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CONTRASTS AND
CORRELATIONS IN

EFFECT-SIZE

By Ralph L. Rosnow, Robert Rosenthal,and Donald B. Rubih

‘Department of Psychology, Temple Universtipepartm

3Department of Statistics, Harvard University

ESTIMATION

ent of Psychology, University of California, Riverside; and

This article describes procedures for presenting standardized n
sures of effect size when contrasts are used to ask focused que|
of data. The simplest contrasts consist of comparisons of two san
(e.g., based on the independestatistic). Useful effect-size indices
this situation are members of thg family (e.g., Hedges'sy and
Cohen’sd) and the Pearsom. We review expressions for calculatir]
these measures and for transforming them back and forth, and
scribe how to adjust formulas for obtainimggor d fromt, or r from g,
when the sample sizes are unequal. The real-life implicatiormsoof
g calculated front become problematic when there are more than {

groups, but the correlational approach is adaptable and interprj

able, although more complex than in the case of two groups.
describe a family of four conceptually related correlation indices:
alerting correlation, the contrast correlation, the effect-size corre
tion, and the BESD (binomial effect-size display) correlation. Th
last three correlations are identical in the simple setting of only t}
groups, but differ when there are more than two groups.

Even the most cursory glance at leading research journg
psychology will reveal that authors seldom report effect siz
One plausible explanation for this neglect may be that
researchers have a clear idea of when or how to calculate
interpret them. For example, the initial printing of the Ame
can Psychological Association’s (1994) publication man
wisely recommended Cohentsas one useful measure of t
effect size. But the manual also prescribed certain squ
indices (i.e.r? n? w? R, &), all of which, regrettably, arg
susceptible to the expository problem that small, but so
times very meaningful, effects may appear to essentially
appear when squared, and the real-life importance of €
substantial effects may be lost (e.g., Abelson, 1985; O
1985; Rosenthal & Rubin, 1982). The American Psycholog
Association’s manual further advised that “in most cases
measures are readily obtainable whenever the omnibus
statistics (e.g.t andF) and sample sizes (or degrees of fre
dom) are reported” (p. 18). Howevdris not an omnibus tes

Address correspondence to Ralph L. Rosnow, 177 Biddulph Rd., Ra

hdzut is instead a focused test, and although geneFalbsts are

stigndibus tests, those with one numerator degree of freedon

"HSéused tests. Moreover, informative effect-size measures

Nas Hedges's, Cohen’sd, and the product-moment correlatig
(r) cannot be obtained from an omnibbs

9 We begin by reviewing the standard calculationsgpf,

N are
such
n

me

aehdr in two-group designs and describe how to adjust sg
familiar (and perhaps not so familiar) formulas when

correlation (symbolized ,.1ing, the contrast correlatio
(reontras), the effect-size correlatior {e sz, and the bino-
mial effect-size correlationrggzsp). This approach is fully,
Islisveloped in Rosenthal, Rosnow, and Rubin (2000), which

edludes additional equations that can be used with different
ewgredients.

and

ri-

ual THE g FAMILY AND ITS RELATION TO r IN

e TWO-GROUP DESIGNS

ared
Effect Sizes in Designs With Equal Sample Sizes

me-
dis- Basically, contrasts are statistical procedures for asking

vesed questions of data. For example, when we compare
z&rgroups or conditions with equal sample sizes using the s
cdardt statistic (or theF statistic with numeratodf = 1), the
uSiatistical procedure is intrinsically “focused” because of
igplicit idea that one sample (e.g., the experimental grg
»avill have a different score on the dependent variable than
t other sample (e.g., the control group).
Cohen (1965) showed that one useful option for measu
the effect size in this situation is the familiar product-mom
neprrelation ), expressed as a point-biserial correlation

PA 19087-4506; e-mail: rrosnow@nimbus.temple.edu.
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he

wsample sizes are unequal. When contrasts are used to address
cfocused questions in more than two groups, the real-life me¢an-
Vg of g or d calculated front statistics becomes problematic,
nhbut we describe a correlational approach that is both adaptable
laand interpretable, although more complex than with two
eggroups. In particular, we define and illustrate a family of fqur
woonceptually related indices, which we call the alerting

n-
raw

fo-
tan-

the

up)
the

ring
ent
he-

tween dummy-coded groups or conditions (e.g., coded 1
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experimental and O for control) and scores on a contin
variable. Cohen also noted that a shortcut formula for obtai
the effect-size correlation directly fromnis

2
r=~/5—
t2 + dfitnin

wheredf,;.in IS the degrees of freedom for thetatistic, equal
to N — 2 in the case of two groups, amdis the total number
of subjects in both groups. When working wikh (with nu-
meratordf = 1) instead of, to use Cohen'’s formula, we woul
simply substituteF for t? in Equation 1. A highly informative
convention, coming out of the meta-analytic tradition, is
report the effect-size correlation as positive when the effe
in the predicted direction and as negative when the effect
the unpredicted direction. However, when the two samples
not independent, the effect-size correlation calculated u
Equation 1 is no longer the simple point-biserial correlati
but is instead the correlation between group membership
scores on the dependent variable with indicator variables
the paired individuals partialed out.

Another family of effect-size indices concentrates on
standardized difference between the sample meklhsafd
M,). Common examples are Hedgeg'ée.g., Hedges & Olkin,
1985) and Cohen’d (e.g., Cohen, 1965, 1988), both of whic
represent the effect size as standard-score umitscres).
Hedges'sg is defined as

1)

M; - M,

Swithin @)

g:

wheres, i is the usual pooled within-sample estimate of fhewithin

population standard deviation, given by

(X - Ml)z +2(X; - Mz)z
Swithin = df ,
within

and X; and X, are individual scores in Samples 1 and 2,
spectively. Cohen’sl usesN for the denominator of the est
mated variance, so thdtis estimated by

3

IV|1 B Mz
d=——7, 4
Owithin @
and
dfithi
O within = Swithin n 5)

N

L;Louan obtainr from t, he showed that standardized differen

ingeasures can also be obtained frofmihus, we can calculat
g by

= , 6
g N (6)
assuming equal sample sizes in the two groups.

Cohen’s and Hedges'’s measures of effect size can be re
transformed back and forth, whether the sample sizes are ¢
or unequal. Thus, we can converinto d by

d

N

d=g (7)
to dfivithin
otis .
<o d into g by
are

dfini

5ing g=d Wl\';h'n. ()

on,
?@ﬂwilarly, in an equah study, we can transformg into r by
or

g

r= .
/ df
2 'within

g +4< N )

h For example, suppose the hypothesis is that treating
jects by a particular clinical intervention (the experimen
condition) will, relative to nonintervention (the control cong
tion), result in improvement on some psychological criteri
There are 50 subjects in each of the two randomly assig
conditions, with resulting mean scoresM{ = 6.0 andM, =

4.8 in the experimental and control groups, respectively,
= 2.0. We calculat&(98) to be 3.00, and from Equatio

| (3.00° -
(3.00%+98

We obtaing from Equation 2 by
re-

he 9

1 find

_60-48__
9=7%o0 7

60

or directly fromt (Equation 6) by

_2300 _

\/ 100

Transformingg into d by Equation 7 gives

d=0.60 100—061
- . 98_ . y

U

adily
2qual

sub-
tal

ON.
ned

and

>

In the same way that Cohen (1965, 1988) showed that
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wRad transformingl into g by Equation 8 gives
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Table 1. Effects of unequal sample sizes on loss of relative efficiency (Equation 10) alLd
the effective loss dfl (Equation 12)
Size of subgroup Arithmetic Harmonic Loss of

meann meann relative Effective
n, n, (n) (n,) efficiency loss of N
50 50 50 50.00 .00 0
55 45 50 49.50 .01 1
60 40 50 48.00 .04 4
65 35 50 45.50 .09 9
70 30 50 42.00 .16 16
75 25 50 37.50 .25 25
80 20 50 32.00 .36 36
85 15 50 25.50 49 49
90 10 50 18.00 .64 64
95 5 50 9.50 .81 81
99 1 50 1.98 .96 96

= 0,61+ -2 ~ 0.60.
9=5-514/100"

Transformingg into r by Equation 9 gives

0.60

\/ 98
(0.602 + 4( 100)

Adjustments for Unequal Sample Sizes:
A General Approach

r=

As mentioned, the equation for obtainiggirectly fromt
(Equation 6) is predicated on the assumption of a two-gr
design with equal sample sizé$owever, when the sampl
sizes in the two groups are unequal, tigdrom t” formula will
tend to underestimate the actugl Furthermore, even in th
presence of a large tot&l, there may be insufficient power t
obtain ap value at some predetermined level of significanct
the sample sizes are unequal (Cohen, 1988). Hsu (1993
cussed this problem in the context of two-sample tests
means, proportions, and correlations, and described how t
Cohen’s (1988) power tables to estimate the maximum pg
attainable when the sample size in one grouy is fixed and

1. One of the assumptions underlying the udustatistic comparing two
means is that the variances of the variable in the populations from whick
two samples were drawn are equal. Tthetatistic still works quite well even
if the variances are fairly different, especially if sample sizes are equa
nearly so. However, if both the population variances are very different an
two sample sizes are quite different, thstatistic used may not follow thie
distribution very well. One approach to this problem for significance testin
to transform the data to make the variances in the two samples more ne
equal (Box, Hunter, & Hunter, 1978; Tukey, 1977); another approach (uge

the sample size in another group,) is larger thann,. Al-
though sample sizes smaller than 30 have often been co
ered acceptable in psychology, it would be difficult (powe
.12) for effects that are commonly characterized as “small
= 0.20) or “medium” § = 0.50; power= .46) to be found
significant at the .05 level when the smaller of the two samy
is less than 30.

The ratio of the harmonic mean sample sizg) (to the
arithmetic mean sample size)(is a useful index of the reten
tion of power in the unequai-design relative to the equal-
design. Subtracting this ratio from unity will reveal the pr
portional loss of relative efficiency, with its implications fq

loss of power (Rosenthal et al., 2000), that is,

n
loss=1- <—h>
n

Owhere the harmonic mean sample siz& i 2 samples of,
2 {ndn, size is

oup

e (10)

dis-
of 5
n,n
) use Ny = (11
wer n,+n,

nsid-

es

=

Because the harmonic mean sample size equals the
metic mean sample size when = n,, the ratio ofn, ton

Hdoequal sizes, the harmonic mean is less than the
metic mean, and so the value given by Equation 10 will
0 rease with corresponding increases in the inequality of

%’%h]ple sizes.

o Table 1 illustrates this relationship with independe

when suitable transformations are unavailable or ineffective, or when inferen
on the original scale is more meaningful) is to use Satterthwaite’s approxi
method (Snedecor & Cochran, 1989).

448

I

&@mples of siz@, andn,, whenN = n; + n, is fixed (e.g.,N

rith-

tlj‘éealways 1.0 in equatdesigns, and Equation 10 therefore
| Yjelds a value of zero loss in such designs. In samples of

rith-
in-
the

nt

= 100). The last column indicates the effective loss of ta
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sample size, obtained by multiplying the right-hand side|
Equation 10 by the total:

h

2l

effective loss oN = N[l - ( (12

which is relevant to considerations of cost when the cost
sampling unit is constant. For example, a 60:40 split of
cases is equivalent to losing 4 of 100 total cases, wherea
85:15 split is equivalent to losing virtually half of the tot
sample, and a split of 99:1 is equivalent to the loss of all b
of 100 cases.

In unequaln designs, the valid estimate gfs still given by
Equation 2, and the valid estimateafs given by Equation 4
The transformations betweahand g are also still given by
Equations 7 and 8. However, the expression to olgdiom t
(Equation 6) needs adjustment for the loss in relative efficie
(Rosenthal et al., 2000). In an unequatesign, we can obtai
g fromt by

[ 2 n 13
g - \/N nha
and we can obtaid from t by
B 2t \/F ”
\/ dfwichin Ny

Of course, there will be no difference in an equatiesign
whether we use the equalor unequalr equation. For ex-
ample, in the equat-situation given earlier, wherg98) =
3.00,n; = n, = 50, andg calculated from Equation 6 wa
0.60, the accuratg is unchanged by the use of Equation
becausa / n, = 1.0 when sample sizes are equal.
However, in the unequail-situation, the result may be dre
matically different. Suppose, = 85 andn, = 15, still with
means of 6.0 and 4.8, arg;,i» = 2.0, resulting int(98) =
2.14. Calculatingy directly from the means using Equation
gives 0.60 (the correct value), but calculatiggrom t using
Equation 6 (the equal-equation) gives 0.43, notably less th

1

oihe same population values i, M,, ands,iinin, but suppose
that in one study we had,/n = 1, and in the other study
we hadn,/n = 1/100. Both studies will have approximate
the same effect-size value fgr(andd) because of the larg
sample size and identical population values. However,tt
produced by the equalstudy will be approximately 10 time
0 t produced by the unequalstudy, and the value of th

ation 9, will also be larger than that from the unequa
alstudy.

it 4 The effect-size correlation for the equaktudy can be ob-
tained fromg by Equation 9, but for the unequalstudy, we
need the following modification:

S

(19

ncy
L

Thus, in the case afi/n = .01, the effect-size correlation i
approximately

rather than

dfithi

2 within
g+ 4<—N >
Sas with the equaistudy. In the example with means of 6.0 a
13, 8, sample sizes of 85 and 15, and valid= 0.60, Equation

15 gives
l-
0.60
2 0.6 < 98
(0.60° + 25 5/\ 100
an

the correct value. Using Equation 13, with its relative-

efficiency-loss adjustment, gives the correct value:
_2(2.14

/100 \/ 255 2%

When transformingy into the point-biserial effect size in a
unequaln design, we also need to make an adjustmen

Equation 9, because the effect size now changes with the

tio ny/ N, even with the sam#;, M,, Syimin,» @NdN. For ex-

FOUR CORRELATION INDICES IN DESIGNS WITH
MORE THAN TWO GROUPS

The Alerting Correlation

In designs with more than two groups, many researct
nhave the habit of using omnibistests that are only indirectly
ielated to any focused question of interest. For example,
pase the researcher’s hypothesis is that grade level is an €
tive predictor of psychological resilience. The researcher t

ample, consider two very large studies with the sdwhand

VOL. 11, NO. 6, NOVEMBER 2000

fect-size correlation for the equalstudy, calculated using

y

11°

ne

D

a)

-

nd

ners

sup-
ffec-
ests

10 children at each of five grade levels (6th, 7th, 8th, 9th,
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40, 50, and 55, respectively, with a pooled standard devi
of 39.69. However, the omnibus test yieldg!, 45) = 1.03,p
= .40, and the researcher laments the failure of the hyp
esized increase in resilience.

Despite the researcher’s disappointment, we can see
there was a progression in the group means. When we corri
a set of lambdaN) coefficients of -2, -1, 0, +1, and +
(representing the predicted linear trend, wh&ire = 0) with
the five group means, we find= .9923. We characterize sug
an aggregate correlation (i.e., based on means rather tha
dividual scores) as an “alerting correlatiom; () because it
can alert us to overall trends of interest, but it would be a p
estimate of the relation between individual children’s gra
and resilience. Indeed, alerting correlations (i.e., based
sample means) can be substantially larger or smaller tha
even in the opposite direction from) effect-size correlatig
which are based on individual scores. This aggregate cor
tion “alerts us” that, despite the fact the omnikdusvas not
significant at the desireg level, the researcher may have be
too hasty in dismissing the hypothesis that grade level is
effective predictor of psychological resilience. Also, in seco
ary analyses of data (e.g., as in meta-analytic work), somet
the only information available is the set of condition mea
and therr ,¢ingMay be the only effect-size estimate availab

there were any differences among the five grade levels, but
insensitive to their ordinal arrangement. The number of g
sible permutations of five samples is 120, and any of th
permutations would have yielded the safeith numeratodf
= 4. However, had the researcher computed a contras
address the predicted linear pattern corresponding to g
levels, the statistical result would have been more informal
(and more gratifying to the researcher). We can easily ob
such a contrast using a simple procedure described elsey
(Rosnow & Rosenthal, 1995, 1996). First, we multiply t
omnibusF by its numerator degrees of freedom, which giy
(1.03)(4) = 4.12 (i.e., the largest value & that any contras
carved out of the sum of squares for the numeratoF @@n

alerting correlation to obtain a contrast which gives
(4.12)(.9846)= F(1, 45) = 4.06 (i.e., theF for the hypoth-
esized linear trend).

The alerting correlation is a convenient way of evaluat
the “success” of any contrast, because the squared ale
correlation tells us the proportion of the between-condit
sum of squaresSSewee) that is accounted for by the contras
In this example, giverk = 5 groups (and, therefore, df
between groups), the contrast far exceeds the 2588Qf cen
(i.e., 25% = the reciprocal of thedf) that we might have
expected by chance. Indeed, the contrast accounts for
than 98% 0fSSiween Table 2 shows the analysis of varian
table corresponding to this illustration. The lesson? Comr

10th grades) and obtains mean performance scores of 25,

o)

e
D

The omnibusF addressed the diffuse question of whetharo longer a point-biserial correlation. Thus, whier 2, we

possibly achieve). Then, we multiply this value by the squaregkcause any contrat equalst?, in our continuing example

30,

onTable 2. Summary analysis of variance table reconstructed
from available information in the study of

th_children’s resilience

ti

SS

6,488
6,395
93
70,875

df MS

1,622

6,395
31

1,575

Source
that
rade level

at? Linear contrast
Noncontrast
Within grade level

1.03
4.06
0.02

Gweas

h
nin-
we really want to know. It should also be noted that the alert
ob@rrelation can be employed for any contrast, not only
jeontrasts examining linear trends.

on

:éorThe Contrast Correlation

rela-As noted, when the contrast is a simple comparison betw

edenoted as e sizd 1S the point-biserial correlation betwee
aach subject’s group membership (coded as 0 or 1) ang
ngcore on a continuous variable. The standard expressio
NTEBNPULING I'efect size TOM t with two groups was given by

lés computed on more than two independent grotgg: sizelS

wagard Equation 1 as the contrast correlation, (.o rather
oran ther gect size DECAUSE Equation 1 then gives the par
eserrelation between scores on the outcome variable and
lambdas associated with the groups, after eliminating all
sttieen-group noncontrast variation.
radeTherefore, with the understanding that all sources of va
tiien other than the contrast have been removed, we ok
taif asifrom t by
vhere
he
es

t2

r (16)

contrast™

B t
ithin \/ t2 + dfwithin

t% + df,,

(Table 2), Equation 16 yields

4.06
4.06+ 45"

2.015

ng =.29
4.06+ 45

rting
on

5t. With k = 2 groups, there are no sources of noncont
variation to be eliminated, thereby implying that, ;s =

leffect sizeiN tWO-group designs. Similarly, if3qn, revealed
that a contrast had accounted for virtually all the betwe
mgreup variation in a design with three or more groups, tf
C&conrastWould be virtually equivalent tOggeq: size HOWEVET,
NoQ,rasiCan be quite large, yet not be a reflection of a simila

r co ntrast:

nEquation 1, withdf,;nin = N — 2. However, when the contras

D

ing
for

een

two independent groups, the effect-size correlation (hereafter

n
the

n for

—

tial
the
be-

ria-
tain

ast

as omnibus significance tests are, they may not tell us anyt

450

hiagge rasect size THE reason is that .. sizeiS the unpartialed
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correlation, whereas.,,as:h@s all the noncontrast variatig
removed If we know thatr ..,.<Will be a good approximas
tion 10 Iegect sizelN designs with more than two groups, th
Equation 16 is a convenient way of estimating it.

The Effect-Size Correlation

To reiterate fogect sizeShould be understood as the simg
correlation (unpartialed) between membership in a groug
condition and scores on the dependent variable. To com
this simple correlation, we treat the noncontrast betwe
variability as additional error variance, then

leffect size™ \/F

which from the data in Table 2 gives

leffect size™ \/

Alternatively, we can calculate the omnibEs(i.e., Fyeuveed
from the mean squares, if that information is available,
then calculate

leffect size™ \/

which yields, in our example,

4.06
(ettectsize™ \/ T.092) + 45 2%

The contrast and effect-size correlations are identical 3
rounding in this example because the squared alerting cor
tion nearly equals 1.0.

Fcontrast

noncontragldfnoncontragt + dfwithin,
17)

+F

contrast

4.06 ~
4.06+0.023) +45

.29.

Fcontrast
7
Fbetweeladfbetweev) + dfWi’(hin

(18

The Binomial Effect-Size Correlation

A number of strategies are possible for tying real-life i
plications to effect sizes in two-group designs with continu
or categorical data. For example, Cohen (1965, 1988)
cussed the practical meaning @fin psychological research

2. For a more concrete description of these partial correlations, inclu
the calculation of adjusted scores fgg, .s S€€ ROsenthal et al. (2000). Mo
specifically, each score will have a value predicted from the contrast al
residual from its group mean (i.e., the score minus its group’s mean).

group mean will exactly equal the predicted value for that group when|th

alerting correlation is 1.00. Thus, the adjusted score is the original score
the between-group variation not explained by the contrast “partialed out.”

>

Table 3. Binomial effect-size display of effect size .10

=

Level of improvement

Above median Below median

Condition outcome outcome Total
New drug 55 45 100
le Old drug 45 55 100
or Total 100 100 200

1ta
te

en-
and medical researchers often tie real-life meaning to cate
cal data by estimating odds ratios, relative risks, and risk
ferences (e.g., Rosenthal et al., 2000). Cohen (1965) noteg
it is also possible to use phpf—another member of the prod
uct-moment family—to reflect an effect siza & 2 x 2 ta-
ble, and Rosenthal and Rubin (1982) showed how to re
any product-moment correlation into such a display, whet
the original data are continuous or categorical. Called the
nomial effect-size display (or BESD), its purpose is to rep
SeNntrqpect sizelN @ Population in which both the independe
and the dependent variables are cast as dichotomous and
variable is split at its median, with row and column margins
at 100 observations. The purpose of this section is not tg
angtroduce the BESD, as it has been described in detail ¢
where (e.g., Rosenthal & Rosnow, 1991; Rosenthal & Rubin,
1982); rather, the purpose of this section is to describe how to
generalize the use of the BESD to the situation of three or more
groups (Rosenthal et al., 2000). We believe this generalization
to be quite useful given the widespread use of the BESD|be-
cause of its simplicity and transparency.

For example, SUPPOSE.fect size = -10 in a clinical trial
comparing the level of improvement in subjects who w
given either a newly developed drug or a standard drug,
the drugs randomly assigned to the subjects using a si
between-groups design. Table 3 shows the corresponding

fBESD, in which the cell values can be interpreted as percent-
redges. In the upper-left and lower-right cells, 55% was calcu-

lated by adding one half the value Qtec; sizet0 -50 and then
multiplying by 100; 45% in the upper-right and lower-left ce|ls
was calculated by subtracting one half the value Qf. size
from .50 and then multiplying by 100. The difference between
m45% and 55% (when divided by 100) gives the original vajue
bux the effect-size correlation, and tells us that it is equivalent to
desrate of improvement of 10% in a population in which half the

, Subjects would receive the new drug and half would not,

the outcome variable cast as split at the median.

Hing Ve turn now to the use of the BESD when there are three
eOr more groups involved in a contrast. In this situation, it is hot
ndramediately obvious how to exhibit,¢ec size@S @ BESD or
Ththat might be gained from such a display. Under the assump-

jori-
dif-
that

cast

her
bi-

re-

nt
each

set
re-
Ise-

\;ﬁﬁ?n that the noncontrast sum of squares can be considered as
Thaoise,” Rosenthal et al. (2000) presented a simple way of

correlation between the adjusted scores and the lambda coefficiepig,is,

VOL. 11, NO. 6, NOVEMBER 2000

recasting the ggect size@S @ BESD with real-life implications.
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That is, we assume that the contrast of interest does, in
capture the full predictable relation between the outcome V
able (¥) and the treatment groups. In that case, we conce
alize the BESD as reflecting thigqe.: sizethat we would expec
to see in a two-group replication of the current study with
same totalN; by implication, the lower group (or treatme
condition) is set at —&, and the upper group (or treatme
condition) is set at +&,, where

N

pIN
ko

o), =

(19

with, as beforek = number of conditions in the contrast.
For example, in a two-group design (with lambdas of
and -1), we find

[+ + (12
“ENT 2

which tells us that the BESD will have the same conditions
the current design. In designs with more than two groups,
BESD will capture only conditions defined by eland +1r,,

so in the five-group study of children’s resilience discus
previously (with lambdas of -2, -1, 0, +1, and +2), we fin

g, —

N2 _1\2 2 2 2
\/( 28+ (1P + 0P+ (+P+ (27

5

and then use this value to set the lower and upper limits
treatment conditions of the BESD. To set the lower limit,
subtracir, = 1.41 from the mean grade of 8, and for the up
limit we add 1.41 to the mean of 8. (Table 4 shows vario
values ofo, for linear predictions in designs consisting of 2—
ordinal conditions.)

We now need to obtain the value of thg.. <iet0 be
represented in our BESD. If this were a two-group design Vi
equal sample sizes, we could estimai@..; size from t by

+

faeguation 1. If the sample sizes of our two-group design w

ainequal, we would calculatgesp by

ptu-

2
he lBESD = o\ (20)
:ltt 2+ dfwithin(ﬁ)

Whenk > 2, rgegpis defined to be the gec sizethat we would
expect to see in a Htwo-group replication (with stipulation
noted earlier), which can be calculated by

r =
BESD \/Fcontrast+ F

Fcontrast

noncontragldfnoncontrast*- dfWithin)

1

If FroncontrasiS /€SS than 1.00, it is entered into Equation 21
equal to 1.00. This restriction df,qncontrast€quires the noise

level underlyingMS, i, t0 be at least as large as the no
level of MS, oncontrast @Nd arises because we are viewing

noncontrast variability as the appropriate index of the ng

dmvel, which must be at least as large as the within variabi
theln our continuing example, if we entéi,oncontrast= 1-00
(because it was less than 1) into Equation 21, we find

l'BESD = \/

sed
d

4.06 ~
4.06+[1.003 +45)]

.28,

which we can interpret as thggqc sizeWe Would expect to ses

in a replication that compared the resilience of 9.4th-gr

children with the resilience of 6.6th-grade children, assum
fffe same totaN as in the study for which we computed the
VB, cspand equal sample sizes in the two grade levels. Tab
PGhterpreted in the usual way, is the BESD corresponding to

Yesult.

10

CONCLUSION

vith We have concentrated here on effect-size estimation, fa

ere

as

se
he
ise
ity.

D

ade
ing

e b,
this

\vor-

ing ther family when there are more than two groups. In the

Table 4. Linear contrast weights and, for k = 2 to 10 ordinal conditions
Ordinal conditions

k 1 2 3 4 5 6 7 8 9 10 oy

2 -1 +1 1.00
3 -1 0 +1 0.82
4 -3 -1 +1 +3 2.24
5 -2 -1 0 +1 +2 1.41
6 -5 -3 -1 +1 +3 +5 3.42
7 -3 -2 -1 0 +1 +2 +3 2.00
8 -7 -5 -3 -1 +1 +3 +5 +7 4.58
9 -4 -3 -2 -1 0 +1 +2 +3 +4 2.58

10 -9 -7 -5 -3 -1 +1 +3 +5 +7 +9 5.75
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Table 5. Binomial effect-size display 0fcz5p= .28 in the
study of children’s resilience

Above Below

median median
Group resilience resilience Total
9.4th grade (+&,) 64 36 100
6.6th grade (-&,) 36 64 100
Total 100 100 200

simple setting of two groups, we have no strong prefereng

amongd, g, orr, all of which do a good job. In the two-grou
CaSe/ contrast Neffect size @NArgesp Will, of course, be identical
Although when there are more than two groups it is also [
sible forr yerting fcontrast leffect size @NAIgesp t0 have identical
values, typically orect sizeWill be larger tham gesp, andr conirast
will be larger tham geq size With these differences sometimé
being quite substantial. The value Qf.ng tends to be large
than the value of the other three indices, but need not b
(Rosnow & Rosenthal, 1996). Using this entire family of i
dices captures the different meanings of contrasts in a way
cannot be precisely communicated by any single measuren

Our silence thus far on the issue of significance testin
not a tacit endorsement of dichotomous significance-tes
decisions. There has been a growing realization of the fail
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