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Abstract

We examine the recently proposed relations between black hole entropy and the topological

string in the context of type II/heterotic string dual models. We consider the degeneracies

of perturbative heterotic BPS states. In several examples with N = 4 and N = 2 su-

persymmetry, we show that the macroscopic degeneracy of small black holes agrees to all

orders with the microscopic degeneracy, but misses non-perturbative corrections which are

computable in the heterotic dual. Using these examples we refine the previous proposals

and comment on their domain of validity as well as on the relevance of helicity supertraces.
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1. Introduction

One of the distinct successes of string theory is that, in some examples, it gives

an account of black hole entropy in terms of statistical counting of microstates [1,2]. One

particularly rich set of examples are the BPS black holes associated with D-branes wrapped

on Calabi-Yau manifolds in the type II string. In this case, the black hole solutions

exhibit fixed-point attractor behavior near the horizon [3,4]. Lopes Cardoso, de Wit,

and Mohaupt [5,6,7,8,9] derived the generalized attractor equations in the presence of

higher derivative F-type terms and obtained a formula for the Bekenstein-Hawking-Wald

entropy of a black hole [10,11,12,13,14]. Recently, Ooguri, Strominger, and Vafa proposed

that the thermodynamical ensemble implicit in the above entropy is a “mixed” ensemble

where magnetic charges are treated micro-canonically while the electric ones are treated

canonically [15]. This implies the following very elegant relation between the topological

string associated to the Calabi-Yau manifold X [16,17,18,19,20] and the exact degeneracies

of BPS states in the theory.

In the Type-IIA string, the relevant BPS states arise from wrapping D-branes on

the various even cycles of the Calabi-Yau and hence carry electric and magnetic charges

denoted by a vector γ ∈ Heven(X ,Z). Upon choosing a symplectic splitting, one can

define the (magnetic, electric) charge components of γ as (pI , qI), I = 0, 1, . . . , h1,1(X ).

Moreover, on the moduli space of complexified Kähler structures on X , one has a set of

“special coordinates” {XI}. Let Ftop denote the holomorphic topological string partition

function in these coordinates and define ψp(φ) = eFtop(p+iφ). Then, [15] proposes

Ω(p, q) =

∫

dφ |ψp|2eπq·φ, (1.1)

where Ω(p, q) denotes the number or perhaps the “index” of BPS states of charges (pI , qI).

A weaker form of the conjecture requires that this equation holds only to all orders in an

asymptotic expansion in inverse charges [15]. Equation (1.1)has in turn been reformulated

in terms of a pure density matrix in the geometric quantization of H3(X̃ ,R) of the mirror

Calabi-Yau X̃ in the Type-IIB description [21].

While elegant, these formulae are somewhat imprecise. The measure dφ and the

contour of integration in the integral have not been clearly specified, and the precise

choice of definition of the microcanonical degeneracies Ω(p, q) has remained an issue. In

this note we report on some attempts to refine the proposal (1.1), and to test its accuracy

in explicit examples. A second paper in preparation will give further details [22].
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In [23] it was pointed out that type IIA/heterotic duality offers a useful way to test

(1.1), and this test was initiated for the standard example of the N = 4 duality between

the heterotic string on T 6 and the type IIA string on K3 × T 2. The main point is that

there is an interesting class of BPS states, the perturbative heterotic BPS states, (also

known as Dabholkar-Harvey states, or DH states, for short [24,25]), for which the exact

degeneracies are known or can be deduced using available string technology. Moreover,

much is known about the topological string partition function in these examples. The

present paper develops further the use of type II/heterotic duality as a testing ground for

(1.1).

The black holes corresponding to the DH states are mildly singular in the leading

supergravity approximation. The geometry has a null singularity that coincides with the

horizon and hence the classical area of these black holes vanishes [26,27]. Effects of higher

derivative terms in the string effective action are expected to modify the geometry [28,29].

Indeed, for a subclass of higher derivative terms that are determined by the topological

string amplitudes, the corrected black hole solution can be determined using the generalized

attractor equations [5,6,7,8,30]. The corrected solution has a smooth horizon with string

scale area in the heterotic string metric [23,31,32,33,34]. We refer to these black holes as

‘small’ black holes1 to distinguish them from the ‘large’ black holes that have large classical

area.

Since small black holes have zero classical area, it is not a priori obvious that the

formula (1.1) should apply. However, as noted above, the quantum corrected solution has

a nonzero horizon area. Combined with the successful determination of degeneracies to

all orders in 1/Q2 that we will find in §4, this gives strong evidence that there is nothing

particularly pathological about these black holes. Nevertheless it should be borne in mind

that the α′ corrections to these geometries remain to be understood better.

We now give a brief overview of the remainder of the paper.

In §2, we show that in certain scaling limits of charges one can evaluate the integral

(1.1) in a saddle point approximation that neglects the contributions of worldsheet instan-

tons to Ftop. We explain that this gives the leading asymptotic expansion to all orders

in 1/Q2 where Q is the graviphoton charge. We argue that the analysis can be reliably

carried out for large black holes at both strong and weak coupling. Our analysis in fact

1 The heterotic string coupling becomes very small at the horizon and as a result the horizon

area is large in the duality invariant Einstein metric.

2



suggests that the proposal (1.1) must be modified slightly. The modified version is given

in eq. (2.31) below. As a matter of fact, one encounters serious difficulties in trying to

make sense of the integral in (1.1) non-perturbatively. We comment on these difficulties,

which arise mainly from the contribution of worldsheet instantons to the topological string

amplitude, in §5.

In §3, we compute exactly the microscopic degeneracies of the DH states in a broad

class of heterotic orbifolds with N = 4 and N = 2 supersymmetry and determine their

asymptotics using the Rademacher formula reviewed in the Appendix. We also compute

the “helicity supertraces” [35] that count the number of BPS short representations that

cannot be combined into long representations. For N = 2 compactifications this is the

space-time counterpart of the “new supersymmetric index” on the worldsheet [36], as

shown in [37,38,39]. One of the advantages of the states that we consider is that both the

absolute number and the helicity supertraces are computable exactly.

In §4 we examine several N = 2 and N = 4 models in detail. In the N = 4 examples

we find remarkable agreement between the microscopic and macroscopic degeneracies to

all orders in 1/Q2. This computation can be rigorously justified. In the N = 2 examples of

small black holes there turn out to be important subtleties in implementing the formalism

of [15]. These are discussed in §2.4.4 and the conclusions.

In §5 we summarize our results, point out some open questions, and try to draw some

lessons from what we have found.

Finally, we remark that there is a reciprocal version of the proposal [15]. In terms of

this ensemble the formula of [5] is translated to:

eF(p,φ) =
∑

q

Ω(p, q)e−πqφ (1.2)

Using our exact knowledge of degeneracies of DH states, one may try to construct the

black hole partition function on the right-hand side and compare to the topological string

amplitude. As we shall discuss in detail in [22], we find that the result bears a close

resemblance to a sum over translates of the topological string amplitude, enforcing the

expected periodicity under imaginary shifts φ→ φ+2iZ. This indicates that a theta series

based on the topological string amplitude may be the appropriate monodromy-invariant

object to represent the complete black-hole partition function [40].
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2. Macroscopic Degeneracies via Saddle Point Approximation

2.1. Large radius limit

To determine the macroscopic degeneracies of small black holes, let us begin by at-

tempting to evaluate the integral in (1.1) for a general compact Calabi-Yau manifold X .

The interpretation of ψp as a wavefunction certainly suggests that (1.1) should be an

integral over a vector space, and we expect it to be an integral over a real subspace of

Heven(X ,C). We will find below that the definition of the measure dφ is nontrivial, but

for the moment we take it to be the standard Euclidean measure.

Now, the holomorphic topological string partition function is only defined as an asymp-

totic expansion in the topological string coupling near some large radius limit (i.e. in a

neighborhood of a point of maximal unipotent monodromy). In this limit we can write the

holomorphic prepotential as a perturbative part plus a part due to worldsheet instantons.

See for example [41,42]. We will write

Fsugra = F pert − iW 2

27π
FGW (2.1)

The perturbative part is

F pert = −Cabc

6

XaXbXc

X0
−W 2 c2a

24 · 64

Xa

X0
. (2.2)

Here a, b, c = 1, . . . , h, h = h1,1(X ), label components with respect to an integral basis of

H2(X ,Z) (which we also take to be a basis inside the Kähler cone), while Cabc are the

intersection numbers of dual 4-cycles of the Calabi-Yau. c2a are the components of the

second Chern class. W 2 is the square of the Weyl superfield described in [9]. The sum

over worldsheet instantons is

FGW =
∑

h≥0,β∈H2(X ,Z)

Nh,β q
β λ2h−2 (2.3)

Here Nh,β are the (rational) Gromov-Witten invariants,

qβ = e
2πi
∫

β
(B+iJ)

= e2πiβa
Xa

X0 (2.4)

where βa ≥ 0 are components of β with respect to an integral basis of H2(X ,Z), and

λ2 =
(

π
4X0

)2
W 2. In the topological string literature a slightly different normalization

of the prepotential is used. The two are related by Fsugra = − iW 2

27π
Ftop. The attractor

equations set W 2 = 28 so then Ftop = iπ
2 Fsugra.
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2.2. Perturbative evaluation

It is natural to expect that the “perturbative part” should give a good approximation

to the integral, at least for large charges. We will discuss in detail what is meant by “large

charges” in §2.4 below, where we will justify the procedure of looking for a consistent

saddle point in (1.1) where it is a good approximation to replace Fsugra by F pert defined

in (2.2). Following [15] we must evaluate

Fpert := −π ImF pert(pI + iφI , 256) (2.5)

for φI real. We will set p0 = 0, as this leads to significant simplifications. In this case we

find that the perturbative part of the free energy is given by

Fpert = −π
6

Ĉ(p)

φ0
+
π

2

Cbc(p)φ
bφc

φ0
(2.6)

where

Cab(p) = Cabcp
c, C(p) = Cabcp

apbpc, Ĉ(p) = C(p) + c2ap
a. (2.7)

The perturbative part has a saddle point for

φa
∗ = −Cab(p)qbφ

0
∗ , φ0

∗ = ±
√

−Ĉ(p)

6q̂0
(2.8)

where Cab(p) is the inverse matrix of Cab(p) and

q̂0 = q0 − 1
2qaC

ab(p)qb (2.9)

is the natural combinations of charges compatible with the unipotent monodromy. (In

particular, q̂0 is monodromy invariant.) 2 In evaluating the saddle-point integral we must

bear in mind that Cab(p) has indefinite signature (for example, for pa an ample divisor

Cab(p) has signature (1, h− 1)) and therefore φaφb/φ0 should be pure imaginary. We will

take pa such that Ĉ(p) > 0, and thus we want q̂0 < 0.

The integral (1.1), retaining only (2.6), is Gaussian on φa and of Bessel type for φ0.

The precise choice of φ0 contour does not matter if we only concern ourselves with the

2 In general one should allow an extra quadratic polynomial inXI with real coefficients in F pert,

say − 1

2
AabX

aXb
−AaX

aX0
−A(X0)2 where Aab, Aa, A are all real. The only effect of these terms

in the present context is a shift of the charges to q̃a := qa +Aabp
b +Aap

0, q̃0 = q0 +Aap
a +2Ap0.

This will not affect our arguments so we drop these terms for simplicity.
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asymptotic expansion of the φ0 integral for Ĉ(p)|q̂0| → +∞. The asymptotics can then be

given in terms of those of a Bessel function, the precise formula being: 3

N (p) Îν

(

2π

√

−Ĉ(p)q̂0
6

)

(2.10)

where Îν(z) is related to the Bessel function Iν(z) as in equation (A.3) of the appendix

and

ν = 1
2 (nv + 1). (2.11)

Here nv is the rank of the total 4-dimensional gauge group, so nv = h + 1. The Bessel

function grows exponentially, for large Re(z) (see (A.6) ) so that the leading asymptotics

of (2.10) agrees with the standard formula from [43] evaluated in the same limit. The

factor N (p) is given by

N (p) = ±1
2

√

1

|detCab(p)|
( Ĉ(p)

6

)ν

(2.12)

and only depends on the magnetic charges pa and not on the electric charges qa.

2.3. Modifications for small black holes

By definition, a small black hole is a BPS state such that C(p) = 0 but Ĉ(p) 6= 0. In

this case, while the horizon is singular and of zero area in the classical supergravity, it is

expected that quantum corrections will smooth out the singularity leading to a legitimate

black hole. For such charges, some of the manipulations in the previous section are not

valid and must be modified as follows.

We are particularly interested in the case when X is aK3 fibration over P1 admitting a

heterotic dual. Moreover, we are interested in charges corresponding, on the heterotic side,

to DH states. As we will see, we cannot simply plug into (2.10). Nevertheless, a similar

computation applies. If X is K3-fibered then we can divide up the special coordinates so

that X1/X0 is the volume of the base and Xa/X0, a = 2, . . . nv − 1 are associated with

the (invariant part of the) Picard lattice of the fiber. The charges of heterotic DH states

3 If we want to get the actual Bessel function from the φ0 integral then the appropriate contour

to take is the circle described by 1/φ0 = −ǫ + is, ǫ > 0, s ∈ R. However, we should not discuss

contours before the nonperturbative completion of ψp is specified.
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have p0 = 0, pa = 0, a = 2, . . . , h, and q1 = 0, with p1q0 6= 0 and qa 6= 0 for a = 2, . . . , h.

In this case Cab(p) is of the form

p1

(

0 0
0 C̃a′b′

)

(2.13)

where C̃a′b′ is the intersection form of the (invariant part of the) Picard lattice of the fiber.

Note that now Cab(p) is not invertible. The φ1 dependence disappears from the integrand

and one must make a discrete identification on θ = φ1/φ0. One thereby finds that (1.1)

gives

N (p) Îν
(

4π
√

|p1q0 − 1
2qa′C̃a′b′qb′ |

)

(2.14)

where

ν = 1
2 (nv + 2) (2.15)

and N (p) is a p-dependent prefactor.

Note that the argument of the Bessel function (2.10) nicely reduces to that of (2.14).

For DH states, C(p) = 0, reflecting the fact that the classical area of the corresponding

black holes is zero, and the nonzero entropy is provided by the quantum correction c2ap
a.

The change in index of the Bessel function results from an enhanced volume factor
√

φ0

arising from the zero mode of Cab(p).

Comparison with the exact results on DH degeneracies below shows that there is a

nontrivial question of how to normalize the measure dφ (or the wavefunction ψp). In

particular the p-dependent prefactors N (p) in (2.10)(2.14) are not compatible with exact

results. An important point revealed by the case of small black holes is that the wavefunc-

tion ψp is in fact not normalizable, at least, not in the conventional sense. We will return

to this in the discussion section at the end.

2.4. Justification of the saddle point evaluation

2.4.1. Large charge limits

In this section we show that the perturbative evaluation of the integral performed

above is valid provided we consider an appropriate scaling limit of large charges.

Let us begin by considering a rather general scaling limit of charges

q̂0 → sxq̂0

pa → sypa
(2.16)
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where s→ ∞. Here x, y ≥ 0 and pa defines a vector in the Kähler cone. This scaling will

result in a scaling

φ0
∗ → szφ0

∗ + o(sz) (2.17)

for the saddle-point value φ0
∗. Here o(sz) means terms growing strictly more slowly than

sz. (For example, from the saddle-point equation (2.20) below z = (3y−x)/2.) Now, there

are three criteria we might wish to impose in order to be able to evaluate the integral (1.1)

reliably in the saddle point approximation:

1. Neglect of worldsheet instantons. We expect the worldsheet instanton series to be

small if ImXa

X0 ≫ 1. In the saddle point approximation this means we require

−p
a

φ0
∗
≫ 1. (2.18)

for all a. We fix the overall sign by choosing pa > 0 and hence φ0
∗ < 0. Having all

pa > 0 means the divisor wrapped by the D4-brane is very ample. The above criterion

requires y > z.

2. Weak coupling in the expansion in λ. A natural condition to require is that the topo-

logical string is weakly coupled. Physically, this is the requirement that the expansion

of the supergravity effective action in powers of the graviphoton fieldstrength is not

strongly coupled. Using the attractor value W 2 = 28 this means λ = −4πi/φ0
∗ is

small. Hence we require z > 0 for weak topological string coupling.

3. Saddle-point equations. We insist that φ0
∗ satisfy the saddle point equations for the

relevant approximation to F . In the case of a weakly coupled topological string we

must add the term

∆F =
ζ(3)χ(X )

(4π)2
(φ0)2 :=

π

2
ξ(φ0)2 (2.19)

to (2.6). Thus the explicit equations are

Ĉ(p)

6
+ q̂0(φ

0)2 + ξ(φ0)3 = 0 weak coupling

Ĉ(p)

6
+ q̂0(φ

0)2 = 0 strong coupling and/or χ(X ) = 0

(2.20)

The full justification of the second line of (2.20) is given in §2.4.2.
There are two important subtleties in imposing the condition (2.18). First the

Gromov-Witten series (2.3) includes the contribution of pointlike instantons with β = 0,

and the criterion (2.18) does not lead to suppression of these terms, which must therefore
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be considered separately. Second there are further subtleties for small black holes dis-

cussed in §2.4.4 below. Sections §2.4.2 and §2.4.3 concern large black holes. Readers only

interested in small black holes should skip to §2.4.4.
While weak coupling is a natural condition to impose, we will argue that it is not

always necessary to do so, and of course one wants to understand both weak and strong

coupling limits. In some cases, such as the small N = 4 black holes, the computation of

the macroscopic degeneracy can be fully justified at weak coupling (and turns out to be

the same as at strong coupling).

2.4.2. Strong topological string coupling

There are certain charge limits of great interest in which one must work at strong

topological string coupling. For example, in order to compare asymptotic degeneracies in

the dual CFT description of [43] one requires that the level number be much larger than

the central charge, and hence

|q̂0| ≫ Ĉ(p) (2.21)

(Validity of the supergravity approximation leads to a similar, but less restrictive criterion

|q̂30 | ≫ C(p) [43].) Equation (2.21) imposes the condition x > 3y for large black holes.

It is easy to see that in either case, the condition (2.21) is incompatible with (2.18)(2.20)

and weak coupling. This motivates us to take a closer look at strong topological string

coupling.

In this section we consider the limit of charges (2.21), and we will argue that it suffices

to use the approximation (2.6) in this case. Thus, from (2.8) the topological string coupling

λ = −4πi/φ0
∗ is large, and therefore the topological string is strongly coupled.

In order to justify our procedure we separate the pointlike instantons from those with

nonzero area by writing

FGW = FGW
β=0 + FGW

β 6=0 (2.22)

First, let us consider FGW
β 6=0 . The worldsheet instanton corrections with β 6= 0 are

formally suppressed by

O
(

e
−2πpaβa

√

6|q̂0|

Ĉ(p)

)

(2.23)

where βa ≥ 0. Hence one may formally neglect the β 6= 0 terms in FGW up to exponen-

tially small corrections. One should be careful at this point. Since the nonperturbative

completion of the topological string is not known we must make an assumption. We will
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simply assume that FGW
β 6=0 has a nonperturbative completion so that the formal suppres-

sion (2.23) is valid, even though λ → ∞. The justification of this assumption awaits a

nonperturbative definition of the topological string. Nevertheless, let us note that this

is a very reasonable assumption. The key point is that although the topological string

coupling λ goes to infinity, the Kähler classes also go to infinity. 4 The reason is that

at the saddle point, Imta = pa|λ|. Thus the contribution λ2h−2qβ for h > 1 behaves like

λ2h−2e−κλ where κ is a positive constant. It therefore decays exponentially fast, even at

strong coupling. More precisely, the contribution is

Nh,β

( |q̂0|
Ĉ(p)

)h−1

e
−2πpaβa

√

6|q̂0|

Ĉ(p) (2.24)

and in the limit (2.21) this vanishes rapidly.

The above hypothesis can also be partially justified using the infinite product rep-

resentation of expFtop implied by the work of Gopakumar and Vafa [44]. The infinite

product may be split into three factors involving the BPS (a.k.a. Gopakumar-Vafa) in-

variants n
(h)
β of spins h = 0, h = 1 and h > 1. The infinite products involving spin h = 0

and spin h = 1 BPS invariants can be shown to be convergent in appropriate domains,

and they indeed satisfy our hypothesis. Unfortunately the infinite products involving spin

h > 1 BPS invariants are in general not convergent. (The problem is that the maximal

spin h∗(β) for which n
(h)
β is nonzero grows too rapidly with β.) Thus, in general, we cannot

use the infinite product representation to give a nonperturbative definition. However, if

n
(h)
β = 0 for h > 1 then our hypothesis is rigorously justified.

Now we must turn to the effects of the pointlike instantons contributing to FGW
β=0 . The

results of [44] lead to a nonperturbative completion of FGW
β=0 . We have 5

n0
0

[

f(λ) +
1

12
log

λ

2πi
−K

]

∼
∑

h

Nh,0λ
2h−2 (2.25)

where

∑

h

Nh,0λ
2h−2 = −1

2χ(X )

[

λ−2ζ(3) −
∞
∑

n=0

λ2n+2 |B2n+4|
(2n+ 4)!

(2n+ 3)

(2n+ 2)
B2n+2

]

(2.26)

4 This remark also resolves the following puzzle: If λ is large one might expect the genus one

term to dominate over the genus zero term. In fact, they are both of the same order, as is evident

from (2.6).
5 This identity is not stated correctly in the topological string theory literature, which omits

the second and third terms on the left-hand side.
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for λ→ 0. Here n0
0 = −1

2χ(X ), K = − 1
24 − ζ′(2)

2π2 + γE

12 is a constant, and

f(λ) :=
∞
∑

d=1

1

d
(2 sin

dλ

2
)−2 = log

∞
∏

k=1

(1 − eiλk)k. (2.27)

(the second identity holds for Imλ > 0). The important point is that the left-hand side

of (2.27) is a well-defined function of λ, so long as λ /∈ R, and therefore defines a nonper-

turbative completion of FGW
β=0 . Using the infinite-product (McMahon) formula for f(λ) we

have

eF
GW
β=0 =

(

−φ
0

2

)χ/12
eKχ

(

∏

k≥1

(1 − e
4πk

φ0 )k
)−χ

(2.28)

for φ0 < 0. Now, for φ0 = −
√

Ĉ/6q̂0 negative and small, the infinite product is 1 +

O(e−4π
√

6|q̂0|/Ĉ).

The factor
(

−φ0

2

)χ/12
in (2.28) will spoil the remarkable agreement between (1.1) and

certain states in N = 2 models with χ 6= 0, as described below. Therefore, to preserve this

success we modify by hand the topological string wavefunction

Ψtop → Ψ̃top := λχ/24eFtop (2.29)

so that

ψ̃p(φ) :=
(

−φ
0

2

)−χ/24
eFtop(p+iφ) (2.30)

and we propose a modification of the conjecture (1.1):

Ω(p, q) = M(p)

∫

dφ|ψ̃p(φ)|2eπqφ (2.31)

where M(p) depends on p but not on q. This normalization factor is unavoidable; the

p-dependent factor arising from the integrations, such as (2.12), in general does not agree

with the p-dependent prefactor of the asymptotic expansion of the microscopic index.

To summarize, the integral in (2.31) may be defined as an asymptotic expansion in

charges in the scaling limit (2.21). The value of the integral is

N (p) Îν

(

2π

√

Ĉ(p)|q̂0|
6

)

·
(

1 + O(e−κ(p)
√

|q̂0|)

)

(2.32)

where N (p), κ(p) are p-dependent constants.

The modification (2.30) is very similar to an extra factor λχ/24−1 which is included in

the nonholomorphic topological string wavefunction. See [18,19,21]. We expect that taking

proper account of measure factors in the definition of the wavefunction as a half-density

will lead to a more satisfactory justification of our modification (2.29).
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2.4.3. Weak topological string coupling

Now let us consider the situation for weak coupling. This can be achieved with a limit

of charges with

y < x < 3y (2.33)

If χ(X ) 6= 0 then the saddle point equation in (2.20) has three roots. The discriminant is

Ĉ

12ξ

(

Ĉ

12ξ
+ 2
( q̂0
3ξ

)3
)

and hence if y < x there are three real roots of (2.20). One root φ0
∗ ∼ −q̂0/ξ + · · · is

inconsistent with large Kähler classes. The other two roots are

φ0
∗ = ±

√

Ĉ(p)

6|q̂0|

(

1 ∓ 1
2
ξ

√

Ĉ(p)

6|q̂0|3
+ · · ·

)

(2.34)

and as discussed earlier we choose the negative root. The saddlepoint evaluation of the

integral is proportional to

(detCab(p))
−1/2

∫

dφ0(φ0)h/2 exp

[

− πĈ

6φ0
+πq̂0φ

0 +
π

2
ξ(φ0)2 +

∞
∑

h=2

Nh,0

(4πi

φ0

)2h−2
]

(2.35)

evaluated in an expansion around (2.34). (If we use the modified version (2.31) then

we must replace (φ0)h/2 → (φ0)h/2−χ/24 in (2.35).) The asymptotics will no longer be

governed by a Bessel function, as in the strong couping regime. The leading correction to

the entropy 2π

√

Ĉ|q̂0|/6 is no longer of order log s, as in (2.10) but rather grows like a

positive power of s:

S = 2π

√

Ĉ|q̂0|
6

+
ζ(3)χ(X )

96π2

Ĉ

|q̂0|
+ · · · (2.36)

It is an interesting challenge to reproduce this from a microscopic computation 6.

Finally, for completeness we note that if x < y then (for χ 6= 0) the roots are approxi-

mately φ0 ∼ (−Ĉ/6ξ)1/3 and the Kahler classes are small. This means that in this regime

of charges one must retain the full genus zero worldsheet instanton series.

6 A similar correction has been computed in [8], without taking into account the contribution

from the integration measure in (1.1)
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2.4.4. Additional subtleties for small black holes

In the case of small black holes C(p) = 0. Since the saddle point value of Imta =

−pa/φ0
∗, this implies that C(Imt) = 0 and hence the saddle point is necessarily at the

boundary of the Kähler cone. In principle, one must retain the full worldsheet instanton

series (or rather, its analytic continuation, should that exist.)

Remarkably, for N = 4 compactifications this is not a problem. In this case Ftop is

only a function of a single Kähler modulus, namely, t1 in the notation of §2.3. The reason

is that the moduli space factors as a double-coset of SL(2,R) times a Grassmannian, and

by decoupling of vector and hypermultiplets, Ftop must be constant on the Grassmannian

factor. Moreover, in these compactifications χ(X ) = 0 and hence the saddle-point values

are:

φ0
∗ = −

√

4p1

|q̂0|
Imt1 = 1

2

√

p1|q̂0| (2.37)

Thus, whether or not the topological string coupling is strong (|q̂0| ≫ p1) or weak (p1 ≫
|q̂0|) the relevant Kähler class is large and the Bessel asymptotics (2.14) are justified.

The situation is rather different for N = 2 compactifications. In this case Ftop is in

general a function of t1 as well as ta for a ≥ 2. Thus the computation of section §2.3
is not justified. We stress that the problem is not that the topological string is strongly

coupled. Indeed, for χ = 0 examples such as the FHSV example discussed in §4.3 below,

the saddlepoint value (2.37) can be taken in the weak coupling regime by taking p1 ≫ |q̂0|.
In fact, the difficulty appears to be with the formulation of the integral (1.1) itself for the

case of charges of small black holes. Recall that we must evaluate

F := −π ImF (pI + iφI , 256) (2.38)

Since Xa/X0 = φa/φ0 is real, for a > 1, one must evaluate the worldsheet instanton sum

for real values ta = φa/φ0. For some Calabi-Yau manifolds it is possible to analytically

continue the tree-level prepotential F0 from large radius to small values of Imta. However

we may use the explicit results of [45][46], which express F1 ∼ log Φ, where Φ is an

automorphic form for SO(2, n;Z). It appears that Imta = 0 constitutes a natural boundary

of the automorphic form Φ. Thus the formalism of [15] becomes singular for these charges,

even at weak topological string coupling.

Remarkably, if we ignore these subtleties, the formula (2.14) turns out to match per-

fectly with the asymptotic expansions of twisted sector DH states, as we show below.

For untwisted sector DH states the asymptotics do not match with either the absolute

degeneracies Ωabs nor with the helicity supertrace Ω2, as discussed in Section 3.

13



2.5. Holomorphic vs. non-holomorphic topological string partition functions

The asymptotic expansion of the integral (2.31) differs from the entropy predicted

from the attractor formalism, as modified in [5,6,7,8,9]. The latter identifies

S =

[

F − φI ∂F
∂φI

]

s.p.

. (2.39)

This is just the leading semiclassical approximation to (1.1) and does not capture the

subleading corrections given by the asymptotics of the Bessel function. The same argument

we have used to justify evaluating the integral (2.31) with Fpert can be applied to (2.39).

After a suitable modification F → F̃ = F − χ
12 logφ0 the entropy given by (2.39) using the

full nonperturbative prepotential F̃ is the same as that given by Fpert, up to exponentially

small corrections. As we will see, this leads to predictions at variance with exact counting

of heterotic BPS states.

Several recent papers [32,47,48,49] have addressed this problem by taking into account

the holomorphic anomaly in topological string theory. In particular, in the paper [48] the

microscopic and macroscopic degeneracies for small black holes are shown to match in

reduced rank N = 4 models using a different ensemble than suggested by (1.1). Roughly

speaking, the idea is that one has instead

S =

[

Feff − φI ∂Feff

∂φI

]

s.p.

. (2.40)

where Feff is a non-Wilsonian, non-holomorphic effective action. On the other hand, it

is clear from the discussion in [21] that one should use the holomorphic prepotential in

(1.1)(2.31). These two approaches are not necessarily incompatible. The nonholomorphic

effective action is obtained from the holomorphic Wilsonian effective action by integrating

out massless modes. In a similar way Feff might in fact be defined by carrying out the

integral (1.1)(2.31).

3. Microscopic Degeneracies of Heterotic DH States

Let us now determine the microscopic degeneracies of the DH states using the heterotic

dual. For concreteness, we will focus here on bosonic orbifolds of the heterotic string on

T 6. (Using the elliptic genus it should be possible to extend the results in this section to

a wider class of models.) We will denote the orbifold group by Γ. There is an embedding

14



R : Γ → O(22) × O(6). The orbifold group also acts by shifts so that the action on

momentum vectors is

g|P 〉 = e2πiδ(g)·P |R(g)P 〉. (3.1)

In R22,6, with metric Diag(−122,+16) we can diagonalize the action of R(g) with rotation

angles 2πθj(g), j = 1, . . . , 11 on the leftmoving space and 2πθ̃j(g), j = 1, 2, 3 on the

rightmoving space. The moduli are the boosts in O(22, 6) commuting with the image

R(Γ). We consider embeddings Λ ⊂ R22,6 of II22,6. We let Λ(g) denote the sublattice

of vectors fixed by the group element g. Of course, there will be constraints from level

matching and anomaly cancellation. We assume that those constraints are satisfied. This

still leaves a large class of possibilities.

N = 1 spacetime supersymmetry requires that
∑

i θ̃i(g) = 0 mod 1 for all g. N = 2

spacetime supersymmetry requires that θ̃3(g) = 0 for all g. In this case we let θ̃(g) :=

θ̃1(g) = −θ̃2(g). N = 4 spacetime supersymmetry requires θ̃i(g) = 0 for all i, g.

The orbifold model will have a gauge symmetry. The currents in the Cartan subalgebra

of the gauge symmetry (which is generically abelian) is spanned by k pairs of left-moving

bosons which are fixed for all g ∈ Γ, i.e. we suppose θi(g) = 0 for all g for i = 1, . . . , k.
7 There is a subspace Q ⊂ R22,6 fixed by all group elements. It is of signature (2k, 6) for

N = 4 compactifications and (2k, 2) for N = 2 compactifications, respectively. The vector-

multiplet moduli come from the SO(2k, 6) (resp. SO(2k, 2)) rotations in this plane. The

number of U(1) vector fields is nv = 2k+6 in the N = 4 compactifications and nv = 2k+2

in the N = 2 compactifications. The lattice of electric charges (in the untwisted sector) for

the gauge symmetry is the orthogonal projection (in the metric (−122,+16)) of Λ into the

plane Q. Denote the charge lattice in the untwisted sector by M0 and let Qel : Λ → M0

be the orthogonal projection. States in the untwisted sector are naturally labelled by

P ∈ II22,6 but we only want to compute degeneracies at a fixed charge vector Q ∈M0.

Let us now compute the degeneracies of the DH states. In the untwisted sector DH

states are all contained in the subspace of the 1-string Hilbert space of the form

Hosc,L ⊗Hmom ⊗ H̃gnd (3.2)

satisfying L0 = L̃0. Here the three factors are leftmoving oscillators, momentum eigen-

states, and rightmoving groundstates. One important subtlety which arises for N = 2

7 For brevity we restrict some generality. It is possible to have θi(g) = 1

2
allowing an odd

number of twisted bosons. The formulae below are easily modified to accommodate this case.
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compactifications is that, in general, even in this subspace the DH states span a proper

subspace. The projection to the BPS states depends only on the momentum P of the state

and implements the BPS condition M2 = (Qel)
2. Let Πbps(P ) be 1 if this condition is

satisfied, and zero otherwise. For some vectors P we have Πbps(P ) = 1 throughout the en-

tire moduli space. However there can also be “chaotic BPS states” for which Πbps(P ) = 0

generically but, on a subspace of hypermultiplet moduli space, jumps to one [39].

The space of BPS states is graded by the electric charge lattice Mel (in general M0

is a proper sublattice) and we denote by HBPS(Q) the subspace with charge Q. We

will be interested in several measures of the degeneracies of states. The absolute number

is Ωabs(Q) := dimHBPS(Q). Because of the chaotic BPS states this is not a constant

function on moduli space. Examples show that a more appropriate quantity for comparing

to (1.1) are the helicity supertraces. These are defined by 8

Ωn(Q) :=
1

2n

(

y
∂

∂y

)n|y=+1TrHBP S(Q)(−1)2J3y2J3 (3.3)

where J3 is a generator of the massive little group in 4 dimensions. For N = 2 compact-

ifications the first nonvanishing supertrace is Ω2(Q) and this appears to be the correct

quantity to use when comparing with the integral (1.1). Only BPS states contribute to

Ω2(Q). For N = 4 compactifications the first nonvanishing supertrace is Ω4(Q). This only

receives contributions from 1
2
-BPS states. For Ω6(Q) both 1

2
- and 1

4
-BPS states contribute.

Examples suggest that Ω4(Q) is the appropriate index to use for 1
2 -BPS states. Clearly, a

different index must be chosen for 1/4-BPS states, if Eq. (1.1) is to continue to hold for

them as well. Ω6(Q) is then the only candidate in this case.

The evaluation of the partition function in the BPS subspace of (3.2) is largely stan-

dard. Care must be exercised in the evaluation of the momentum sum since we are only

interested in the degeneracies of the BPS states at a fixed Q ∈ Mel. In the untwisted

sector we should write the momentum contribution as:

∑

P∈Λ(g)

q
1
2

P 2
L q̄

1
2

P 2
Re2πiδ(g)P Πbps(P ) =

∑

Q∈M0

q
1
2

Q2
L q̄

1
2

Q2
RFg,Q(q) (3.4)

where

Fg,Q(q) =
∑

P∈Λ(g),Qel(P )=Q

q
1
2
(P 2

L−Q2
L)e2πiδ(g)P Πbps(P ) (3.5)

8 These supertraces generalize the “vectors minus hypers” index used in [39]. See [50] appendix

G for a nice discussion of helicity supertraces.
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Note we have used the BPS condition P 2
R = Q2

R, and due to this condition we can write

P 2
L −Q2

L = P 2 −Q2. The function (3.5) is actually very simple in many important cases.

For example if Λ(g) ⊂ M0, which is typical if the fixed space under the group element g

coincides with Q then we simply have Fg,Q(q) = e2πiδ(g)·Q. For this reason it is useful

to distinguish between “minimal twists”, which leave only the subspace Q invariant (i.e.

0 < θj(g) < 1 for j > k) and nonminimal twists. For nonminimal twists the kernel of Qel

will be nontrivial and Fg,Q(q) will be a theta function.

Putting all this together the degeneracies of untwisted sector BPS states are given by

Ωn(Q) = e4πQ2
R

∫

dτ1 q
1
2

Q2
L q̄

1
2

Q2
RZn (3.6)

where

Zn =
1

|Γ|
∑

g∈Γ

1

η2+2k

[

11−k
∏

j=1

(−2 sinπθj(g))
η

ϑ[
1
2

1
2+θj(g)

](|τ)

]

wn(g)Fg,Q(q) (3.7)

and wn(g) is given by

wn(g) =















16 cosπθ̃1(g) cosπθ̃2(g) cosπθ̃3(g) n = abs
2(sinπθ̃(g))2 n = 2
3
2 n = 4
15
8 (2 − E2(τ)) n = 6

(3.8)

The formula (3.7) is exact. Quite generally, the partition functions are negative weight

modular forms and the degeneracies are given by their Fourier coefficients. There is a

general formula - the Rademacher expansion - for the coefficients of such modular forms

which is exact and yet summarizes beautifully the asymptotic behavior of these coefficients.

It expresses these coefficients as an infinite sum of I-Bessel functions and thus is very well

suited to comparison with the integral expression (2.14). The Rademacher expansion is

summarized in the appendix.

Using the Rademacher expansion, the leading asymptotics for the degeneracies of DH

states from the minimal twists is (n 6= 6 here):

1

4|Γ|
′
∑

g∈Γ,minimal

wn(g)h(g)

11−k
∏

j=1

(−2 sinπθj(g))|∆g|k+2Îk+2(4π
√

|∆g| 12Q2) (3.9)

where

h(g) =

{

(−1)(12−k)/2 sin
(

2πδ(g)Q+ π
∑

j θj(g)
)

k even

(−1)(11−k)/2 cos
(

2πδ(g)Q+ π
∑

j θj(g)
)

k odd
(3.10)
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and

∆g := −1 + 1
2

11−k
∑

j=1

θj(g)(1− θj(g)), 0 < θj(g) < 1 (3.11)

is the oscillator ground state energy in the sector twisted by g. The prime on the sum

indicates we only get contributions from g such that ∆g < 0. For nonminimal twists there

will be similar contributions as described above. In particular the index on the Bessel

function will be the same, but (3.11) receives an extra nonnegative contribution from the

shift δ, and the coefficient |∆g|k+2 is modified (and still positive). In some examples the

leading asymptotics is provided by the minimal twists alone.

It is interesting to compare this with the twisted sectors. Since the sector (1, g) always

mixes with (g, 1) under modular transformation, and since the oscillator groundstate energy

is −1 in the untwisted sector, it is clear that for charges Q corresponding to states in the

twisted sector the asymptotics will grow like

Îk+2(4π
√

1
2Q

2) (3.12)

This is true both for the absolute number of BPS states and for the supertraces. Recall

that k + 2 = 1
2 (nv + 2) for N = 2 compactifications, so we have agreement with (2.15).

There are some interesting general lessons we can draw from our result (3.9). Due to

the factor h(g) it is possible that the leading I-Bessel functions cancel for certain directions

of Q. Moreover, a general feature of N = 2 compactifications is that g = 1 does not

contribute to Ω2 in (3.9). Then, since |∆g| < 1 the degeneracies are exponentially smaller

in the untwisted sector compared to those of the twisted sector. We will see an explicit

example of this below. In contrast, for N = 4 compactifications, the g = 1 term does

contribute to Ω4, which thus has the same growth as in the twisted sector.

One general lesson seems to be that the degeneracies, and even their leading asymp-

totics can be sensitive functions of the “direction” ofQ in charge space. In general it is quite

possible that the exact BPS degeneracies and their asymptotics will be subtle arithmetic

functions of the charge vector Q. 9 In the physics literature it is often taken for granted

that there is a smooth function Sn : Heven(X ,R) → R so that Sn(sQ) ∼ log Ωn(sQ) for

s→ ∞, but the true situation might actually be much more subtle. The Rademacher ex-

pansion shows that Fourier coefficients of negative weight modular forms have well-defined

asymptotics governed by Bessel functions. By contrast, the Fourier coefficients an of cusp

forms of positive weight w have a lot of “scatter” and can only be described by a proba-

bility distribution for an/n
(w−1)/2. (See e.g. [52] for an introduction to this subject.) It

would be very interesting to know where the functions Ωn(Q) fit into this dichotomy.

9 Such a phenomenon was conjectured based on other considerations in [51].
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4. Examples

We now give some examples of the results one finds using these general techniques.

More details can be found in [22].

4.1. K3 × T 2

This is dual to the heterotic string on T 6. We have dimHBP S(Q) = p24(N) where

N − 1 = 1
2Q

2 and η−24 = q−1
∑∞

N=0 p24(N)qN . The Rademacher expansion (equation

(A.4) below) becomes

dimHBPS(Q) = 16 ·
[

Î13(4π
√

1
2Q

2) − 2−14eiπ
1
2Q2

Î13(2π
√

1
2Q

2) + · · ·
]

(4.1)

For Ω4 we simply replace 16 by 3
2
. For Ω6 we find

Ω6(Q) =
15

8
(2 + 1

2Q
2)Î13(4π

√

1
2Q

2) + · · · (4.2)

and thus we conclude that the correct supertrace to use in (1.1) is Ω4, at least in this

example. We thus see that - with a proper normalization of the measure dφ - the integral

expression (1.1) agrees with the exact degeneracies to all orders in 1/Q2 in the leading

exponential. We stress that this agreement arises just from using the perturbative piece of

F (XI ,W 2). This is essentially the result of [23]. We also note that a naive inclusion of the

worldsheet instanton corrections does not lead to the subleading Bessel functions given by

the Rademacher expansion.

4.2. A reduced rank N = 4 model

Besides the simplest K3 × T 2 compactification, it is also possible to construct a large

number of N = 4 type II models by considering quotients of K3 × T 2 by an Enriques

automorphism of K3 combined with a translation on T 2. We consider the simplest model

with 14 N = 4 vector multiplets, corresponding to an Enriques involution with 8 odd

two-cycles. It is related by heterotic/type II duality [53] to the Z2 orbifold of the E8 ×E8

string, where the Z2 action interchanges the two E8 factors and simultaneously shifts half-

way along a circle so that the twisted states are massive [54,55]. The topological amplitude

F1 for this model has been computed in [56].
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To apply the formalism of §3, consider vectors (P1, P2, P3, P4) in E8(−1) ⊕E8(−1) ⊕
II1,1 ⊕ II5,5 with orbifold action 10

g|P1, P2, P3, P4〉 = e2πiδ·P3|P2, P1, P3, P4〉 (4.3)

where 2δ ∈ II1,1 and δ2 = 0. The charge lattice is Mel = M0 + M1 where M0 are the

charges of the untwisted sector with

M0 = E8(−1
2 ) ⊕ II1,1 ⊕ II5,5 (4.4)

while

M1 = E8(−1
2
) ⊕ (II1,1 + δ) ⊕ II5,5 (4.5)

are the charges in the twisted sector. For charges in the untwisted sector we denote

Q = ( 1√
2
(2P + ℘), P3, P4) where P ∈ E8(+1), and ℘ runs over a set of lifts of E8/2E8 to

E8. The absolute number of BPS states is given by

dimHBPS(Q) = du
Q(N) (4.6)

for N + ∆℘ = 1
2Q

2 where

8ΘE8(2),℘(τ)
1

η24
+ 8δ℘,0e

2πiδ·P3
24

η12ϑ4
2

:= q∆℘

∞
∑

N=0

du
Q(N)qN (4.7)

with

ΘE8(2),℘(τ) :=
∑

Q∈E8(+1)

e2πiτ(Q−1
2

℘)2 (4.8)

The second supertrace vanishes, while for Ω4 we should multiply by 3/32. This expression

only depends on ℘ up to the action of the Weyl group of E8. There are three orbits, of

length 1, 120 and 135 corresponding to the trivial, adjoint, and 3875 representations. For

each of these (4.8) may be expressed in terms of theta functions.

For the twisted sector we define

1
2

(

1

η12ϑ4
4

± 1

η12ϑ4
3

)

= q∆±

∑

N≥0

dt
±(N)qN (4.9)

10 The notation E8(a) used here and below means that the E8 lattice norm is scaled by an

overall factor of a.
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with ∆+ = −1
2 ,∆− = 0. The absolute number of twisted sector BPS states is given by

dimHBPS(Q) = 16

{

dt
+(N) eiπQ2

= −1

dt
−(N) eiπQ2

= +1
(4.10)

where N + ∆± = 1
2Q

2.

Applying the Rademacher expansion we find for Ωabs(Q) = dimHBPS(Q):































1
2 Î9(4π

√

1
2Q

2) + 2−6(15 + 16e2πiP ·δ)Î9(4π
√

1
4Q

2) + · · · |O℘| = 1

1
2 Î9(4π

√

1
2Q

2) + 2−6Î9(4π
√

1
4Q

2) + · · · |O℘| = 120

1
2
Î9(4π

√

1
2
Q2) − 2−6Î9(4π

√

1
4
Q2) + · · · |O℘| = 135

1
2
Î9
(

4π
√

1
2
Q2
)

− 2−6eiπQ2

Î9
(

4π
√

1
4
Q2
)

+ · · · Q ∈M1

(4.11)

In the first three lines Q ∈M0 and |O℘| is the order of the E8 Weyl group orbit of ℘. The

leading term is independent of the orbit, and in rather neat agreement with (2.14).

4.3. The FHSV model

As our third example let us consider the FHSV model. This has N = 2 supersymmetry

and is described in [57]. We denote momentum vectors by (P1, P2, P3, P4) in II9,1⊕II9,1⊕
II1,1 ⊕ II3,3 The Z2 acts as

|P1, P2, P3, P4〉 → e2πiδ·P3|P2, P1, P3,−P4〉 (4.12)

with δ the order two shift vector defined in [57](δ2 = 1
2 ). The u(1)12 electric charge lattice

is Mel = M0 +M1 where

M0 = E8(−1
2 ) ⊕ II1,1( 1

2) ⊕ II1,1 (4.13)

M1 = E8(−1
2) ⊕ II1,1( 1

2 ) ⊕ (II1,1 + δ) (4.14)

States from the untwisted sector have charge vectors in M0, while states from the twisted

sector have charge vectors in M1.

In order to give the degeneracies of DH states we define
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η6ϑ6
2

= q−1
∞
∑

N=0

du(N)qN

1
2

(

1

η6ϑ6
4

+
1

η6ϑ6
3

)

= q−
1
4

∞
∑

N=0

dt
+(N)qN

1
2

(

1

η6ϑ6
4

− 1

η6ϑ6
3

)

= q+
1
4

∞
∑

N=0

dt
−(N)qN

(4.15)
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Then, for the helicity supertrace in the untwisted sector we have the result:

Ω2(Q) =

{

e2πiQδdu(N) Q ∈M ′
0

0 Q ∈M0 −M ′
0

(4.16)

where N − 1 = 1
2
Q2 and M ′

0 is the sublattice of vectors of the form 2P1 ⊕ 2P2 ⊕P3 of M0.

For the twisted sector, note that Q ∈ M1 and hence Q2 ∈ Z + 1
2

The exact second

supertrace is

Ω2(Q) =

{

−16dt
+(N) for eiπQ2

= −i
−16dt

−(N) for eiπQ2

= +i
(4.17)

The oscillator level N is related to the momentum by the condition N + ∆± = 1
2
Q2 and

the ± sign is correlated with the sign of (4.17). Note that the metric II9,1( 1
2
)⊕ (II1,1 + δ)

is used here.

Using the Rademacher expansion we have the asymptotics

Ω2(Q) =















2−8e2πiQ·δ(1 − eiπQ2/2)Î7(2π
√

1
2Q

2) + O(eπ
√

Q2/2) Q ∈M ′
0

0 Q ∈M0 −M ′
0

−2−3Î7(4π
√

1
2Q

2) + 2−11ieiπQ2

Î7(2π
√

1
2Q

2) + O(eπ
√

Q2/2) Q ∈M1

(4.18)

Let us now compare these results with (2.14)(2.15) and hence with (1.1)(2.31). The

degeneracies in the twisted sector are consistent with (2.14) but this does not appear to be

the case for the untwisted sector, because the exponential growth is exp[2π
√

1
2
Q2]. 11 It

is interesting also to consider the absolute number of BPS states in the untwisted sector.

These are given by dimHBPS(Q) = α(N) where N − 1 = 1
2Q

2 and

8

η24
Fg,Q(q) = q−1

∑

N≥0

α(N)qN (4.19)

For generic moduli, the asymptotics of the absolute number of BPS states is controlled by

Î13(4π
√

1
2
Q2). However Fg,Q is a function of moduli and on some subvarieties of moduli

space Fg,Q can be enhanced to an E8 theta function. In this case the absolute number

of BPS states is enhanced to Î9(4π
√

1
2
Q2). Thus, the leading exponential behavior is the

desired exp[4π
√

1
2Q

2] but the logarithmic corrections are in fact moduli-dependent. This

11 This discrepancy is avoided in a class of N = 2 heterotic orbifolds where twisted states carry

the same charges as untwisted states, hence dominate the helicity supertrace [22]. In the FHSV

model, twisted and untwisted states can be distinguished by the moding of the winding number.
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is to be contrasted with the supertrace Ω2, which is moduli independent, but for Q ∈M ′
0

goes like Î7(2π
√

1
2Q

2), and is exponentially smaller than the absolute number of BPS

states.

Thus the exact degeneracies do not agree with (1.1)(2.31) with any natural interpre-

tation of Ω. However, as explained in §2.4.4 the integrals (1.1)(2.31) are highly singular.

Thus the formalism of [15] breaks down and this discrepancy cannot be said to constitute

a counterexample to the conjecture of [15].

4.4. Purely electric states

It is also instructive to consider purely electric states, i.e. those with pa = 0 but

qa 6= 0. An interesting example where such states can be investigated in detail are the

perturbative type II DH states in K3 × T 2 compactification. These states are obtained

from fundamental type II strings with momentum and winding along the T 2 factor. These

are purely electric states in the natural polarization for the type II string. They are related

by U -duality to BPS states of D2 branes wrapping a T 2 and a holomorphic curve in the

K3 surface. In this case pa = 0, so that the perturbative part of the free energy (2.6)

vanishes, while the exact free energy is given by

F(φ, p) = − log |∆(τ)|2 (4.20)

for τ = φ1/φ0. As a consequence, the integral (1.1) is highly singular. Nevertheless we

have (see [50], eqs. (G.24) and (G.25)):

Ω4(Q) = 36 δQ2,0

Ω6(Q) = 90 δQ2,0

(4.21)

for charges Q such as we have described. Meanwhile Ωabs(Q) grows exponentially, like

exp[2π
√

Q2]. Note that in contrast to the heterotic case, for Q2 6= 0 these states are 1
4
-

BPS, despite the fact that their discriminant vanishes. Further discussion of these states,

and related states in type (0, 4)/(2, 2) duality pairs will be given in [22].
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4.5. Large black holes and the (0, 4) CFT dual

Regrettably, there are no examples where the degeneracies of large black holes are

known exactly. In principle the index Ω2 should be computable from a (0, 4) sigma model

described in [43][58], presumably from the elliptic genus of this model. While the sigma

model is rather complicated, and has not been well investigated we should note that from

the Rademacher expansion it is clear that the leading exponential asymptotics of negative

weight modular forms depends on very little data. Essentially all that enters is the order

of the pole and the negative modular weight. There are cL = C(p) + c2 · p = Ĉ(p) real

left-moving bosons. Since the sigma model is unitary, the relevant modular form has the

expansion q−cL/24 + · · ·. This gives the order of the pole, and thus we need only know

the modular weight. This in turn depends on the number of left-moving noncompact

bosons. Each noncompact boson contributes w = −1
2 to the modular weight. Now,

the sigma model of [43] splits into a product of a relatively simple “universal factor”

and a rather complicated “entropic factor,” as described in [58]. Little is known about

the entropic factor other than that it is a (0, 4) conformal theory with cR = 6k, where

k = 1
6
C(p) + 1

12
c2 · p − 1, where p ∈ H2(Z,Z). The local geometry of the target space

was worked out in [58]. Based on this picture we will assume the target space is compact

and does not contribute to the modular weight. (Quite possibly the model is a “singular

conformal field theory” in the sense of [59] because the surface in the linear system |p|
can degenerate along the discriminant locus. It is reasonable to model this degeneration

using a Liouville theory, as in [59]. If this is the case we expect the entropic factor to

contribute order one modular weight.) The universal factor is much more explicit. The

target is R3 × S1, it has (0, 4) supersymmetry with k = 1 and there are h − 1 compact

leftmoving bosons which are N = 4 singlets. They have momentum in the anti-selfdual

part of H1,1(X ,Z) (anti-selfduality is defined by the surface in |p|). Since we fix these

momenta we obtain w = −1
2 (h − 1). Finally there are 3 noncompact left-moving bosons

describing the center of mass of the black hole in R3. Thus, the net left-moving modular

weight is −(h+ 2)/2. Now, applying the Rademacher expansion in the region |q̂0| ≫ Ĉ(p)

we find the elliptic genus is proportional to

Îν

(

2π

√

|q̂0|Ĉ(p)

6

)

(4.22)

with ν = h+4
2 . This is remarkably close to (2.10)! Clearly, further work is needed here since

it is likely there are a number of important subtleties in the entropic factor. Nevertheless,
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our argument suggests that a deeper investigation of the elliptic genus in this model will

lead to an interesting test of (1.1) (or rather (2.31), since it must be done at strong

topological string coupling) for the case of large black holes.

5. Conclusions

We have seen that the heterotic DH states and the corresponding small black holes

provide a rich set of examples for testing the precise meaning and the range of validity

of (1.1). We have computed exactly the absolute number of DH states in a large class of

orbifold compactifications with N = 4 and N = 2 supersymmetry. We have also evaluated

various supertraces which effectively count the number of ‘unpaired’ BPS short multiplets

that do not have the spin content to combine into long multiplets. These supertraces

provide valuable information about how the BPS spectrum is organized and are important

for finding the correct interpretation of our results. Using these data, a far more detailed

comparison of microscopic and macroscopic degeneracies can be carried out than is possible

for large black holes. We summarize below our results along with a number of puzzles and

open problems and conclude with possible interpretations.

5.1. Results

On the macroscopic side, the asymptotic black hole degeneracies are proportional

to a Bessel function (2.10)(2.14). For heterotic DH states with a charge vector Q, the

Bessel function is of the form Îν(4π
√

Q2/2) where the index ν is given in terms of the

number of massless vector fields by (2.15). If instead one considers a limit of charges with

weak topological string coupling and χ(X ) 6= 0 then the asymptotics are far more more

complicated than those of a Bessel function, and are given by (2.36) , in leading order.

On the microscopic side, the absolute number of the untwisted DH states is given by

the general formulae (3.6), (3.7). The asymptotic microscopic degeneracies of the untwisted

states are given by (3.9) and of the twisted states by (3.12). These are both expressed

in terms of an I-Bessel function. Asymptotically, the relevant supertraces are also Bessel

functions. All these Bessel functions in general have different arguments and indices.

Comparison of these asymptotic degeneracies reveals the following broad patterns

which we have checked in a few explicit examples here and many other examples that will

be reported in [22].
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• In all reduced rank CHL-type orbifolds with N = 4 supersymmetry, there is re-

markable agreement between the microscopic and macroscopic degeneracies for all possible

charge vectors in both twisted and untwisted sectors. See for example (4.11). The agree-

ment holds to all orders in an asymptotic expansion in 1/Q2, but fails nonperturbatively.

12 It is noteworthy that this agreement uses only the perturbative part of the topological

string partition function and worldsheet instantons play no role.

The relevant helicity supertrace in this case is Ω4 which turns out to be proportional

to the absolute number because the left-moving oscillators of the heterotic string do not

carry any spacetime fermion numbers, so there are no intermediate BPS representations.

• In orbifolds with N = 2 supersymmetry, the leading order microscopic entropy is

determined entirely by the argument of the Bessel function and in all models it goes as

4π
√

Q2/2. This is expected from a general argument in [29] that if the entropies match in

the toroidally compactified heterotic string, as they do [23], then they must also match in

all N = 2 orbifolds. The subleading terms however depend also on the index of the Bessel

function and these match only for twisted states but not for the untwisted states. The

relevant nonvanishing helicity supertrace in this case is Ω2. For the twisted states, Ω2 is

proportional to the absolute number. For the untwisted states, Ω2 is exponentially smaller

than the absolute number because the argument of the corresponding Bessel function turns

out to be 2π
√

Q2/2 and moreover the index is also different.

Unfortunately, as we have explained in §2.4.4 in this case we cannot reliably compute

the macroscopic degeneracy because the prescription in [15] forces us to work on the

boundary of Teichmüller space, and Ftop is singular on this locus. Nevertheless, remarkably,

if we ignore this subtlety and consider the result (2.14) we find precise agreement for the

twisted sector DH states. We find disagreement both with Ωabs and with Ω2 for the

untwisted sector DH states.

• We have focused in this paper on the heterotic DH states, but it is instructive to

consider also the Type-II DH states, as discussed in sec. 4.4. In this case, since pI = 0, the

graviphoton charge vanishes and the integral (1.1) becomes quite singular, even in cases

where the exact Ftop is known. Moreover, even after the inclusion of the F-type terms, the

geometry continues to have a null singularity and does not develop a regular horizon. It

12 Nonperturbative discrepancies in the formula (1.1) have previously been addressed in [60][61].

The systems discussed in these papers are very different from the compact Calabi-Yau case dis-

cussed in this paper.
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is not clear in this case how to apply the formalism implicit in (1.1) and it is likely that

the D-type terms are important for desingularizing these solutions. These states will be

discussed in more detail in [22].

5.2. Puzzles and open problems

Our results raise a number of questions and puzzles. Their resolution is essential for

a correct interpretation of (1.1).

• An important assumption underlying (1.1) both for the large and small black holes

is that the D-type terms in the low energy effective action do not contribute to the black

hole entropy. A priori, it is far from clear if that is the case.

The strikingly successful agreement for the large class of heterotic DH states in N = 4

orbifolds strongly suggests that at least for this class of small black holes, the D-terms in

fact do not modify the entropy. It is highly unlikely that various precise numerical factors

could have come out right only accidentally. It is quite conceivable for instance that

once the F-type quantum corrections generate a solution with a regular horizon, then

on that background solution, the corrections from the D-type terms do not change the

Wald entropy possibly because of the index structure of the background Riemann tensor

and gauge fields. There are analogous situations where a similar phenomenon occurs, for

example, in AdS5 × S5 or in chiral null models, where the higher curvature terms do not

alter the solution because of the specific details of the index structure. It would be very

interesting to see explicitly if this is indeed the case for our small black holes.

The Type-II DH states noted in the previous subsection also suggest that in general,

the D-type terms will be important. In this case, the F-type terms are inadequate to

desingularize the solution. Following the heuristic picture of the stretched horizon sug-

gested in [28], one is then forced to include the D-type terms to obtain a solution with a

regular horizon to be able to make a meaningful comparison with the microstates. This

suggests that even for large black holes, whether or not the effect of D-type terms needs

to be included may depend on the details of the model and on the class of states.

• We have seen that even in the successful cases, (1.1) (or rather, the more accurate

(2.31)) is only true in perturbation theory. If one wishes to go beyond the asymptotic

expansion and understand (1.1) as a statement about exact BPS degeneracies, then one

must specify a nonperturbative definition of ψp and must then specify carefully the region

of integration. Regarding the first problem, the K3 × T 2 example is of fundamental

importance because the K3 × T 2 wavefunction is known exactly. In this case we can say
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definitively that ψp is not a normalizable wavefunction and therefore not in the Hilbert

space [22]. It is important and interesting to investigate this issue for other Calabi-Yau

manifolds, but without a nonperturbative definition it is impossible to make definitive

statements. Nevertheless, in the examples of X with heterotic duals, the functions Fg are

automorphic functions of the ta. See, for examples, [62,63,64,39,65,66,67]. This is already

sufficient knowledge to address to some extent the question of what contour of integration

should be chosen for the φI . We have seen that if we keep just the perturbative part of F

then it is natural to integrate φI along the imaginary axis. However, this is problematic if

we wish to retain the worldsheet instanton corrections. When ta := Xa/X0 has a positive

imaginary part the instanton series in (2.1) at fixed g, but summed over β converges.

Automorphic forms are highly singular when evaluated for ta purely real. This can already

be seen in the K3 × T 2 example, where one is evaluating ∆(τ) for real τ . If one tries

instead to expand the integrand of (1.1) using the expansion in Gromov-Witten invariants

one finds an infinite series of order one terms leading to a nonsensical result. (In particular,

the expansion in worldsheet instantons does not lead to the subleading exponentials in the

Rademacher expansion.)

How then are we to understand (1.1)? One possibility is that the full nonperturbative

topological string partition function defines an n-form ωp = dφeF with singularities on

Heven(X ,C) and that certain periods of this form give Ω(p, q). Then our procedure above

could be a saddle point approximation to such a contour integral, and the Bessel functions

(2.10)(2.14) represent the full asymptotic expansion multiplying the leading exponential.

At least this interpretation is consistent with the data provided by perturbative heterotic

states.

• An interesting question raised by the subleading Bessel functions in the Rademacher

expansion is that of their physical meaning. The subleading corrections to p24(N) in the

case of K3 × T 2 are down by exp[−4π c−1
c

√
N ], c = 2, 3, . . ., and since

√
N ∼ 1/g2

s at the

horizon this is suggestive of some novel nonperturbative effects.

5.3. Interpretations

One interpretation that has been suggested in [15] is that the quantity Ω appearing

in (1.1) is not the absolute number of micro-states but rather an index. It is natural to

identify this proposed index with Ω4 (or Ω6) in N = 4 theories and with Ω2 in N = 2

theories.
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In all successful examples where the agreement works, this index always equals the

absolute number and also the macroscopic black hole degeneracy. This seems to support

the above interpretation. However, the interpretation in terms of an index seems problem-

atic from the point of view of thermodynamics. The Bekenstein-Hawking-Wald entropy

appears in the first law of thermodynamics which can be derived in the Lorentzian theory

where there are no ambiguities about fermionic boundary conditions. As with any other

thermodynamic system, one should identify this entropy with the logarithm of the absolute

number of microstates by the Boltzmann relation and not with an index. Generically, the

index will be much smaller than the absolute number because many states can cancel in

pairs when counted in an index and thus cannot equal the thermodynamic entropy. This

problem is even more acute for large black holes. In this case, the classical area is finite

and any possible quantum corrections due to the F-type and D-type terms are subleading.

On general grounds, it does not seem reasonable to identify this thermodynamic entropy

with an index.

Our results suggest a possible alternative interpretation that the macroscopic entropy

should be compared with the absolute microscopic degeneracies, but that these degen-

eracies must be computed in an appropriate “nonperturbative” regime of moduli space.

Indeed this is what one would expect from the Boltzmann relation in conventional statis-

tical mechanics. 13

Note that even if the string coupling remains small at the horizon it does not mean

that we are in a perturbative regime because the graviphoton charge of the state of interest

has to be large enough so that a black hole is formed. Formation of a black hole is clearly a

nonperturbative change in the perturbative flat spacetime geometry. This is analogous to

a situation in QED where even if the fine structure constant α is small, the interactions of

a particle with charge Z cannot be computed in perturbation theory for sufficiently large

Z once αZ is of order one.

Therefore, for a correct comparison, we need to evaluate the microscopic degeneracies

in the regions of the moduli space determined by the attractor geometry where a black hole

has formed. We are instead computing the microscopic degeneracies in the perturbative

13 In fact, not only Ωabs but also Ω2 is only a locally constant function on moduli space. The

function Ω2 can change across walls of marginal stability in vectormultiplet moduli space (although

it is constant in hypermultiplet moduli space). Thus, even a version of (1.1) in which Ω is given

by an index must also take into account the region of moduli space in which Ω is being computed.
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regime using free string theory in flat spacetime. The two computations do not always

have to agree even for BPS states in short multiplets because with the right spin content,

many short multiplets can in principle combine into a long multiplet. The long multiplets

are then not protected from renormalization. This suggests that the spectrum of BPS

short multiplets would be robust against renormalization only when their absolute number

equals an index and that index is itself constant. In this case, the short multiplets cannot

turn into a long multiplet because they simply do not have the required spin content.

This interpretation is indeed consistent with our results for all heterotic DH states.

Whenever the perturbative microscopic degeneracies match with macroscopic degeneracies

as in the N = 4 models or for the twisted states in the N = 2 models, they also equal

an index. It seems reasonable to expect that in this case the microscopic degeneracies

in the nonperturbative black hole regime can be reliably deduced from the microscopic

degeneracies in the perturbative regime.
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Note added: Both versions 1 and 2 of this paper asserted that the degeneracies of un-

twisted DH states in N = 2 orbifold compactifications constituted a counterexample to

the conjecture of [15]. We subsequently realized that in these examples our computation

of the integral (1.1) in §2.3 is not rigorous because certain Kähler classes are zero at the

attractor point. 14 For further explanation and discussion see §2.4.4 and §5.1. In the

present revised version, our claims are requalified as follows: we find rigorous agreement

for N = 4 compactifications, remarkable unjustified agreement for twisted sector N = 2

DH states, and apparent discrepancy for untwisted N = 2 DH states. In fact, the formula

(1.1) appears to be rather singular in this case. We have also taken the opportunity to

add some new results in §2.4.3 and §4.5.

14 We disagree with the statement in footnote 2 of [68]. In fact, for the FHSV example the

computation can be done at weak coupling. In particular, the nonperturbative effects discussed

in [68] , of order O(e−t2/λ), are exponentially small in the limit we consider.
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Appendix A. The Rademacher expansion

Here we state briefly the Rademacher expansion. For more details and information

see [69].

Suppose we have a “vector-valued nearly holomorphic modular form,” i.e., a collection

of functions fµ(τ) which form a finite-dimensional unitary representation of the modular

group of weight w < 0. Under the standard generators we have

fµ(τ + 1) = e2πi∆µfµ(τ)

fµ(−1/τ) = (−iτ)wSµνfν(τ)
(A.1)

We assume the fµ(τ) have no singularities for τ in the upper half plane, except at the

cusps Q ∪ i∞. We may assume they have an absolutely convergent Fourier expansion

fµ(τ) = q∆µ

∑

m≥0

Fµ(m)qm µ = 1, . . . , r (A.2)

with Fµ(0) 6= 0 and that the ∆µ are real. We wish to give a formula for the Fourier

coefficients Fµ(m).

Define:

Îν(z) = −i(2π)ν

∫ ǫ+i∞

ǫ−i∞
t−ν−1e(t+z2/(4t))dt = 2π(

z

4π
)−νIν(z) (A.3)

for Re(ν) > 0, ǫ > 0, where Iν(z) is the standard modified Bessel function of the first kind.

Then we have:

Fν(n) =
∞
∑

c=1

r
∑

µ=1

cw−2Kℓ(n, ν,m, µ; c)
∑

m+∆µ<0

Fµ(m)

|m+ ∆µ|1−wÎ1−w

[

4π

c

√

|m+ ∆µ|(n+ ∆ν)

]

.

(A.4)

The coefficients Kℓ(n, ν,m, µ; c) are generalized Kloosterman sums. For c = 1 we have:

Kℓ(n, ν,m, µ; c = 1) = S−1
νµ (A.5)

The series (A.4) is convergent. Moreover the asymptotics of Iν for large Re(z) is given by

Iν(z) ∼ ez

√
2πz

[

1 − (µ− 1)

8z
+

(µ− 1)(µ− 32)

2!(8z)2
− (µ− 1)(µ− 32)(µ− 52)

3!(8z)3
+ . . .

]

, (A.6)

where µ = 4ν2.

31



References

[1] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,”

Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].

[2] T. Damour, “The entropy of black holes: A primer,” arXiv:hep-th/0401160.

[3] S. Ferrara, R. Kallosh and A. Strominger, “N=2 extremal black holes,” Phys. Rev. D

52, 5412 (1995) [arXiv:hep-th/9508072].

[4] A. Strominger, “Macroscopic Entropy of N = 2 Extremal Black Holes,” Phys. Lett.

B 383, 39 (1996) [arXiv:hep-th/9602111].

[5] G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Corrections to macroscopic super-

symmetric black-hole entropy,” Phys. Lett. B 451, 309 (1999) [arXiv:hep-th/9812082].

[6] G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Deviations from the area law for

supersymmetric black holes,” Fortsch. Phys. 48, 49 (2000) [arXiv:hep-th/9904005].

[7] G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Area law corrections from state count-

ing and supergravity,” Class. Quant. Grav. 17, 1007 (2000) [arXiv:hep-th/9910179].

[8] G. Lopes Cardoso, B. de Wit and T. Mohaupt, “Macroscopic entropy formulae and

non-holomorphic corrections for supersymmetric black holes,” Nucl. Phys. B 567, 87

(2000) [arXiv:hep-th/9906094].

[9] T. Mohaupt, “Black hole entropy, special geometry and strings,” Fortsch. Phys. 49,

3 (2001) [arXiv:hep-th/0007195].

[10] J. D. Bekenstein, “Black Holes And Entropy,” Phys. Rev. D 7, 2333 (1973).

[11] J. D. Bekenstein, “Generalized Second Law Of Thermodynamics In Black Hole

Physics,” Phys. Rev. D 9, 3292 (1974).

[12] S. W. Hawking, “Particle Creation By Black Holes,” Commun. Math. Phys. 43, 199

(1975).

[13] R. M. Wald, “Black hole entropy in the Noether charge,” Phys. Rev. D 48, 3427

(1993) [arXiv:gr-qc/9307038].

[14] V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for

dynamical black hole entropy,” Phys. Rev. D 50, 846 (1994) [arXiv:gr-qc/9403028].

[15] H. Ooguri, A. Strominger and C. Vafa, “Black hole attractors and the topological

string,” Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146].

[16] E. Witten, “Topological Sigma Models,” Commun. Math. Phys. 118, 411 (1988).

[17] E. Witten, “Mirror manifolds and topological field theory,” arXiv:hep-th/9112056.

[18] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Kodaira-Spencer theory of gravity

and exact results for quantum string amplitudes,” Commun. Math. Phys. 165, 311

(1994) [arXiv:hep-th/9309140].

[19] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Holomorphic anomalies in topo-

logical field theories,” Nucl. Phys. B 405, 279 (1993) [arXiv:hep-th/9302103].

32

http://arXiv.org/abs/hep-th/9601029
http://arXiv.org/abs/hep-th/0401160
http://arXiv.org/abs/hep-th/9508072
http://arXiv.org/abs/hep-th/9602111
http://arXiv.org/abs/hep-th/9812082
http://arXiv.org/abs/hep-th/9904005
http://arXiv.org/abs/hep-th/9910179
http://arXiv.org/abs/hep-th/9906094
http://arXiv.org/abs/hep-th/0007195
http://arXiv.org/abs/gr-qc/9307038
http://arXiv.org/abs/gr-qc/9403028
http://arXiv.org/abs/hep-th/0405146
http://arXiv.org/abs/hep-th/9112056
http://arXiv.org/abs/hep-th/9309140
http://arXiv.org/abs/hep-th/9302103


[20] I. Antoniadis, E. Gava, K. S. Narain and T. R. Taylor, “Topological amplitudes in

string theory,” Nucl. Phys. B 413, 162 (1994) [arXiv:hep-th/9307158].

[21] E. Verlinde, “Attractors and the holomorphic anomaly,” arXiv:hep-th/0412139.

[22] A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, “Precision counting of small

black holes,” arXiv:hep-th/0507014.

[23] A. Dabholkar, “Exact counting of black hole microstates,” arXiv:hep-th/0409148.

[24] A. Dabholkar and J. A. Harvey, “Nonrenormalization Of The Superstring Tension,”

Phys. Rev. Lett. 63, 478 (1989).

[25] A. Dabholkar, G. W. Gibbons, J. A. Harvey and F. Ruiz Ruiz, “Superstrings And

Solitons,” Nucl. Phys. B 340, 33 (1990).

[26] A. Sen, “Black hole solutions in heterotic string theory on a torus,” Nucl. Phys. B

440, 421 (1995) [arXiv:hep-th/9411187].

[27] A. Dabholkar, J. P. Gauntlett, J. A. Harvey and D. Waldram, “Strings as Solitons &

Black Holes as Strings,” Nucl. Phys. B 474, 85 (1996) [arXiv:hep-th/9511053].

[28] A. Sen, “Extremal black holes and elementary string states,” Mod. Phys. Lett. A 10,

2081 (1995) [arXiv:hep-th/9504147].

[29] A. Sen, “Black holes and elementary string states in N = 2 supersymmetric string

theories,” JHEP 9802, 011 (1998) [arXiv:hep-th/9712150].

[30] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, “Stationary BPS solutions

in N = 2 supergravity with R2 interactions,” JHEP 0012, 019 (2000) [arXiv:hep-

th/0009234].

[31] A. Dabholkar, R. Kallosh and A. Maloney, “A stringy cloak for a classical singularity,”

JHEP 0412, 059 (2004) [arXiv:hep-th/0410076].

[32] A. Sen, “How does a fundamental string stretch its horizon?,” arXiv:hep-th/0411255.

[33] V. Hubeny, A. Maloney and M. Rangamani, “String-corrected black holes,” arXiv:hep-

th/0411272.

[34] D. Bak, S. Kim and S. J. Rey, “Exactly soluble BPS black holes in higher curvature

N = 2 supergravity,” arXiv:hep-th/0501014.

[35] S. Ferrara, C. A. Savoy and L. Girardello, “Spin Sum Rules In Extended Supersym-

metry,” Phys. Lett. B 105, 363 (1981).

[36] S. Cecotti, P. Fendley, K. A. Intriligator and C. Vafa, “A New supersymmetric index,”

Nucl. Phys. B 386, 405 (1992) [arXiv:hep-th/9204102].

[37] W. Lerche, “Elliptic Index And Superstring Effective Actions,” Nucl. Phys. B 308,

102 (1988).

[38] W. Lerche, A. N. Schellekens and N. P. Warner, “Ghost Triality And Superstring

Partition Functions,” Phys. Lett. B 214, 41 (1988).

[39] J. A. Harvey and G. W. Moore, “Algebras, BPS States, and Strings,” Nucl. Phys. B

463, 315 (1996) [arXiv:hep-th/9510182].

33

http://arXiv.org/abs/hep-th/9307158
http://arXiv.org/abs/hep-th/0412139
http://arXiv.org/abs/hep-th/0507014
http://arXiv.org/abs/hep-th/0409148
http://arXiv.org/abs/hep-th/9411187
http://arXiv.org/abs/hep-th/9511053
http://arXiv.org/abs/hep-th/9504147
http://arXiv.org/abs/hep-th/9712150
http://arXiv.org/abs/hep-th/0009234
http://arXiv.org/abs/hep-th/0009234
http://arXiv.org/abs/hep-th/0410076
http://arXiv.org/abs/hep-th/0411255
http://arXiv.org/abs/hep-th/0411272
http://arXiv.org/abs/hep-th/0411272
http://arXiv.org/abs/hep-th/0501014
http://arXiv.org/abs/hep-th/9204102
http://arXiv.org/abs/hep-th/9510182


[40] B. Pioline, “BPS black hole degeneracies and minimal automorphic representations,”

arXiv:hep-th/0506228.

[41] S. Hosono, A. Klemm and S. Theisen, “Lectures on mirror symmetry,” arXiv:hep-

th/9403096.

[42] S. Hosono, A. Klemm, S. Theisen and S. T. Yau, “Mirror symmetry, mirror map

and applications to complete intersection Calabi-Yau spaces,” Nucl. Phys. B 433, 501

(1995) [arXiv:hep-th/9406055].

[43] J. M. Maldacena, A. Strominger and E. Witten, “Black hole entropy in M-theory,”

JHEP 9712, 002 (1997) [arXiv:hep-th/9711053].

[44] R. Gopakumar and C. Vafa, “M-theory and topological strings. II,” arXiv:hep-

th/9812127.

[45] J. A. Harvey and G. W. Moore, “Exact gravitational threshold correction in the FHSV

model,” Phys. Rev. D 57, 2329 (1998) [arXiv:hep-th/9611176].

[46] M. Henningson and G. W. Moore, “Threshold corrections in K(3) x T(2) heterotic

string compactifications,” Nucl. Phys. B 482, 187 (1996) [arXiv:hep-th/9608145].

[47] G. L. Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, “Asymptotic degeneracy of

dyonic N = 4 string states and black hole entropy,” arXiv:hep-th/0412287.

[48] A. Sen, “Black Holes, Elementary Strings and Holomorphic Anomaly,” arXiv:hep-

th/0502126.

[49] B. de Wit, “Introduction to black hole entropy and supersymmetry,” arXiv:hep-

th/0503211.

[50] E. Kiritsis, “Introduction to superstring theory,” arXiv:hep-th/9709062.

[51] S. D. Miller and G. W. Moore, “Landau-Siegel zeroes and black hole entropy,”

arXiv:hep-th/9903267.

[52] S.S. Gelbart and S.D. Miller, “Riemann’s zeta function and beyond,” Bull. Amer.

Math. Soc. 41 59

[53] J. H. Schwarz and A. Sen, “Type IIA dual of the six-dimensional CHL compactifica-

tion,” Phys. Lett. B 357, 323 (1995) [arXiv:hep-th/9507027].

[54] S. Chaudhuri, G. Hockney and J. D. Lykken, “Maximally supersymmetric string the-

ories in D < 10,” Phys. Rev. Lett. 75, 2264 (1995) [arXiv:hep-th/9505054].

[55] S. Chaudhuri and J. Polchinski, “Moduli space of CHL strings,” Phys. Rev. D 52,

7168 (1995) [arXiv:hep-th/9506048].

[56] A. Gregori, E. Kiritsis, C. Kounnas, N. A. Obers, P. M. Petropoulos and B. Pioline,

“R2 corrections and non-perturbative dualities of N = 4 string ground states,” Nucl.

Phys. B 510, 423 (1998) [arXiv:hep-th/9708062].

[57] S. Ferrara, J. A. Harvey, A. Strominger and C. Vafa, “Second quantized mirror sym-

metry,” Phys. Lett. B 361, 59 (1995) [arXiv:hep-th/9505162].

[58] R. Minasian, G. W. Moore and D. Tsimpis, “Calabi-Yau black holes and (0,4) sigma

models,” Commun. Math. Phys. 209, 325 (2000) [arXiv:hep-th/9904217].

34

http://arXiv.org/abs/hep-th/0506228
http://arXiv.org/abs/hep-th/9403096
http://arXiv.org/abs/hep-th/9403096
http://arXiv.org/abs/hep-th/9406055
http://arXiv.org/abs/hep-th/9711053
http://arXiv.org/abs/hep-th/9812127
http://arXiv.org/abs/hep-th/9812127
http://arXiv.org/abs/hep-th/9611176
http://arXiv.org/abs/hep-th/9608145
http://arXiv.org/abs/hep-th/0412287
http://arXiv.org/abs/hep-th/0502126
http://arXiv.org/abs/hep-th/0502126
http://arXiv.org/abs/hep-th/0503211
http://arXiv.org/abs/hep-th/0503211
http://arXiv.org/abs/hep-th/9709062
http://arXiv.org/abs/hep-th/9903267
http://arXiv.org/abs/hep-th/9507027
http://arXiv.org/abs/hep-th/9505054
http://arXiv.org/abs/hep-th/9506048
http://arXiv.org/abs/hep-th/9708062
http://arXiv.org/abs/hep-th/9505162
http://arXiv.org/abs/hep-th/9904217


[59] N. Seiberg and E. Witten, “The D1/D5 system and singular CFT,” JHEP 9904, 017

(1999) [arXiv:hep-th/9903224].

[60] C. Vafa, “Two dimensional Yang-Mills, black holes and topological strings,” arXiv:hep-

th/0406058.

[61] M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, “Black holes, q-deformed 2d Yang-

Mills, and non-perturbative topological strings,” arXiv:hep-th/0411280.

[62] L. J. Dixon, V. Kaplunovsky and J. Louis, “Moduli Dependence Of String Loop Cor-

rections To Gauge Coupling Constants,” Nucl. Phys. B 355, 649 (1991).

[63] B. de Wit, V. Kaplunovsky, J. Louis and D. Lust, “Perturbative couplings of vector

multiplets in N=2 heterotic string vacua,” Nucl. Phys. B 451, 53 (1995) [arXiv:hep-

th/9504006].

[64] I. Antoniadis, S. Ferrara, E. Gava, K. S. Narain and T. R. Taylor, “Perturbative

prepotential and monodromies in N=2 heterotic superstring,” Nucl. Phys. B 447, 35

(1995) [arXiv:hep-th/9504034].

[65] G. W. Moore, “String duality, automorphic forms, and generalized Kac-Moody alge-

bras,” Nucl. Phys. Proc. Suppl. 67, 56 (1998) [arXiv:hep-th/9710198].

[66] M. Marino and G. W. Moore, “Counting higher genus curves in a Calabi-Yau mani-

fold,” Nucl. Phys. B 543, 592 (1999) [arXiv:hep-th/9808131].

[67] A. Klemm, M. Kreuzer, E. Riegler and E. Scheidegger, “Topological string ampli-

tudes, complete intersection Calabi-Yau spaces and threshold corrections,” arXiv:hep-

th/0410018.

[68] R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, “Baby Universes in String The-

ory,” arXiv:hep-th/0504221.

[69] R. Dijkgraaf, J. M. Maldacena, G. W. Moore and E. Verlinde, “A black hole Farey

tail,” arXiv:hep-th/0005003.

35

http://arXiv.org/abs/hep-th/9903224
http://arXiv.org/abs/hep-th/0406058
http://arXiv.org/abs/hep-th/0406058
http://arXiv.org/abs/hep-th/0411280
http://arXiv.org/abs/hep-th/9504006
http://arXiv.org/abs/hep-th/9504006
http://arXiv.org/abs/hep-th/9504034
http://arXiv.org/abs/hep-th/9710198
http://arXiv.org/abs/hep-th/9808131
http://arXiv.org/abs/hep-th/0410018
http://arXiv.org/abs/hep-th/0410018
http://arXiv.org/abs/hep-th/0504221
http://arXiv.org/abs/hep-th/0005003

