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CONTRASTS AND
CORRELATIONS IN

EFFECT-SIZE ESTIMATION
By Ralph L. Rosnow,1 Robert Rosenthal,2 and Donald B. Rubin3

1Department of Psychology, Temple University;2Department of Psychology, University of California, Riverside; and
3Department of Statistics, Harvard University

This article describes procedures for presenting standardized mea-
sures of effect size when contrasts are used to ask focused questions
of data. The simplest contrasts consist of comparisons of two samples
(e.g., based on the independentt statistic). Useful effect-size indices in
this situation are members of theg family (e.g., Hedges’sg and
Cohen’sd) and the Pearsonr. We review expressions for calculating
these measures and for transforming them back and forth, and de-
scribe how to adjust formulas for obtainingg or d from t, or r from g,
when the sample sizes are unequal. The real-life implications ofd or
g calculated fromt become problematic when there are more than two
groups, but the correlational approach is adaptable and interpret-
able, although more complex than in the case of two groups. We
describe a family of four conceptually related correlation indices: the
alerting correlation, the contrast correlation, the effect-size correla-
tion, and the BESD (binomial effect-size display) correlation. These
last three correlations are identical in the simple setting of only two
groups, but differ when there are more than two groups.

Even the most cursory glance at leading research journals in
psychology will reveal that authors seldom report effect sizes.
One plausible explanation for this neglect may be that few
researchers have a clear idea of when or how to calculate and
interpret them. For example, the initial printing of the Ameri-
can Psychological Association’s (1994) publication manual
wisely recommended Cohen’sd as one useful measure of the
effect size. But the manual also prescribed certain squared
indices (i.e.,r2, h2, v2, R2, f2), all of which, regrettably, are
susceptible to the expository problem that small, but some-
times very meaningful, effects may appear to essentially dis-
appear when squared, and the real-life importance of even
substantial effects may be lost (e.g., Abelson, 1985; Ozer,
1985; Rosenthal & Rubin, 1982). The American Psychological
Association’s manual further advised that “in most cases such
measures are readily obtainable whenever the omnibus test
statistics (e.g.,t andF) and sample sizes (or degrees of free-
dom) are reported” (p. 18). However,t is not an omnibus test

but is instead a focused test, and although generallyF tests are
omnibus tests, those with one numerator degree of freedom are
focused tests. Moreover, informative effect-size measures such
as Hedges’sg, Cohen’sd, and the product-moment correlation
(r) cannot be obtained from an omnibusF.

We begin by reviewing the standard calculations ofg, d,
and r in two-group designs and describe how to adjust some
familiar (and perhaps not so familiar) formulas when the
sample sizes are unequal. When contrasts are used to address
focused questions in more than two groups, the real-life mean-
ing of g or d calculated fromt statistics becomes problematic,
but we describe a correlational approach that is both adaptable
and interpretable, although more complex than with two
groups. In particular, we define and illustrate a family of four
conceptually related indices, which we call the alerting
correlation (symbolizedralerting), the contrast correlation
(rcontrast), the effect-size correlation (reffect size), and the bino-
mial effect-size correlation (rBESD). This approach is fully
developed in Rosenthal, Rosnow, and Rubin (2000), which in-
cludes additional equations that can be used with different raw
ingredients.

THE g FAMILY AND ITS RELATION TO r IN
TWO-GROUP DESIGNS

Effect Sizes in Designs With Equal Sample Sizes

Basically, contrasts are statistical procedures for asking fo-
cused questions of data. For example, when we comparek 4
2 groups or conditions with equal sample sizes using the stan-
dard t statistic (or theF statistic with numeratordf 4 1), the
statistical procedure is intrinsically “focused” because of the
implicit idea that one sample (e.g., the experimental group)
will have a different score on the dependent variable than the
other sample (e.g., the control group).

Cohen (1965) showed that one useful option for measuring
the effect size in this situation is the familiar product-moment
correlation (r), expressed as a point-biserial correlation be-
tween dummy-coded groups or conditions (e.g., coded 1 for
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experimental and 0 for control) and scores on a continuous
variable. Cohen also noted that a shortcut formula for obtaining
the effect-size correlation directly fromt is

r =Î t2

t2 + dfwithin

, (1)

wheredfwithin is the degrees of freedom for thet statistic, equal
to N − 2 in the case of two groups, andN is the total number
of subjects in both groups. When working withF (with nu-
meratordf 4 1) instead oft, to use Cohen’s formula, we would
simply substituteF for t2 in Equation 1. A highly informative
convention, coming out of the meta-analytic tradition, is to
report the effect-size correlation as positive when the effect is
in the predicted direction and as negative when the effect is in
the unpredicted direction. However, when the two samples are
not independent, the effect-size correlation calculated using
Equation 1 is no longer the simple point-biserial correlation,
but is instead the correlation between group membership and
scores on the dependent variable with indicator variables for
the paired individuals partialed out.

Another family of effect-size indices concentrates on the
standardized difference between the sample means (M1 and
M2). Common examples are Hedges’sg (e.g., Hedges & Olkin,
1985) and Cohen’sd (e.g., Cohen, 1965, 1988), both of which
represent the effect size as standard-score units (z scores).
Hedges’sg is defined as

g =
M1 − M2

swithin
, (2)

whereswithin is the usual pooled within-sample estimate of the
population standard deviation, given by

swithin =ÎS~X1 − M1!2 + S~X2 − M2!2

dfwithin
, (3)

and X1 and X2 are individual scores in Samples 1 and 2, re-
spectively. Cohen’sd usesN for the denominator of the esti-
mated variance, so thatd is estimated by

d =
M1 − M2

swithin
, (4)

and

swithin = swithinÎdfwithin

N
. (5)

In the same way that Cohen (1965, 1988) showed that we

can obtainr from t, he showed that standardized difference
measures can also be obtained fromt. Thus, we can calculate
g by

g =
2t

=N
, (6)

assuming equal sample sizes in the two groups.
Cohen’s and Hedges’s measures of effect size can be readily

transformed back and forth, whether the sample sizes are equal
or unequal. Thus, we can convertg into d by

d = gÎ N

dfwithin
(7)

or d into g by

g = dÎdfwithin

N
. (8)

Similarly, in an equal-n study, we can transformg into r by

r =
g

Îg2 + 4Sdfwithin

N D
. (9)

For example, suppose the hypothesis is that treating sub-
jects by a particular clinical intervention (the experimental
condition) will, relative to nonintervention (the control condi-
tion), result in improvement on some psychological criterion.
There are 50 subjects in each of the two randomly assigned
conditions, with resulting mean scores ofM1 4 6.0 andM2 4
4.8 in the experimental and control groups, respectively, and
swithin 4 2.0. We calculatet(98) to be 3.00, and from Equation
1 find

r =Î ~3.00!2

~3.00!2 + 98
= .29.

We obtaing from Equation 2 by

g =
6.0− 4.8

2.0
= 0.60

or directly from t (Equation 6) by

g =
2~3.00!

=100
= 0.60.

Transformingg into d by Equation 7 gives

d = 0.60Î100

98
= 0.61,

and transformingd into g by Equation 8 gives
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g = 0.61Î 98

100
= 0.60.

Transformingg into r by Equation 9 gives

r =
0.60

Î~0.60!2 + 4S 98

100D
= .29.

Adjustments for Unequal Sample Sizes:
A General Approach

As mentioned, the equation for obtainingg directly from t
(Equation 6) is predicated on the assumption of a two-group
design with equal sample sizes.1 However, when the sample
sizes in the two groups are unequal, the “g from t” formula will
tend to underestimate the actualg. Furthermore, even in the
presence of a large totalN, there may be insufficient power to
obtain ap value at some predetermined level of significance if
the sample sizes are unequal (Cohen, 1988). Hsu (1993) dis-
cussed this problem in the context of two-sample tests of
means, proportions, and correlations, and described how to use
Cohen’s (1988) power tables to estimate the maximum power
attainable when the sample size in one group (n1) is fixed and

the sample size in another group (n2) is larger thann1. Al-
though sample sizes smaller than 30 have often been consid-
ered acceptable in psychology, it would be difficult (power≈
.12) for effects that are commonly characterized as “small” (g
4 0.20) or “medium” (g 4 0.50; power4 .46) to be found
significant at the .05 level when the smaller of the two samples
is less than 30.

The ratio of the harmonic mean sample size (nh) to the
arithmetic mean sample size (n) is a useful index of the reten-
tion of power in the unequal-n design relative to the equal-n
design. Subtracting this ratio from unity will reveal the pro-
portional loss of relative efficiency, with its implications for
loss of power (Rosenthal et al., 2000), that is,

loss= 1 − Snh

n D, (10)

where the harmonic mean sample size ink 4 2 samples ofn1

andn2 size is

nh =
2n1n2

n1 + n2
. (11)

Because the harmonic mean sample size equals the arith-
metic mean sample size whenn1 4 n2, the ratio ofnh to n
is always 1.0 in equal-n designs, and Equation 10 therefore
yields a value of zero loss in such designs. In samples of
unequal sizes, the harmonic mean is less than the arith-
metic mean, and so the value given by Equation 10 will in-
crease with corresponding increases in the inequality of the
sample sizes.

Table 1 illustrates this relationship with independent
samples of sizen1 andn2, whenN 4 n1 + n2 is fixed (e.g.,N
4 100). The last column indicates the effective loss of total

1. One of the assumptions underlying the usualt statistic comparing two
means is that the variances of the variable in the populations from which the
two samples were drawn are equal. Thet statistic still works quite well even
if the variances are fairly different, especially if sample sizes are equal or
nearly so. However, if both the population variances are very different and the
two sample sizes are quite different, thet statistic used may not follow thet
distribution very well. One approach to this problem for significance testing is
to transform the data to make the variances in the two samples more nearly
equal (Box, Hunter, & Hunter, 1978; Tukey, 1977); another approach (useful
when suitable transformations are unavailable or ineffective, or when inference
on the original scale is more meaningful) is to use Satterthwaite’s approximate
method (Snedecor & Cochran, 1989).

Table 1. Effects of unequal sample sizes on loss of relative efficiency (Equation 10) and
the effective loss ofN (Equation 12)

Size of subgroup Arithmetic
meann

(n)

Harmonic
meann

(nh)

Loss of
relative

efficiency
Effective
loss ofNn1 n2

50 50 50 50.00 .00 0
55 45 50 49.50 .01 1
60 40 50 48.00 .04 4
65 35 50 45.50 .09 9
70 30 50 42.00 .16 16
75 25 50 37.50 .25 25
80 20 50 32.00 .36 36
85 15 50 25.50 .49 49
90 10 50 18.00 .64 64
95 5 50 9.50 .81 81
99 1 50 1.98 .96 96
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sample size, obtained by multiplying the right-hand side of
Equation 10 by the totalN:

effective loss ofN = NF1 − Snh

n DG, (12)

which is relevant to considerations of cost when the cost per
sampling unit is constant. For example, a 60:40 split of 100
cases is equivalent to losing 4 of 100 total cases, whereas an
85:15 split is equivalent to losing virtually half of the total
sample, and a split of 99:1 is equivalent to the loss of all but 4
of 100 cases.

In unequal-n designs, the valid estimate ofg is still given by
Equation 2, and the valid estimate ofd is given by Equation 4.
The transformations betweend and g are also still given by
Equations 7 and 8. However, the expression to obtaing from t
(Equation 6) needs adjustment for the loss in relative efficiency
(Rosenthal et al., 2000). In an unequal-n design, we can obtain
g from t by

g = S 2t

=N
DÎ n

nh
, (13)

and we can obtaind from t by

d = S 2t

=dfwithin
DÎ n

nh
. (14)

Of course, there will be no difference in an equal-n design
whether we use the equal-n or unequal-n equation. For ex-
ample, in the equal-n situation given earlier, wheret(98) 4
3.00, n1 4 n2 4 50, andg calculated from Equation 6 was
0.60, the accurateg is unchanged by the use of Equation 13
becausen / nh 4 1.0 when sample sizes are equal.

However, in the unequal-n situation, the result may be dra-
matically different. Supposen1 4 85 andn2 4 15, still with
means of 6.0 and 4.8, andswithin 4 2.0, resulting int(98) 4
2.14. Calculatingg directly from the means using Equation 2
gives 0.60 (the correct value), but calculatingg from t using
Equation 6 (the equal-n equation) gives 0.43, notably less than
the correct value. Using Equation 13, with its relative-
efficiency-loss adjustment, gives the correct value:

g =
2~2.14!

=100
Î 50

25.5
= 0.60.

When transformingg into the point-biserial effect size in an
unequal-n design, we also need to make an adjustment in
Equation 9, because the effect size now changes with the ra-
tio nh/ n, even with the sameM1, M2, swithin, andN. For ex-
ample, consider two very large studies with the sameN and

the same population values ofM1, M2, andswithin, but suppose
that in one study we hadnh/ n 4 1, and in the other study
we hadnh/ n 4 1/100. Both studies will have approximately
the same effect-size value forg (and d) because of the large
sample size and identical population values. However, thet
produced by the equal-n study will be approximately 10 times
the t produced by the unequal-n study, and the value of the
effect-size correlation for the equal-n study, calculated using
Equation 9, will also be larger than that from the unequal-n
study.

The effect-size correlation for the equal-n study can be ob-
tained fromg by Equation 9, but for the unequal-n study, we
need the following modification:

r =
g

Îg2 + 4S n

nh
DSdfwithin

N D
. (15)

Thus, in the case ofnh/ n 4 .01, the effect-size correlation is
approximately

r =
g

Îg2 + 400Sdfwithin

N D
rather than

r =
g

Îg2 + 4Sdfwithin

N D
as with the equal-n study. In the example with means of 6.0 and
4.8, sample sizes of 85 and 15, and validg 4 0.60, Equation
15 gives

r =
0.60

Î~0.60!2 + 4S 50

25.5DS 98

100D
= .21.

FOUR CORRELATION INDICES IN DESIGNS WITH
MORE THAN TWO GROUPS

The Alerting Correlation

In designs with more than two groups, many researchers
have the habit of using omnibusF tests that are only indirectly
related to any focused question of interest. For example, sup-
pose the researcher’s hypothesis is that grade level is an effec-
tive predictor of psychological resilience. The researcher tests
10 children at each of five grade levels (6th, 7th, 8th, 9th, and
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10th grades) and obtains mean performance scores of 25, 30,
40, 50, and 55, respectively, with a pooled standard deviation
of 39.69. However, the omnibus test yieldsF(4, 45)4 1.03,p
4 .40, and the researcher laments the failure of the hypoth-
esized increase in resilience.

Despite the researcher’s disappointment, we can see that
there was a progression in the group means. When we correlate
a set of lambda (l) coefficients of −2, −1, 0, +1, and +2
(representing the predicted linear trend, whereSl 4 0) with
the five group means, we findr 4 .9923. We characterize such
an aggregate correlation (i.e., based on means rather than in-
dividual scores) as an “alerting correlation” (ralerting) because it
can alert us to overall trends of interest, but it would be a poor
estimate of the relation between individual children’s grades
and resilience. Indeed, alerting correlations (i.e., based on
sample means) can be substantially larger or smaller than (or
even in the opposite direction from) effect-size correlations,
which are based on individual scores. This aggregate correla-
tion “alerts us” that, despite the fact the omnibusF was not
significant at the desiredp level, the researcher may have been
too hasty in dismissing the hypothesis that grade level is an
effective predictor of psychological resilience. Also, in second-
ary analyses of data (e.g., as in meta-analytic work), sometimes
the only information available is the set of condition means,
and thenralertingmay be the only effect-size estimate available.

The omnibusF addressed the diffuse question of whether
there were any differences among the five grade levels, but was
insensitive to their ordinal arrangement. The number of pos-
sible permutations of five samples is 120, and any of these
permutations would have yielded the sameF with numeratordf
4 4. However, had the researcher computed a contrast to
address the predicted linear pattern corresponding to grade
levels, the statistical result would have been more informative
(and more gratifying to the researcher). We can easily obtain
such a contrast using a simple procedure described elsewhere
(Rosnow & Rosenthal, 1995, 1996). First, we multiply the
omnibusF by its numerator degrees of freedom, which gives
(1.03)(4)4 4.12 (i.e., the largest value ofF that any contrast
carved out of the sum of squares for the numerator ofF can
possibly achieve). Then, we multiply this value by the squared
alerting correlation to obtain a contrastF, which gives
(4.12)(.9846)4 F(1, 45) 4 4.06 (i.e., theF for the hypoth-
esized linear trend).

The alerting correlation is a convenient way of evaluating
the “success” of any contrast, because the squared alerting
correlation tells us the proportion of the between-condition
sum of squares (SSbetween) that is accounted for by the contrast.
In this example, givenk 4 5 groups (and, therefore, 4df
between groups), the contrast far exceeds the 25% ofSSbetween

(i.e., 25% 4 the reciprocal of thedf) that we might have
expected by chance. Indeed, the contrast accounts for more
than 98% ofSSbetween. Table 2 shows the analysis of variance
table corresponding to this illustration. The lesson? Common
as omnibus significance tests are, they may not tell us anything

we really want to know. It should also be noted that the alerting
correlation can be employed for any contrast, not only for
contrasts examining linear trends.

The Contrast Correlation

As noted, when the contrast is a simple comparison between
two independent groups, the effect-size correlation (hereafter
denoted asreffect size) is the point-biserial correlation between
each subject’s group membership (coded as 0 or 1) and the
score on a continuous variable. The standard expression for
computing reffect size from t with two groups was given by
Equation 1, withdfwithin 4 N − 2. However, when the contrast
is computed on more than two independent groups,reffect sizeis
no longer a point-biserial correlation. Thus, whenk > 2, we
regard Equation 1 as the contrast correlation (rcontrast) rather
than thereffect size, because Equation 1 then gives the partial
correlation between scores on the outcome variable and the
lambdas associated with the groups, after eliminating all be-
tween-group noncontrast variation.

Therefore, with the understanding that all sources of varia-
tion other than the contrast have been removed, we obtain
rcontrastfrom t by

rcontrast=Î t2

t2 + dfwithin

=
t

=t2 + dfwithin

. (16)

Because any contrastF equalst2, in our continuing example
(Table 2), Equation 16 yields

rcontrast=Î 4.06

4.06+ 45
=

2.015

=4.06+ 45
= .29.

With k 4 2 groups, there are no sources of noncontrast
variation to be eliminated, thereby implying thatrcontrast 4
reffect size in two-group designs. Similarly, ifr2

alerting revealed
that a contrast had accounted for virtually all the between-
group variation in a design with three or more groups, then
rcontrastwould be virtually equivalent toreffect size. However,
rcontrastcan be quite large, yet not be a reflection of a similarly
large reffect size. The reason is thatreffect sizeis the unpartialed

Table 2. Summary analysis of variance table reconstructed
from available information in the study of
children’s resilience

Source SS df MS F

Grade level 6,488 4 1,622 1.03
Linear contrast 6,395 1 6,395 4.06
Noncontrast 93 3 31 0.02

Within grade level 70,875 45 1,575
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correlation, whereasrcontrasthas all the noncontrast variation
removed.2 If we know thatrcontrastwill be a good approxima-
tion to reffect sizein designs with more than two groups, then
Equation 16 is a convenient way of estimating it.

The Effect-Size Correlation

To reiterate,reffect sizeshould be understood as the simple
correlation (unpartialed) between membership in a group or
condition and scores on the dependent variable. To compute
this simple correlation, we treat the noncontrast between-
variability as additional error variance, then

reffect size=Î Fcontrast

Fcontrast+ Fnoncontrast~dfnoncontrast! + dfwithin
,

(17)

which from the data in Table 2 gives

reffect size=Î 4.06

4.06+ 0.02~3! + 45
= .29.

Alternatively, we can calculate the omnibusF (i.e., Fbetween)
from the mean squares, if that information is available, and
then calculate

reffect size=Î Fcontrast

Fbetween~dfbetween! + dfwithin
, (18)

which yields, in our example,

reffect size=Î 4.06

1.03~4! + 45
= .29.

The contrast and effect-size correlations are identical after
rounding in this example because the squared alerting correla-
tion nearly equals 1.0.

The Binomial Effect-Size Correlation

A number of strategies are possible for tying real-life im-
plications to effect sizes in two-group designs with continuous
or categorical data. For example, Cohen (1965, 1988) dis-
cussed the practical meaning ofd in psychological research,

and medical researchers often tie real-life meaning to categori-
cal data by estimating odds ratios, relative risks, and risk dif-
ferences (e.g., Rosenthal et al., 2000). Cohen (1965) noted that
it is also possible to use phi (f)—another member of the prod-
uct-moment family—to reflect an effect size in a 2 × 2 ta-
ble, and Rosenthal and Rubin (1982) showed how to recast
any product-moment correlation into such a display, whether
the original data are continuous or categorical. Called the bi-
nomial effect-size display (or BESD), its purpose is to repre-
sentreffect sizein a population in which both the independent
and the dependent variables are cast as dichotomous and each
variable is split at its median, with row and column margins set
at 100 observations. The purpose of this section is not to re-
introduce the BESD, as it has been described in detail else-
where (e.g., Rosenthal & Rosnow, 1991; Rosenthal & Rubin,
1982); rather, the purpose of this section is to describe how to
generalize the use of the BESD to the situation of three or more
groups (Rosenthal et al., 2000). We believe this generalization
to be quite useful given the widespread use of the BESD be-
cause of its simplicity and transparency.

For example, supposereffect size 4 .10 in a clinical trial
comparing the level of improvement in subjects who were
given either a newly developed drug or a standard drug, with
the drugs randomly assigned to the subjects using a simple
between-groups design. Table 3 shows the corresponding
BESD, in which the cell values can be interpreted as percent-
ages. In the upper-left and lower-right cells, 55% was calcu-
lated by adding one half the value ofreffect sizeto .50 and then
multiplying by 100; 45% in the upper-right and lower-left cells
was calculated by subtracting one half the value ofreffect size

from .50 and then multiplying by 100. The difference between
45% and 55% (when divided by 100) gives the original value
of the effect-size correlation, and tells us that it is equivalent to
a rate of improvement of 10% in a population in which half the
subjects would receive the new drug and half would not, with
the outcome variable cast as split at the median.

We turn now to the use of the BESD when there are three
or more groups involved in a contrast. In this situation, it is not
immediately obvious how to exhibitreffect sizeas a BESD or
what might be gained from such a display. Under the assump-
tion that the noncontrast sum of squares can be considered as
“noise,” Rosenthal et al. (2000) presented a simple way of
recasting thereffect sizeas a BESD with real-life implications.

2. For a more concrete description of these partial correlations, including
the calculation of adjusted scores forrcontrast, see Rosenthal et al. (2000). More
specifically, each score will have a value predicted from the contrast and a
residual from its group mean (i.e., the score minus its group’s mean). The
group mean will exactly equal the predicted value for that group when the
alerting correlation is 1.00. Thus, the adjusted score is the original score with
the between-group variation not explained by the contrast “partialed out.” The
correlation between the adjusted scores and the lambda coefficients isrcontrast.

Table 3. Binomial effect-size display of effect sizer = .10

Condition

Level of improvement

Total
Above median

outcome
Below median

outcome

New drug 55 45 100
Old drug 45 55 100

Total 100 100 200
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That is, we assume that the contrast of interest does, in fact,
capture the full predictable relation between the outcome vari-
able (Y) and the treatment groups. In that case, we conceptu-
alize the BESD as reflecting thereffect sizethat we would expect
to see in a two-group replication of the current study with the
same totalN; by implication, the lower group (or treatment
condition) is set at −1sl and the upper group (or treatment
condition) is set at +1sl, where

sl =ÎSl2

k
(19)

with, as before,k 4 number of conditions in the contrast.
For example, in a two-group design (with lambdas of +1

and −1), we find

sl =Î~+1!2 + ~−1!2

2
= 1,

which tells us that the BESD will have the same conditions as
the current design. In designs with more than two groups, the
BESD will capture only conditions defined by −1sl and +1sl,
so in the five-group study of children’s resilience discussed
previously (with lambdas of −2, −1, 0, +1, and +2), we find

sl =Î~−2!2 + ~−1!2 + ~0!2 + ~+1!2 + ~+2!2

5
= 1.41

and then use this value to set the lower and upper limits for
treatment conditions of the BESD. To set the lower limit, we
subtractsl 4 1.41 from the mean grade of 8, and for the upper
limit we add 1.41 to the mean of 8. (Table 4 shows various
values ofsl for linear predictions in designs consisting of 2–10
ordinal conditions.)

We now need to obtain the value of thereffect size to be
represented in our BESD. If this were a two-group design with
equal sample sizes, we could estimatereffect size from t by

Equation 1. If the sample sizes of our two-group design were
unequal, we would calculaterBESD by

rBESD = !
t2

t2 + dfwithinSnh

n D
. (20)

Whenk > 2, rBESD is defined to be thereffect sizethat we would
expect to see in a ±1s two-group replication (with stipulations
noted earlier), which can be calculated by

rBESD =Î Fcontrast

Fcontrast+ Fnoncontrast~dfnoncontrast+ dfwithin!
.

(21)

If Fnoncontrastis less than 1.00, it is entered into Equation 21 as
equal to 1.00. This restriction onFnoncontrastrequires the noise
level underlyingMSwithin to be at least as large as the noise
level of MSnoncontrast, and arises because we are viewing the
noncontrast variability as the appropriate index of the noise
level, which must be at least as large as the within variability.

In our continuing example, if we enterFnoncontrast4 1.00
(because it was less than 1) into Equation 21, we find

rBESD =Î 4.06

4.06+ @1.00~3 + 45!#
= .28,

which we can interpret as thereffect sizewe would expect to see
in a replication that compared the resilience of 9.4th-grade
children with the resilience of 6.6th-grade children, assuming
the same totalN as in the study for which we computed the
rBESD and equal sample sizes in the two grade levels. Table 5,
interpreted in the usual way, is the BESD corresponding to this
result.

CONCLUSION

We have concentrated here on effect-size estimation, favor-
ing the r family when there are more than two groups. In the

Table 4. Linear contrast weights andsl for k = 2 to 10 ordinal conditions

k

Ordinal conditions

sl1 2 3 4 5 6 7 8 9 10

2 −1 +1 1.00
3 −1 0 +1 0.82
4 −3 −1 +1 +3 2.24
5 −2 −1 0 +1 +2 1.41
6 −5 −3 −1 +1 +3 +5 3.42
7 −3 −2 −1 0 +1 +2 +3 2.00
8 −7 −5 −3 −1 +1 +3 +5 +7 4.58
9 −4 −3 −2 −1 0 +1 +2 +3 +4 2.58

10 −9 −7 −5 −3 −1 +1 +3 +5 +7 +9 5.75
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simple setting of two groups, we have no strong preference
amongd, g, or r, all of which do a good job. In the two-group
case,rcontrast, reffect size, andrBESD will, of course, be identical.
Although when there are more than two groups it is also pos-
sible for ralerting, rcontrast, reffect size, andrBESD to have identical
values, typicallyreffect sizewill be larger thanrBESD, andrcontrast

will be larger thanreffect size, with these differences sometimes
being quite substantial. The value ofralerting tends to be larger
than the value of the other three indices, but need not be so
(Rosnow & Rosenthal, 1996). Using this entire family of in-
dices captures the different meanings of contrasts in a way that
cannot be precisely communicated by any single measurement.

Our silence thus far on the issue of significance testing is
not a tacit endorsement of dichotomous significance-testing
decisions. There has been a growing realization of the failings
and limitations of the rhetoric of the “accept/reject” paradigm
(e.g., Cohen, 1994; Kirk, 1996; Loftus, 1996; Rosenthal &
Rubin, 1985; Rosnow & Rosenthal, 1989; Schmidt, 1996;
Thompson, 1996). The American Psychological Association’s
Task Force on Statistical Inference recently recommended that
researchers report interval estimates for effect sizes involving
principal outcomes (Wilkinson & the Task Force on Statistical
Inference, 1999). Examining the counternull statistic, that is,
the nonnull magnitude ofd, g, or r that is supported by the
same amount of evidence as is the null value of the effect size
(Rosenthal & Rubin, 1994; Rosnow & Rosenthal, 1996), and
its associated interval (Rosenthal et al., 2000), provides insur-
ance against mistakenly embracing the null hypothesis.
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Table 5. Binomial effect-size display ofrBESD= .28 in the
study of children’s resilience

Group

Above
median

resilience

Below
median

resilience Total

9.4th grade (+1sl) 64 36 100
6.6th grade (−1sl) 36 64 100

Total 100 100 200
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