
return required by a rational investor.

It is well known that the CAPM fails to describe average realized stock returns
since the early 1960’s, if a value-weighted equity index is used as a proxy for the
market portfolio. In particular, small stocks and value stocks have delivered higher
average returns than their betas can justify. Adding insult to injury, stocks with high
past betas have had average returns no higher than stocks of the same size with low
past betas. These findings tempt investors to tilt their stock portfolios systematically
towards small stocks, value stocks, and stocks with low past betas.2

We argue that returns on the market portfolio have two components, and that
recognizing the difference between these two components can eliminate the incentive
to overweight value, small, and low-beta stocks. The value of the market portfolio
may fall because investors receive bad news about future cash flows; but it may also
fall because investors increase the discount rate or cost of capital that they apply to
these cash flows. In the first case, wealth decreases and investment opportunities
are unchanged, while in the second case, wealth decreases but future investment
opportunities improve.

These two components should have different significance for a risk-averse, long-
term investor who holds the market portfolio. Such an investor may demand a
higher premium to hold assets that covary with the market’s cash-flow news than
to hold assets that covary with news about the market’s discount rates, for poor
returns driven by increases in discount rates are partially compensated by improved
prospects for future returns. To properly measure risk for this investor, the single

2Seminal early references include Banz (1981) and Reinganum (1981) for the size effect, and
Graham and Dodd (1934), Basu (1977, 1983), Ball (1978), and Rosenberg, Reid, and Lanstein
(1985) for the value effect. Fama and French (1992) give an influential treatment of both effects
within an integrated framework and show that sorting stocks on past market betas generates little
variation in average returns.
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beta of the Sharpe-Lintner CAPM should be broken into two different betas: a cash-
flow beta and a discount-rate beta. We expect a rational investor who is holding the
market portfolio to demand a greater reward for bearing the former type of risk than
the latter. In fact, an intertemporal capital asset pricing model (ICAPM) of the
sort proposed by Merton (1973) suggests that the the price of risk for the discount-
rate beta should equal the variance of the market return, while the price of risk for
the cash-flow beta should be γ times greater, where γ is the investor’s coefficient of
relative risk aversion. If the investor is conservative in the sense that γ > 1, the
cash-flow beta has a higher price of risk.

An intuitive way to summarize our story is to say that beta, like cholesterol, has
a “bad” variety and a “good” variety. The required return on a stock is determined
not by its overall beta with the market, but by its bad cash-flow beta and its good
discount-rate beta. Of course, the good beta is good not in absolute terms, but in
relation to the other type of beta.

We test these ideas by fitting a two-beta ICAPM to historical monthly returns
on stock portfolios sorted by size, book-to-market ratios, and market betas. We
consider not only a sample period since 1963 that has been the subject of much
recent research, but also an earlier sample period 1929-1963 using the data of Davis,
Fama, and French (2000). In the modern period, 1963:7-2001:12, we find that the
two-beta model greatly improves the poor performance of the standard CAPM. The
main reason for this is that growth stocks, with low average returns, have high betas
with the market portfolio; but their high betas are predominantly good betas, with
low risk prices. Value stocks, with high average returns, have higher bad betas than
growth stocks do. In the early period, 1929:1-1963:6, we find that value stocks have
higher CAPM betas and proportionately higher bad betas than growth stocks, so the
single-beta CAPM adequately explains the data.

The ICAPM also explains the size effect. Over both subperiods, small stocks
outperform large stocks by approximately 3% per annum. In the early period, this
performance differential is justified by the moderately higher cash-flow and discount-
rate betas of small stocks relative to large stocks. In the modern period, small and
large stocks have approximately equal cash-flow betas. However, small stocks have
much higher discount-rate betas than large stocks in the post-1963 sample. Even
though the premium on discount-rate beta is low, the magnitude of the beta spread
is sufficient to explain most of the size premium.

Our two-beta model also casts light on why portfolios sorted on past CAPM betas
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show a spread in average returns in the early sample period but not in the modern
period. In the early sample period, a sort on CAPM beta induces a strong post-
ranking spread in cash-flow betas, and this spread carries an economically significant
premium, as the theory predicts. In the modern period, however, sorting on past
CAPM betas produces a spread only in good discount-rate betas but no spread in
bad cash-flow betas. Since the good beta carries only a low premium, the almost flat
relation between average returns and the CAPM beta estimated from these portfolios
in the modern period is no puzzle to the two-beta model.

All these findings are based on the first-order condition of a long-term investor
who is assumed to hold a value-weighted stock market index. We show that there
exists a coefficient of risk aversion that makes the investor content to hold equities
at their value weights, rather than systematically tilting her portfolio towards value
stocks, small stocks, or stocks with low past betas. For an investor with this degree of
risk aversion, the high average returns on such stocks are appropriate compensation
for their risks in relation to the value-weighted index. An investor with a lower
risk aversion coefficient would find value, small, and low-past-beta stocks attractive
and would wish to overweight them, while an investor with a higher risk aversion
coefficient would wish to underweight these stocks.

Our model explains why stocks with high cash-flow betas may offer high average
returns, given that long-term investors are fully invested in equities at all times, or,
in a slight generalization of the model, maintain a constant allocation to equities.
Our model does not explain why long-term investors would wish to keep their equity
allocations constant. If the equity premium is time-varying, it is optimal for a long-
term investor with a fixed coefficient of relative risk aversion to invest more in equities
at times when the equity premium is high (Campbell and Viceira 1999, Kim and
Omberg 1996). We could generalize the model to allow a time-varying equity weight
in the investor’s portfolio, but this would not be consistent with general equilibrium
if all investors have the same preferences. Thus our model cannot be interpreted as
a representative agent general equilibrium model of the economy. Our achievement
is merely to show that the prices of risk for value, small, and low-past-beta stocks are
sufficient to deter investment in these stocks by conservative long-term investors who
eschew market timing.

In developing and testing the two-beta ICAPM, we draw on a great deal of re-
lated literature. The idea that the market’s return can be attributed to cash-flow
and discount-rate news is not novel. Campbell and Shiller (1988a) develop a loglin-
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ear approximate framework in which to study the effects of changing cash-flow and
discount-rate forecasts on stock prices. Campbell (1991) uses this framework and a
vector autoregressive (VAR) model to decompose market returns into cash-flow news
and discount-rate news. Empirically, he finds that discount-rate news is far from
negligible; in postwar US data, for example, his VAR system explains most stock
return volatility as the result of discount-rate news. Campbell and Mei (1993) use a
similar approach to decompose the market betas of industry and size portfolios into
cash-flow betas and discount-rate betas, but they do not estimate separate risk prices
for these betas.

The insight that long-term investors care about shocks to investment opportu-
nities is due to Merton (1973). Campbell (1993) solves a discrete-time empirical
version of Merton’s ICAPM, assuming that asset returns are homoskedastic and that
a representative investor has the recursive preferences proposed by Epstein and Zin
(1989, 1991). The solution is exact in the limit of continuous time if the representa-
tive investor has elasticity of intertemporal substitution equal to one, and is otherwise
a loglinear approximation. Campbell writes the solution in the form of a K-factor
model, where the first factor is the market return and the other factors are shocks
to variables that predict the market return. Campbell (1996) also tests this model
on industry portfolios, but finds that in his specification the innovation to discount
rates is highly correlated with the innovation to the market itself; thus his multi-
beta model is hard to distinguish empirically from the CAPM. Li (1997), Hodrick,
Ng, and Sengmueller (1999), Lynch (1999), Brennan, Wang, and Xia (2001, 2003),
Ng (2002), Guo (2002), and Chen (2003) also explore the empirical implications of
Merton’s model.

The two papers that are closest to ours in their focus are Brennan, Wang, and
Xia (2003) and Chen (2003). Brennan et al. model the riskless interest rate and
the Sharpe ratio on the market portfolio as continuous-time AR(1) processes. They
estimate the parameters of their model using bond market data, and explore the
model’s implications for the value and size effects in US equities since 1953. They
have some success in explaining these effects, but they do not relate the risk prices
for interest rate and Sharpe ratio shocks to the underlying preferences of investors.
Chen (2003) extends the framework of Campbell (1993) to allow for heteroskedastic
asset returns, and estimates a VAR-GARCH model to describe the dynamics of stock
returns. Given the variables he includes in his model, he finds little evidence that
growth stocks are valuable hedges against shocks to investment opportunities.
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Recently, however, several authors have found that high returns to growth stocks,
particularly small growth stocks, seem to predict low returns on the aggregate stock
market. Eleswarapu and Reinganum (2003) use lagged 3-year returns on an equal-
weighted index of growth stocks, while Brennan, Wang, and Xia (2001) use the dif-
ference between the log book-to-market ratios of small growth stocks and small value
stocks to predict the aggregate market. In this paper we use a measure similar to
that of Brennan et al. (2001) and find that indeed growth stock returns have high
covariances with declines in market discount rates.

It is natural to ask why high returns on small growth stocks should predict low
returns on the stock market as a whole. This is a particularly important question
since time-series regressions of aggregate stock returns on arbitrary predictor variables
can easily produce meaningless data-mined results. One possibility is that small
growth stocks generate cash flows in the more distant future and therefore their
prices are more sensitive to changes in discount rates, just as coupon bonds with a
high duration are more sensitive to interest-rate movements than are bonds with a
low duration (Cornell 1999). Another possibility is that small growth companies
are particularly dependent on external financing and thus are sensitive to equity
market and broader financial conditions (Ng, Engle, and Rothschild 1992, Perez-
Quiros and Timmermann 2000). A third possibility is that episodes of irrational
investor optimism (Shiller 2000) have a particularly powerful effect on small growth
stocks.

Our finding that value stocks have higher cash-flow betas than growth stocks is
consistent with the empirical results of Cohen, Polk, and Vuolteenaho (2002). Cohen
et al. measure cash-flow betas by regressing the multi-year return on equity (ROE) of
value and growth stocks on the market’s multi-year ROE. They find that value stocks
have higher ROE betas than growth stocks. There is also evidence that value stock
returns are correlated with shocks to GDP-growth forecasts (Liew and Vassalou 2000,
Vassalou 2003). These empirical findings are consistent with Brainard, Shapiro, and
Shoven’s (1991) suggestion that “fundamental betas” estimated from cash flows could
improve the empirical performance of the CAPM. This sensitivity of value stocks’
cash-flow fundamentals to economy-wide cash-flow fundamentals plays a key role in
our two-beta model’s ability to explain the value premium.

There are numerous competing explanations for the size and value effects. At
the most basic level the Arbitrage Pricing Theory (APT) of Ross (1976) allows any
pervasive source of common variation to be a priced risk factor. Fama and French
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(1993) show that small stocks and value stocks tend to move together as groups, and
introduce an influential three-factor model, including a market factor, size factor, and
value factor, to describe the size and value effects in average returns. As Fama and
French recognize, ultimately this falls short of a satisfactory explanation because the
APT is silent about what determines factor risk prices; in a pure APT model the size
premium and the value premium could just as easily be zero or negative.

Jagannathan andWang (1996) point out that the CAPMmight hold conditionally,
but fail unconditionally. If some stocks have high market betas at times when the
market risk premium is high, then these stocks should have higher average returns
than are explained by their unconditional market betas. Lettau and Ludvigson
(2001) and Zhang and Petkova (2002) argue that value stocks satisfy these conditions,
although Lewellen and Nagel (2003) argue that time-varying betas cause only a very
modest increase in average returns.

Adrian and Franzoni (2002) and Lewellen and Shanken (2002) consider the pos-
sibility that investors do not know the risk characteristics of stocks but must learn
about them over time. Adrian and Franzoni, for example, suggest that investors
tended to overestimate the market betas of value and small stocks as these betas
trended downwards during the 20th Century. This led investors to demand higher
average returns for such stocks than are justified by their average market risks.

Roll (1977) emphasizes that tests of the CAPM are misspecified if one cannot
measure the market portfolio correctly. While Stambaugh (1982) and Shanken (1987)
find that CAPM tests are insensitive to the inclusion of other financial assets, more
recent research has stressed the importance of human wealth whose return can be
proxied by revisions in expected future labor income (Campbell 1996, Jagannathan
and Wang 1996, Lettau and Ludvigson 2001).

Finally, the value effect can also be interpreted in behavioral terms. Lakonishok,
Shleifer, and Vishny (1994), for example, argue that investors irrationally extrapolate
past earnings growth and thus overvalue companies that have performed well in the
past. These companies have low book-to-market ratios and subsequently underper-
form once their earnings growth disappoints investors. Supporting evidence is pro-
vided by La Porta (1996), who shows that high long-term earnings forecasts of stock
market analysts predict low stock returns while low forecasts predict high returns,
and by La Porta et al. (1997), who show that the underperformance of stocks with
low book-to-market ratios is concentrated on earnings announcement dates. Brav,
Lehavy, and Michaely (2002) show that analysts’ price targets imply high subjec-
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tive expected returns on growth stocks, consistent with the hypothesis that the value
effect is due to expectational errors.

In this paper we do not consider any of these alternative stories. We assume
that unconditional betas are adequate proxies for conditional betas, we use a value-
weighted index of common stocks as a proxy for the market portfolio, and we test an
orthodox asset pricing model based on the first-order conditions of a rational investor
who knows the parameters of the model. Our purpose is to clarify the extent to
which deviations from the CAPM’s cross-sectional predictions can be rationalized
by Merton’s (1973) intertemporal hedging considerations that are relevant for long-
term investors. This exercise should be of interest even if one believes that investor
irrationality has an important effect on stock prices, because even in this case one
should want to know how a rational investor will perceive stock market risks. Our
analysis has obvious relevance to long-term institutional investors such as pension
funds, which maintain stable allocations to equities and wish to assess the risks of
tilting their equity portfolios towards particular types of stocks.

The organization of the paper is as follows. In Section 2, we estimate two com-
ponents of the return on the aggregate stock market, one caused by cash-flow shocks
and the other by discount-rate shocks. In Section 3, we use these components to
estimate cash-flow and discount-rate betas for portfolios sorted on firm characteristics
and risk loadings. In Section 4, we lay out the intertemporal asset pricing theory
that justifies different risk premia for bad cash-flow beta and good discount-rate beta.
We also show that the returns to small and value stocks can largely be explained by
allowing different risk premia for these two different betas. Section 5 concludes.

2 How cash-flow and discount-rate news move the
market

A simple present-value formula points to two reasons why stock prices may change.
Either expected cash flows change, discount rates change, or both. In this section, we
empirically estimate these two components of unexpected return for a value-weighted
stock market index. Consistent with findings of Campbell (1991), the fitted values
suggest that over our sample period (1929:1-2001:12) discount-rate news causes much
more variation in monthly stock returns than cash-flow news.
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2.1 Return-decomposition framework

Campbell and Shiller (1988a) develop a loglinear approximate present-value relation
that allows for time-varying discount rates. They do this by approximating the de-
finition of log return on a dividend-paying asset, rt+1 ≡ log(Pt+1 +Dt+1) − log(Pt),
around the mean log dividend-price ratio, (dt − pt), using a first-order Taylor ex-
pansion. Above, P denotes price, D dividend, and lower-case letters log trans-
forms. The resulting approximation is rt+1 ≈ k + ρpt+1 + (1 − ρ)dt+1 − pt ,where
ρ and k are parameters of linearization defined by ρ ≡ 1

±¡
1 + exp(dt − pt)

¢
and

k ≡ − log(ρ)− (1− ρ) log(1/ρ− 1). When the dividend-price ratio is constant, then
ρ = P/(P +D), the ratio of the ex-dividend to the cum-dividend stock price. The
approximation here replaces the log sum of price and dividend with a weighted aver-
age of log price and log dividend, where the weights are determined by the average
relative magnitudes of these two variables.

Solving forward iteratively, imposing the “no-infinite-bubbles” terminal condition
that limj→∞ ρj(dt+j − pt+j) = 0, taking expectations, and subtracting the current
dividend, one gets

pt − dt = k

1− ρ
+Et

∞X
j=0

ρj[∆dt+1+j − rt+1+j] , (1)

where∆d denotes log dividend growth. This equation says that the log price-dividend
ratio is high when dividends are expected to grow rapidly, or when stock returns are
expected to be low. The equation should be thought of as an accounting identity
rather than a behavioral model; it has been obtained merely by approximating an
identity, solving forward subject to a terminal condition, and taking expectations.
Intuitively, if the stock price is high today, then from the definition of the return
and the terminal condition that the dividend-price ratio is non-explosive, there must
either be high dividends or low stock returns in the future. Investors must then expect
some combination of high dividends and low stock returns if their expectations are
to be consistent with the observed price.

While Campbell and Shiller (1988a) constrain the discount coefficient ρ to values
determined by the average log dividend yield, ρ has other possible interpretations
as well. Campbell (1993, 1996) links ρ to the average consumption-wealth ratio.
In effect, the latter interpretation can be seen as a slightly modified version of the
former. Consider a mutual fund that reinvests dividends and a mutual-fund investor
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who finances her consumption by redeeming a fraction of her mutual-fund shares
every year. Effectively, the investor’s consumption is now a dividend paid by the
fund and the investor’s wealth (the value of her remaining mutual fund shares) is
now the ex-dividend price of the fund. Thus, we can use (1) to describe a portfolio
strategy as well as an underlying asset and let the average consumption-wealth ratio
generated by the strategy determine the discount coefficient ρ, provided that the
consumption-wealth ratio implied by the strategy does not behave explosively.

Campbell (1991) extends the loglinear present-value approach to obtain a decom-
position of returns. Substituting (1) into the approximate return equation gives

rt+1 − Et rt+1 = (Et+1 − Et)
∞X
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞X
j=1

ρjrt+1+j (2)

= NCF,t+1 −NDR,t+1,

whereNCF denotes news about future cash flows (i.e., dividends or consumption), and
NDR denotes news about future discount rates (i.e., expected returns). This equation
says that unexpected stock returns must be associated with changes in expectations
of future cash flows or discount rates. An increase in expected future cash flows is
associated with a capital gain today, while an increase in discount rates is associated
with a capital loss today. The reason is that with a given dividend stream, higher
future returns can only be generated by future price appreciation from a lower current
price.

These return components can also be interpreted as permanent and transitory
shocks to wealth. Returns generated by cash-flow news are never reversed subse-
quently, whereas returns generated by discount-rate news are offset by lower returns
in the future. From this perspective it should not be surprising that conservative
long-term investors are more averse to cash-flow risk than to discount-rate risk.

2.2 Implementation with a VAR model

We follow Campbell (1991) and estimate the cash-flow-news and discount-rate-news
series using a vector autoregressive (VAR) model. This VAR methodology first esti-
mates the terms Et rt+1 and (Et+1−Et)

P∞
j=1 ρ

jrt+1+j and then uses rt+1 and equation
(2) to back out the cash-flow news. This practice has an important advantage — one
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does not necessarily have to understand the short-run dynamics of dividends. Un-
derstanding the dynamics of expected returns is enough.

We assume that the data are generated by a first-order VAR model

zt+1 = a+ Γzt + ut+1, (3)

where zt+1 is a m-by-1 state vector with rt+1 as its first element, a and Γ are m-by-1
vector and m-by-m matrix of constant parameters, and ut+1 an i.i.d. m-by-1 vector
of shocks. Of course, this formulation also allows for higher-order VAR models via a
simple redefinition of the state vector to include lagged values.

Provided that the process in equation (3) generates the data, t+ 1 cash-flow and
discount-rate news are linear functions of the t+ 1 shock vector:

NCF,t+1 = (e10 + e10λ)ut+1 (4)

NDR,t+1 = e10λut+1.

The VAR shocks are mapped to news by λ, defined as λ ≡ ρΓ(I − ρΓ)−1. e10λ
captures the long-run significance of each individual VAR shock to discount-rate ex-
pectations. The greater the absolute value of a variable’s coefficient in the return
prediction equation (the top row of Γ), the greater the weight the variable receives in
the discount-rate-news formula. More persistent variables should also receive more
weight, which is captured by the term (I − ρΓ)−1.

2.3 VAR data

To operationalize the VAR approach, we need to specify the variables to be included
in the state vector. We opt for a parsimonious model with the following four state
variables. First, the excess log return on the market (reM) is the difference between
the log return on the Center for Research in Securities Prices (CRSP) value-weighted
stock index (rM) and the log risk-free rate. The risk-free-rate data are constructed
by CRSP from Treasury bills with approximately three month maturity.

Second, the term yield spread (TY ) is provided by Global Financial Data and is
computed as the yield difference between ten-year constant-maturity taxable bonds
and short-term taxable notes, in percentage points.
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Third, the price-earnings ratio (PE) is from Shiller (2000), constructed as the
price of the S&P 500 index divided by a ten-year trailing moving average of aggre-
gate earnings of companies in the S&P 500 index. Following Graham and Dodd
(1934), Campbell and Shiller (1988b, 1998) advocate averaging earnings over several
years to avoid temporary spikes in the price-earnings ratio caused by cyclical declines
in earnings. We avoid any interpolation of earnings in order to ensure that all com-
ponents of the time-t price-earnings ratio are contemporaneously observable by time
t. The ratio is log transformed.

Fourth, the small-stock value spread (V S) is constructed from the data made
available by Professor Kenneth French on his web site.3 The portfolios, which are
constructed at the end of each June, are the intersections of two portfolios formed on
size (market equity, ME) and three portfolios formed on the ratio of book equity to
market equity (BE/ME). The size breakpoint for year t is the median NYSE market
equity at the end of June of year t. BE/ME for June of year t is the book equity for
the last fiscal year end in t− 1 divided by ME for December of t− 1. The BE/ME
breakpoints are the 30th and 70th NYSE percentiles.

At the end of June of year t, we construct the small-stock value spread as the
difference between the log(BE/ME) of the small high-book-to-market portfolio and
the log(BE/ME) of the small low-book-to-market portfolio, where BE and ME are
measured at the end of December of year t − 1. For months from July to May, the
small-stock value spread is constructed by adding the cumulative log return (from
the previous June) on the small low-book-to-market portfolio to, and subtracting the
cumulative log return on the small high-book-to-market portfolio from, the end-of-
June small-stock value spread.

Our small-stock value spread is similar to variables constructed by Asness, Fried-
man, Krail, and Liew (2000), Cohen, Polk, and Vuolteenaho (2003), and Brennan,
Wang, and Xia (2001). Asness et al. use a number of different scaled-price vari-
ables to construct their measures, and also incorporate analysts’ earnings forecasts
into their model. Cohen et al. use the entire CRSP universe instead of small-stock
portfolios to construct their value-spread variable. Brennan et al.’s small-stock value-
spread variable is equal to ours at the end of June of each year, but the intra-year
values differ because Brennan et al. interpolate the intra-year values of BE using
year t and year t+ 1 BE values. We do not follow their procedure because we wish
to avoid using any future variables that might cause spurious forecastability of stock

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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returns.

These state-variable series span the period 1928:12—2001:12. Table 1 shows de-
scriptive statistics and Figure 1 the time-series evolution of the state variables, ex-
cluding the market return. The variables in Figure 1 are demeaned and normalized
by their sample standard deviation.

The black solid line in Figure 1 plots the evolution of PE, the log ratio of price to
ten-year moving average of earnings. Our sample period begins only months before
the stock market crash of 1929. This event is clearly visible from the graph in which
the log price-earnings drops by an extraordinary five sample standard deviations from
1929 to 1932. Another striking episode is the 1983-1999 bull market, during which
the price-earnings ratio increases by four sample standard deviations.

While the price-earnings ratio and its historical time-series behavior are well
known, the history of the small-stock value spread is perhaps less so. Recall that our
value-spread variable is the difference between value stocks’ log book-to-market ratio
and growth stocks’ log book-to-market ratio. Thus a high value spread is associated
with high prices for growth stocks relative to value stocks. Similar to figures shown
by Cohen, Polk, and Vuolteenaho (2003) and Brennan, Wang, and Xia (2001), the
post-war variation in V S appears positively correlated with the price-earnings ra-
tio, high overall stock prices coinciding with especially high prices for growth stocks.
The pre-war data appear quite different from the post-war data, however. For the
first two decades of our sample, the value spread is negatively correlated with the
market’s price-earnings ratio. The correlation between V S and PE is -.48 in the
period 1928:12—1963:6, and .57 in the period 1963:7—2001:12. If most value stocks
were highly levered and financially distressed during and after the Great Depression,
it makes sense that their values were especially sensitive to changes in overall eco-
nomic prospects, including the cost of capital. In the post-war period, however, most
value stocks were probably stable businesses with relatively low financial leverage, no
growth options, and thus probably little dependence on external equity-market fi-
nancing. We will return to this changing sensitivity of value and growth stocks to
various economy-wide shocks in Section 3.

The term yield spread (TY ) is a variable that is known to track the business cycle,
as discussed by Fama and French (1989). The term yield spread is very volatile during
the Great Depression and again in the 1970’s. It also tracks the value spread closely,
with a correlation of .42 over the full sample as shown in Table 1. Because long-bond
yields are relatively stable, TY is mostly driven by the volatile short end of the term
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structure, making the variable negatively correlated with the overall level of interest
rates. Since growth stocks are assets with a high duration, as emphasized by Cornell
(1999), it is not surprising that high prices for growth stocks coincide with low interest
rates and thus a high term yield spread.

2.4 VAR parameter estimates

Table 2 reports parameter estimates for the VAR model. Each row of the table corre-
sponds to a different equation of the model. The first five columns report coefficients
on the five explanatory variables: a constant, and lags of the excess market return,
term yield spread, price-earnings ratio, and small-stock value spread. OLS standard
errors are reported in square brackets below the coefficients. For comparison, we also
report in parentheses standard errors from a bootstrap exercise. Finally, we report
the R2 and F statistics for each regression. The bottom of the table reports the cor-
relation matrix of the equation residuals, with standard deviations of each residual
on the diagonal.

The first row of Table 2 shows that all four of our VAR state variables have some
ability to predict excess returns on the aggregate stock market. Market returns
display a modest degree of momentum; the coefficient on the lagged excess market
return is .094 with a standard error of .034. The term yield spread positively pre-
dicts the market return, consistent with the findings of Keim and Stambaugh (1986),
Campbell (1987), and Fama and French (1989). The smoothed price-earnings ratio
negatively predicts the return, consistent with Campbell and Shiller (1988b, 1998)
and related work using the aggregate dividend-price ratio (Rozeff 1984, Campbell and
Shiller 1988a, and Fama and French 1988, 1989). The small-stock value spread neg-
atively predicts the return, consistent with Eleswarapu and Reinganum (2003) and
Brennan, Wang, and Xia (2001). Overall, the R2 of the return forecasting equation
is about 2.6%, which is a reasonable number for a monthly model.

The remaining rows of Table 2 summarize the dynamics of the explanatory vari-
ables. The term spread is approximately an AR(1) process with an autoregressive
coefficient of .88, but the lagged small-stock value spread also has some ability to
predict the term spread. This should not be surprising given the contemporaneous
correlation of these two variables illustrated in Figure 1. The price-earnings ratio
is highly persistent, with a root very close to unity, but it is also predicted by the
lagged market return. This predictability may reflect short-term momentum in stock
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returns, but it may also reflect the fact that the recent history of returns is correlated
with earnings news that is not yet reflected in our lagged earnings measure. Finally,
the small-stock value spread is also a highly persistent AR(1) process.

The persistence of the VAR explanatory variables raises some difficult statistical
issues. It is well known that estimates of persistent AR(1) coefficients are biased
downwards in finite samples, and that this causes bias in the estimates of predictive
regressions for returns if return innovations are highly correlated with innovations in
predictor variables (Stambaugh 1999). There is an active debate about the effect of
this on the strength of the evidence for return predictability (Ang and Bekaert 2001,
Campbell and Yogo 2002, Lewellen 2003, Torous, Valkanov, and Yan 2003).

For our sample and VAR specification, the four predictive variables in the return
prediction equation are jointly significant at a better than 5% level. Our unreported
experiments show that the joint significance of the return-prediction equation at 5%
level survives bootstrapping excess returns as return shocks and simulating from
a system estimated under the null with various bias adjustments. However, the
statistical significance of the one-period return-prediction equation does not guarantee
that our news terms are not materially affected by the above-mentioned small-sample
bias.

As a simple way to assess the impact of this bias, we have generated 2500 artificial
data series using the estimated VAR coefficients and have reestimated the VAR system
2500 times. The difference between the average coefficient estimates in the artificial
data and the original VAR estimates is a simple measure of finite-sample bias. We find
that there is some bias in the VAR coefficients, but it does not have a large effect on
our estimates of cash-flow and discount-rate news. The reason is that the bias causes
some overstatement of short-term return predictability (the e10ρΓ component of e10λ)
but an understatement of the persistence of the VAR, and thus an understatement of
the long-term impact of predictability [the (I−ρΓ)−1 component of e10λ]. These two
effects work against each other. The one variable that is moderately affected by bias
is the value spread, whose role in predicting returns is biased downwards. Since this
bias works against us in explaining the average returns on value and growth stocks,
we do not attempt to correct it. Instead we use the estimated VAR as a reasonable
representation of the data and ask what it implies for cross-sectional asset pricing
puzzles, and for risks relevant to a long-horizon investor.

Table 3 summarizes the behavior of the implied cash-flow news and discount-rate
news components of the market return. The top panel shows that discount-rate
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news has a standard deviation of about 5% per month, much larger than the 2.5%
standard deviation of cash-flow news. This is consistent with the finding of Campbell
(1991) that discount-rate news is the dominant component of the market return. The
table also shows that the two components of return are almost uncorrelated with one
another. This finding differs from Campbell (1991) and particularly Campbell (1996);
it results from our use of a richer forecasting model that includes the value spread as
well as the aggregate price-earnings ratio.

Table 3 also reports the correlations of each state variable innovation with the es-
timated news terms, and the coefficients (e10 + e10λ) and e10λ that map innovations
to cash-flow and discount-rate news. Innovations to returns and the price-earnings
ratio are highly negatively correlated with discount-rate news, reflecting the mean
reversion in stock prices that is implied by our VAR system. Market return innova-
tions are weakly positively correlated with cash-flow news, indicating that some part
of a market rise is typically justified by underlying improvements in expected future
cash flows. Innovations to the price-earnings ratio, however, are weakly negatively
correlated with cash-flow news, suggesting that price increases relative to earnings
are not usually justified by improvements in future earnings growth.

Figure 2 illustrates the VAR model’s view of stock market history in relation to
NBER recessions. Each dotted line in the figure corresponds to the trough of a
recession as defined by the NBER. The top panel reports a trailing exponentially-
weighted moving average of the market’s cash-flow news, while the bottom panel
reports the same moving average of the market’s discount-rate news. It is clear
from the figure that in some recessions our model attributes stock market declines to
declining cash flows (e.g. 1991), in others to increasing discount rates (e.g. 2001),
and in others to both types of news (e.g. the Great Depression and the 1970’s). We
might call the first type of recession a “profitability recession”, the second type a
“valuation recession”, and the third type a “mixed recession”. A valuation recession
is characterized by a declining price-earnings ratio, a steepening yield curve, and larger
declines in growth stocks than in value stocks. Profitability and valuation recessions,
as opposed to mixed recessions, will be particularly influential observations when
we estimate cash-flow and discount-rate betas, because these are episodes in which
cash-flow and discount-rate news do not move closely together.

We set ρ = .951/12 in Table 3 and use the same value throughout the paper. Recall
that ρ can be related to either the average dividend yield or the average consumption
wealth ratio, as discussed on page 8. An annualized ρ of .95 corresponds to an average

15



dividend-price or consumption-wealth ratio of -2.94 (in logs) or 5.2% (in levels), where
wealth is measured after subtracting consumption. We picked the value .95 because
approximately 5% consumption of the total wealth per year seems reasonable for a
long-term investor, such as a university endowment.

As a robustness check, we have estimated the VAR over subsamples before and
after 1963. The coefficients that map state variable innovations to cash-flow and
discount-rate news are fairly stable, with no changes in sign. Also, the value spread
has greater predictive power in the first subsample than in the second. This is
reassuring, since it indicates that the coefficient on this variable is not just fitting the
last few years of the sample during which exceptionally high prices for growth stocks
preceded a market decline. Given the stability of the VAR point estimates in the two
subsamples and the unfortunate statistical fact that the coefficients of our monthly
return-prediction regressions are estimated imprecisely (a problem that is magnified
in shorter subsamples), we proceed to use the full-sample VAR-coefficient estimates
in the remainder of the paper.

3 Measuring cash-flow and discount-rate betas

We have shown that market returns contain two components, both of which display
substantial volatility and which are not highly correlated with one another. This
raises the possibility that different types of stocks may have different betas with the
two components of the market. In this section we measure cash-flow betas and
discount-rate betas separately. We define the cash-flow beta as

βi,CF ≡
Cov (ri,t, NCF,t)

Var
¡
reM,t − Et−1reM,t

¢ (5)

and the discount-rate beta as

βi,DR ≡
Cov (ri,t,−NDR,t)

Var
¡
reM,t − Et−1reM,t

¢ . (6)

Note that the discount-rate beta is defined as the covariance of an asset’s return
with good news about the stock market in form of lower-than-expected discount rates,
and that each beta divides by the total variance of unexpected market returns, not
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the variance of cash-flow news or discount-rate news separately. This implies that
the cash-flow beta and the discount-rate beta add up to the total market beta,

βi,M = βi,CF + βi,DR. (7)

Our estimates show that there is interesting variation across assets and across time
in the two components of the market beta.

3.1 Test-asset data

We construct two sets of portfolios to use as test assets. The first is a set of 25 ME
and BE/ME portfolios, available from Professor Kenneth French’s web site. The
portfolios, which are constructed at the end of each June, are the intersections of five
portfolios formed on size (ME) and five portfolios formed on book-to-market equity
(BE/ME). BE/ME for June of year t is the book equity for the last fiscal year
end in the calendar year t− 1 divided by ME for December of t− 1. The size and
BE/ME breakpoints are NYSE quintiles. On a few occasions, no firms are allocated
to some of the portfolios. In those cases, we use the return on the portfolio with the
same size and the closest BE/ME.

The 25 ME and BE/ME portfolios were originally constructed by Davis, Fama,
and French (2000) using three databases. The first of these, the CRSP monthly stock
file, contains monthly prices, shares outstanding, dividends, and returns for NYSE,
AMEX, and NASDAQ stocks. The second database, the COMPUSTAT annual
research file, contains the relevant accounting information for most publicly traded
U.S. stocks. The COMPUSTAT accounting information is supplemented by the third
database, Moody’s book equity information hand collected by Davis et al.

Daniel and Titman (1997) point out that it can be dangerous to test asset pricing
models using only portfolios sorted by characteristics known to be related to average
returns, such as size and value. Characteristics-sorted portfolios are likely to show
some spread in betas identified as risk by almost any asset pricing model, at least in
sample. When the model is estimated, a high premium per unit of beta will fit the
large variation in average returns. Thus, at least when premia are not constrained
by theory, an asset pricing model may spuriously explain the average returns to
characteristics-sorted portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman and construct
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a second set of 20 portfolios sorted on past risk loadings with VAR state variables
(excluding the price-smoothed earnings ratio PE, since high-frequency changes in
PE are so highly collinear with market returns). These portfolios are constructed
as follows. First, we run a loading-estimation regression for each stock in the CRSP
database:

3X
j=1

ri,t+j = b0 + brM

3X
j=1

rM,t+j + bV S(V St+3 − V St) + bTY (TYt+3 − TYt) + εi,t+3, (8)

where ri,t is the log stock return on stock i for month t. The regression (8) is
reestimated from a rolling 36-month window of overlapping observations for each
stock at the end of each month. Since these regressions are estimated from stock-
level instead of portfolio-level data, we use a quarterly data frequency to minimize
the impact of infrequent trading.

Our objective is to create a set of portfolios that have as large a spread as possible
in their betas with the market and with innovations in the VAR state variables. To
accomplish this, each month we perform a two-dimensional sequential sort on market
beta and another state-variable beta, producing a set of ten portfolios for each state
variable. First, we form two groups by sorting stocks on bbV S. Then, we further sort
stocks in both groups to five portfolios on bbrM and record returns on these ten value-
weight portfolios. To ensure that the average returns on these portfolio strategies are
not influenced by various market-microstructure issues plaguing the smallest stocks,
we exclude the smallest (lowest ME) five percent of stocks of each cross-section and
lag the estimated risk loadings by a month in our sorts. We construct another set of
ten portfolios in a similar fashion by sorting on bbTY and bbrM . We refer to these 20
return series as risk-sorted portfolios. Both the 25 size- and book-to-market-sorted
returns and the 20 risk-sorted returns are measured over the period 1929:1—2001:12.

3.2 Empirical estimates of cash-flow and discount-rate betas

We estimate the cash-flow and discount-rate betas using the fitted values of the mar-
ket’s cash-flow and discount-rate news. Specifically, we use the following beta esti-
mators:

bβi,CF = dCov³ri,t, bNCF,t´dVar³ bNCF,t − bNDR,t´ +
dCov³ri,t, bNCF,t−1´dVar³ bNCF,t − bNDR,t´ (9)
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bβi,DR = dCov³ri,t,− bNDR,t´dVar³ bNCF,t − bNDR,t´ +
dCov³ri,t,− bNDR,t−1´dVar³ bNCF,t − bNDR,t´ (10)

Above, dCov and dVar denote sample covariance and variance. bNCF,t and bNDR,t are
the estimated cash-flow and expected-return news from the VAR model of Tables 2
and 3.

These beta estimators deviate from the usual regression-coefficient estimator in
two respects. First, we include one lag of the market’s news terms in the numerator.
Adding a lag is motivated by the possibility that, especially during the early years of
our sample period, not all stocks in our test-asset portfolios were traded frequently
and synchronously. If some portfolio returns are contaminated by stale prices, market
return and news terms may spuriously appear to lead the portfolio returns, as noted
by Scholes and Williams (1977) and Dimson (1979). In addition, Lo and MacKinlay
(1990) show that the transaction prices of individual stocks tend to react in part to
movements in the overall market with a lag, and the smaller the company, the greater
is the lagged price reaction. McQueen, Pinegar, and Thorley (1996) and Peterson
and Sanger (1995) show that these effects exist even in relatively low-frequency data
(i.e., those sampled monthly). These problems are alleviated by the inclusion of the
lag term.

Second, as in (5) and (6), we normalize the covariances in (9) and (10) bydVar( bNCF,t − bNDR,t) or, equivalently by the sample variance of the (unexpected)
market return, dVar ¡reM,t −Et−1reM,t¢. Under the maintained assumptions, bβi,M =bβi,CF + bβi,DR is equal to the portfolio i’s Scholes-Williams (1977) beta on unexpected
market return. It is also equal to the so-called “sum beta” employed by Ibbotson
Associates, which is the sum of multiple regression coefficients of a portfolio’s return
on contemporaneous and lagged unexpected market returns.4

4Scholes and Williams (1977) include an additional lead term, which captures the possibility that
the market return itself is contaminated by stale prices. Under the maintained assumption that our
news terms are unforecastable, the population value of this term is zero.
The Scholes-Williams beta formula also includes a normalization. The sum of the three regression

coefficients is divided by one plus twice the market’s autocorrelation. Since the first-order autocor-
relation of our news series is zero under the maintained assumptions, this normalization factor is
identically one.
“Sum beta” uses multiple regression coefficients instead of simple regression coefficients. Under

the maintained assumption that the news terms are unforecastable, the explanatory variables in the
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When we apply this estimation technique to our test-asset returns and our esti-
mated market’s cash-flow and discount-rate news series, we find dramatic differences
in the beta estimates between the first half of our 1929:1—2001:12 sample and the sec-
ond half. Accordingly, we report betas separately for two subsamples, 1929:1-1963:6
and 1963:7-2001:12. We choose to split the sample at 1963:7, because that is when
COMPUSTAT data become reliable and because most of the evidence on the book-
to-market anomaly is obtained from the post-1963:7 period. Unlike the thoroughly
mined second subsample, the first subsample is relatively untouched and presents an
opportunity for an out-of-sample test.

The top half of Table 4 shows the estimated betas for the 25 size and book-to-
market portfolios over the period 1929:1—1963:6. The portfolios are organized in a
square matrix with growth stocks at the left, value stocks at the right, small stocks
at the top, and large stocks at the bottom. At the right edge of the matrix we
report the differences between the extreme growth and extreme value portfolios in
each size group; along the bottom of the matrix we report the differences between
the extreme small and extreme large portfolios in each BE/ME category. The top
matrix displays cash-flow betas, while the bottommatrix displays discount-rate betas.
In square brackets after each beta estimate we report a standard error, calculated
conditional on the realizations of the news series from the aggregate VAR model.

In the pre-1963 sample period, value stocks have both higher cash-flow and higher
discount-rate betas than growth stocks. An equal-weighted average of the extreme
value stocks across size quintiles has a cash-flow beta .16 higher than an equal-
weighted average of the extreme growth stocks. The difference in estimated discount-
rate betas is .22 in the same direction. Similar to value stocks, small stocks have
higher cash-flow betas and discount-rate betas than large stocks in this sample (by .18
and .36 respectively, for an equal-weighted average of the smallest stocks across value
quintiles relative to an equal-weighted average of the largest stocks). In summary,
value and small stocks were unambiguously riskier than growth and large stocks over
the 1929:1-1963:6 period.

A partial exception to this statement involves the smallest growth portfolio, which
is particularly risky and has both cash-flow and discount-rate betas that exceed those
of the smallest value portfolio. This small growth portfolio is well known to present
a particular challenge to asset pricing models, for example the three-factor model of

multiple regression are uncorrelated, and thus the multiple regression coefficients are equal to simple
regression coefficients.
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Fama and French (1993) which does not fit this portfolio well. Recent evidence on
small growth stocks by Lamont and Thaler (2001), Mitchell, Pulvino, and Stafford
(2002), D’Avolio (2002) and others suggests that the pricing of some small growth
stocks is materially affected by short-sale constraints and other limits to arbitrage.
This may help to explain the unusual behavior of the small growth portfolio.

The bottom half of Table 4 shows the cash-flow and discount-rate betas for the
risk-sorted portfolios. Both cash-flow betas and discount-rate betas are high for
stocks that have had high market betas in the past. Thus, in the early sample
period, sorting stocks by their past market betas induces a spread in both cash-flow
betas and discount-rate betas. Sorting stocks by their value-spread or term-spread
sensitivity induces only a relatively modest spread in either beta.

The patterns are completely different in the post-1963 period shown in Table 5.
In this subsample, value stocks still have slightly higher cash-flow betas than growth
stocks, but much lower discount-rate betas. The difference in cash-flow betas between
the average across extreme value portfolios and the average across extreme growth
portfolios is a modest .09. What is remarkable is that the pattern of discount-rate
betas reverses in the modern period, so that growth stocks have significantly higher
discount-rate betas than value stocks. The difference is economically large (.45) and
statistically significant. Recall that cash-flow and discount-rate betas sum up to the
CAPM beta; thus growth stocks have higher market betas in the modern period, but
their betas are disproportionately of the “good” discount-rate variety rather than the
“bad” cash-flow variety.

The changes in the risk characteristics of value and growth stocks that we identify
by comparing the periods before and after 1963 are consistent with recent research by
Franzoni (2002). Franzoni points out that the market betas of value stocks and small
stocks have declined over time relative to the market betas of growth stocks and large
stocks. We extend his research by exploring time changes in the two components of
market beta, the cash-flow beta and the discount-rate beta.

What economic forces have caused these changes in betas? We suspect that the
changing characteristics of value and growth stocks and small and large stocks are
related to these patterns in sensitivities. Our first subsample is dominated by the
Great Depression and its aftermath. Perhaps in the 1930’s value stocks were fallen
angels with a large debt load accumulated during the Great Depression. The higher
leverage of value stocks relative to that of growth stocks could explain both the higher
cash-flow and expected-return betas of value stocks from 1929—1963. In general, low
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leverage and strong overall position of a company may lead to a low cash-flow beta,
and high leverage and weak position to a high cash-flow beta.

We also hypothesize that future investment opportunities, long duration of cash
flows, and dependence on external equity finance lead to a high discount-rate beta.
For example, if a distressed firm needed new equity financing simply to survive after
the Great Depression, and if the availability and cost of such financing is related to
the overall cost of capital, then such a firm’s value is likely to have been very sensitive
to discount-rate news. Similarly, new small firms with a negative current cash flow
but valuable investment opportunities are likely to be very sensitive to discount-rate
news. In the modern subsample, the growth portfolio probably contains a higher
proportion of young companies following the initial-public-offering (IPO) wave of the
1960’s, the inclusion of NASDAQ firms in our sample during the late 1970’s, and the
flood of technology IPOs in the 1990’s.

The increase in growth stocks’ discount-rate betas may also be partially explained
by changes in stock market listing requirements. During the early period, only firms
with significant internal cash flowmade it to the Big Board and thus our sample. This
is because, in the past, the New York Stock Exchange had very strict profitability
requirements for a firm to be listed on the exchange. The low-BE/ME stocks in the
first half of the sample are thus likely be consistently profitable and independent of
external financing. In contrast, our post-1963 sample also contains NASDAQ stocks
and less-profitable new lists on the NYSE. These firms are listed precisely to improve
their access to equity financing, and many of them will not even survive — let alone
achieve their growth expectations — without a continuing availability of inexpensive
equity financing.

Finally, it is possible that our discount-rate news is simply news about investor
sentiment. If growth investing has become more popular among irrational investors
during our sample period, growth stocks may have become more sensitive to shifts in
the sentiment of these investors.

Our risk-sorted portfolios also have different betas in the second subsample. Sort-
ing on market risk while controlling for other state variables induces a spread in only
the discount-rate beta in the second subsample.
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4 Pricing cash-flow and discount-rate betas

We have shown that in the period since 1963, there is a striking difference in the
beta composition of value and growth stocks. The market betas of growth stocks
are disproportionately composed of discount-rate betas rather than cash-flow betas.
The opposite is true for value stocks.

Motivated by this finding, we next examine the validity of a long-horizon investor’s
first-order condition, assuming that the investor holds a 100% allocation to the market
portfolio of stocks at all times. We ask whether the investor would be better off
adding a margin-financed position in some of our test assets (such as value or small
stocks), as a short-horizon investor’s first-order condition would suggest.

Our main finding is that the long-horizon investor’s first-order condition is not
violated by our test assets and that the difference in beta composition can largely
explain the high returns on value and low returns on growth stocks relative to the
predictions of the static CAPM. The extreme small-growth portfolio remains an out-
lier even in our model, but the returns on this portfolio are not sufficiently anomalous
to cause a statistical rejection of the model.

4.1 An intertemporal asset pricing model

Campbell (1993) derives an approximate discrete-time version of Merton’s (1973)
intertemporal CAPM. The model’s central pricing statement is based on the first-
order condition for an investor who holds a portfolio p of tradable assets that contains
all of her wealth. Campbell assumes that this portfolio is observable in order to derive
testable asset-pricing implications from the first-order condition.

Campbell considers an infinitely lived investor who has the recursive preferences
proposed by Epstein and Zin (1989, 1991):

U (Ct,Et (Ut+1)) =
h
(1− δ)C

1−γ
θ

t + δ
¡
Et
¡
U1−γt+1

¢¢ 1
θ

i θ
1−γ
, (11)

where Ct is consumption at time t, γ > 0 is the relative risk aversion coefficient, ψ > 0
is the elasticity of intertemporal substitution, 0 < δ < 1 is the time discount factor,
and θ ≡ (1−γ)/(1−ψ−1). These preferences are a generalization of power utility, for-
malized with an objective function (U) that retains the desirable scale-independence
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of the power utility function. Deviating from the power-utility model, however, the
Epstein-Zin preferences relax the restriction that the elasticity of intertemporal sub-
stitution must equal the reciprocal of the coefficient of relative risk aversion. In the
Epstein-Zin model, the elasticity of intertemporal substitution, ψ, and the coefficient
of relative risk aversion, γ, are both free parameters.

Campbell assumes that all asset returns are conditionally lognormal, and that the
investor’s portfolio returns and its two components are homoskedastic. The assump-
tion of lognormality can be relaxed if one is willing to use Taylor approximations to
the true Euler equations, and the model can be extended to allow changing variances
as discussed by Chen (2003). Empirically, changes in volatility seem to be much less
persistent than changes in expected returns, and thus they generate relatively modest
intertemporal hedging effects on portfolio demands (Chacko and Viceira 1999). For
this reason we continue to assume constant variances in the empirical work of this
paper.

Campbell derives an approximate solution in which risk premia depend only on the
coefficient of relative risk aversion γ and the discount coefficient ρ, and not directly
on the elasticity of intertemporal substitution ψ. The approximation is accurate if
the elasticity of intertemporal substitution is close to one, and it holds exactly in the
limit of continuous time if the elasticity equals one. In the ψ = 1 case, ρ = δ and the
optimal consumption-wealth ratio is conveniently constant and equal to 1− ρ. Thus
our choice of ρ = .951/12 implies that at the end of each month, the investor chooses
to consume .43% of her wealth if ψ = 1.5

Under these assumptions, the optimality of portfolio strategy p requires that the
risk premium on any asset i satisfies

Et[ri,t+1]− rf,t+1 +
σ2i,t
2

= γCovt(ri,t+1, rp,t+1 −Etrp,t+1) (12)

+(1− γ)Covt(ri,t+1,−Np,DR,t+1),

where p is the optimal portfolio that the agent chooses to hold and Np,DR,t+1 ≡
(Et+1−Et)

P∞
j=1 ρ

jrp,t+1+j is discount-rate or expected-return news on this portfolio.

The left hand side of (12) is the expected excess log return on asset i over the
riskless interest rate, plus one-half the variance of the excess return to adjust for

5Schroder and Skiadas (1999) examine this case in a continuous-time framework which eliminates
the need for approximations if ψ = 1.
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Jensen’s Inequality. This is the appropriate measure of the risk premium in a log-
normal model. The right hand side of (12) is a weighted average of two covariances:
the covariance of return i with the return on portfolio p, which gets a weight of γ,
and the covariance of return i with negative of news about future expected returns
on portfolio p, which gets a weight of (1− γ). These two covariances represent the
myopic and intertemporal hedging components of asset demand, respectively. When
γ = 1, it is well known that portfolio choice is myopic and the first-order condition
collapses to the familiar one used to derive the pricing implications of the CAPM.

We can rewrite equation (12) to relate the risk premium to covariance with cash-
flow news and discount-rate news. Since rp,t+1 − Etrp,t+1 = Np,CF,t+1 − Np,DR,t+1,
we have

Et[ri,t+1]− rf,t+1 +
σ2i,t
2
= γCovt(ri,t+1, Np,CF,t+1) + Covt(ri,t+1,−Np,DR,t+1). (13)

Multiplying and dividing by the conditional variance of portfolio p’s return, σ2p,t, we
obtain

Et[ri,t+1]− rf,t+1 +
σ2i,t
2
= γσ2p,tβi,CFp,t + σ2p,tβi,DRp,t. (14)

This equation delivers our prediction that “bad beta” with cash-flow news should
have a risk price γ times greater than the risk price of “good beta” with discount-rate
news, which should equal the variance of the return on portfolio p.

In our empirical work, we begin by assuming that portfolio p is fully invested
in a value-weighted equity index. This assumption implies that the risk price of
discount-rate news should equal the variance of the value-weighted index, about 5%
in the early subsample and 2.5% in the modern subsample. The only free parameter
in equation (14) is then the coefficient of relative risk aversion, γ.

An alternative assumption would be that portfolio p places a weight w on the
value-weighted index and (1− w) on Treasury bills. If the real Treasury-bill return
is constant, this would imply that the variance of portfolio p is w2 times the variance
of the index return, while the cash-flow and discount-rate betas of test asset i with
portfolio p are (1/w) times the cash-flow and discount-rate betas with the index
return. Under this alternative the risk prices for both cash-flow and discount-rate
betas are w times smaller, but the risk price for the cash-flow beta is still γ times the
risk price for the discount-rate beta. The risk prices of the two betas can be used to
identify the two free parameters w and γ.
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4.2 Empirical estimates of risk premia

Would an all-stock investor be better off holding stocks at market weights or over-
weighting value and small stocks? We examine the validity of an unconditional
version of the first-order condition (14) relative to the market portfolio of stocks. We
modify (14) in three ways. First, we use simple expected returns, Et[Ri,t+1−Rrf,t+1],
on the left-hand side, instead of log returns, Et[ri,t+1] − rrf,t+1 + σ2i,t/2. In the log-
normal model, both expectations are the same, and by using simple returns we make
our results easier to compare with previous empirical studies. Second, we condition
down equation (13) to derive an unconditional version of (14) to avoid estimation
of all required conditional moments. Finally, we change the subscript p to M and
use all-stock investment in the market portfolio of stocks as the reference portfolio,
reflecting the fact that we test the optimality of the market portfolio of stocks for the
long-horizon investor. These modifications yield:

E[Ri −Rf ] = γσ2Mβi,CFM + σ2Mβi,DRM (15)

We assume that the log real risk-free rate is approximately constant. We make
this assumption mainly because monthly inflation data are unreliable, especially over
our long 1928:12-2001:12 sample period. This assumption is unlikely to have a major
impact on our tests, since we focus on stock portfolios. The main practical impli-
cation of the constant-real-rate assumption is that cash-flow and discount-rate news
computed from excess CRSP value-weight index returns are identically equivalent to
news terms computed from real CRSP value-weight index returns.

We use 45 test assets, 25 size- and book-to-market sorted portfolios and 20 risk-
sorted portfolios, on the left hand side of the unconditional first-order condition (15).
We evaluate the performance of the traditional CAPM that restricts cash-flow and
discount-rate betas to have the same price of risk, our two-beta intertemporal asset
pricing model that restricts the price of discount-rate risk to equal the variance of
the market return, and an unrestricted two-beta model that allows free risk prices
for cash-flow and discount-rate betas. As discussed above, the unrestricted model
can be interpreted as a slight generalization of our model that allows the rational
investor’s portfolio to include Treasury bills as well as equities.

Each model is estimated in two different forms: one with a restricted zero-beta
rate equal to the Treasury-bill rate, and one with an unrestricted zero-beta rate
following Black (1972). The first specification includes Treasury bills in the set of
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alternative assets available to the investor, while the second assumes that the investor
is considering only reallocations of the portfolio among alternative types of equities.
Thus in the first specification we ask the model to explain the unconditional equity
premium as well as the premia to value stocks, small stocks, and risk-sorted stocks;
in the second specification we remove the equity premium from the set of phenomena
to be explained.

Table 6 reports results for the early sample period 1929:1—1963:6. The table has
six columns, two specifications for each of our three asset pricing models. The first
nine rows of Table 6 are divided into three sets of four rows. The first set of four rows
corresponds to the zero-beta rate (in excess of the Treasury-bill rate), the second set
to the premium on cash-flow beta, and the third set to the premium on discount-rate
beta. With each set, the first row reports the point estimate in fractions per month,
and the second row annualizes this, multiplying by 1200 to ease the interpretation of
the estimate. The third and fourth rows present two alternative standard errors of
the monthly estimate.

These parameters are estimated from a cross-sectional regression

R
e

i = g0 + g1
bβi,CF + g2bβi,DR + ei, (16)

where bar denotes time-series mean and R
e

i ≡ Ri − Rrf denotes the sample average
simple excess return on asset i. The implied risk-aversion coefficient can be recovered
as g1/g2.

Standard errors are produced with a bootstrap from 2500 simulated realizations.
Our bootstrap experiment samples test-asset returns and VAR errors, and uses the
OLS VAR estimates in Table 2 to generate the state-variable data. We partition
the VAR errors and test-asset returns into two groups, one for 1929:1-1963:6 and
another for 1963:7-2001:12, which enables us to use the same simulated realizations
in subperiod analyses. The first set of standard errors (labelled A) conditions on
estimated news terms and generates betas and return premia separately for each
simulated realization, while the second set (labelled B) also estimates the VAR and
the news terms separately for each simulated realization. Standard errors B thus
incorporate the considerable additional sampling uncertainty due to the fact that the
news terms as well as betas are generated regressors.

Below the premia estimates, we report the bR2 statistic for a cross-sectional regres-
sion of average returns on our test assets onto the fitted values from the model. The
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regression bR2 is computed as
bR2 = 1− be0be¡

R
e

i −
P

iR
e

i

¢0 ¡
R
e

i −
P

iR
e

i

¢ , (17)

which allows for negative bR2 for poorly fitting models estimated under the constraint
that the zero-beta rate equals the risk-free rate.

Although the regression bR2 is intuitive and transparent, it gives equal weight to
each asset included in the set of test assets even though some assets may be more
volatile than others. To address this concern we also report a composite pricing error
and its 5% critical value. The composite pricing error is computed as be0bΩ−1be, wherebe is the vector of estimated residuals from regression (16) and bΩ is a diagonal matrix
with estimated return volatilities on the main diagonal. The weighting matrix, bΩ−1,
in the composite pricing error formula places less weight on noisy observations yet
it is independent of the specific pricing model. We avoid using a freely estimated
variance-covariance matrix of test asset returns for bΩ because with 45 test assets, we
are concerned that the inverse of this matrix would be poorly behaved. Hodrick
and Zhang (2001) discuss related alternative methods for assessing the performance
of asset pricing models.

Two alternative 5% critical values for the composite pricing error are produced
with a bootstrap method similar to the one we have described above, except that
the test-asset returns are adjusted to be consistent with the pricing model before the
random samples are generated. Critical values A condition on estimated news terms,
while critical values B take account of the fact that news terms must be estimated.

Table 6 shows that in the 1929:1—1963:6 period, the traditional CAPM explains the
cross-section of stock returns reasonably well, and is comparable to the restricted two-
beta model and the two-beta model with unrestricted risk prices. The cross-sectional
R2 statistics are about 40% for models with zero-beta rates equal to the Treasury-bill
rate, and around 45% for models with unrestricted zero-beta rates. None of the
models in the table come close to being rejected at the 5% level.

Figure 3 provides a visual summary of these results. The figure plots the predicted
average excess return on the horizontal axis and the actual sample average excess
return on the vertical axis. For a model with a 100% estimated R2, all the points
would fall on the 45-degree line displayed in each graph. The triangles in the figures
denote the 24 Fama-French portfolios and asterisks the 20 risk-sorted portfolios. All
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the models generate nearly identical scatter plots.

The good performance of the CAPM in the 1929—1963 period is due to the fact
that in this period, the bad cash-flow beta is roughly a constant fraction of the
CAPM beta across assets. Thus our tests cannot discriminate between the static
and intertemporal CAPM models in this period.

Results are very different in the 1963:7—2001:12 period. Table 7 shows that in
this period, the CAPM fails disastrously to explain the returns on the test assets.
When the zero-beta rate is left a free parameter, the cross-sectional regression picks a
negative premium for the CAPM beta and implies a near-zero estimated R2. When
the zero-beta rate is constrained to the risk-free rate, the CAPM bR2 falls to -60%,
i.e., the model has larger pricing error than the null hypothesis that all portfolios
have equal expected returns. The static CAPM is easily rejected at the 5% level by
both sets of critical values.

The two-beta model with a restricted risk price for discount-rate news explains
almost 50% of the cross-sectional variation in average returns across our test assets.
The model performs almost as well with a restricted zero-beta rate, equal to the
Treasury bill rate, as it does with an unrestricted Treasury bill rate. This indicates
that both the unconditional equity premium and the premia on alternative equity
portfolios can be rationalized by the same coefficient of risk aversion. The estimated
risk price for cash-flow beta is high at 58% per year with a restricted zero-beta rate
and 69% per year with an unrestricted zero-beta rate. There are large standard
errors on these estimates, but they are statistically distinguishable from the low risk
price on discount-rate news. The model is not rejected at the 5% level by either set
of critical values.

The critical values for the restricted intertemporal model with a restricted zero-
beta rate are particularly large, an order of magnitude larger than those for the other
models in the table. This is due to the fact that this model pins down both the
zero-beta rate and the risk price for discount-rate news, and thus it pins down the
total return generated by a unit of discount-rate beta. Since estimated discount-rate
betas are noisy, estimates of this model can behave extremely badly even if the model
is true.

The two-beta model with an unrestricted risk price assigns an even lower risk
price to discount-rate beta than the variance of the market return. This would be
consistent with a modified model in which a conservative rational investor holds a
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portfolio that contains Treasury bills as well as equities. The implied share of equities
in the portfolio is 60% in the model with a restricted zero-beta rate, and slightly below
40% in the model with an unrestricted zero-beta rate. This model generates cross-
sectional R2 statistics slightly above 50%. A visual summary of these results is
provided by Figure 4.

Another way to evaluate the performance of our model is to compare it to less
theoretically structured models. We do this in two ways. First, we compare our
restricted ICAPM model to a model whose factors are the four innovations from
our VAR system, with unrestricted risk prices. In the modern sample the four
unrestricted risk prices line up almost perfectly with those implied by our restricted
model. Second, we compare the two-beta model to the influential three-factor model
of Fama and French (1993). The Fama-French model includes three risk factors,
one each for the market, small stocks, and value stocks. We estimate the betas for
each test asset from simple returns using Ibbotson’s sum-beta methodology with one
lag and then regress the average excess test-asset returns on the estimated betas.
In the early subsample, the cross-sectional R2 statistic for the Fama-French three-
factor model is 10 percentage points higher than that for our two-beta model with
an unconstrained zero-beta rate, and 1 percentage point higher with a zero-beta rate
constrained to the risk-free rate. In the modern subsample, the Fama-French model
outperforms the two-beta model by 30 and 26 percentage points, respectively. This
difference in explanatory power is not statistically significant, as the restrictions of our
model are not rejected by our composite pricing error test. Given that the Fama-
French model has three freely estimated betas and thus two additional degrees of
freedom (since the premium on discount-rate beta is restricted to equal the variance
of the market’s return in our model), we consider the relative performance of the
two-beta ICAPM to be a success.

Although the two-beta model is generally quite successful in explaining the cross-
section of average returns, the model cannot price the extreme small-growth portfolio.
In the first subsample, the extreme small-growth portfolio has an annualized average
return that is 8.8 percentage points lower than the model’s prediction. In the second
subsample, this return on this portfolio is 3.2 percentage points lower than the model’s
prediction. These pricing-error calculations use the model specification with the zero-
beta rate constrained to the risk-free rate. In both subsamples, these pricing errors
are economically large and not meaningfully smaller than the pricing errors of the
Sharpe-Lintner CAPM for this portfolio (9.9 percentage points in the first and 7.25
percentage points in the second subsample).
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One concern about these results might be that the estimated preference parame-
ters appear rather different in the first and second subsamples. The point estimate of
risk aversion, in the model with a restricted zero-beta rate and risk price for discount-
rate news, is 3.6 in the first subsample and almost 24 in the second subsample. Even
if betas and the variance of the market return have changed over time, one would hope
that the underlying preferences of investors have remained stable. To address this
concern, we have estimated a version of our model that allows for changing betas and
variances across the two subsamples, but imposes a constant coefficient of relative risk
aversion. This model is not rejected at the 5% level, and the implied risk aversion
coefficient is approximately six. Also, if we allow for different risk-aversion coeffi-
cients for the subsamples, we cannot reject the hypothesis that the two parameters
are the same.

Another way to come at this issue is to estimate the preference parameters from
a conditional model. We show the results of this exercise in Figure 5. We show the
smoothed conditional premium onCovt(ri,t+1, NM,CF,t+1) andCovt(ri,t+1,−NM,DR,t+1),
with the ICAPM predicting premium of γ on the former and unit premium on the
latter. The graph is produced in three steps as follows. First, we run three sets
of 45 time-series regressions on a constant, time trend, and the lagged VAR state
variables, i.e., three regressions per test asset. The dependent variables in these re-
gressions are simple excess return on the test assets (Rei,t), (NCF,t+NCF,t−1)R

e
i,t, and

(NDR,t +NDR,t−1)Rei,t. Second, each month we regress the forecast values of excess
return on the forecast values of the two covariances, excluding the constant and thus
restricting the zero-beta rate to equal the risk-free rate. Third, we plot the five-year
moving averages of these cross-sectional regression coefficients in Figure 5.

The lower line in Figure 5 is the estimated risk price for the discount-rate beta,
divided by the variance of market returns. If our ICAPM holds exactly, this should
be a horizontal line with a height of one. The upper line is the estimated risk price
for the cash-flow beta, again divided by the variance of market returns. According
to our ICAPM, this should be a horizontal line with a height of γ. The traditional
CAPM implies that both lines should have the same height. Figure 5 shows that
the scaled price of discount-rate risk has a long-term average very close to one, with
substantial variations around this average, while the scaled price of cash-flow risk
has a long-term average around six, again with substantial shorter-term variations.
During the period 1935—1955 the two lines are close to one another, illustrating the
good performance of the CAPM in this period. For most of the period since 1960
the two lines have diverged substantially, but there is no sign of a trend or other
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low-frequency instability in the risk prices.

In an effort to ascertain the robustness of our empirical results, we have experi-
mented with various alternative specifications to those considered here. Our results
are robust to many reasonable changes in our empirical methodology, but a few fea-
tures of this methodology are essential to the good performance of the model. First,
when we estimate betas in our monthly model we need to include at least one lagged
news term in the regression in the manner of Scholes and Williams (1977). If we
change the data frequency to quarterly, we no longer need to use any lagged news
terms when we estimate betas. We attribute this in part to the fact that our aggre-
gate VAR contains a price-earnings ratio whose earnings term is updated quarterly,
so this source of news about aggregate cash flows is measured quarterly rather than
monthly. Second, the loglinearization parameter ρ affects the relative volatility of
the cash-flow and discount-rate news terms. If we vary ρ within the range 0.94 to
0.96 the results are very similar to those we report for ρ = 0.95, but outside this
range the performance of our most restricted model, the ICAPM with a single free
parameter, begins to deteriorate. Less restricted versions of the model, with a free
zero-beta rate or free risk price for discount-rate beta, are relatively insensitive to the
choice of ρ.

Finally, our results depend on the inclusion of the small-stock value spread in
our aggregate VAR system. If we exclude this variable we no longer find a large
difference between the cash-flow betas of value stocks and growth stocks. We have
discussed various reasons why the small-stock value spread might predict market
returns. Further motivation is provided by the ICAPM itself. We know that value
stocks outperform growth stocks, particularly among smaller stocks, and that this
cannot be explained by the traditional static CAPM. If the ICAPM is to explain this
anomaly, then small growth stocks must have intertemporal hedging value that offsets
their low returns; that is, their returns must be negatively correlated with innovations
to investment opportunities. In order to evaluate this hypothesis it is natural to ask
whether a long moving average of small growth stock returns predicts investment
opportunities. This is exactly what we do when we include the small-stock value
spread in our forecasting model for market returns. In short, the small-stock value
spread is not an arbitrary forecasting variable but one that is suggested by the asset
pricing theory we are trying to test.
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4.3 Loose ends and future directions

A number of unresolved issues remain. First, we have used a model that assumes
a constant variance for the market return and its two components. We can extend
the model to allow for changing volatility of the market return, in the manner Chen
(2003), but in this case we must measure news about volatility-adjusted discount
rates rather than simply news about discount rates themselves. We believe that
the properties of market discount-rate news will be fairly insensitive to any volatility
adjustment, since movements in market volatility appear to be relatively short-lived.
Related to this, we can allow for dynamically changing betas rather than assuming, as
we have done here, that betas are constant over long periods of time. Ang and Chen
(2003) and Franzoni (2002) discuss alternative methods for estimating the evolution
of betas over time.

We have assumed that the rational long-term investor always holds a constant
proportion of her assets in equities. But if expected returns on stocks vary over
time while the risk-free interest rate and the volatility of the stock market are ap-
proximately constant, the long-term investor has an obvious incentive to strategically
time the market. In future work we plan to extend the model to examine whether
a long-term investor who strategically allocates wealth into stocks and bonds would
be better off overweighting small and value stocks than holding the stock portion
of her portfolio at market weights. With this extension it will be important to
handle changing volatility correctly, since a strategic market-timing portfolio will be
heteroskedastic even if the stock market portfolio is homoskedastic.

We have nothing to say about the profitability of momentum strategies. Although
we have not examined this issue in detail, we are pessimistic about the two-beta
model’s ability to explain average returns on portfolios formed on past one-year stock
returns, or on recent earnings surprises. Stocks with positive past news and high
short-term expected returns are likely to have a higher fraction of their betas due to
discount-rate betas, and thus are likely to have even lower return predictions in the
ICAPM than the already-too-low predictions of the static CAPM.

Our model is silent on what is the ultimate source of variation in the market’s
discount rate. The mechanism that causes the market’s overall valuation level to
fluctuate would have to meet at least two criteria to be compatible with our simple
intertemporal asset-pricing model. The shock to discount rates cannot be perfectly
correlated with the shock to cash flows. Also, states of the world in which discount

33



rates increase while expected cash flows remain constant should not be states in which
marginal utility is unusually high for other reasons. If marginal utility is very high
in those states, the discount-rate risk factor will have a high premium instead of the
low premium we detect in the data.

We have estimated the cash-flow and discount-rate betas of value and growth
stocks from the behavior of their returns, without showing how these betas are linked
to the underlying cash flows of value and growth companies. Similar to our de-
composition of the market return, an individual firm’s stock return can be split into
cash-flow and discount-rate news. Through this decomposition, a stock’s cash-flow
and discount-rate betas can be further decomposed into two parts each, along the lines
of Campbell and Mei (1993) and Vuolteenaho (2002), and this decomposition might
yield interesting additional insights. For example, the hypothesis that growth stocks
are equity-dependent companies predicts that at least some of the high covariance
between growth stocks’ returns and the market’s discount-rate news is due to covari-
ance between growth stocks’ cash flows and the market’s discount-rate news. A pure
investor-sentiment hypothesis would probably predict that all of the higher discount-
rate beta is due to covariance between growth stocks’ expected returns and the mar-
ket’s discount-rate news. Preliminary results in Campbell, Polk, and Vuolteenaho
(2003) suggest that the cash-flow properties of growth and value stocks are the main
determinants of their betas with the cash-flow and discount-rate news on the aggre-
gate stock market. Bansal, Dittmar, and Lundblad (2003) also model the cash flows
of value and growth stocks in relation to their risks in a consumption-based asset
pricing model.

Finally, our model has interesting implications for corporate finance, specifically
for the methods used by corporations to calculate a cost of capital when evaluating
investment projects. The two-beta model suggests that the most important deter-
minant of the cost of capital is not the market beta of a project, but its cash-flow
beta. This could be estimated using an econometric model, as we do here, but it is
possible that simpler methods, such as estimating betas over long horizons or regress-
ing returns on aggregate corporate profitability, would also provide useful estimates
of cash-flow beta and thus of the cost of capital.
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5 Conclusions

In his discussion of empirical evidence on market efficiency, Fama (1991) writes: “In
the end, I think we can hope for a coherent story that (1) relates the cross-section
properties of expected returns to the variation of expected returns through time, and
(2) relates the behavior of expected returns to the real economy in a rather detailed
way.” In this paper, we have presented a model that meets the first of Fama’s
objectives and shows empirically that Merton’s (1973) intertemporal capital asset
pricing model (ICAPM) helps to explain the cross-section of average stock returns.

We propose a simple and intuitive two-beta model that captures a stock’s risk in
two risk loadings, cash-flow beta and discount-rate beta. The return on the market
portfolio can be split into two components, one reflecting news about the market’s
future cash flows and another reflecting news about the market’s discount rates. A
stock’s cash-flow beta measures the stock’s return covariance with the former com-
ponent and its discount-rate beta its return covariance with the latter component.
Intertemporal asset pricing theory suggests that the “bad” cash-flow beta should have
a higher price of risk than the “good” discount-rate beta. Specifically, the ratio of
the two risk prices equals the risk aversion coefficient that makes an investor content
to hold the aggregate market, and the “good” risk price should equal the variance of
the return on the market.

Empirically, we find that value stocks and small stocks have considerably higher
cash-flow betas than growth stocks and large stocks, and this can explain their higher
average returns. The post-1963 negative CAPMalphas of growth stocks are explained
by the fact that their betas are predominantly of the good variety. The model also
explains why the sort on past CAPM betas induces a strong spread in average returns
during the pre-1963 sample but little spread during the post-1963 sample. The post-
1963 CAPM beta sort induces a post-ranking spread only in the good discount-rate
beta, which carries a low premium. Finally, the model achieves these successes with
the discount-rate premium constrained to the prediction of the intertemporal model.

Our model has important implications for rational investors. While we do not
show that such investors should hold the market portfolio in preference to strategically
timing the equity market, we do show that sufficiently risk-averse equity-only investors
with a long investment horizon should view the high average returns on value stocks
and small stocks as appropriate compensation for risk rather than a justification for
systematic tilts towards these types of stocks.
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Our two-beta model is, of course, not the first attempt to operationalize Mer-
ton’s (1973) ICAPM. However, we hope that our model is an improvement over the
specifications by Campbell (1996), Li (1997), Hodrick, Ng, and Sengmueller (1999),
Lynch (1999), Ng (2002), Guo (2002), Brennan, Wang, and Xia (2003), Chen (2003)
and others in two respects. First, our specification “works” in the sense that it has
respectable explanatory power in explaining the cross-section of average asset returns
with premia restricted to values predicted by the theory. Second, by restating the
model in the simple two-beta form, with a close link to the static CAPM, we hope
to facilitate the empirical implementation of the ICAPM in both academic research
and practical applications.
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Table 1: Descriptive statistics of the VAR state variables
The table shows the descriptive statistics of the VAR state variables estimated from
the full sample period 1928:12-2001:12, 877 monthly data points. reM is the excess log
return on the CRSP value-weight index. TY is the term yield spread in percentage
points, measured as the yield difference between ten-year constant-maturity taxable
bonds and short-term taxable notes. PE is the log ratio of S&P 500’s price to S&P
500’s ten-year moving average of earnings. V S is the small-stock value-spread, the
difference in the log book-to-market ratios of small value and small growth stocks.
The small value and small growth portfolios are two of the six elementary portfolios
constructed by Davis, Fama, and French (2000). “Stdev.” denotes standard deviation
and “Autocorr.” the first-order autocorrelation of the series.

Variable Mean Median Stdev. Min Max Autocorr.
reM .004 .009 .056 -.344 .322 .108
TY .629 .550 .643 -1.350 2.720 .906
PE 2.868 2.852 .374 1.501 3.891 .992
V S 2.653 1.522 .374 1.192 2.713 .992
Correlations reM,t+1 TYt+1 PEt+1 V St+1

reM,t+1 1 .071 -.006 -.030
TYt+1 .071 1 -.253 .423
PEt+1 -.006 -.253 1 -.320
V St+1 -.030 .423 -.320 1
reM,t .103 .065 .070 -.031
TYt .070 .906 -.248 .420
PEt -.090 -.263 .992 -.318
V St -.025 .425 -.322 .992
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Table 2: VAR parameter estimates
The table shows the OLS parameter estimates for a first-order VAR model including
a constant, the log excess market return (reM), term yield spread (TY ), price-earnings
ratio (PE), and small-stock value spread (V S). Each set of three rows corresponds
to a different dependent variable. The first five columns report coefficients on the five
explanatory variables, and the remaining columns show R2 and F statistics. OLS
standard errors are in square brackets and bootstrap standard errors in parentheses.
Bootstrap standard errors are computed from 2500 simulated realizations. The
table also reports the correlation matrix of the shocks with shock standard deviations
on the diagonal, labeled “corr/std.” Sample period for the dependent variables is
1929:1-2001:12, 876 monthly data points.

constant reM,t TYt PEt V St R2 % F

reM,t+1 .062 .094 .006 -.014 -.013 2.57 5.34
[.020] [.033] [.003] [.005] [.006]
(.026) (.034) (.003) (.007) (.008)

TYt+1 .046 .046 .879 -.036 .082 82.41 1.02×10
3

[.097] [.165] [.016] [.026] [.028]
(.012) (.170) (.017) (.031) (.036)

PEt+1 .019 .519 .002 .994 -.003 99.06 2.29×10
4

[.013] [.022] [.002] [.004] [.004]
(.017) (.022) (.002) (.004) (.005)

V St+1 .014 -.005 .002 .000 .991 98.40 1.34×10
4

[.017] [.029] [.003] [.005] [.005]
(.024) (.028) (.003) (.006) (.008)

corr/std reM,t+1 TYt+1 PEt+1 V St+1

reM,t+1 .055 .018 .777 -.052
(.003) (.048) (.018) (.052)

TYt+1 .018 .268 .018 -.012
(.048) (.013) (.039) (.034)

PEt+1 .777 .018 .036 -.086
(.018) (.039) (.002) (.045)

V St+1 -.052 -.012 -.086 .047
(.052) (.034) (.045) (.003)
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Table 3: Cash-flow and discount-rate news for the market portfolio
The table shows the properties of cash-flow news (NCF ) and discount-rate news (NDR)
implied by the VAR model of Table 2. The upper-left section of the table shows the
covariance matrix of the news terms. The upper-right section shows the correlation
matrix of the news terms with standard deviations on the diagonal. The lower-
left section shows the correlation of shocks to individual state variables with the
news terms. The lower right section shows the functions (e10 + e10λ, e10λ) that
map the state-variable shocks to cash-flow and discount-rate news. We define λ ≡
ρΓ(I − ρΓ)−1, where Γ is the estimated VAR transition matrix from Table 2 and
ρ is set to .95 per annum. reM is the excess log return on the CRSP value-weight
index. TY is the term yield spread. PE is the log ratio of S&P 500’s price to S&P
500’s ten-year moving average of earnings. V S is the small-stock value-spread, the
difference in log book-to-markets of value and growth stocks. Bootstrap standard
errors (in parentheses) are computed from 2500 simulated realizations.

News covariance NCF NDR News corr/std NCF NDR
NCF .00064 .00015 NCF .0252 .114

(.00022) (.00037) (.004) (.232)
NDR .00015 .00267 NDR .114 .0517

(.00037) (.00070) (.232) (.007)
Shock correlations NCF NDR Functions NCF NDR
reM shock .352 -.890 reM shock .602 -.398

(.224) (.036) (.060) (.060)
TY shock .128 .042 TY shock .011 .011

(.134) (.081) (.013) (.013)
PE shock -.204 -.925 PE shock -.883 -.883

(.238) (.039) (.104) (.104)
V S shock -.493 -.186 V S shock -.283 -.283

(.243) (.152) (.160) (.160)
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Table 4: Cash-flow and discount-rate betas in the early sample
The table shows the estimated cash-flow (bβCF ) and discount-rate betas (bβDR) for
the 25 ME- and BE/ME-sorted portfolios and 20 risk-sorted portfolios. “Growth”
denotes the lowest BE/ME, “value” the highest BE/ME, “small” the lowest ME,
and “large” the highest ME stocks. bbV S, bbTY , and bbrM are past return-loadings
on value-spread shock, term-yield shock, and market-return shock. “Diff.” is the
difference between the extreme cells. Standard errors [in brackets] are conditional
on the estimated news series. Estimates are for the 1929:1-1963:6 period.

bβCF Growth 2 3 4 Value Diff.

Small .53 [.11] .46 [.09] .40 [.08] .42 [.07] .49 [.08] -.04 [.07]
2 .30 [.06] .34 [.06] .36 [.06] .38 [.06] .45 [.08] .16 [.04]
3 .30 [.06] .28 [.05] .31 [.06] .35 [.06] .47 [.08] .18 [.04]
4 .20 [.05] .26 [.05] .31 [.05] .35 [.07] .50 [.09] .30 [.05]
Large .20 [.05] .19 [.05] .28 [.06] .33 [.07] .40 [.09] .19 [.06]
Diff. -.33 [.09] -.26 [.06] -.12 [.05] -.09 [.04] -.10 [.04]bβDR Growth 2 3 4 Value Diff.

Small 1.32 [.18] 1.46 [.19] 1.32 [.15] 1.27 [.14] 1.27 [.15] -.06 [.15]
2 1.04 [.11] 1.15 [.11] 1.09 [.11] 1.25 [.11] 1.25 [.13] .21 [.08]
3 1.13 [.10] 1.01 [.08] 1.08 [.09] 1.05 [.10] 1.27 [.12] .14 [.06]
4 .87 [.07] .97 [.08] .97 [.09] 1.06 [.10] 1.36 [.13] .49 [.10]
Large .88 [.07] .82 [.07] .87 [.08] 1.06 [.09] 1.18 [.12] .31 [.10]
Diff. -.45 [.15] -.64 [.15] -.43 [.10] -.21 [.08] -.08 [.10]

bβCF Lo bbrM 2 3 4 Hi bbrM Diff.

Lo bbV S .21 [.04] .25 [.05] .31 [.06] .37 [.07] .45 [.09] .25 [.05]

Hi bbV S .15 [.03] .19 [.04] .25 [.06] .28 [.06] .37 [.08] .22 [.05]

Lo bbTY .18 [.04] .21 [.05] .26 [.06] .31 [.07] .41 [.08] .23 [.04]

Hi bbTY .16 [.04] .21 [.04] .27 [.05] .32 [.06] .40 [.08] .24 [.05]bβDR Lo bbrM 2 3 4 Hi bbrM Diff.

Lo bbV S .73 [.06] .87 [.07] 1.04 [.09] 1.20 [.11] 1.46 [.13] .73 [.09]

Hi bbV S .64 [.05] .75 [.07] .96 [.08] 1.09 [.09] 1.30 [.11] .66 [.08]

Lo bbTY .73 [.06] .85 [.07] 1.00 [.09] 1.17 [.10] 1.38 [.12] .64 [.08]

Hi bbTY .65 [.06] .76 [.06] .88 [.08] 1.09 [.10] 1.34 [.12] .69 [.09]
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Table 5: Cash-flow and discount-rate betas in the modern sample
The table shows the estimated cash-flow (bβCF ) and discount-rate betas (bβDR) for
the 25 ME- and BE/ME-sorted portfolios and 20 risk-sorted portfolios. “Growth”
denotes the lowest BE/ME, “value” the highest BE/ME, “small” the lowest ME,
and “large” the highest ME stocks. bbV S, bbTY , and bbrM are past return-loadings
on value-spread shock, term-yield shock, and market-return shock. “Diff.” is the
difference between the extreme cells. Standard errors [in brackets] are conditional
on the estimated news series. Estimates are for the 1963:7-2001:12 period.

bβCF Growth 2 3 4 Value Diff.

Small .06 [.07] .07 [.06] .09 [.05] .09 [.04] .13 [.04] .07 [.04]
2 .04 [.06] .08 [.05] .10 [.04] .11 [.04] .12 [.04] .09 [.03]
3 .03 [.05] .09 [.04] .11 [.04] .12 [.03] .13 [.04] .09 [.04]
4 .03 [.05] .10 [.04] .11 [.03] .11 [.03] .13 [.04] .10 [.04]
Large .03 [.04] .08 [.03] .09 [.03] .11 [.03] .11 [.03] .09 [.03]
Diff. -.03 [.05] .02 [.05] -.01 [.04] .02 [.04] -.01 [.04]bβDR Growth 2 3 4 Value Diff.

Small 1.66 [.13] 1.37 [.11] 1.18 [.10] 1.12 [.09] 1.12 [.10] -.54 [.08]
2 1.54 [.11] 1.22 [.09] 1.07 [.08] .96 [.08] 1.03 [.09] -.52 [.08]
3 1.41 [.10] 1.11 [.08] .95 [.08] .82 [.07] .94 [.09] -.47 [.09]
4 1.27 [.09] 1.05 [.08] .89 [.07] .79 [.07] .87 [.08] -.41 [.09]
Large 1.00 [.07] .87 [.07] .74 [.06] .63 [.07] .68 [.07] -.33 [.08]
Diff. -.66 [.12] -.50 [.11] -.44 [.10] -.49 [.09] -.44 [.08]

bβCF Lo bbrM 2 3 4 Hi bbrM Diff.

Lo bbV S .09 [.03] .08 [.03] .10 [.04] .10 [.04] .12 [.05] .04 [.04]

Hi bbV S .06 [.03] .06 [.03] .07 [.04] .05 [.05] .06 [.06] -.01 [.04]

Lo bbTY .06 [.03] .04 [.03] .08 [.04] .08 [.04] .06 [.06] .00 [.04]

Hi bbTY .09 [.03] .07 [.03] .09 [.03] .08 [.04] .10 [.05] .00 [.04]bβDR Lo bbrM 2 3 4 Hi bbrM Diff.

Lo bbV S .57 [.06] .77 [.06] .88 [.07] 1.12 [.08] 1.40 [.09] .82 [.08]

Hi bbV S .67 [.06] .85 [.07] 1.06 [.07] 1.30 [.09] 1.58 [.11] .91 [.11]

Lo bbTY .73 [.07] .86 [.07] 1.05 [.07] 1.23 [.08] 1.60 [.12] .87 [.10]

Hi bbTY .61 [.06] .79 [.06] .91 [.06] 1.11 [.07] 1.39 [.09] .78 [.08]
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Table 6: Asset pricing tests for the early sample
The table shows premia estimated from the 1929:1-1963:6 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The test assets are the 25
ME- and BE/ME- sorted portfolios and 20 risk-sorted portfolios. The second
column per model constrains the zero-beta rate (Rzb) to equal the risk-free rate (Rrf).
Estimates are from a cross-sectional regression of average simple excess test-asset
returns (monthly in fractions) on an intercept and estimated cash-flow (bβCF ) and
discount-rate betas (bβDR). Standard errors and critical values [A] are conditional
on the estimated news series and (B) incorporating full estimation uncertainty of the
news terms. The test rejects if the pricing error is higher than the listed 5% critical
value.

Parameter Factor model Two-beta ICAPM CAPM
Rzb less Rrf (g0) .0042 0 .0023 0 .0023 0
% per annum 4.98% 0% 2.76% 0% 2.74% 0%
Std. err. A [.0032] N/A [.0024] N/A [.0028] N/A
Std. err. B (.0029) N/A (.0030) N/A (.0028) N/AbβCF premium (g1) .0173 .0069 .0083 .0148 .0051 .0067
% per annum 20.76% 8.22% 9.91% 17.80% 6.11% 8.00%
Std. err. A [.0231] [.0221] [.0167] [.0175] [.0046] [.0034]
Std. err. B (.0266) (.0248) (.0221) (.0442) (.0046) (.0034)bβDR premium (g2) -.0003 .0066 .0041 .0041 .0051 .0067
% per annum -.41% 7.93% 4.95% 4.95% 6.11% 8.00%
Std. err. A [.0092] [.0067] [.0006] [.0006] [.0046] [.0034]
Std. err. B (.0088) (.0071) (.0006) (.0006) (.0046) (.0034)bR2 48.08% 40.26% 45.85% 37.98% 44.52% 40.26%
Pricing error .0117 .0126 .0119 .0133 .0127 .0126
5% critic. val. A [.019] [.024] [.024] [0.033] [.021] [.027]
5% critic. val. B (.019) (.024) (.031) (0.099) (.021) (.027)
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Table 7: Asset pricing tests for the modern sample
The table shows premia estimated from the 1963:7-2001:12 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The test assets are the 25
ME- and BE/ME- sorted portfolios and 20 risk-sorted portfolios. The second
column per model constrains the zero-beta rate (Rzb) to equal the risk-free rate (Rrf).
Estimates are from a cross-sectional regression of average simple excess test-asset
returns (monthly in fractions) on an intercept and estimated cash-flow (bβCF ) and
discount-rate betas (bβDR). Standard errors and critical values [A] are conditional
on the estimated news series and (B) incorporating full estimation uncertainty of the
news terms. The test rejects if the pricing error is higher than the listed 5% critical
value.

Parameter Factor model Two-beta ICAPM CAPM
Rzb less Rrf (g0) .0009 0 -.0009 0 .0069 0
% per annum 1.05% 0% -1.04% 0% 8.24% 0%
Std. err. A [.0029] N/A [.0031] N/A [.0026] N/A
Std. err. B (.0033) N/A (.0031) N/A (.0026) N/AbβCF premium (g1) .0529 .0572 .0575 .0483 -.0007 .0051
% per annum 63.47% 68.59% 69.04% 57.92% -.83% 6.10%
Std. err. A [.0178] [.0163] [.0182] [.0272] [.0034] [.0023]
Std. err. B (.0325) (.0444) (.0262) (.0423) (.0034) (.0023)bβDR premium (g2) .0007 .0012 .0020 .0020 -.0007 .0051
% per annum .88% 1.44% 2.43% 2.43% -.83% 6.10%
Std. err. A [.0033] [.0031] [.0002] [.0002] [.0034] [.0023]
Std. err. B (.0085) (.0099) (.0002) (.0002) (.0034) (.0023)bR2 52.10% 51.59% 49.26% 47.41% 3.10% -61.57%
Pricing error .0271 .0269 .0272 .0275 .0592 .0875
5% critic. val. A [.028] [.042] [.051] [.314] [.032] [.046]
5% critic. val. B (.030) (.071) (.051) (.488) (.032) (.046)
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Figure 1: Time-series evolution of the predictor variables.

This figure plots the time-series of three predictor variables: (1) The log ratio
of price to a ten-year moving average of earnings, marked with a solid line; (2) the
small-stock value spread, marked with line and squares; and (3) the term yield spread,
marked with dashed line and triangles. All variables are demeaned and normalized
by their sample standard deviations. The sample period is 1928:12-2001:12.
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Figure 2: Cash-flow and discount-rate recessions.

This figure plots the cash-flow news and negative of discount-rate news, smoothed
with a trailing exponentially-weighted moving average. The decay parame-
ter is set to .08 per month, and the smoothed news series are generated as
MAt(N) = .08Nt + (1 − .08)MAt−1(N). The dotted vertical lines denote NBER
business-cycle troughs. The sample period is 1929:1-2001:12.
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Figure 3: Performance of the CAPM and ICAPM, 1929:1-1963:6.

The four diagrams correspond to (clockwise from the top left) the ICAPM
with a free zero-beta rate, the ICAPM with the zero-beta rate constrained to the
risk-free rate, the CAPM with a constrained zero-beta rate, and the CAPM with
an unconstrained zero-beta rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess
returns. The predicted values are from regressions presented in Table 6. Triangles
denote the 25 ME and BE/ME portfolios and asterisks the 20 risk-sorted portfolios.
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Figure 4: Performance of the CAPM and ICAPM, 1963:7-2001:12.

The four diagrams correspond to (clockwise from the top left) the ICAPM
with a free zero-beta rate, the ICAPM with the zero-beta rate constrained to the
risk-free rate, the CAPM with a constrained zero-beta rate, and te CAPM with
an unconstrained zero-beta rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess
returns. The predicted values are from regressions presented in Table 7. Triangles
denote the 25 ME and BE/ME portfolios and asterisks the 20 risk-sorted portfolios.
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Figure 5: Conditional risk premia for cash-flow and discount-rate betas.

We show the smoothed conditional premium on βCF (top line) and βDR (bot-
tom line), both scaled by the market’s conditional volatility. The horizontal lines
are time-series averages. First, we run three sets of 45 time-series regressions on
a constant, time trend, and the lagged VAR state variables, where the dependent
variables are (1) excess return on the test assets (Rei,t), (2) (NCF,t + NCF,t−1)R

e
i,t,

and (3) (NDR,t +NDR,t−1)Rei,t. Then, each month, we regress the fitted values of (1)
on the fitted values of (2) and (3), and plot the five-year moving averages of these
cross-sectional coefficients. 55


