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Abstract 

Background: Despite the large stocks of organic nitrogen in soil, nitrogen availability 

limits plant growth in many terrestrial ecosystems because most plants take up only 

inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate 

organic nitrogen directly, only recently has organic nitrogen been found to contribute 

significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely 

nutrient-poor environments and carnivory has evolved in these plants as an alternative 

pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia 

purpurea could directly take up intact amino acids in the field and compared uptake of 

organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We 

hypothesized that the contribution of organic nitrogen to the nitrogen budget of the 

pitcher plant would decline with increasing nitrogen deposition. 

 

Methodology and Principal Findings: At sites in Canada (low nitrogen deposition) 

and the United States (high nitrogen deposition), individual pitchers were fed two amino 

acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), 

individually and in mixture. Plants took up intact amino acids. Acquisition of each form 

of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the 

high deposition site, uptake of organic nitrogen was higher than uptake of inorganic 

nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. 

Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves 

and breaks down captured prey had no effect on nitrogen uptake. 
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Conclusions and Significance: By taking up intact amino acids, Sarracenia purpurea 

can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in 

nitrogen availability that result from the plant’s reliance for nitrogen mineralization on a 

seasonally reconstructed food web operating on infrequent and irregular prey capture. 
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Introduction 

Nitrogen (N) limits plant growth in most terrestrial ecosystems [1] yet many 

ecosystems, including arctic tundra [2], coastal salt marshes [3], alpine meadows [4], 

boreal forests [5], and bogs [6] have large stocks of organic N (ON). More than 90% of 

soil N is bound in an organic form (humus), 20-40% of this as amino acids [7]. The 

availability of amino acids may drive ecosystem function in N-limited environments such 

as arctic tundra because of the very high turnover rates (2-24 h) of amino acids that result 

from microbial uptake and release [8]. Plants that can use amino acids as an N source 

may be able to co-exist with, or even outgrow, plants that only use inorganic N (IN), 

especially in environments where N mineralization rates are low and N limits plant 

growth [9-11]. In Arctic tundra, for example, the most productive species used the most 

abundant N forms and less productive species used less abundant forms [9].  

It has been known for decades that vascular plants can assimilate ON directly 

when grown in culture [12], with mycorrhizae [13], or in the absence of microbial 

competition [14], but only in the last decade has ON been shown to be a significant N 

source for a wide range of plant species in different N-limited systems [15]. Standard 

theory of N cycling with respect to plant uptake [16] assumes that ON has to be 

mineralized to IN before it can be assimilated, but direct ON uptake by plants has been 

proposed to “short-circuit” the N cycle as plants bypass microbial mineralization of ON 

[17]. This short-circuit is thought to be energetically favourable to plants because ON 

immediately provides amino acids whereas NH4
+ and NO3

- (after reduction to NH4
+) 

must be synthesized into amino acids [18]. Because most ecosystems are N limited and 

plants can potentially access multiple forms of N in the environment, more information is 
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needed on the generality of direct acquisition of amino acids by plants to fully assess 

current models of N cycling for a wider range of environments. 

Carnivorous plants are generally restricted to extremely N-limited habitats, such 

as bogs, outwash sand plains, and inselbergs [19-21]. In North America, carnivorous 

pitcher plants (Sarracenia spp. and Darlingtonia californica Torrey [both in the 

Sarraceniaceae]) acquire little N from root uptake; up to 80% of their N is obtained from 

prey captured in their pitcher-shaped leaves [19,22-24]. Most North American pitcher 

plants secrete chitinases and proteases that directly break down the prey [25], but S. 

purpurea L. secretes digestive enzymes only at very low levels [26] and enzyme 

secretions have not been observed in D. californica. Instead, these two species rely on a 

food web of aquatic insect larvae, protozoa, and bacteria that inhabits the pitchers [27,28] 

to break down the captured prey, mineralize the available ON to IN, and release it for 

absorption by the pitchers [29,30]. In northeastern North America where N deposition 

rates are relatively high, Sarracenia purpurea also acquires IN directly from rainfall that 

collects in its pitchers [31,32].  

This “Sarracenia microecosystem” (S. purpurea plus its resident food web) has 

been developed as a model system in which we have examined N cycling of an entire 

detritus-based food web [22,30]. In northeastern North America, S. purpurea grows in 

peat bogs and poor fens where plant growth is predominantly N-limited [33]. These bogs 

have massive stores of ON in peat that is generally assumed to be unavailable for uptake 

and use by vascular plants, but high nutrient flux and organic production occurs in bogs 

[6], and many non-carnivorous plants in these habitats have been shown to be able to take 

up ON (as amino acids) directly through their roots [2,34,35]. Carnivorous plants such as 
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S. purpurea have weakly developed root systems (root:shoot ratio ! 0.2) [22], and 

although carnivorous plants take up some nutrients from their roots, they obtain most of 

their nutrients from prey captured by modified leaves [36-38]. 

Recent research on the N budget of S. purpurea has focused on the relative 

importance of bacteria and the macroinvertebrates in its food web (larvae of the midge 

Metriocnemus knabi Coq., the mosquito Wyeomyia smithii (Coq.), and the sarcophagid 

fly Fletcherimyia fletcheri (Aldrich)) in the nutrient mineralization and excretion process 

[30]. This work has demonstrated that bacteria are the primary agents of N 

mineralization, although the mosquito and fly larvae regulate both the abundance and the 

diversity of the bacteria [39,40]. Inorganic N derived from atmospheric deposition is 

directly assimilated by plants [22,31]. However, neither the ability of pitcher plants to 

assimilate ON directly, nor the role of the food web in modulating such ON uptake has 

been investigated experimentally.  

Here, we report the results of a 72-hour pulse-chase experiment conducted in the 

field in which we fed two isotopically enriched amino acids (glycine and phenylalanine) 

and ammonium nitrate, singly and in combination, to pitcher plants in the field.  Our 

factorial experimental design also assessed whether the macroinvertebrate component of 

the pitcher-plant’s associated food web altered the observed patterns of nitrogen uptake. 

Finally, we determined if ON uptake by S. purpurea and its associated food web differed 

between sites with different background levels of atmospheric nitrogen deposition.  
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Materials and Methods 

Study species: Sarracenia purpurea grows in ombrotrophic (rain-fed) bogs 

[41], poor fens, and seepage swamps throughout Canada east of the Rocky Mountains 

and in the eastern United States from Maine to Georgia [42]. This long-lived (> 50 

years), perennial carnivorous plant grows as a rosette of leaves from a small rhizome 

crown (Fig. 1). In the northeastern United States and Canada where we studied S. 

purpurea, it produces 6-10 new leaves each year; the leaves last 1-2 years and then 

senesce. These leaves are modified into pitfall traps (“pitchers”) that fill with rainwater in 

which captured arthropod prey drowns. The pitchers also are inhabited by an aquatic, 

detritus-based food web consisting of bacteria, protozoa, and invertebrates [27,30,39]. 

Prey captured by S. purpurea is shredded by aquatic larvae and mineralized by bacteria 

that inhabit the pitchers; the mineralized nutrients are released for uptake by the plant 

[29,30,43,44]. Sarracenia purpurea is a somewhat inefficient predator – < 3% of insect 

visitors are actually captured [45] – and insects and other prey account for 10-80% of 

their nutrient budget [23]; it obtains the remainder of its nutrients from stored reserves 

[22], remobilization and excretion of N and P by rotifers [46], and increasingly, 

atmospheric deposition [31]. As pitchers generally account for !80% of the total plant 

mass with roots and rhizome crowns accounting for the remaining !20% [22],  S. 

purpurea derives <5% of its nutrients from the pore water in the peat where it grows 

[46,47]. 

 

Field sites: We measured nitrogen acquisition by S. purpurea under field 

conditions at Fort Albany, northern Ontario, Canada (52°15' N, 81°35' W) and at Tom 
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Swamp, adjacent to Harvard Pond in Petersham, Massachusetts, U.S.A. (42°30' N, 72°11' 

W). Fort Albany is in the James Bay Lowlands of the Hudson Plains Ecoregion [48], and 

the dominant vegetation at the study site consists of sedges, mosses, and lichens with or 

without stunted black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) and 

tamarack (Larix laricina (Du Roi) K. Koch). Tom Swamp is a !50 ha bog at the north 

end of Harvard Pond, an artificial pond created in the 1800s by the construction of two 

dams on Riceville Creek [49]. The bog vegetation is dominated by leatherleaf 

(Chamaedaphne calyculata (L.) Moench.). Fort Albany is near the northern limit of S. 

purpurea in Ontario, but pitcher plants are abundant there as well as at Tom Swamp 

(densities > 5/m2). Annual wet inorganic nitrogen deposition for Chapais, Quebec (the 

nearest data available for Fort Albany and 600 km to the southeast) was !2.5 kg/ha in 

2002 [48] compared to !4.5 kg/ha for central Massachusetts [50].  

 

Experimental design: We used a 72-hour pulse-chase experiment with 

isotopically enriched amino acids as our organic nitrogen (ON) source and ammonium 

nitrate (15NH4
15NO3) as our inorganic nitrogen (IN) source to determine if pitcher plants 

can acquire ON directly and to compare ON and IN uptake under different conditions. 

We focused on uptake of N by pitchers because our previous research showed that 

pitchers acquired !70% of added IN while roots acquired less than 2.5% of added IN 

[22]. 

At each site, 125 mature individuals were selected with at least 3 live (no sign of 

senescence) mature pitchers (firm and open). Five of these plants served as untreated 

controls and were harvested at the end of the experiment to determine baseline 15N and 
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13C natural abundances. The remaining 120 plants were randomly assigned to one of six 

treatment groups: uniformly-labeled (U-) glycine (U-Gly: 98 atom% U-13C-15N-glycine), 

uniformly-labeled phenylalanine (U-Phe: 98 atom% U-13C-15N-phenylalanine), I15N (98 

atom% 15NH4
15NO3), U-Gly plus unlabeled phenylalanine and unlabeled NH4NO3 

(hereafter U-Gly+), U-Phe plus unlabeled glycine and unlabeled NH4NO3 (hereafter U-

Phe+), or I15N plus unlabeled glycine and phenylalanine (hereafter I15N+). Plants within 

treatment groups were assigned randomly to one of two harvests (3- or 72-hr) and one of 

two food web treatments (complete food webs or partial food webs, which lacked the 

macroinvertebrate larvae of the detritivorous midge Metriocnemus knabi and the 

keystone predator, the mosquito Wyeomyia smithii). Larvae of the sarcophagid fly 

Fletcherimyia fletcheri, which are found more commonly in pitchers in Massachusetts 

than in Canada, were excluded from all experimental pitchers. There were N = 5 pitchers 

in each treatment at each site. 

Pitchers were significantly larger at Tom Swamp than at Fort Albany (Table 1). 

Control (unfed) plants at both sites had similar concentrations of N and natural 

abundance levels of "15N in leaf tissues (Table 1). These control plants also had similar C 

concentrations and similar C:N ratios, but background natural abundance of "13C was 

slightly lower at Tom Swamp than at Fort Albany (Table 1). 

Any liquid in the pitchers, along with the food web, was removed from all 

experimental pitchers the day before the pulse-chase experiment began; the liquid 

removed (pitcher “liquor”) was kept for the food web manipulations. Following food web 

removal in the field, pitchers were rinsed with distilled water to remove as much detritus 

and as many microbes as possible and the pitcher opening was blocked with a fine nylon 
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mesh to limit subsequent entry of animals and prey. In the laboratory, all living midge 

and mosquito larvae were removed from liquid collected from each pitcher and kept alive 

overnight in a solution of pitcher liquor. 

The next day, the largest pitcher on each plant was fed with one of the 15N 

treatments. We fed each manipulated pitcher with a 0.8 mM 15N solution (2 ml for Fort 

Albany and 9 ml for the larger pitchers at Tom Swamp) and an equal amount of pitcher 

liquor, resulting in pitchers filled to approximately three-quarters of their volume. Thus, 

all experimental pitchers contained an enriched (15N) nutrient solution along with the 

microbial component of the food web (supplied in the pitcher liquor). Pitchers at Fort 

Albany were fed 0.022 mg N, whereas the larger pitchers at Tom Swamp were fed 0.101 

mg N. The amount of N added to pitchers represented <1.0% of N content of pitcher 

tissue at Fort Albany and <1.9% of N content of pitcher tissues at Tom Swamp.  

When we added only single forms of N (i.e., the U-Gly, U-Phe, and I15N 

treatments), all N added to the pitchers was enriched in 15N. When we added three forms 

of N (the U-Gly+, U-Phe+, and I15N+ treatments), only one-third of the N added to each 

pitcher was enriched in 15N; the remaining two-thirds was comprised of equal amounts of 

the other two forms as unlabeled N.  We are confident that we minimized potential 

effects of excess N availability on pitcher N uptake, which could have been particularly 

important when only one form of N was added in a single feeding event. The total 

amount of N supplied and the actual concentration of N were both substantially lower 

than that used in other studies of Sarracenia: 1.2 – 3.6 mg N/plant as a mixture of amino 

acids to pitchers of S. flava [51]; 1-10 mM alanine fed to Nepenthes pitchers [52]; 20 

ml/pitcher of 6.8 – 8.6 mM NH4-N (1.9 – 2.4 mg N/pitcher) [22,29] or 6 – 8.7 mg 
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N/pitcher as NH4Cl  to S. purpurea [23,31], which is comparable to the mass of prey-N 

captured by S. purpurea in a growing season [53].  

Finally, for the complete food web treatments, we put invertebrate larvae into the 

pitchers immediately after we added the 15N solution. We added two midge and two 

mosquito larvae in each pitcher in the complete food web treatment at Fort Albany and 

nine midge and nine mosquito larvae in each pitcher in the complete food web treatment 

at Tom Swamp (i.e., 1 midge + 1 mosquito larva per ml of pitcher liquor). Unfed 

(control) pitchers for which we measured natural abundance of 13C and 15N also had 

complete food webs (pitcher liquor + midge + mosquito larvae).  

Because of the dramatic size differences between plants at the two sites (Table 1), 

total N fed to each plant and food web manipulations (numbers of midge and mosquito 

larvae added to pitchers) differed at the two sites. Therefore, statistical analyses were 

conducted separately for each site.   

 

Harvest: Target pitchers were removed from the rest of the plant 3 or 72 hr after 

feeding with a stainless steel razor blade that was rinsed in 50% ethanol between cuttings. 

Pitcher liquor was transferred to a sealed sterile plastic tube and the pitcher was placed in 

a zip-lock plastic bag. Both were stored in a cooler with cold packs and taken 

immediately to the laboratory for processing. Pitchers were cut open longitudinally, 

washed thoroughly with tap water, rinsed with 0.5 mM CaCl2 to remove any amino acids 

from the surface [54], and finally rinsed three times with distilled-deionized water before 

being transferred to paper bags. Midge and mosquito larvae were removed from the 

pitchers with an eye dropper, transferred through three sequential baths of distilled-
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deionized water and stored in new sterile vials. Because of the small mass of larvae in 

each pitcher, larvae from the five replicates of each harvest × treatment combination were 

pooled into one composite larval sample. Plant and invertebrate samples were then oven-

dried at 65°C for 48 h and then weighed.  

 

Isotopic analyses: Each pitcher and composite larval sample was ground to a 

fine powder in a stainless steel capsule with a stainless steel ball using a Wig-L-Bug 

mixer (Bratt Technologies, LLC., East Orange, New Jersey, USA). A 4-mg subsample of 

plant tissue or a 1-mg subsample of larvae was then placed into an 8 × 5 mm tin capsule 

(Elemental Microanalysis Mason, Ohio, USA) and combusted in a Costech ECS4010 

Elemental Analyzer and DeltaPlus XP mass spectrometer at the University of New 

Hampshire to measure 13C/12C, %C, 15N/14N and %N concurrently. A reference standard 

(NIST 1515, NIST 1575a, or an internal tuna standard) was included after every five 

samples.  

Recovery of added tracer in pitchers was calculated as: 

)Natom%N(atom%
)Natom%N(atom%

N
ref

15
tracer

15
ref

15
pool

15

poolrec
15

−
−

= m  

where 15Nrec = mass of 15N tracer recovered in the labeled N pool, mpool = N mass of the 

total N pool, atom%15N pool = atom percent 15N in the labeled N pool, atom%15Nref = atom 

percent 15N in the reference N pool (non-labeled plants harvested at the end of the 

experiment), and atom%15Ntracer = atom percent 15N of the applied tracer [55].  

 

Statistical analysis: First, we measured 15N and 13C in pitchers to determine if 

S. purpurea could acquire intact amino acids. We emphasize that observing enrichment in 
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13C and 15N by itself does not provide evidence for acquisition of intact glycine or 

phenylalanine because both 13C and 15N may be acquired in products of microbial 

mineralization of amino acids. Rather, a comparison of the slope of excess 13C versus 15N 

(per gram dry mass of plant tissue) to the slope of the 15N source provides a conservative 

estimate of N acquired as amino acid [56]. Ratios below the expected slope (= 13C:15N 

ratio of the amino acids) indicate loss of 13C (e.g., respiration) and/or 15N acquisition after 

mineralization of labeled amino acid. Such an analysis should be undertaken within a few 

hours of the application of dual-labeled amino acids (hence our 3-hour harvest). We used 

ordinary least-squares linear regression analysis to compare the slope of 13C: 15N in 

pitchers fed U-Gly or U-Phe as their only N source with the expected slopes of 13C: 15N if 

glycine (expected slope = 2) or phenylalanine (expected slope = 9) were taken up intact 

within the first 3 hours after feeding. 

For all other analyses, we analyzed nitrogen uptake by pitchers as µg 15N per 

gram dry mass. Data were arcsin-square-root transformed to reduce heteroscedasticity. 

Although 15N enrichment was measured in midge and mosquito larvae (Fig. 2), analysis 

of variance with a main effect for the invertebrate food web manipulation revealed no 

significant differences in 15N uptake at each site for pitchers with and without the 

invertebrate food web (Fort Albany F1,96 = 0.137, P = 0.71; Tom Swamp F1,94 = 1.68, P = 

0.20). Therefore, 15N uptake by pitchers was analyzed for each site separately using a 

fixed-effect two-way analysis of variance to test for differences in 15N uptake only as a 

function of the form of N fed to pitchers and harvest time. In these analyses, pitchers in 

the two food-web treatments were pooled within each N addition treatment. A priori 



 14

contrasts of the N-form treatment at the 72-h harvest were used to compare plant N 

uptake across treatments and between sites at the end of the experiment. 

 

Results 

 Uptake of intact amino acids: Pitcher plants rapidly assimilated the two 

amino acids we fed to them. There was a significant positive relationship between tissue 

13C and 15N for pitchers harvested 3-h after receiving only U-Gly at Fort Albany (P = 

3.83 × 10-4; Fig. 3A) and Tom Swamp (P = 6.84 × 10-6; Fig. 3B). The slope of the 

13C:15N line at both sites was significantly less than 2 – the value expected if intact 

glycine was taken up directly – at both Fort Albany (slope = 0.98, 95% CI = 0.6 – 1.4) 

and at Tom Swamp (slope = 1.1, 95% CI = 0.8 – 1.3). 

 There was a highly significant positive relationship between tissue 13C and 15N for 

pitchers harvested 3-h after receiving U-Phe at both Fort Albany (P = 1.28 × 10-8; Fig. 

3C) and Tom Swamp (P = 7.17 × 10-8; Fig. 3D). The slope of the 13C:15N relationship for 

pitcher tissue at both sites did not differ from 9 – the value expected if intact 

phenylalanine was taken up directly – at both Fort Albany (slope = 8.6 with a 95% CI = 

7.7 – 9.5; Fig. 3C) and at Tom Swamp (slope = 8.9 with a 95% CI = 7.8 – 10.0; Fig. 3D). 

 

 Uptake of different forms of nitrogen: At each site, there were highly 

significant differences among treatments (Fort Albany: F5,108 = 41.8, P < 0.0001; Tom 

Swamp: F5,106 = 47.0, P < 0.0001) and harvest times (Fort Albany: F1,108 = 62.3, P < 

0.0001; Tom Swamp: F1,106 = 158.3, P < 0.0001), and significant treatment × harvest time 
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interactions (Fort Albany: F5,108 = 2.3, P = 0.05; Tom Swamp: F5,106 = 4.5, P = 0.0009; 

Fig. 4). At Fort Albany, pitchers acquired significantly more (P = 0.004) 15N from 

glycine than from phenylalanine when those forms were provided in isolation (Fig. 4A), 

and showed a similar trend when all three forms of N were available (P = 0.07; Fig. 4C). 

At Tom Swamp pitchers acquired similar amounts (P = 0.56) of N from glycine and 

phenylalanine when ON was provided in isolation (Fig. 4B) but tended to favour glycine 

when all forms of N were available (P = 0.08; Table 2, Fig. 4D). 

At Tom Swamp, pitchers took up significantly more N from either glycine or 

phenylalanine than from ammonium nitrate (P = 0.034 and P= 0.009, respectively) when 

only one form of 15N was provided (Fig. 4D). In contrast, at Fort Albany, pitchers took 

up similar amounts of 15N either the amino acids or the ammonium nitrate when only one 

form of 15N was available (P = 0.22 and P = 0.09, respective contrasts; Fig. 4C). At both 

sites, pitchers acquired similar amounts of 15N from the amino acids and ammonium 

nitrate when all three forms of N were provided simultaneously (P # 0.29). Finally, 

highly significant differences of 15N uptake were found for each form of N when it was 

provided in isolation relative to when it was provided in mixture (Figs. 4C, 4D). 

 

Discussion 

Uptake of intact amino acids has been demonstrated for species in ecosystems 

ranging from alpine and arctic tundra to a subtropical rainforest and in ephemeral pools in 

the Namibian desert [15]. The use of a variety of forms of different nutrients could 

provide selective advantages to plants inhabiting nutrient-limited environments. 
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Carnivorous plants, whose growth and reproduction are strongly limited by nutrient 

availability and that grow in extremely nutrient-poor habitats [19,21] acquire organic 

nutrients as prey, but whether or not they can directly take up intact amino acids had not 

been studied previously. 

Our data are consistent with the hypothesis that S. purpurea takes up amino acids 

directly. However, while this was clearly demonstrated for phenylalanine, S. purpurea 

either did not assimilate glycine directly or else it assimilated glycine but metabolized it 

more rapidly than our 3-hour sample could detect (Fig. 3). All pitchers fed U-Gly and U-

Phe were highly enriched in 13C and 15N. Rapid enrichment of pitcher tissue with both 

13C and 15N at a 13C:15N ratio similar to that of the amino acid fed to the plant would 

suggest uptake of intact amino acids. Whereas pitchers fed U-Phe had 13C:15N ratios 

similar to the expected value of 9, pitchers fed U-Gly were highly enriched in both 13C 

and 15N but their 13C:15N ratio was significantly less than the expected value of 2. The 

results for acquisition of intact glycine, and comparison to phenylalanine, however, must 

be interpreted with caution [57,58]. First, carbon respiration following acquisition of 

phenylalanine will have less effect on the 13C:15N relationship than it would for glycine 

because of the greater amount of 13C acquired per unit phenylalanine (C:N = 9) compared 

to glycine (C:N = 2). Carbon acquired from glycine is rapidly catabolised [59], which can 

lead to slopes of 13C:15N substantially below the expected value of 2 (Figs. 3A, 3B). This 

may have been exacerbated by the relatively small amounts of 13C- and 15N-enriched 

amino acids provided to pitchers; in order to avoid potential effects of excess N 

availability on the plant, added N represented < 2% of the total N in the pitchers.   
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Furthermore, the substantial enrichment of pitchers (Fig. 4) and the differences in 

13C and 15N enrichment of invertebrate larvae (Fig. 2) between pitchers fed U-Gly and U-

Phe provides some additional support for intact glycine acquisition by S. purpurea 

pitchers under field conditions. As expected if plants preferentially acquire amino acids 

with low C:N  [60], the 15N enrichment of S. purpurea pitchers was generally greater for 

plants fed U-Gly than U-Phe (Fig. 4).  

More detailed comparisons of enrichment of 15N in plant tissues of the different 

treatment groups suggests that Sarracenia should show preferential uptake of amino 

acids with lower C:N ratios (such as glycine) than those with higher C:N ratios (such as 

phenylalanine). After 72-h, 15N concentration in plants fed glycine alone was 

significantly greater than 15N concentration in plants fed phenylalanine alone at Fort 

Albany but not at Tom Swamp (Fig. 4). At both sites, uptake of 15N from glycine tended 

to be higher than uptake of 15N from phenylalanine when all three forms of N were 

available to pitchers (Fig. 4). Because Fort Albany has cooler air temperatures, a shorter 

growing season, and lower atmospheric N deposition than Tom Swamp, we interpret 

these results to suggest that pitchers at the Canadian site can maximize N uptake by 

taking up relative more amino acids with low C:N ratios (e.g., glycine) and avoid the 

energetically costly synthesis of new amino acids from IN plus a carbon skeleton [18]. In 

contrast, at Tom Swamp in Massachusetts, the climate is warmer, the growing season is 

longer, and IN is more readily available because of higher atmospheric deposition rates. 

Thus, direct uptake of low C:N amino acids such as glycine may not be as important at 

Tom Swamp because suitable environmental conditions exist to synthesize amino acids 

from readily available IN plus available carbon. 
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These inferences are supported by our results showing greater 15N uptake from 

ON than from IN (energetic benefit) when each form was provided in isolation at Tom 

Swamp (Fig. 4). At the more N-limited Fort Albany site, however, 15N uptake by S. 

purpurea pitchers was similar for all three forms of 15N when each was provided in 

isolation. Sarracenia purpurea pitchers are open to the atmosphere, collecting rainwater 

as well as prey, and the difference in ON uptake between sites may represent a response 

to the higher atmospheric IN deposition at Tom Swamp. Similar preferential acquisition 

of the predominant forms of N in the local environment has been observed for plants in 

boreal forests [61], arctic tundra [62,63], alpine meadows [35], and cold-temperate 

forests [64].  

Finally, our results illustrate that the acquisition of any one form of N provided in 

isolation will exceed uptake of this form when multiple forms of N are made available to 

the plant simultaneously. At both sites and for each form of 15N supplied, uptake of 15N 

was significantly greater when only one form was made available compared to that same 

form of 15N provided in mixture. However, there were no significant differences in 15N 

uptake among the three forms when all forms of 15N were made available simultaneously 

(Fig. 4). This result highlights the versatility of N acquisition by S. purpurea because N 

uptake of any one particular form decreases when all three forms are available.  

Sarracenia purpurea is one of only two species of North American pitcher plants 

(the other being Darlingtonia californica) in which a food web mineralizes captured prey 

and simultaneously competes with S. purpurea for N. Our results revealed no differences 

in 15N uptake between pitchers with and without higher trophic levels in their associated 

food webs. This result is consistent with previous results showing that the upper trophic 
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levels in the S. purpurea microecosystem actively process detritus but that the activity of 

the microbial component of the food web ultimately determines N availability for 

Sarracenia [30]. 

Taken as a whole, our field experiments indicate versatility of N acquisition by 

this carnivorous plant and variability in N acquisition across a gradient of atmospheric 

deposition. These results are consistent with data reported from other N-limited 

environments [54,65]. Similarly, there is pronounced spatiotemporal variation in the 

availability, form, quantity, and proportions of each form of N in bogs in general and in 

the Sarracenia microecosystem in particular. The growth of plants in eastern North 

American bogs is predominantly N-limited [33] but bogs have massive stores of ON in 

peat with high nutrient flux and organic production [6] and receive variable inputs of 

atmospheric IN deposition throughout the growing season. Additionally, pitcher plants 

collect varying amounts of organic and inorganic N via trapped prey. We suggest that the 

energetic benefits of direct and rapid (<3 h) acquisition of ON as intact amino acids allow 

Sarracenia to short-circuit the inorganic N cycle and to minimize potential bottlenecks in 

N availability because of the plant’s reliance for N mineralization on a seasonally 

reconstructed food web [66] operating on irregular and infrequent seasonal pulses of prey 

capture [45,67]. Experiments employing a greater range of N concentrations for a longer 

duration would improve our ability to determine the upper limit of N acquisition by 

Sarracenia and characterize the importance of the acquisition of intact amino acids to the 

N budget of this carnivorous plant.  
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Figure Legends 

Figure 1. The pitcher plant Sarracenia purpurea. This carnivorous plant grows 

as a rosette of leaves modified into pitchers that act as pitfall traps in which rainfall 

is collected and prey are captured. 

 

Figure 2. Enrichment of mosquito and midge larvae collected from 

Sarracenia purpurea pitchers. The arrows connect points showing enrichment 

after 3 and 72 hours of plants at Tom Swamp in Massachusetts that were fed 15N as  

ammonium nitrate (15NH4
15NO3), uniformly-labeled (U-) 13C-15N-glycine or U-13C-15N-

phenylalanine alone (IN, U-Gly, and U-Phe, respectively) or in combination (IN+, 

Gly+, and Phe+, respectively). Larvae in pitchers fed Phe or Phe+ had the highest 

13C and 15N enrichment after 72 hours. 

 

Figure 3. Concentration of 13C and 15N recovered in Sarracenia purpurea 

pitchers 3 h after feeding. Nitrogen solutions were applied into the pitcher leaves 

at Fort Albany in Ontario, Canada (left, panels A, C) and at Tom Swamp in 

Massachusetts, U S A (right, panels B, D) as uniformly-labeled (U-) 13C-15N-glycine 

(top row, panels A, B) or as U-13C-15N-phenylalanine (bottom row, panels C, D). 

Solid lines represent the 13C:15N ratio of glycine (2:1) or phenylalanine (9:1); 

dashed-lines represent ordinary least squares regression (with 95% confidence 

intervals as dotted lines) for plant uptake. 

 

Figure 4. 15N acquisition by Sarracenia purpurea pitchers supplied with 

multiple forms of nitrogen. Nitrogen was provided to pitcher leaves as ammonium 
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nitrate (15NH4
15NO3), uniformly-labeled (U-) 13C-15N-glycine or U-13C-15N-

phenylalanine (IN, U-Gly, and U-Phe, respectively) or in combination (IN+, U-

Gly+, U-Phe+, respectively) at Fort Albany, Ontario, Canada (left, panels A, C) and 

at Tom Swamp, Massachusetts, U S A (right, panels B, D). Uptake was measured 

after 3 hours (top, panels A, B) and 72 hours (bottom, panels C, D) in a pulse-chase 

experiment. The total amount of N provided to pitchers at Fort Albany was 0.022 

mg, and was 0.101 mg N at Tom Swamp. Pitchers with and without the invertebrate 

food webs were pooled for these analyses because there were no significant 

differences in 15N uptake in the two food-web treatments (Fort Albany F1,96 = 0.137, 

P = 0.71; Tom Swamp F1,94 = 1.68, P = 0.20). 
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Table 1. Comparison of traits for pitchers of untreated plants (N = 5) 

harvested at Fort Albany, James Bay, Ontario, Canada (FA) and Tom Swamp, 

central Massachusetts, USA (TS) with significance level of unpaired t-test 

comparing sites. 

 

 Site Mean SD P 

Dry Mass (mg) FA 232 57 0.00003 

 TS 754 142  

Length (cm) FA 8.4 1.9 0.00008 

 TS 18.7 1.9  

!15N (‰) FA 1.8 0.8 0.373 

 TS 1.1 1.3  

!13C (‰) FA -26.8 0.7 0.0013 

 TS -29.4 1.0  

Nitrogen (%) FA 1.08 0.13 0.609 

 TS 1.02 0.28  

Carbon (%) FA 46.4 3.3 0.408 

 TS 47.7 0.3  

C:N FA 43 4 0.282 

 TS 49 10  
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