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Abstract

We analyze a class of imitation dynamics with mutations for games with
any �nite number of actions, and give conditions for the selection of a unique
equilibrium as the mutation rate becomes small and the population becomes
large. Our results cover the multiple-action extensions of the aspiration-and-
imitation process of Binmore and Samuelson [3] and the related processes
proposed by Benaïm and Weibull [2] and Traulsen et al. [24], as well as
the frequency-dependent Moran process studied by Fudenberg et al. [15].
We illustrate our results by considering the e¤ect of the number of periods
of repetition on the selected equilibrium in repeated play of the prisoner�s
dilemma when players are restricted to a small set of simple strategies.

JEL classi�cation: C62; C72; C73.

Keywords: Equilibrium selection; Learning model; Limit distribution; Markov
process; Prisoner�s dilemma.

1 Introduction

We study a class of imitation dynamics in large populations playing an n�n
game. Our main assumptions are that at every time step, at most one agent
changes his strategy, and that this agent may only imitate a strategy that is

1



currently in use. In addition, we assume that if only two strategies are present
in the population, the probabilities of the possible transitions depend only
on the current payo¤s to these strategies, and that the expected motion is in
the direction of the better response; this is the sense in which the dynamics
are "monotone. 1" Finally we assume that a small mutation term makes the
system ergodic. This class of dynamics encompasses various models that have
been studied in the literature, mainly for 2 � 2 games; e.g. the aspiration-
and-imitation process of Binmore and Samuelson [3], the related imitation
processes proposed by Benaïm and Weibull [2], Björnerstedt and Weibull
[5] and Traulsen et al. [24], and the frequency-dependent Moran process
introduced by Nowak et al. [20].
The models we consider have a unique "limit distribution" as the muta-

tion rate becomes small; we are interested in the convergence of this limit
distribution as the population size becomes large. Our analysis builds on
our work in Fudenberg and Imhof [11], which shows that for every �xed
population size, the limit distribution can be obtained as the unique invari-
ant distribution of the n� n transition matrix of a certain embedded chain.
The entries of this matrix are given by absorption probabilities of the original
process restricted to the edges of the state space where only two strategies are
present. The large-population behavior of the limit distribution is therefore
determined by the large population behavior of these absorption probabili-
ties, so we need to develop a fairly precise characterization of their asymptotic
behavior. To this end we approximate the probabilities using Riemann sums
and apply the Laplace method to analyse the behavior of the resulting in-
tegrals. This yields simple criteria that determine whether the probabilities
converge to zero and, in the case of convergence, explicit expressions for the
rate of convergence. We then show how these rates, if interpreted at transi-
tion costs, can be combined with the now-familiar machinery of "least cost

1Friedman [10] and Samuelson and Zhang [22] consider related monotonicity conditions
in deterministic models with a continuum population; our condition is weaker in that it
applies only to states where only two strategies are present. Our model allows for sto-
chastic transitions, so it is not a monotone system in their sense even in games with only
two strategies, but when only two strategies are present the mean �eld of the processes we
consider satis�es their assumptions. However, our model need not satisfy the "Darwinian"
monotonicity assumption in the �nite-popualation model of Kandori et al. [18], which
requires that the probability that the no-mutation process moves in the direction of the
better response is equal to 1. Our monotonicity condition requires only that this proba-
bility is larger then that of a step in the opposite direction; this is su¢ cient to imply that
the expected motion of the system (i,.e. its meam �eld) is in the direction of increasing
payo¤s..
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graphs2" to solve the equilibrium selection problem.
In the 2 � 2 case there are only two absorption probabilities to consider

and the selected strategy can be determined by checking whether their ratio
converges to 0 or to in�nity. Our selection result for this case coincides
with that of Binmore and Samuelson [3] 3. Neither the asymptotics for the
individual absorptions probabilities nor the least-cost arguments are needed
in this case, and Binmore and Samuelson�s direct analysis of an explicit
expression of the ergodic distribution is simpler than our approach. However,
in the general case, the limit distribution cannot be expressed in terms of
ratios of absorption probabilities and the individual rates of convergence are
required to determine the least-cost graph.
As an application we study strategic forms matrices arising from �nitely

or in�nitely repeated play of the prisoner�s dilemma when players are re-
stricted to a small set of simple strategies such as "tit for tat," and the payo¤s
are evaluated with the time-average criterion. For any �nite number m of
repetitions, the system converges to the state where all agents play "Always
Defect," but with an in�nite number of repetitions the "Always Defect" is
weakly dominated, so its share of the population goes to 0, and the long-run
distribution is some combination of the strategies "Tit for Tat" and "Perfect
Tit-for-tat." We show that the conclusion from large-population limit of the
case m =1 is robust in the sense that it also applies to the case of a �nite
but large number of repetitions and a range of "intermediate" population
sizes. This proves a conjecture of Imhof et al. [16]. We state and prove a
more general version of this result, relating the large-population limit in one
game to the invariant distributions of �nite-population versions of "nearby"
games.

2 The model

Consider a symmetric two-player game with pure strategies 1; : : : ; n and pay-
o¤matrixA = (aij)ni;j=1. We consider a population of sizeN � 2 and describe
its evolution by a homogeneous Markov chain fX(t; �;N) : t = 0; 1; : : : g with
2This way of computing the support of the limit distribution was introduced by Freidlin
and Wentzell [9]; its use in evolutionary game theory is due to Kandori et al. [18] and
Young [25]. See Fudenberg and Levine [14] or Samuelson [21] for an introduction to the
relevant probability theory and survey of some of its applications to game dynamics.
3The selection result of Binmore and Samuelson applies to their more general muddling
process for 2 � 2 games. In [12] we analyze a multi-dimensional muddling analog of
generalized muddling, and show that it covers the extension of the Ellison and Fudenberg
[7] word-of-mouth learning model to the case of more than two brands.
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state space

SN = f(x1; : : : ; xn) 2 f0; 1; : : : ; Ngn : x1 + � � �+ xn = Ng :

The ith component of X(t; �;N) is the number of individuals that play strat-
egy i during [t; t + 1). The parameter � � 0 corresponds to the size of
the mutation rates; fX(t; 0; N)g is the no-mutation process. We denote the
transition probabilities by p�;N(x; x0).

Assumption 1 For every N � 2, the no-mutation transition probabilities
are such that

(i) at every time t, at most one agent changes his strategy,

(ii) absent strategies will never be re-introduced,

(iii) for every strategy that is currently played, there is a positive probability
that its frequency increases in the next step, unless all members of the
population use the same strategy.

Thus, in the absence of mutations, every state is transient except for the
pure states s1 = (N; 0; : : : ; 0); : : : ; sn = (0; : : : ; 0; N), which are absorbing.4

For every pair of di¤erent strategies i; j let si=j denote the state where every
agent plays i except for one, who plays j. The next assumption speci�es how
the mutations modify the no-mutation process.

Assumption 2 (i) If � > 0, then fX(t; �;N)g is irreducible.

(ii) The transition probabilities p�;N(x; x0) depend continuously on �.

(iii) For every i 6= j, the limit

lim
�!0

p�;N(si; si=j)

�
= �ij

exists and does not depend on N .

(iv) The matrix (�ij)
n
i;j=1, where �11 = � � � = �nn = 0, is irreducible.

4Part (ii) of this assumption rules out processes where adjusting agents play the best
response (or even a smoothed best response) to the current state, as in Benaïm and Hirsch
[1], Fudenberg and Kreps [13], Sandholm [23], and Young [25]. Theorem 2 of Fudenberg
and Imhof [11] relaxed (ii). We do not know to what extent a similar extension is possible
here.
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(v) For every N � 2, every strategy i and all x = (x1; : : : ; xn) 2 SN with
xi � N � 2,

lim
�!0

p�;N(si; x)

�
= 0:

Assumption 2 implies that each transition probability out of a pure state
has a well-de�ned limiting order, with the probability that a single mutant
invades a pure population being exactly of order � or of order o(�), while
the probability that two or more mutants invade simultaneously is o(�). As-
sumptions 1 and 2 imply that for every N � 2 and every su¢ ciently small
� > 0, the process fX(t; �;N)g spends most of the time at the pure states
and transitions occur mainly along the edges of the state space where only
two pure strategies are present in the population.5

We now place more restrictions on the behavior of the no-mutation process
on these edges. For every pair of di¤erent strategies i; j let

rij(k;N) = p0;N

�
k

N
si +

�
1� k

N

�
sj;

k + 1

N
si +

�
1� k + 1

N

�
sj

�
;

k = 0; : : : ; N � 1;

`ij(k;N) = p0;N

�
k

N
si +

�
1� k

N

�
sj;

k � 1
N

si +

�
1� k � 1

N

�
sj

�
;

k = 1; : : : ; N:

Thus if k agents play strategy i and the rest play j, then rij(k;N) is the
probability that one agent switches from j to i, and `ij(k;N) is the probability
that one agent switches from i to j. Clearly, rij(k;N) = `ji(N � k;N).
If the population is in state x = (x1; : : : ; xn) 2 SN and xi � 1, then,

under random matching, the average payo¤ to agents that use strategy i is

ui(x) =

Pn
j=1 aijxj � aii

N � 1 ;

where we assume that agents play in�nitely6 often and do not interact with
themselves7. The following assumption characterizes our imitation model by
specifying how the transition probabilities may depend on the payo¤ func-
tions ui(x). Let umin = mini;j aij and umax = maxi;j aij.

5See Young [25, Theorem 4] or Fudenberg and Imhof [11].
6We explore the consequences of randomness due to �nitely many pairings per period in
Ellison et al. [8]. Imhof and Nowak [17] consider a frequency-dependent Wright-Fisher
process and compare its behavior when the game is played in�nitely often to the behavior
when the game is played just once in each period.
7All our results carry over to the case where each player may also play against himself,
where ui(x) would be replaced by ~ui(x) =

Pn
j=1 aijxj=N . For simplicity, we restrict

attention to the functions ui(x).
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Assumption 3 (i) There is a strictly positive Lipschitz continuous function
f on [umin; umax]2 such that for each pair of di¤erent strategies i; j,

rij(k;N)

`ij(k;N)
= f

�
ui

�
k

N
si +

N � k

N
sj

�
; uj

�
k

N
si +

N � k

N
sj

��
;

k = 1; : : : ; N � 1 and N � 2.
(ii) For all u; v 2 [umin; umax],

f(u; v)
>
<
1 () u

>
<
v:

Assumption 3 (i) says that along an edge the relative probabilities of
upwards and downwards shifts in the number of agents playing i depends
only on the current payo¤s, and that this dependence has a well-behaved limit
as N grows large. Assumption 3 (ii) adds the condition that the expected
motion is in the direction of the better response. By "monotone imitation
dynamics" we will mean any dynamics that meet Assumptions 1,2, and 3.

3 Examples

We now present several examples of models that meet our assumptions. In
each case, we describe only the no-mutation process and assume that muta-
tions are modeled in agreement with Assumption 2.

Example 1 In the aspiration and imitation model of Binmore and Samuel-
son [3], ui(x) is considered as an expected payo¤ and the realized payo¤ to
any individual is given by the expected payo¤ plus a random variable that
captures aggregate shocks. These random perturbations are assumed to be
identically distributed and independent across all players and rounds. Let
F denote the common distribution function. At each time step, a randomly
chosen player compares his realized payo¤ to a deterministic aspiration level
�. If the realized payo¤ is above that level, he keeps his strategy. Otherwise
he imitates the strategy of a randomly chosen individual. Thus

rij(k;N) =
k(N �K)

N(N � 1)F
�
�� uj

�
k

N
si +

N � k

N
sj

��
;

`ij(k;N) =
k(N �K)

N(N � 1)F
�
�� ui

�
k

N
si +

N � k

N
sj

��
:

This model satis�es our assumptions with

f(u; v) =
F (�� v)

F (�� u)
;
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provided that F is strictly increasing and Lipschitz continuous and that F (��
umax) > 0. The inequality means that there is a positive probability that the
shock is large enough that even a strategy whose expected payo¤ is umax can
lead to a realized payo¤ below the aspiration level. �

Example 2 Suppose that at each time step, an agent A1 is chosen at random
to re-evaluate his strategy. To this end, he chooses randomly another indi-
vidual, A2. If A2 uses the same strategy as A1, then A1 keeps his strategy. If
they use di¤erent strategies, say i1 and i2, then A1 imitates the strategy of A2
with a probability that depends on their respective payo¤s. Let this probability
be given by g[ui2(x); ui1(x)]. With probability 1�g[ui2(x); ui1(x)], A1 keeps his
strategy. This model satis�es our assumptions with f(u; v) = g(u; v)=g(v; u),
provided g is positive and Lipschitz continuous and g(u; v) > g(v; u) if and
only if u > v.
In [2], Benaïm and Weibull consider a model of aspiration and imitation

of success, where the individual that reviews his strategy switches to the strat-
egy of another individual if the payo¤ di¤erence exceeds a random threshold.
Denoting the distribution function of the threshold by F , we can cover this
scheme by choosing f(u; v) = F (u� v)=F (v � u).
If we choose

f(u; v) =
� + u� v

� + v � u
;

where � > umax � umin, we obtain the evolutionary process with the local
updating rule introduced by Traulsen et al. [24].
In Björnerstedt and Weibull�s [5] success-oriented imitation dynamics,

the probability that the reviewing agent A1 imitates the strategy of A2 is a
strictly increasing function h, say, of A2�s payo¤, but does not depend on
A1�s own payo¤. A �nite population version of their model can be obtained
from ours by setting f(u; v) = h(u)=h(v).
An alternative to selecting the agents with each member of the population

having of the same chance of being chosen is to choose a pair of strategies with
each strategy currently present having the same probability of being chosen
disregarding the number of agents that use it. This does not a¤ect the ratio
rij(k;N)=`ij(k;N) and leads to the same function f . �

Example 3 In the frequency-dependent Moran process introduced by Nowak
et al. [20], the �tness of an individual using strategy i in a population in
state x is given by �i(x) = 1 � w + wui(x), where w 2 (0; 1] is a parameter
that describes the intensity of selection. At each time step, one individual
is chosen to reproduce and the probability that an individual using strategy i
is chosen is xi�i(x)=(

P
j xj�j(x)). The o¤spring then replaces a randomly
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chosen individual. This model satis�es our assumptions with

f(u; v) =
1� w + wu

1� w + wv
: �

To see what our assumptions rule out, consider a model where at each
time step, an agent is drawn at random and chooses a best reply to the
current population. This model would in general not satisfy Assumption 1 (ii)
because even without mutations absent strategies could be re-introduced. In
addition, even if the agent is only allowed to choose the best reply among
the currently present strategies, the functions rij and `ij would in general fail
to be positive, so that Assumption 1 (iii) and Assumption 3 (i) would not
be satis�ed. Assumption 1 (iii) can be satis�ed by using smooth best replies
as in Fudenberg and Kreps [13] and Benaïm and Weibull [2], but even with
smooth best replies Assumption 3 (i) can still fail. To see this, consider the
neutral 2� 2 case, where either strategy is a best reply and thus chosen with
probability 1

2
. Then r12(k;N) = (N � k)=(2N) and `12(k;N) = k=(2N) for

k = 1; : : : ; N � 1, so that the ratio r12(k;N)=`12(k;N) would be unbounded.
However, the following variant of a smooth best reply dynamics is con-

sistent with our assumptions.

Example 4 Suppose that at each time step, one of the currently present
strategies, i1; : : : ; ik say, is chosen at random and then one of the agents that
use this strategy changes his strategy as follows. He makes noisy observa-
tions on the current average payo¤s to i1; : : : ; ik and chooses a strategy with
the highest observed payo¤. Speci�cally, we assume there are independent
random variables �i1 ; : : : ; �ik with a common continuous distribution, so that
the observed payo¤s are ui1(x) + �i1 ; : : : ; uik(x) + �ik . This gives rise to an
imitation model with f(u; v) = G(u�v)=G(v�u), where G is the distribution
function of �i1 � �i2, and we assume that G is Lipschitz continuous and that
G(umin � umax) > 0. �

The musical chairs model of Binmore, Samuelson and Vaughan [4] is sim-
ilar to ours but does not exactly �t into our framework. In their model, there
is a positive probability that more than two agents change their strategies in
one time step. In the limit they consider, this probability becomes negligible,
and the remaining transition probabilities (more speci�cally, the relevant ra-
tios) behave as required by our assumptions, provided that one considers the
payo¤ matrix faijg obtained by transforming the payo¤ matrix of the given
game by the appropriate "anti-�tness function.8"
8Binmore, Samuelson and Vaughan [4, page 12] suppose that the transition probabilities
are the result of pairwise competition in a "death game" whose payo¤s depend on the
payo¤s of the original game in a particular way. Thus, the learning process operates on
this transformed payo¤ matrix and not the original one.
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4 Equilibrium selection in large populations

Suppose throughout that fX(t; �;N)g satis�es Assumptions 1-3. By As-
sumption 2 (i), fX(t; �;N)g has a unique invariant distribution �(x; �;N),
provided � > 0. As we noted earlier, it is easy to show that for every N ,

lim
�!0

�(x; �;N) = 0 for all x 2 SN n fs1; : : : ; sng:

To determine the limits for x = s1; : : : ; sn consider for every pair of dis-
tinct strategies i; j the probability that the no-mutation process will be ab-
sorbed at sj if initially N�1 agents play i and one agent plays j. Denote this
absorption probability by �ij(N). De�ne the n� n matrix �(N) = [�ij(N)]
by

�ij(N) = �ij�ij(N); j 6= i; �ii(N) = 1�
X
j 6=i

�ij�ij(N):

Lemma 1 For every N � 2, the limits

��i (N) = lim
�!0

�(si; �;N); i = 1; : : : ; n;

exist and are strictly positive. Moreover, ��(N) = (��1(N); : : : ; �
�
n(N)) is the

unique vector such that

��(N)�(N) = ��(N); ��1(N) + � � �+ ��n(N) = 1: (1)

This lemma says that there is a unique "limit distribution" ��; and that it
is the unique invariant distribution of the matrix �. The proof of the lemma
is simply to verify that the model satis�es the assumptions of Theorem 1
of Fudenberg and Imhof [11]. See Section 7 for this and all other proofs.
Intuitively, the result follows from the fact that the system spends almost all
of its time on the edges of the state space: starting from a steady state of
the no-mutation process, a single rare mutation puts the process somewhere
on an edge; when the mutation rate is small, the process will be absorbed at
one of the two relevant vertices before the next mutation occurs. 9

We now turn to the asymptotic behavior of the �xation probabilities
�ij(N) and �ji(N). The behavior depends on whether, in the subgame with
pure strategies i and j, one strategy dominates the other, both pure strategies
are equilibria, or there is a mixed-strategy equilibrium. We write aN � bN if
the ratio aN=bN is bounded and bounded away from zero.

9Note that it is important here that we �rst send the mutation probability to 0 and then
send the population size to in�nity; with the other order of limits, the result need not be
concentrated on the vertices; see for example the discussion of the hawk-dove game in [15].
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Lemma 2 Let i; j 2 f1; : : : ; ng be two di¤erent pure strategies. Let

�ij(x) = log f [xaij + (1� x)aii; xajj + (1� x)aji];  ij(�) =

Z �

0

�ij(x) dx:

If i dominates j, that is, if aii � aji and aij > ajj,

�ij(N) � e�N ij(1); �ji(N) � 1:

If j dominates i, that is, if aii < aji and aij � ajj,

�ij(N) � 1; �ji(N) � eN ij(1):

In the coordination case, that is, if aii � aji and aij � ajj with at least one
inequality being strict,

�ij(N) �
expf�N ij(��ij)gp

N
; �ji(N) �

exp
�
�N [ ij(��ij)�  ij(1)]

	
p
N

;

where ��ij = (aii � aji)=(aii � aji + ajj � aij).
In the hawk-dove case, that is, if aii < aji and aij > ajj,

�ij(N) � exp
�
�N max[0;  ij(1)]

	
; �ji(N) � exp

�
N min[0;  ij(1)]

	
:

If i and j are neutral, that is, if aii = aji and aij = ajj,

�ij(N) �
1

N
; �ji(N) �

1

N
: (2)

Note that the cases in Lemma 2 are exhaustive. Note also that if aii =
aji = aij = ajj, Assumption 3 implies that rij(k;N) = `ij(k;N) for every k.
Thus on the edge from si to sj, the no-mutation process is a martingale, and
this yields

�ij(N) = �ji(N) =
1

N
; (3)

improving (2) for this case.
The proof of Lemma 2 rests on the representation

1

�ij(N)
=

N�1X
�=0

exp

(
�X
k=1

log
rij(N � k;N)

`ij(N � k;N)

)
:

We �rst approximate the interior sum by an integral over �ij, which leads to
N ij. We then approximate the remaining sum by N

R 1
0
expfN ij(�)g d�.

The Laplace method ([6]) shows that the asymptotic behavior of this integral
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is essentially given by expfN max�  ij(�)g and the value of the maximum
must then be determined for each case.
Lemma 2 shows in particular that for every pair i; j with j 6= i, the limit

�ij = � lim
N!1

log �ij(N)

N
(4)

exists and is a non-negative number. If �ij > 0, then �ij is the exponential
rate with which �ij(N) converges to 0. If �ij = 0, �ij(N) may or may not
converge to 0.
Our main result on equilibrium selection, Theorem 1, is based on the least

cost graphs of Freidlin and Wentzell [9], where we approximate the costs of
the edges of the graphs by the exponential rates. Although these rates con-
tain less accurate information on the asymptotic behavior of the absorption
probabilities than available from Lemma 2, they are often su¢ cient to deter-
mine a selected strategy. For example, the �ij contain enough information
to �nd the selected strategy for coordination games, see Corollary 3. For
the prisoner�s dilemma game considered in Example 5, it is even enough to
know which �ij are positive. On the other hand, in Example 6, the more
precise asymptotics of Lemma 2 are needed. For convenience, we collect the
exponential rates for all 2� 2 games in the following corollary.

Corollary 1 If i dominates j (aii � aji and aij > ajj), then �ij =  ij(1) >
0. In the coordination case (aii > aji and aij � ajj), �ij =  ij(�

�
ij) > 0. In

particular, if i is a strict Nash equilibrium (aii > aji), �ij > 0.
In the hawk-dove case (aii < aji and aij > ajj), �ij = maxf0;  ij(1)g. In

every other case, �ij = 0.

To formulate our main result on equilibrium selection we need the concept
of an i-graph, where i is a pure strategy. A graph consisting of arrows j ! k,
where j 2 f1; : : : ; ng n fig, k 2 f1; : : : ; ng and j 6= k, is called an i-graph if it
satis�es the following conditions: (a) every l 2 f1; : : : ; ng n fig is the initial
point of exactly one arrow in the graph, and (b) for any l 2 f1; : : : ; ng n fig
there is a sequence of arrows in the graph that leads from l to i. Let Gi
denote the set of i-graphs and let G = G1 [ � � � [ Gn.

Theorem 1 Consider a monotone imitation dynamic (i.e. a model satisfying
Assumptions 1, 2, and 3) with invariant distribution �(x; �;N) and limit
distribution ��i (N) = lim�!0 �(si; �;N). For all j 6= k let �jk denote the
exponential rate de�ned by (4). For every graph g 2 G let


(g) =

(P
(j!k)2g �jk if �jk > 0 for all (j ! k) 2 g;

1 otherwise;

11



and let 
� = minf
(g) : g 2 Gg. If i is a strategy such that the minimum 
�

is not attained by any i-graph, then

lim
N!1

��i (N) = 0:

If there exists a graph g� 2 Gi such that 
(g) > 
(g�) for all g 2 G n Gi, then
i will be selected, that is,

lim
N!1

��i (N) = 1:

The proof of these limit results builds on the fact that, by Lemma 1,
��(N) is the unique solution to (1). According to a well-known representation
of solutions to systems of equations of this type, see Freidlin and Wentzell
[9], ��i (N) is proportional to a sum of certain products of the entries �jk(N),
where the choice of the factors is given by the set of i-graphs. The limit
behavior of ��(N) can thus be obtained from the asymptotic behavior of the
�jk(N) as given in Lemma 2.
We now apply Theorem 1 to obtain explicit selection results under suit-

able conditions on the underlying game.

Corollary 2 Suppose strategy i weakly dominates every strategy j 6= i in the
subgame with pure strategies i and j. Suppose further that �ji > 0 for all
j 6= i. Then strategy i will be selected: ��i (N)! 1.

As another immediate consequence of Theorem 1 we obtain the following
selection result for coordination games, where every pure strategy is a strict
Nash equilibrium. For Moran processes, the special case of 3�3 coordination
games has already been considered by Fudenberg et al. [15].

Corollary 3 Consider a monotone imitation dynamic for an n � n coordi-
nation game. For every pair of di¤erent strategies j; k let �jk =  jk(�

�
jk).

Let 
j = minf
(g) : g 2 Gjg and 
� = minf
1; : : : ; 
ng.
If 
i > 
�, then ��i (N) ! 0. If 
i = 
�, then i is not selected against,

that is, lim infN!1 ��i (N) > 0. If i is the unique strategy with 
i = 
�, then
��i (N)! 1.

5 Applications to the prisoner�s dilemma

Here we show how our general results can be applied to determine selected
equilibria for a class of 4 � 4 games arising from the �nitely or in�nitely
repeated prisoner�s dilemma. In Example 5, we consider the �nite case and
obtain by a straightforward application of Theorem 1 and Corollary 1 that

12



defectors will be selected in large populations. Using the more precise asymp-
totic results of Lemma 2, we show in Example 6 that in the case of in�nitely
many rounds conditional cooperators are selected. Moreover it turns out
that even with �nitely many rounds, the population consists mainly of con-
ditional cooperators if the population is of moderate size and the number of
rounds is su¢ ciently large. We precisely state this observation in Example 7.
A general theorem in the next section will yield a rigorous justi�cation. A
heuristic argument for a similar result in a simpler model was given in Imhof
et al. [16].
Consider the prisoner�s dilemma game with strategies �cooperate� and

�defect�and payo¤ matrix�
R S
T P

�
; T > R > P > S > 0:

We study the repeated prisoner�s dilemma game with an expected number
of rounds m and focus on the following n = 4 strategies: 1: cooperate in
each round (ALLC), 2: defect in each round (ALLD), 3: tit-for-tat (TFT)
and 4: perfect-tit-for-tat (PTFT), which is also called win-stay, lose-shift.
TFT cooperates in the �rst round and then does what the opponent did in
the previous round, PTFT cooperates in the �rst round and then cooperates
after receiving R or P in the previous round and defects otherwise.
For simplicity, we assume that all types of mutations are equally likely.

Denote the small mutation limit of the invariant distribution by (��1(N;m),
: : : ; ��4(N;m)), where m � 1.

Example 5 If the number of rounds m is �nite, the payo¤ matrix is0BB@
R S R R
T P 1

m
fT + (m� 1)Pg 1

m

��
m
2

�
P +

�
m+1
2

�
T
	

R 1
m
fS + (m� 1)Pg R R

R 1
m

��
m
2

�
P +

�
m+1
2

�
S
	

R R

1CCA ;

where bzc denotes the largest integer less than or equal to z. ALLC, TFT and
PTFT are neutral against each other. Hence, by Corollary 1, �31 = �43 = 0.
Also, �12 = 0. Since ALLD is a strict Nash equilibrium, �21 > 0, �23 > 0
and �24 > 0. Consider g� = f(4 ! 3); (3 ! 1); (1 ! 2)g 2 G2. We have

(g�) = 0, and for every g 2 G n G2, there occurs one of the positive numbers
�21, �23, �24 in the sum de�ning 
(g), so that 
(g) > 0 = 
(g�). It follows
from Theorem 1 that limN!1 �

�
2(N;m) = 1. That is, ALLD is selected. �
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Example 6 For the prisoner�s dilemma game with in�nitely many rounds,
we obtain the payo¤ matrix

A =

0BB@
R S R R
T P P 1

2
P + 1

2
T

R P R R
R 1

2
P + 1

2
S R R

1CCA :

(A complete derivation is given in Subsection 7.6; we report only the selection
results here.) If PTFT is a strict Nash equilibrium against ALLD, that is,
if 2R > P + T , then �3(N;1) ! 2

3
and �4(N;1) ! 1

3
. That is, for large

populations, a monotone imitation dynamics spends nearly all the time at
the states where everyone plays TFT or where everyone plays PTFT, and
TFT will be observed about twice as often as PTFT. In this case the relevant
least cost graphs represent the transitions f(PTFT ! ALLC ! ALLD !
TFT)g, f(ALLC! ALLD! TFT), (PTFT! TFT)g, which correspond to
TFT-graphs, and f(ALLC! ALLD! TFT! PTFT)g, which corresponds
to a PTFT-graph. If PTFT is not a strict Nash equilibrium against ALLD,
then �3(N;1)! 1, so that most of the time everyone plays TFT. Here the
graph speci�ed in the least cost argument represents the transitions f(ALLC
! ALLD ! TFT), (PTFT ! ALLD)g. �

The following results for the case of �nitely many rounds are a conse-
quence of Theorem 2 in the next section.

Example 7 Consider again the case where m < 1. Suppose �rst that
PTFT is a strict Nash equilibrium against ALLD. Let � > 0. Then there
exists a population size N0 such that for every N1 > N0, there is a number
of rounds m0 so that������3 (N;m)� 23

���� � �;

������4 (N;m)� 13
���� � �

for every N 2 fN0; : : : ; N1g provided m � m0.
If PTFT is not a strict Nash equilibrium against ALLD, then for every

� > 0, there exists N0 such that for every N1 > N0, there is m0 so that

��3(N;m) � 1� �

for every N 2 fN0; : : : ; N1g provided m � m0. �

For an intuitive explanation consider the dynamics in the case where P +
T � 2R. We denote by ALLC (respectively ALLD, ...) also the state where
everyone plays ALLC (respectively ALLD, ...). ALLC, TFT and PTFT are

14



neutral, and so the evolution of a population where only these strategies
occur is determined by random drift. ALLD dominates ALLC and PTFT.
Thus as soon as the population is in the state ALLC or PTFT, an ALLD
invader will quickly take over the whole population and the population is
then unlikely to return directly to ALLC or PTFT. ALLD against TFT is a
coordination game, provided m is not too small. Therefore, a population in
state ALLD is to some extent resistant to invasion by TFT. However, if m is
su¢ ciently large, the basin of attraction of ALLD (i.e. the part of the edge
from TFT to ALLD with drift towards ALLD) is small and if the population
is not too large, there will soon be enough TFT players in the population that
can take over the population. ALLD invaders then have only a small chance
of taking over again. Therefore, the time spent at ALLD is relatively short
compared to the time spent at TFT, which explains the result in Example 7.
On the other hand, for any �xed m < 1, the basin of attraction of ALLD
corresponds to a �xed proportion of TFT players necessary for a reasonable
chance to take over. As N gets large, it becomes increasingly unlikely that
enough TFT players occur. Thus for �xed m and N su¢ ciently large, the
process spends most of the time at ALLD, as shown in Example 5.

6 Population size relative to other parame-
ters

To motivate the results in this section, we �rst give a heuristic derivation of
Example 7, which is based on a certain continuity argument rather than on
payo¤ considerations as described at the end of the last section. Recall that
if m, the number of rounds in the prisoner�s dilemma is �nite, then ALLD
is selected in the sense that ��2(N;m) ! 1 as N ! 1. Of course, this does
not imply that ��2(N;m) is close to 1 for any given N . Indeed, a continuity
argument shows that for �xed N , ��3(N;m) is close to �

�
3(N;1) when m is

su¢ ciently large. Now if P + T � 2R, then ��3(N;1) has been shown to be
close to 1 when N � N0 for some N0. Thus, for this N0 and in fact for a
whole range of values N = N0; : : : ; N1, say, ��3(N;m) is close to 1 when m is
su¢ ciently large. That is, the behavior of large populations in the limit case
m =1 is closely related to the behavior of medium-sized populations in the
�nite case m <1 when su¢ ciently many rounds are played.
This type of relationship between the behavior of medium-sized popu-

lations playing one game and that of a large population playing another
game holds in more general situations. We �rst describe a suitable setting
with quite general imitation processes and will then establish our result on
populations of medium size within this framework.

15



Consider a family of homogeneous Markov chains fX(t; �;N; �) : t =
0; 1; : : : g with state space SN and transition probabilities p�;N;�(x; x0). Again,
� � 0 determines mutation rates, and � � 0 is a further parameter of the
family. For example, in an application to the prisoner�s dilemma, � = 1=m.
We are interested in the behavior of the chain for very small mutation rates,
moderate population sizes and small but positive values of �.
Recall that s1; : : : ; sn denote the pure states in SN , and for j 6= i, si=j

denotes the state where every agent plays i except for one, who plays j. Let
�ij(N; �) denote the probability that the no-mutation process fX(t; 0; N; �)g
will be absorbed at sj if the initial state is si=j.

Assumption 4 For every N � 2 and � � 0, under the no-mutation process,

(i) a strategy that is absent remains absent,

(ii) all states in SN n fs1; : : : ; sng are transient,

(iii) the �xation probabilities �ij(N; �) are positive.

Assumption 5 For every N � 2,

(i) fX(t; �;N; �)g is irreducible if � > 0,

(ii) for every � � 0, the transition probabilities p�;N;�(x; x0) depend contin-
uously on �,

(iii) the transition probabilities of the no-mutation process are continuous
in � at � = 0,

(iv) for � � 0 and i 6= j,

lim
�!0

p�;N;�(si; si=j)

�
= �ij > 0;

(v) for � � 0, i = 1; : : : ; n and s 2 SN nfsi; si=1; : : : ; si=i�1; si=i+1; : : : ; si=ng,

lim
�!0

p�;N;�(si; s)

�
= 0:

These assumptions ensure that for every � > 0, N � 2 and � � 0, the
process fX(t; �;N; �)g has a unique invariant distribution �(x; �;N; �) and
that the limits

��i (N; �) = lim
�!0

�(si; �;N; �); i = 1; : : : ; n:

exist, see Fudenberg and Imhof [11, Theorem 1].

16



Theorem 2 Suppose that Assumptions 4 and 5 are satis�ed and that for
� = 0 the large population limit of the limit distribution exists:

��i = lim
N!1

��i (N; 0); i = 1; : : : ; n: (5)

Then, given � > 0, there exists a population size N0 such that the following
holds. For every N1 > N0, there exists �0 > 0 such that

j��i (N; �)� ��i j < �; i = 1; : : : ; n; (6)

for all 0 < � < �0 and N 2 fN0; : : : ; N1g.

The main step in the proof of Theorem 2 consists in showing that, under
the present assumptions, for every N , ��(N; �) ! ��(N; 0) as � ! 0. This
amounts to showing that one may interchange the order of limits for � ! 0
and � ! 0. Note that ��(N; �) is not the unique invariant distribution of
fX(t; 0; N; �)g. The proof is completed by exploiting (5). The reason that (6)
can be guaranteed only for N in a suitable range and not for all N su¢ ciently
large, is that we do not allow �0 to depend on N .
To prove the assertion made in Example 7 apply Theorem 2 with � = 1=m,

so that the limit case � = 0 corresponds to the case of in�nitely many rounds.
The large population limits for this case were derived in Example 6.

7 Proofs

7.1 Proof of Lemma 1

The present Assumptions 1 and 2 ensure that Assumptions 1-4 of Fudenberg
and Imhof [11] are satis�ed. Assumption 1 also implies that �ij(N) > 0 for
all i 6= j. By Assumption 2 (iv), the matrix (�ij) is irreducible, and it follows
that �(N) is irreducible as well. Therefore there exists a unique solution
��(N) of (1), and ��(N) is positive. In particular, Assumption 5 of [11] is
satis�ed. The limit assertion now follows from [11, Theorem 1]. �

7.2 Proof of Lemma 2

Fix any two di¤erent strategies i and j. We will only prove the assertions for
�ij(N). By Karlin and Taylor [19, page 113] and Assumption 3 (i),

1

�ij(N)
=

N�1X
�=0

�Y
k=1

rij(N � k;N)

`ij(N � k;N)
=

N�1X
�=0

�Y
k=1

f [u(k;N); v(k;N)];

17



where

u(k;N) =
(N � k � 1)aii + kaij

N � 1 ; v(k;N) =
(N � k)aji + (k � 1)ajj

N � 1

and the empty product is equal to 1. Assumption 3 (i) implies that log f is
Lipschitz continuous. Since

u(k;N)�(N � k)aii + kaij
N

= O

�
1

N

�
; v(k;N)�(N � k)aji + kajj

N
= O

�
1

N

�
;

it follows that for some constant c1,

�ij

�
k

N

�
� c1
N
� log f [u(k;N); v(k;N)] � �ij

�
k

N

�
+
c1
N

for all k and N . Hence for � = 0; : : : ; N � 1,

exp

(
�c1 +

�X
k=1

�ij

�
k

N

�)
�

�Y
k=1

f [u(k;N); v(k;N)] � exp
(
c1 +

�X
k=1

�ij

�
k

N

�)
:

Lipschitz continuity of log f implies that �ij is Lipschitz continuous with
Lipschitz constant c2, say. Thus�����

�X
k=1

�ij

�
k

N

�
�N ij

� �
N

������ � N
�X
k=1

Z k
N

k�1
N

�����ij � k

N

�
� �ij(x)

���� dx � c2�

2N
:

Consequently,

e�c1�c2
N�1X
�=0

exp
n
N ij

� �
N

�o
� 1

�ij(N)
� ec1+c2

N�1X
�=0

exp
n
N ij

� �
N

�o
:

For every N ,

N�1X
�=0

exp
n
N ij

� �
N

�o
= N

N�1X
�=0

Z �+1
N

�
N

exp
n
N
h
 ij

� �
N

�
�  ij(�)

io
exp

�
N ij(�)

	
d�:

If �=N � � � (� + 1)=N , then, by the mean value theorem,

N
��� ij � �N ��  ij(�)

��� � N
��� �
N
� �
��� k 0ijk � k 0ijk = k�ijk <1;
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where k � k denotes the sup-norm on [0; 1]. It follows that

1

�ij(N)
� N

Z 1

0

expfN ij(�)g d�:

To complete the proof the asymptotic behavior of
R 1
0
expfN ij(�)g d�

has be determined. If aii = aji and aij = ajj, then by Assumption 3 (ii),
 ij(�) = 0 for all � 2 [0; 1], and so �ij(N) � 1=N . If aii � aji and aij > ajj,
then �ij(x) > 0 for all x 2 (0; 1]. Thus  ij(�) attains its unique maximum
over [0; 1] at � = 1 and  0ij(1) = �ij(1) > 0. The Laplace method for integrals
(see e.g. [6, Chapter 4]) now yields thatZ 1

0

expfN ij(�)g d� �
expfN ij(1)g

N

and it follows that �ij(N) � expf�N ij(1)g.
In the coordination case,  ij(�) attains its unique maximum at x = ��ij

and  0ij(�ij) = 0. In this case, the Laplace method yieldsZ 1

0

expfN ij(�)g d� �
expfN ij(��ij)gp

N
;

so that �ij(N) � expf�N ij(��ij)g=
p
N .

The arguments for the remaining cases are similar and are therefore omit-
ted. �

7.3 Proof of Theorem 1

The limit distribution (��1(N); : : : ; �
�
n(N)) is determined by (1) in Lemma 1

and the matrix �(N) is irreducible. It follows from Freidlin and Wentzell [9,
Lemma 3.1, page 177] that the limit distribution can be expressed as

��i (N) =

P
g2G0i

Q
(j!k)2g �jk(N)P

g2G0
Q
(j!k)2g �jk(N)

; i = 1; : : : ; n;

where G 0i = fg 2 Gi : 
(g) < 1g and G 0 = G 01 [ � � � [ Gn. If g 2 G 0i, then by
Lemma 2,

Y
(j!k)2g

�jk(N) �
Y

(j!k)2g

�jk(N) �
exp

n
�N

P
(j!k)2g �jk

o
Nd(g)

=
expf�N
(g)g

Nd(g)
;

where d(g) 2 f0; 1
2
; 1; 3

2
; : : : ; n� 1g. The assertion is now easily veri�ed. �
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7.4 Proof of Corollary 2

For every j 6= i, aii � aji and aij � ajj with at least one of the inequalities
being strict. Therefore, by Corollary 1, �ji = 0 and �ij > 0. Let g

� denote
the i-graph that consists of all the arrows j ! i with j 6= i. Then 
(g�) = 0.
Every graph g 2 G n Gi contains one of the arrows i ! j with j 6= i, and so

(g) > 0. The assertion now follows from Theorem 1. �

7.5 Proof of Corollary 3

For coordination games, �jk(N) � e�N�jk=
p
N by Lemma 2. Thus, in the

proof of Theorem 1, d(g) = (n� 1)=2 for all g 2 G 0, and it follows that

��i (N) �
P

g2G0i
exp fN [
� � 
(g)]gP

g2G0 exp fN [
� � 
(g)]g � exp fN [

� � 
i]g :

The limit assertions are now obvious. �

7.6 A selection result for a class of 4� 4 games
The following lemma yields the selection results indicated in Example 6. The
class of games considered here is slightly more general and the �ij need not
coincide.

Lemma 3 Consider a 4�4 game that satis�es the following four conditions.
a) Strategies 1, 3 and 4 are neutral against each other:

a11 = a13 = a31 = a33 = a14 = a41 = a44 = a34 = a43: (7)

b) In the subgame with strategies 1 and 2, strategy 1 is strictly dominated by
strategy 2:

a11 < a21; a12 < a22: (8)

c) In the subgame with strategies 2 and 3, strategy 3 is a strict Nash equilib-
rium that weakly dominates strategy 2:

a33 > a23; a32 � a22: (9)

d) In the subgame with strategies 2 and 4, strategy 2 is a strict Nash equilib-
rium:

a22 > a42: (10)

Then we have the following equilibrium selection result for monotone imita-
tion dynamics with �jk > 0 for all j 6= k.
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If in the subgame with strategies 2 and 4, strategy 4 is a strict Nash
equilibrium, that is, if

a44 > a24; (11)

then

lim
N!1

��(N) =

�
0; 0;

�41 + �43
�34 + �41 + �43

;
�34

�34 + �41 + �43

�
: (12)

If in that subgame strategy 4 is weakly dominated by strategy 2, that is, if

a44 � a24; (13)

then
lim
N!1

��(N) = (0; 0; 1; 0) : (14)

Proof. We rely on the representation (see Freidlin and Wentzell [9,
Lemma 3.1, page 177] and Lemma 1)

��i (N) =

P
g2Gi w(g;N)P
g2G w(g;N)

; i = 1; : : : ; 4; (15)

where for every graph g, w(g;N) =
Q
(j!k)2g �jk�jk(N). To derive the as-

ymptotic behavior of the functions w(g;N) for N ! 1, we �rst gather
asymptotic results for the �jk(N). It follows from (7) and (3) that

�13(N) = �31(N) = �14(N) = �41(N) = �34(N) = �43(N) =
1

N
: (16)

By (8) and Lemma 2,
�12(N) � 1: (17)

By (8) through (10) and Corollary 1, there exists � > 0 such that

�21(N) = O(e��N); �32(N) = O(e��N); �24(N) = O(e��N): (18)

By (9) and Lemma 2, �23(N) � 1 or �23(N) � 1=
p
N . Thus,

lim
N!1

N�23(N) =1: (19)

Assume now that (11) holds. Then, by Corollary 1, there exists �1 > 0
such that

�42(N) = O(e��1N): (20)

Consider the three graphs

g�3 = f(1! 2); (2! 3); (4! 1)g 2 G3;
g��3 = f(1! 2); (2! 3); (4! 3)g 2 G3;
g�4 = f(1! 2); (2! 3); (3! 4)g 2 G4:
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Setting h(N) = �12�23�12(N)�23(N)=N , we have by (16),

w(g�3; N) = �41h(N); w(g��3 ; N) = �43h(N); w(g�4; N) = �34h(N); (21)

and by (17),
1

h(N)
= O

�
N

�23(N)

�
:

Every graph g 2 G1 is of the form g = f(2 ! i); (3 ! j); (4 ! k)g for some
i; j; k 2 f1; : : : ; 4g. Thus, by (16), (18), (19) and (20),

w(g;N) = O

�
�23(N)

N2

�
;

and it follows that

lim
N!1

w(g;N)

h(N)
= 0 for all g 2 G1:

A similar argument shows that w(g;N) = O(N�2) for every g 2 G2, so that
w(g;N)=h(N) = O[(N�23(N))

�1]. Hence, by (19),

lim
N!1

w(g;N)

h(N)
= 0 for all g 2 G2:

If g 2 G3 [G4 n fg�3; g��3 ; g�4g, then w(g;N)=h(N) = O(N�1). It has thus been
shown that

lim
N!1

w(g;N)

h(N)
= 0 for all g 2 G n fg�3; g��3 ; g�4g:

The claimed limit assertion (12) is now a consequence of the representation
(15) and (21).
If (13) holds, one may prove limit assertion (14) by showing that

limN!1w(g;N)=w(g3; N) = 0 for all g 2 G1 [ G2 [ G4, where g3 = f(1 !
2); (2! 3); (4! 2)g 2 G3. The details are omitted. �

7.7 Proof of Theorem 2

We will �rst show that for the �xation probabilities of the no-mutation
processes we have

lim
�!0

�ij(N; �) = �ij(N; 0): (22)

FixN � 2 and a strategy j. Let h�(x) denote the probability that fX(t; 0; N; �)g
will be absorbed at sj if the initial state is x. Thus �ij(N; �) = h�((1 �
1=N)si+(1=N)sj). Write S 0 = SN nfs1; : : : ; sng. By Assumption 4, s1; : : : ; sn
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are absorbing states and the elements of S 0 are transient states of the no-
mutation processes. Hence, for every � � 0, h� is the unique solution of

h�(x) = p0;N;�(x; sj) +
X
y2S0

p0;N;�(x; y)h�(y); x 2 S 0;

see e.g. Karlin and Taylor [19, page 90]. It therefore follows from Assump-
tion 5 (iii) and Cramer�s rule that h� ! h0 as � ! 0. This proves (22).
Assumptions 4 and 5 ensure that for every N and �, Theorem 1 in Fu-

denberg and Imhof [11] can be applied to compute ��i (N; �). Accordingly,
(��1(N; �); : : : ; �

�
n(N; �)) is the unique invariant distribution of a transition

matrix whose o¤-diagonal elements are �ij�ij(N; �). Hence, using (22), we
obtain

lim
�!0

��i (N; �) = ��i (N; 0); i = 1; : : : ; n and N � 2: (23)

Let � > 0. By (5), there exists N0 such that

j��i � ��i (N; 0)j <
�

2
for all N � N0 and i = 1; : : : ; n:

Choose any N1 > N0. In view of (23), there exists �0 = �0(N0; N1) > 0 such
that

j��i (N; �)� ��i (N; 0)j <
�

2
for all � 2 (0; �0); N = N0; : : : ; N1; i = 1; : : : ; n:

This completes the proof. �
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