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Behavioral/Systems/Cognitive

Amygdala Response to Facial Expressions Reflects
Emotional Learning

Christine I. Hooker, Laura T. Germine, Robert T. Knight, and Mark D’Esposito
Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720-3190

The functional role of the human amygdala in the evaluation of emotional facial expressions is unclear. Previous animal and human
research shows that the amygdala participates in processing positive and negative reinforcement as well as in learning predictive
associations between stimuli and subsequent reinforcement. Thus, amygdala response to facial expressions could reflect the processing
of primary reinforcement or emotional learning. Here, using functional magnetic resonance imaging, we tested the hypothesis that
amygdala response to facial expressions is driven by emotional association learning. We show that the amygdala is more responsive to
learning object– emotion associations from happy and fearful facial expressions than it is to the presentation of happy and fearful facial
expressions alone. The results provide evidence that the amygdala uses social signals to rapidly and flexibly learn threatening and
rewarding associations that ultimately serve to enhance survival.

Key words: amygdala; classical conditioning; emotion; fear; reward; fMRI

Introduction
Although it is well established that the human amygdala is en-
gaged in the perception of facial expressions of emotion (Zald,
2003), the exact function of the amygdala in this process is de-
bated. One influential hypothesis, derived from the role of the
amygdala in pavlovian conditioning, suggests that emotional fa-
cial expressions act as a predictive cue that a biologically relevant
(e.g., threatening or rewarding) stimulus is in the environment
(Whalen, 1998). Animal and human research shows that the
amygdala is responsive to aversive and appetitive primary rein-
forcement (i.e., an unconditioned stimulus), such as shock or
food, but it is more critical for learning the association of a pre-
dictive cue (e.g., tone) and subsequent reinforcement (e.g.,
shock) (Gallagher and Holland, 1994; LeDoux, 2000; Holland
and Gallagher, 2004). In this context, the facial expression of fear
or joy could act as a signal that an aversive or appetitive stimulus
is in the immediate vicinity. However, facial expressions can act
as a primary reinforcer as well as a predictive cue (Canli et al.,
2002; Blair, 2003; O’Doherty et al., 2003b). Therefore, separating
the predictive value from the inherent reinforcement value re-
quires a direct comparison of facial expressions used for associa-
tion learning compared with facial expressions presented without
learning.

Previous research investigating the response of the amygdala

to social signals in association learning has focused on the as-
sumed level of ambiguity in the object– emotion association and
the pattern of habituation in response to the social signal. Data
suggest that if the object– emotion association is ambiguous,
more amygdala activity is initially engaged to learn the associa-
tion (Whalen et al., 2001; Adams et al., 2003; Hooker et al., 2003).
In addition, if the ambiguous association is prolonged without
learning, than amygdala activity habituates (Fischer et al., 2003),
presumably because, without apparent consequences, learning
the cause of emotional response is not as crucial to survival as it
initially appeared. However, these data provide only indirect ev-
idence that the amygdala is analyzing faces for the purpose of
association learning.

Here, we directly test the hypothesis that the amygdala is re-
sponsive to facial expressions for emotional association learning
by using functional magnetic resonance imaging (fMRI) to com-
pare neural activity when subjects are engaged in learning object–
emotion associations from facial expressions compared with per-
ceiving facial expressions without any learning requirement.

In the association learning (AL) task, subjects saw a visual
display of two novel objects on either side of a woman’s face. A
cue indicated one object. Subjects predicted whether the woman
would react with a fearful versus neutral or happy versus neutral
facial expression. After the prediction, the woman turned and
reacted to the object. This object– emotion association was main-
tained for a short number of trials and then reversed. Subjects
used facial expression prediction outcomes to learn the object
association. Previous research shows that amygdala activity is
highest during initial learning and decreases responding after
emotional learning contingencies are well established (Buchel et
al., 1999). Therefore, we maximally engage association learning
mechanisms by rapidly reversing emotional associations at un-
predictable intervals, creating associations that are temporarily
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maintained but never fully established, thereby preventing amyg-
dala habituation.

In the expression-only (EO) task, subjects saw the same wom-
an’s neutral face on the screen and predicted whether she would
become fearful versus neutral or happy versus neutral. After the
prediction, the woman turned and displayed a facial expression,
but there were no objects to form an association. Fear and happy
object– emotion learning and expression-only perception were
investigated in separate fMRI runs.

Materials and Methods
Participants. Twelve healthy, right-handed adults (seven females; mean
age, 25 years old; range, 19 –36 years old) volunteered and were paid for
their participation. All subjects gave written, informed consent before
participation in accordance with the guidelines of the Committee for
Protection of Human Subjects at the University of California, Berkeley.
Subjects were screened for MR compatibility as well as neurological and
psychiatric illness.

Behavioral task. Subjects performed two behavioral tasks while being
scanned: the AL task and the EO task.

The AL task is a visual discrimination, reversal learning task. Subjects
saw a visual display of two unrecognizable, neutral objects on either side
of a woman’s neutral face and predicted whether the woman would react
with a fearful versus neutral or a happy versus neutral facial expression to
the cued object. After the prediction, the woman turned to the object and
reacted with an emotional (fear/happy) or neutral expression. This asso-
ciation remained constant for an unpredictable number of trials, ranging
from one to nine trials (with an average of 4.6) and then reversed. There
were 10 reversal learning trials per run (i.e., the first learning trial and
nine reversals). Thus, subjects always made a forced-choice decision with
two options: in fear association learning runs, subjects predicted a fearful
or neutral response; in happy association learning runs, subjects pre-
dicted a happy or neutral response. Fear association learning and happy
association learning were investigated in separate fMRI runs to allow the
comparison of object– emotion and object–neutral association learning.

For example, in AL fear run 1, the first trial started with the visual
display of a woman’s neutral face, with object A on the right and object B
on the left. Object A was indicated with a fixation cross and the subject
predicted whether the woman would react fearfully or neutrally to the
object. After the prediction, the woman turned and responded with a
fearful expression. This constituted an initial learning trial in which ob-
ject A is associated with fear. This association of object A to fear and
object B to neutral remained constant for four trials, with two object A
(fear) and two object B (neutral) association trials, appearing on the right
or left side of the screen. On the fifth trial, the association reversed, so that
object A became associated with neutral and object B became associated
with fear.

In the EO task, subjects saw the same woman’s neutral face on the
screen and predicted whether the woman would become fearful versus
neutral or happy versus neutral. After the prediction, the woman turned
and displayed a facial expression, but there were no objects to form an
association.

The face stimuli were exactly the same in the AL and EO tasks and
consisted of three different expressions (fearful, happy, and neutral)
from one woman. To create the stimuli, a rapid series of photographs
were taken while a professional actor turned and responded to a neutral
object (to her right and left) with a fearful, happy, and neutral expression.
In the task, the outcome portion of the trial consisted of 10 photographs,
presented for 200 ms each, of the head turn and emotional response, such
that it seemed like a short (2 s) video to the subject. Each of the three facial
expressions was coded by a trained psychologist using the facial action
coding system to verify the authenticity of the emotional expression
(Ekman and Friesen, 1978). In addition, each of the four AL runs used
two new objects for a total of eight objects, which were downloaded from
Michael Tarr’s (Brown University, Providence, RI) Web site of objects
(http://alpha.cog.brown.edu:8200/stimuli/novel-objects/fribbles.zip/
view).

Prescanning practice and instruction. Subjects practiced the AL task

outside of the scanner with a block of 10 association learning trials (with
no reversals). They were told that, when doing the task in the scanner, the
object– emotion associations would reverse multiple times and they
should use information from the woman’s facial expression to update the
object association and make an accurate prediction on the next trial. In
addition, they were told that there would be another task in which they
will only see the woman’s face and will have to predict whether she will
have an emotional or neutral reaction. They did not practice reversal
trials or expression-only trials before entering the scanner. Subjects were
instructed to keep their gaze fixated on the woman’s face, which was
centrally located in the picture display.

Experimental design. The tasks were divided into four different run
types: (1) association learning fearful or neutral (AL F/N); (2) association
learning happy or neutral (AL H/N); (3) expression-only fearful or neu-
tral (EO F/N); and (4) expression-only happy or neutral (EO H/N).

Each subject was scanned on four association learning runs (two AL
F/N and two AL H/N) and two expression-only runs (EO F/N and EO
H/N), resulting in six experimental runs total. Each run had 56, 4 s trials,
consisting of a 2 s cue (neutral face and objects display with target object
indicated by fixation cross) and a 2 s outcome (face turns, looks at the
target object, and has a neutral or emotional expression). Subjects made
their prediction during the cue phase of the trial. There was a 2, 4, or 6 s
jittered intertrial interval (black screen with a white fixation cross). Each
run had 10 reversal learning trials (the first learning trial and nine rever-
sals). In half of the reversal learning trials, subjects learned an object–
emotion association (five trials), and, in the other half, subjects learned
an object–neutral association (five trials). The total number of object–
emotion and object–neutral association maintenance trials was balanced
in each run (23 object– emotion and 23 object–neutral). Each object was
displayed an equal number of times on the right and left.

The experimental design and trial structure of the EO task was equiv-
alent to the AL task. An equal number of emotional (28 trials) and neutral
(28 trials) were presented in each run.

Image acquisition. All images were acquired at 4 tesla using a Varian
(Palo Alto, CA) INOVA MR scanner that was equipped with echo-planar
imaging (EPI). For all experiments, a standard radiofrequency head coil
was used, and a memory foam pillow comfortably restricted head mo-
tion. E-Prime software (Psychology Software Tools, Pittsburgh, PA) con-
trolled the stimulus display and recorded subject responses via a
magnetic-compatible fiber-optic keypad. A liquid crystal display projec-
tor (Epson, Long Beach, CA) projected stimuli onto a backlit projection
screen (Stewart, Torrance, CA) within the magnet bore, which the sub-
ject viewed via a mirror mounted in the head coil.

Functional images were acquired during six runs. Each run included
four dummy scans (with no data acquisition) and four scans at the be-
ginning of the run, which were subsequently dropped from analysis to
ensure steady-state magnetization for all analyzed data, resulting in 212
whole-brain volumes per experimental run and 1272 whole-brain vol-
umes per subject for an entire session. Images were acquired with a set of
parameters used to optimize signal in regions susceptible to dropout
attributable to magnetic field inhomogeneity (Deichmann et al., 2003).
Each volume acquisition included 20 3.5-mm-thick oblique axial slices
(angled at �18° from the anterior commissure–posterior commissure
line) with a 1 mm interslice gap, acquired in an interleaved manner. A
two-shot T2*-weighted EPI sequence (repetition time, 2000 ms; echo
time, 28 ms; field of view, 22.4 cm 2; matrix size, 64 � 64) was used to
acquire blood oxygen level- dependent (BOLD) signal. EPI voxel size at
acquisition is 3.5 � 3.5 � 4 mm. All EPI runs were preceded by a prepa-
ratory Z-shim to reduce signal dropout from dephasing in the slice di-
rection (Deichmann et al., 2003). A high-resolution three-dimensional
T1-weighted structural scan [magnetization-prepared fast low-angle
shot (MPFLASH) sequence] and an in-plane low-resolution T2-
weighted structural scan [gradient echo multislice (GEMS)] were ac-
quired for anatomical localization.

Image processing. MRI data were processed and analyzed using SPM2
software (http://www.fil.ion.ucl.ac.uk/spm). Each EPI volume was re-
aligned in space to the first scan, using a six-parameter, rigid-body, least-
squares transformation algorithm. All subjects who showed �3 mm of
movement across the session were dropped from analyses. After realign-
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ment, EPI data were coregistered to the individual subject’s coplanar
(GEMS) and high-resolution (MPFLASH) anatomical images, normal-
ized to Montreal Neurological Institute (MNI) atlas space, resliced to 2 �
2 � 2 isotropic voxels, and smoothed (8 mm full-width half-maximum).

Data analysis. Event-related BOLD responses were analyzed using a
modified general linear model with SPM2 software. Our aim was to
investigate brain activity in response to facial expressions occurring at the
outcome portion of the trial, which provides information used for asso-
ciation learning. Therefore, we defined our trial types and general linear
model according to the facial expression outcome. The cue portion of the
trial remained constant throughout each task.

We defined our covariates of interest as follows: (1) AL reversal fear;
(2) AL maintenance fear; (3) AL reversal neutral (in fear run); (4) AL
maintenance neutral (in fear run); (5) AL reversal happy; (6) AL main-
tenance happy; (7) AL reversal neutral (in happy run); (8) AL mainte-
nance neutral (in happy run); (9) EO fear; 10) EO neutral (in EO fear
run); (11) EO happy; and (12) EO neutral (in EO happy run). The “AL
reversal” condition includes the facial expression outcome that cues the
new association in the initial learning trial as well as the new association
in reversal learning trials. For example, “AL reversal fear” is a fearful
expression that cues that the object– emotion association is reversing
from neutral to fearful.

We then convolved the canonical hemodynamic response function
with brain activity at the onset of the outcome type. Brain activity was
high-pass filtered at 128 s, scaled by the global mean, and corrected for
serial autocorrelation. We computed the difference in neural activity
between two outcome types and then computed whether this difference
was significant across subjects by entering the contrast value into a one-
sample t test. We report all brain activity that exceeds the statistical
threshold of t(11) � 4.02, p � 0.001, uncorrected for multiple compari-
sons. We subsequently corrected for multiple comparisons within the
amygdala, anatomically defined by an MNI template, by using the small-
volume correction (SVC) tool in SPM2 (Worsley et al., 1996). Peak ac-
tivity is reported in MNI (x, y, z) coordinates as is provided by SPM2.

We conducted additional analyses to investigate emotion effects in the
EO task. An explanation of the methods and the findings are available in
the supplementary data (available at www.jneurosci.org as supplemental
material).

Results
Behavioral results
Because it was impossible to accurately predict when a reversal
would occur, reversal trials (including the initial learning trial of
each run) were not counted as errors in the analysis of behavioral
data. Subjects performed well on the AL task (mean � SD; AL fear
accuracy, 95 � 4%; AL happy accuracy, 94 � 3%). As expected,
subjects were unable to predict emotional response in the EO task
(EO fear accuracy, 50 � 7%; EO happy accuracy, 55 � 5%).
Reaction time data indicated more efficient object– emotion as-
sociation learning compared with object–neutral association
learning. Subjects were significantly faster to predict that the ob-
ject was associated with a happy or fearful reaction than a neutral
reaction [fearful (mean of 1193 ms) versus neutral (mean of 1252
ms), t(10)� �2.6, p � 0.05; happy (mean of 1158 ms) versus
neutral (mean of 1241 ms), t(10)� �3.7, p � 0.005; two-tailed
paired t tests] (Fig. 1). There was no significant difference in
accuracy when predicting a happy or fearful compared with neu-
tral response.

Imaging results: overview of analysis
First, we investigated our primary question regarding the role of
the amygdala in learning object– emotion associations from
emotional faces (happy and fearful) as compared to perceiving
emotional faces (happy and fearful) without learning by compar-
ing neural activity in the AL task with the EO task.

Second, we examined emotion effects in the AL versus EO

comparison by investigating each type of emotional learning sep-
arately as well as emotion-specific learning. The main goal for this
analysis was to identify whether the amygdala responded to one
type of emotional learning more than another.

Third, in the AL task, we investigated neural regions involved
in the new learning of an object– emotion association at the re-
versal cue compared with the maintenance of an object–emotion
association. The main goal for this analysis was to identify whether
the amygdala was most responsive during initial learning.

Fourth, we investigated whether the amygdala was responsive
to general learning. For this analysis, we examined object–neutral
learning versus neutral face perception. We further investigated
the general effects of learning by comparing the neural regions
involved in learning associations from all faces compared with
perceiving faces. The main goal for this analysis was to identify
whether amygdala activity was specific for object– emotion learn-
ing or whether it was responsive to learning more generally.

Learning object– emotion associations versus perceiving
emotional faces: AL emotion versus EO emotion
To investigate the hypothesis that the amygdala is engaged in the
analysis of facial expressions for the purpose of emotional learn-
ing, we computed the difference in neural activity between learn-
ing object– emotion associations from emotional facial expres-
sions and perceiving emotional facial expressions without
learning. In this analysis, we combined reversal and maintenance
trials in the AL task and fearful and happy trials for both tasks,
resulting in the following contrast: AL emotion (fear � happy)
versus EO emotion (fear � happy).

The right amygdala was significantly more active when learn-
ing object– emotion associations from facial expressions than it
was to the perception of those same facial expressions alone. This
amygdala activity is significant when correcting for multiple
comparisons within the amygdala volume using small volume
corrections (SVC tool in SPM2). Figure 2 shows the trial types
used in the primary task comparison and a group activation map.

To confirm that the greater amygdala activity for AL emotion
compared with EO emotion (shown in the above analysis) is the
result of enhancement of activity for emotional learning in the AL
task and not the absence of activity during the EO task, we calcu-
lated a one-sample t test for the percentage signal change from
baseline for each condition within the amygdala region function-

Figure 1. Average reaction time for subjects’ prediction of the object– emotion association
in maintenance trials in the AL task. Subjects responded significantly faster when predicting an
object– emotion association compared with an object–neutral association in both fear and
reward learning. *p � 0.05.
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ally defined by the contrast. This analysis shows that the amygdala
was significantly active compared with baseline for both condi-
tions. The average � SD percentage signal change from baseline
for AL emotion is 0.27 � 19 (t(11) � 4.9, p � 0.001) and for EO
emotion is 0.19 � 0.24 (t(11) � 2.7; p � 0.01; one-sample t tests).

Table 1 lists all activations for this contrast [AL emotion
(fear � happy) vs EO emotion (fear � happy)] that survive the
threshold of t(11) � 4.02, p � 0.001. In particular, there was more
activity for object– emotion association learning compared with

the perception of emotional expressions in regions associated
with learning, such as the right dorsolateral prefrontal cortex
(DLPFC) and right ventrolateral prefrontal cortex (VLPFC), as
well as regions associated with face perception, such as the right
superior temporal sulcus (STS) and bilateral fusiform gyrus.

Emotion effects
Object–fear association learning and object– happy association
learning investigated separately. We investigated object– emotion
association learning compared with emotion perception for each
emotion separately: object–fear association learning versus fear
face perception and object– happy association learning versus
happy face perception. We found that the amygdala was more
active in the learning condition, at a slightly subthreshold level,
for both object–fear and object– happy learning when compared
with fear and happy face perception. There was greater activity
for AL fear versus EO fear in the right amygdala with peak activity
located at (x, y, z) (22, �6, �8) (t(11) � 2.75; p � 0.01) and the left
amygdala with peak activity at (�24, �8, �14) (t(11) � 3.1; p �
0.005). There was greater activity for AL happy versus EO happy
in the right amygdala with peak activity located at (24, �2, �20)
(t(11) � 2.5; p � 0.01). These results suggest that the enhancement
of amygdala activity for learning compared with perception in the
AL versus EO comparison is not driven by one emotion more
than the other. Rather, the amygdala shows a consistent pattern
of greater activity for object– emotion learning compared with
emotion perception for both fearful and happy conditions.

Object–fear association learning compared with object– happy
association learning. To identify neural regions that are preferen-
tially responsive to a specific type of emotional learning, we per-
formed the following interactions: (AL fear � EO fear) versus
(AL happy � EO happy) to identify object–fear-specific learning;
and (AL happy � EO happy) versus (AL fear � EO fear) to
identify object– happy-specific learning. We found no preferen-
tial activity for either AL fear or AL happy in the amygdala. How-
ever, the medial orbitofrontal cortex (OFC) was preferentially
responsive to object– happy association learning compared with
object–fear learning, even while controlling for the effect of

Figure 2. a shows an example of the stimuli used in the primary analysis. Subjects were required to learn whether the woman would respond with a fearful versus neutral or happy versus neutral
expression to the novel object. Fear and reward learning were investigated in separate fMRI runs to allow the comparison between object– emotion and object–neutral association learning. b shows
greater amygdala activity for learning object– emotion associations compared with emotional faces presented without learning. The analysis includes all trials (reversal and maintenance) in which
the object was associated with a fearful or happy expression. There was no significant amygdala activity (in the left or right hemisphere) for object–neutral association learning versus neutral faces
or for fear learning versus reward learning. Positive activations shown with threshold t(11) � 3.1, p � 0.005 on coronal ( y � 0), sagittal (x � 22), and axial (z � �16) slices.

Table 1. Brain regions involved in object– emotion learning from emotional
expressions compared with the perception of emotional expressions: AL emotion
(fearful � happy) versus EO emotion (fearful � happy)

Brain region Brodmann’s area MNI x, y, z (peak) t statistic

AL emotion � EO emotion
Middle frontal gyrus, posterior,

right 9 50, 16, 42 5.9
Inferior frontal gyrus, right 44, 45 60, 30, 10 5.3
Fusiform gyrus, right 37 42, �68, �22 7.0
Fusiform gyrus, left 37 �54, �70, �6 4.5
Superior temporal sulcus, right 22 52, �42, 2 4.0
Amygdala, right 22, 0, �18 4.7
Hippocampus, left �30, �8, �22 5.1
Thalamus, pulvinar region, right 8, �32, 4 5.9
Thalamus, pulvinar region, left �14, �30, 4 4.4

EO emotion �AL emotion
Middle frontal gyrus, left 9, 10 �32, 38, 26 5.3
Precentral gyrus, left 4, 6 �52, 2, 34 9.8
Post central gyrus, right 3 38, �24, 46 5.6
Post central gyrus, left 3 �36, �14, 46 5.1
Middle cingulate, right 23, 24 8, �12, 46 5.3
Middle cingulate, left 24 �10, 0, 46 4.9
Anterior insula, right 48 44, 20, 8 5.4
Anterior insula, left 48 �34, 20, 12 4.5
Posterior insula, right 48 38, �26, 12 6.8
Posterior insula, left 48 �42, �28, �12 5.0
Cuneus, right 23, 31 24, �56, 20 8.3
Cuneus, left 23 �14, �62, 20 4.3

AL includes both reversal and maintenance trials.
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happy and fearful faces presented alone: (AL happy � EO happy)
versus (AL fear � EO fear). The peak activity for this medial OFC
activity is located at (18, 42, �8) (t(11) � 5.1) and is shown in
Figure 3a. Other brain regions that were more active for object–
happy association learning include the following: right middle
frontal gyrus, anterior portion located at Brodmann’s area (BA)

10, (46, 40, 22), t(11) � 5.2; posterior por-
tion located at BA 9, (36, 24, 34), t(11) �
6.5; and the right intraparietal sulcus (IPS)
located at (30, �40, 46), t(11) � 6.2. There
were no brain regions that were more re-
sponsive to object–fear learning compared
with object– happy learning when control-
ling for the emotion-only faces.

New object– emotion association learning
compared with maintenance of
object– emotion associations
To investigate the neural activity involved
in the initial acquisition of an object– emo-
tion association compared with the main-
tenance of that object– emotion associa-
tion, we compared AL emotion [reversal
(fear � happy)] versus AL emotion [main-
tenance (fear � happy)]. There was no sig-
nificant difference in amygdala activity be-
tween reversal trials, indicating a new
object– emotion association, and mainte-
nance trials, indicating the maintenance of
the object– emotion association. However,
there were robust activations in other
brain regions, and these are listed in Table
2 and shown in Figure 3b. Most notably,

reversal trials preferentially activated the ventral and dorsal PFC
as well as the ventral and dorsal striatum (i.e., ventral putamen
extending to dorsal caudate) and the supplementary motor area
(SMA). This has been shown previously in reversal learning tasks
(Cools et al., 2002; O’Doherty et al., 2003a). In addition, we
found greater activity for reversal learning compared with main-
tenance in the bilateral IPS, bilateral fusiform gyrus, and right
STS. There was greater activity in the posterior hippocampus and
posterior insula for the maintenance of object– emotion
associations.

General learning effects
Neutral association learning compared with perception of neutral
faces. Based on previous research, we predicted that the amygdala
would be specifically involved in emotional association learning
rather than neutral association learning more generally. To test
this, we compared object–neutral association learning with neu-
tral faces presented alone (AL neutral vs EO neutral). As pre-
dicted, we found no significant amygdala activity in this contrast.
This analysis confirms amygdala specificity in object– emotion
association learning. However, there were other brain regions
responsive to neutral association learning. These are listed in
Table 3 and include the DLPFC, IPS, fusiform gyrus, STS, hip-
pocampus, and dorsal striatum (putamen). It is also noteworthy
that we did not find VLPFC or thalamic activity for neutral asso-
ciation learning, although these regions were active for emotional
learning.

Association learning (all) versus expression only (all). In addi-
tion, we compared all association learning trials (AL fear � AL
happy � AL neutral) to all expression-only trials (EO fear � EO
happy � EO neutral). This analysis shows the general effect of
learning from faces while subtracting the effect of face percep-
tion. This contrast reveals the same brain regions as the contrast
of AL emotion versus EO emotion with several specific excep-
tions. Most importantly, there was no significant amygdala or
ventrolateral PFC activity in the contrast AL all versus EO all,
suggesting that the addition of neutral association learning weak-

Table 2. Brain activity during initial object– emotion association learning
occurring at the reversal cue and object– emotion association learning when the
association is maintained: AL emotion reversal versus maintenance

Brain region Brodmann’s area MNI x, y, z (peak) t statistic

AL emotion reversal � maintenance
Middle frontal gyrus, anterior, right 10, 9 28, 42, 26 7.3
Middle frontal gyrus, anterior, left 10 �38, 50, 16 8.0
Middle frontal gyrus, posterior, right 9, 46 50, 16, 32 9.2
Middle frontal gyrus, posterior, left 9, 46 �48, 4, 40 7.4
Inferior frontal gyrus, lateral orbital

gyrus, right 45, 47 42, 22, �4 4.9
Inferior frontal gyrus, lateral orbital

gyrus, left 44, 45, 47 �54, 18, 6 11.0
Anterior cingulate cortex/

supplementary motor area, bilateral 32, 8 �4, 16, 50 8.5
Fusiform gyrus, right 37 40, �70, �12 4.7
Fusiform gyrus, left 37 �44, �66, 0 7.2
Superior temporal sulcus, right 22 64, �46, 4 4.2
Intraparietal sulcus, full extent, right 7 36, �64, 40 8.2
Intraparietal sulcus, full extent, left 7 �36, �42, 40 10.5
Caudate, right 10, 10, 4 5.5
Caudate, left �18, 16, 0 6.9
Thalamus, right 8, �12, 14 4.5
Visual cortex, calcarine, right 17 4, �58, 4 6.4
Visual cortex, calcarine, left 17 �8, �78, �8 5.1

AL emotion maintenance � reversal
Posterior cingulate, left 23, 26 �10, �48, 18 6.9
Posterior insula, right 48 46, �10, 22 6.6
Posterior insula, left 48 �38, �12, 26 6.2
Posterior hippocampus, right 37 30, �34, �2 6.2
Posterior hippocampus, left 37 �32, �36, �4 5.2

Figure 3. a shows medial OFC activity (z � �10) for object– happy association learning compared with object–fear associ-
ation learning while controlling for the effects of happy and fearful faces presented alone: (AL happy � EO happy) versus (AL
fear � EO fear). b shows brain regions active for new object– emotion association learning compared with the maintenance of
object– emotion associations in the contrast: AL reversal (fear � happy) versus AL maintenance (fear � happy). Neural activity
in response to facial expressions signaling reversal of associations (i.e., new learning) is shown in red, and neural activity in
response to facial expressions signaling maintenance of associations is shown in blue. The coronal slice ( y � 10) shows reversal-
related activity in the DLPFC, VLPFC, and dorsal (caudate) and ventral (putamen) striatum. The axial slice (z � �12) shows
reversal-related activity in lateral OFC and fusiform gyrus and maintenance-related activity in the hippocampus. The sagittal slice
(x � �4) shows reversal-related activity in the anterior cingulate. Activations shown with threshold t(11) � 3.1, p � 0.005.
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ened activity in these regions. Also, the addition of neutral trials
revealed significant activity for AL all in the right IPS and the left
putamen. These regions were also active for neutral association
learning (AL neutral vs EO neutral) but were not apparent in the
contrast AL emotion versus EO emotion. The full list of brain
activations for the general association learning in the contrast AL
all versus EO all is listed in supplemental Table 1 (available at
www.jneurosci.org as supplemental material).

Discussion
We tested the hypothesis that the amygdala is engaged in analyz-
ing emotional facial expressions for the purpose of learning emo-
tional associations. We found significantly greater right amygdala
activity when subjects learned object– emotion associations from
fearful and happy expressions compared with the perception of
fearful and happy expressions without any learning requirement.
There was no evidence that this enhanced amygdala activity was
driven by one type of object– emotion learning more than the
other, supporting amygdala engagement when learning associa-
tions about both threat and reward value (Gottfried et al., 2002;
Holland and Gallagher, 2004). Importantly, the amygdala was
not preferentially active for learning object–neutral associations
compared with perceiving neutral faces presented alone, con-
firming amygdala involvement in object– emotion association
learning specifically and not neutral association learning more
generally. This specificity in emotional learning is also supported
by behavioral data showing faster predictions of happy and fear-
ful emotional reactions compared with neutral reactions to the
object.

These data provide direct evidence that the amygdala is en-
gaged in analyzing facial expressions for the purpose of learning
an association regarding a potentially threatening or rewarding
stimulus. This supports the notion that facial expressions have a
functional role for the observer (Keltner and Kring, 1998) and
that the amygdala is the primary brain structure that uses infor-
mative social signals to facilitate goal-directed behavior and ulti-
mately enhance survival. This interpretation is consistent with
evidence showing that the amygdala is more involved in learning
stimulus-reinforcement contingencies than processing primary
reinforcement. For example, amygdala lesions impair the acqui-

sition of a conditioned response to a predictive cue but do not
impair physiological response to the unconditioned stimuli (La-
Bar et al., 1995). We extend these findings by showing greater
amygdala activity when learning the predictive relationship be-
tween an object and an emotional expression than for the percep-
tion of the emotional expression presented alone.

Although it has never been demonstrated previously, associa-
tion learning has been discussed as an explanation of differential
amygdala involvement in processing emotional faces presented
alone (Whalen, 1998). For example, the amygdala responds more
to a fearful face than an angry face. The interpretation is that an
angry expression signals the presence of danger (the angry per-
son) as well as its source (the observer), whereas a fearful expres-
sion is more ambiguous because it signals the presence of danger
but not the source. Therefore, more amygdala activity is recruited
to learn the association between the fearful expression and its
source (Whalen et al., 2001). Furthermore, amygdala habituation
after prolonged or repeated exposure of the same emotional face
can be explained as initial activity engaged to learn an association
between the emotion and provoking stimulus, but, without the
opportunity to create the association, amygdala response de-
creases (Wright et al., 2001; Fischer et al., 2003).

Our paradigm uses a new approach and reveals data consis-
tent with these previous interpretations. Rather than comparing
different levels of assumed ambiguity about the source of threat
or reward, we compare different levels of learning about the
source. Furthermore, habituation patterns as well as face process-
ing research suggest that amygdala response to multiple fearful
faces presented alone is most likely a reflection of learning activity
engaged by the novelty of a different face identity presented on
every trial (Schwartz et al., 2003; Glascher et al., 2004). In our
paradigm, we isolate learning and control for confounding vari-
ables by keeping face identity and emotional content constant but
changing the emotional value (i.e., the association) of the pro-
voking stimulus. Subjects have to use facial expressions to learn
about the threat and reward value of the object. We compare this
with a condition in which all aspects of the facial stimuli are
identical to the learning condition, but there is no opportunity to
use facial expressions to learn. The comparison reveals more
amygdala activity for learning object– emotion associations com-
pared with perceiving emotional faces, supporting the idea that
amygdala response to facial expressions is driven by association
learning.

However, the exact neurophysiological mechanism the amyg-
dala uses to accomplish emotional association learning (from
facial expressions or primary reinforcement) is still not clear. One
view is that amygdala activity specifically binds a cue with subse-
quent reinforcement and thus is the site for acquisition of emo-
tional associations (LeDoux, 1993). An alternative view is that the
amygdala responds to signals, such as facial expressions, that a
biologically relevant stimulus is in the environment, and this
amygdala activity increases physiological vigilance (i.e., lowers
neuronal firing thresholds), which enhances object– emotion as-
sociation coding in other brain regions, such as the OFC and the
dorsal and ventral striatum (Gallagher and Holland, 1994;
Whalen, 1998; Holland and Gallagher, 1999; Davis and Whalen,
2001). These views are not mutually exclusive, because evidence
suggests that each process may be mediated through different
nuclei within the amygdala (Holland and Gallagher, 1999).

Our data are consistent with the idea that the amygdala facil-
itates learning object– emotion associations by using the emo-
tional signal to increase vigilance and prepare learning networks
to acquire new associations. Greater activity for the reversal cue,

Table 3. Brain regions involved in object association learning from neutral
expressions compared with the perception of neutral expressions: AL neutral
versus EO neutral

Brain region Brodmann’s area MNI x, y, z (peak) t statistic

AL neutral � EO neutral
Middle frontal gyrus, posterior,

right 9 50, 14, 44 4.1
Intraparietal sulcus, right 7 56, �36, 46 4.7
Fusiform gyrus, right 37 44, �66, �22 5.4
Superior temporal sulcus, right 22 54, �56, 14 4.7
Hippocampus, left �32, �22, �2 4.2
Putamen, left �26, 0, 2 4.6

EO neutral �AL neutral
Precentral gyrus, left 4, 6 �48, 4, 28 7.2
Postcentral gyrus, right 3 58, �14, 28 4.3
Postcentral gyrus, left 3 �36, �12, 48 4.2
Middle cingulate, right 23, 24 8, �12, 46 4.6
Middle cingulate, left 24 �6, �22, 46 5.6
Posterior insula, right 48 38, �24, �12 5.6
Posterior insula, left 48 �34, �24, 16 4.6
Cuneus, calcarine sulcus, right 23, 31 24, �56, 18 5.4
Cuneus, calcarine sulcus, left 23 �22, �58, 22 4.5
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which is the initial coding of the emotional association, versus the
maintenance cue would provide evidence that amygdala neurons
are specifically coding the new association. Instead, we found
greater amygdala activity in the combination of reversal and
maintenance object– emotion learning trials versus emotional
faces alone, but we did not find greater amygdala activity for
reversal versus maintenance trials. This is likely because the rapid
reversals in our design required subjects to anticipate possible
changes in reinforcement contingencies while continuing to
strengthen associations during maintenance trials. In support of
this interpretation, we found enhanced amygdala activity for all
object– emotion learning trials, suggesting that the amygdala re-
mained engaged during maintenance to strengthen emotional
associations and/or prepare for impending reversals. In addition,
the hippocampus, important for the declarative knowledge of
stimulus-reinforcement contingencies (Phelps, 2004; Carter et
al., 2006), was active during the maintenance period, suggesting
that newly acquired associations were still being solidified. Fur-
thermore, neural activity revealed for reversal trials replicates a
network of regions previously identified as important in revers-
ing reinforcement-related contingencies (Cools et al., 2002;
O’Doherty et al., 2003a, 2004), including the ventral and dorsal
PFC, lateral OFC, ventral and dorsal striatum, and SMA. Our
findings that the amygdala is involved in learning but not specif-
ically active for reversals is consistent with data showing that the
OFC is more critically important for reversing reinforcement as-
sociations (Rolls et al., 1994; Schoenbaum et al., 2003b; Hornak et
al., 2004) and that the flexible representation of reinforcement
value depends on the interaction of the OFC and amygdala
(Schoenbaum et al., 2003a).

However, although our data support the vigilance hypothesis
(Whalen, 1998), our task was not optimized to investigate differ-
ent phases of emotional learning, and therefore we cannot rule
out the idea that the amygdala is specifically involved in the ac-
quisition object– emotion relationships. Namely, to identify an
enhancement of amygdala activity during acquisition at the re-
versal cue, the object association during the maintenance period
must be so established that it no longer requires active learning.
This was not the case in our task.

Interestingly, none of the previous reversal learning studies
with human subjects identify greater amygdala activity for rever-
sal compared with maintenance trials (Cools et al., 2002; Krin-
gelbach and Rolls, 2003; O’Doherty et al., 2003a; Morris and
Dolan, 2004). Nonetheless, different nuclei within the amygdala
may mediate these different aspects of emotional learning
(Buchel et al., 1998, 1999; Morris and Dolan, 2004; Phelps et al.,
2004), and spatial resolution of fMRI is not fine enough to con-
sistently distinguish between regions. Alternatively, in the con-
text of reversal learning, the amygdala may remain active in an-
ticipation of a change in reinforcement contingencies.

Regardless of which specific process the amygdala uses to
learn object– emotion associations, our study shows that the
amygdala is engaged in analyzing facial expressions for the pur-
pose of learning and is not simply responding to the reinforce-
ment value of a positive or negative face. This role of the amyg-
dala in emotional learning during the analysis of facial
expressions may explain inconsistencies in the patient literature.
Other data show that amygdala lesion patients have normal ex-
pression of emotion and have inconsistent deficits in the recog-
nition of emotional facial expressions in others (Anderson and
Phelps, 2000). Not all amygdala lesion patients have problems
recognizing emotional expressions; however, if they do show def-
icits, it is most likely an impairment in understanding the import

of a fearful facial expression (Adolphs et al., 1994). This finding is
consistent within the context of emotional learning, because fear
is a salient predictor of an impending threat. Furthermore, emo-
tion recognition impairment in patients is most likely to occur
after a congenital or early acquired lesion (Hamann et al., 1996;
Meletti et al., 2003). One explanation of these findings is that
these patients did not have a healthy amygdala to help them learn
the predictive value of emotional expressions.

Although we found the effect of object– emotion learning in
the right amygdala, it is unlikely that emotional learning is a
lateralized function, because previous research has shown that
unilateral left temporal lobectomy patients have fear learning
deficits (LaBar et al., 1995). Nonetheless, our findings are consis-
tent with fMRI studies showing greater right than left amygdala
activity in fear learning (LaBar et al., 1998; Pine et al., 2001; Pegna
et al., 2005) and neuropsychological studies showing greater
emotion recognition deficits after right amygdala lesions (Ander-
son et al., 2000; Meletti et al., 2003; Benuzzi et al., 2004). Amyg-
dala laterality may be influenced by task stimuli, with the left
amygdala more active in emotional learning tasks using verbal
instruction (Phelps et al., 2001) or verbal context (Kim et al.,
2004), so our use of nonverbal facial stimuli may have preferen-
tially involved the right amygdala. Another possibility, consistent
with our data, is that the right amygdala may be more engaged
when trying to learn the association causing a facial expression
(Kim et al., 2003) as opposed to having that association already
determined (Kim et al., 2004).
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