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Abstract 

A simple model of two vertical modes is constructed and analyzed to reveal the basic 

instability mechanisms of convectively coupled waves. The main novelty of this model is 

a convective parameterization based on the quasi-equilibrium concept and simplified for 

a model of two vertical modes. It hypothesizes 1) approximate invariance of the 

difference between saturation moist static energy in the lower half of the troposphere and 

moist static energy in the sub-cloud layer, regardless of free troposphere humidity, 2) 

variations in the depth of convection is determined by moisture deficit variations in the 

mid-troposphere. Physical arguments for such a treatment are presented. For realistic 

model parameters chosen based on cloud system resolving model simulations (CSRM) of 

an earlier study, the model produces unstable waves at wavelengths and with structures 

that compare well with the CSRM simulations and observations.  

A moisture-stratiform instability and a direct stratiform instability are identified as the 

main instability mechanisms in the model. The former relies on the effect of mid-

troposphere humidity on the depth of convection. The latter relies on the climatological 

mean convective heating profile being top heavy, and is identified to be the same as the 

stratiform instability mechanism proposed by Mapes (2000). The moisture-stratiform 

instability appears to be the main instability mechanism for the convectively couple wave 

development in the CSRM simulations. The finite response time of convection has a 

damping effect on the waves that is stronger at high wavenumbers. The net moistening 

effect of the second mode convective heating also damps the waves, but more strongly at 

low wavenumbers. These effects help to shape the growth rate curve so that the most 

unstable waves are of a few thousand kilometers in scale.
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1. Introduction 

There is a long history of constructing models with gross vertical structures to capture the 

basic dynamics of convectively coupled tropical waves (e.g. Lindzen, 1974;Emanuel, 

1987;Neelin et al., 1987;Wang, 1988;Mapes, 2000;Majda and Shefter, 2001;Khouider 

and Majda, 2006). Earlier models emphasized a first baroclinic structure (or mode) that is 

of one sign over the full depth of the free troposphere (e.g. Lindzen, 1974;Emanuel, 

1987;Neelin et al., 1987;Wang, 1988). More recent observations of these waves revealed 

a significant second baroclinic component in their vertical temperature structures (e.g. 

Wheeler et al., 2000;Straub and Kiladis, 2002;Haertel and Kiladis, 2004). Such 

observations alone do not contradict models based only on the first baroclinic mode; it is 

possible that the first baroclinic mode captures the basic dynamics and the second mode 

temperature structure is simply a byproduct. The more convincing evidence for the 

inadequacy of the first baroclinic mode models is that they do not yield instability 

without external destabilization mechanisms (Emanuel et al., 1994), which is inconsistent 

with the results of cloud system resolving model (CSRM) simulations (e.g. Tulich et al., 

2006;Kuang, 2007). Mapes (2000) proposed the first instability model that contains both 

the first and the second baroclinic modes, and identified a stratiform instability for the 

wave-convection coupling (Mapes, 2000), hereafter M00. The behavior of such models 

has been analyzed in some detail (Mapes, 2000;Majda and Shefter, 2001;Majda et al., 

2004). In these models, modulation of convection by the second mode temperature 

anomaly is emphasized, and effects of free troposphere moisture variations are ignored. 

Results from Kuang (2007), hereafter K07, however, indicate that moisture is an essential 

component for allowing convectively coupled waves to develop. Moisture was included 
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in the two vertical mode model of Khouider and Majda, (2006a), hereafter KM06, along 

with a third cloud type, congestus (in addition to the deep convective and stratiform 

clouds in M00). While considerable analyses have been done on the linear stability of this 

model (KM06; Khouider and Majda, 2006b), its convective parameterization is rather 

complicated and an instability mechanism involving moisture was not clearly identified.  

This study continues the effort to construct models of convectively coupled waves with 

crude vertical structures. Our emphasis will be on conceptually simple convective 

parameterizations and on revealing the model’s basic instability mechanisms. The model 

formulation is presented in section 2, along with results from linear analyses. The model 

parameters are selected based on CSRM simulations of convectively coupled waves 

described in K07 so that the model resides in realistic parameter regimes (Appendix A). 

The model is then simplified further and limiting cases are considered to reveal its basic 

instability mechanisms (section 3). This is followed by a summary and discussion section 

(section 4) and three appendices. 

2. Formulation and linear analyses of the simple model  

Like earlier models (e.g. M00; Majda and Shefter, 2001, hereafter MS01; KM06), the 

present model has two components: the first describes the response to convective heating 

and the second describes the convective parameterization.  

a. Response to convective heating 

Similar to K07, we start with the linear inviscid anelastic 2D primitive equations for a 

horizontal wavenumber k with a background state of no motion, and eliminate pressure 

and horizontal winds. This gives  
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where ε is the mechanical damping coefficient, taken to be a constant, J is convective 

heating, and all other symbols assume their usual meteorological meaning. The overbar 

denotes the background mean variables and prime denotes deviations from the mean. 

Despite the various assumptions and simplifications, systems such as Eq. (1) capture well 

the basic wind and temperature distributions of convectively coupled waves given the 

convective heating and cooling. This was shown for the 2-day waves (Haertel and 

Kiladis, 2004) and is true for the present case as well (not shown).  

We then assume rigid plate boundary conditions at the surface and at the top of the 

troposphere and expand the forcing and the solution in terms of the vertical eigenmodes 

(Gi): 
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Without forcing and damping, the solutions to Eq. (3) for each vertical mode are two 

neutral waves propagating in opposite directions with a dry wave speed of cj. When the 

buoyancy frequency, the square of which isN 2
= g
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dz
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g

cpT

!

"
#
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vertical modes are 
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where HT is the height of the troposphere. The modes are normalized so that their 

absolute values average to unity over the depth of the troposphere. We have retained only 

the first two vertical modes with the goal of constructing a minimal model to reveal the 

basic instability mechanisms. Note that congestus and stratiform heating are treated here 

as opposite phases of the same mode (J2). This simpler treatment represents the observed 

and CSRM simulated heating structures very well (Haertel and Kiladis, 2004; K07).  

It is useful to remind ourselves the empirical nature of the two-mode model: the two 

vertical modes are chosen not because they are mathematically the first two eigenmodes 

of Eq. 1 with the rigid plate boundary conditions. They are chosen because of the 

empirical evidence that basic vertical structure of the waves can be captured with these 

two modes (e.g. Haertel and Kiladis, 2004; K07). Indeed, it is based on this empirical 

evidence and the evidence that a radiation upper boundary condition does not have a 

major effect on the wave characteristics (K07) that the rigid plate boundary conditions 

were then chosen, allowing Eq. 1 to be conveniently decomposed into vertical modes that 

resemble the vertical modes seen empirically. Therefore, the present model does not 



 7 

address why these particular vertical structures/modes dominate, the answer to which 

requires a model that allows vertical modes to be selected naturally. 

Eq (3) is augmented by an equation for the subcloud layer moist static energy hb and an 

equation for the mid-tropospheric humidity qmid. The equation for hb follows prior studies 

(e.g. M00, MS01, KM06): 

    
!h

b

!t
= E " b

1
J
1
" b

2
J
2

     (5) 

where E is the tendency from surface heat flux anomalies, and b1 and b2 represent the 

reduction of hb per unit J1 and J2, respectively. In reality, large-scale vertical advection 

has a smaller but non-negligible effect on hb, although including them does not appear to 

change the basic behaviors of the model so they are left out for simplicity. In this paper, 

we further set E=0 to eliminate any surface heat flux feedbacks, which, as shown in K07, 

do not change the basic characteristics of the waves.  

The equation for qmid can be written as: 
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where a1 and a2 represent the effective moisture stratification for the two modes, d1 and d2 

represent the convective drying effect on qmid per unit J1 and J2. We have neglected 

horizontal advection of moisture. The parameters a1 and a2 can be derived given the 

background moisture stratification and the vertical structure of w1 and w2. In KM06, 

vertically averaged free troposphere humidity <q> was used in Eq. (6) so that column 

moist static energy conservation can be used to constrain d1 and d2. However, the main 

purpose of including an equation for moisture is to include the role of tropospheric 
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humidity on convection, as discussed in more detail in section 2b. While conveniently 

constrained by column moist static energy conservation, <q> is not necessarily the most 

relevant quantity for this purpose, even though it could serve as a reasonable 

approximation. In this paper, we will use the mid-tropospheric humidity qmid instead, and 

forgo the convenience of using <q>.  

As discussed further in Appendix A and noted in many previous studies (e.g. Haertel and 

Kiladis, 2004), there is substantial compensation between adiabatic cooling and 

convective heating associated with the first mode, i.e. w1~J1. Furthermore, because qmid is 

located around the nodal point of w2, the effect of large-scale advection by w2 on qmid (i.e. 

a2) is small. We may therefore simplify Eq. (6) to 

 
!qmid

!t
= m

1
J
1
+ m

2
J
2

 (7) 

where m1≈a1-d1 and m2≈-d2 are the moistening effects per unit J1 and J2. We have again 

verified that this simplification does not modify the basic behaviors of the model 

discussed in this paper. 

Equations (3), (5), and (7) describe the atmosphere’s response to convective heating. We 

non-dimensionalize the above equations using the first dry baroclinic gravity wave speed 

(50m/s) as the velocity scale so that c1 is 1, and c2 is set to ½. We use 1 day as the time 

scale, so the length scale is 4320km, and Tj, hb, and q are expressed in temperature unit1 

(1K) so that the scale for Jj and wj is 1K/day.  

                                                
1 q is expressed in Kelvin by dividing the associated latent energy by the specific heat. 
The same applies to saturation humidity q* below. 
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The dry dynamics are similar to those used in previous studies, e.g. M00, MS01, KM06. 

The main new feature of this model is its convective parameterizations that determine J1 

and J2, described below.  

b) Convective parameterizations 

First, we define an integrated upper tropospheric heating anomaly U (scaled by the depth 

of the troposphere)  

 U = J
1
! J

2( ) / 2  (8) 

and an integrated lower tropospheric heating anomaly L 

 L = J
1
+ J

2( ) / 2  (9) 

and assume that in statistical equilibrium, the ratio of the total upper tropospheric heating 

(mean plus anomaly) to the total lower tropospheric heating is related to the anomalous 

moisture deficit (relative to saturation) in the mid-troposphere by 

 U +U
0

L + L
0

= r
0
+
r
q

L
0

q
+  (10) 

where the subscript 0 denotes background mean values, and U0=r0L0, and a negative q+ 

indicates anomalous moisture deficit. In the mid-troposphere (say, 500hPa and 270K), 

upon expressing the saturation humidity q* in units of Kelvin, we have ∂q*/∂T~1. Further 

taking into account the fact that the first mode is near its peak value (π/2) in the mid-

troposphere, we have 
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Eq. (10) states that for the same amount of convection in the lower troposphere, there is 

less convection in the upper troposphere when the mid-troposphere is dry. The notion that 

a dry mid-troposphere limits the depth of tropical convection is well supported by 

observations, numerical simulations, and theoretical reasoning (Brown and Zhang, 

1997;Sherwood, 1999;Parsons et al., 2000;Redelsperger et al., 2002;Ridout, 

2002;Derbyshire et al., 2004;Takemi et al., 2004;Roca et al., 2005;Kuang and Bretherton, 

2006). One plausible interpretation (e.g. Brown and Zhang, 1997; Derbyshire et al. 2004; 

Kuang and Bretherton, 2006) is that all else being equal, with a dry mid-troposphere, 

convection does not reach as high because entrainment of drier environmental air by the 

rising air parcels leads to more evaporative cooling, and hence negative buoyancy. More 

detailed studies, however, are needed to place this interpretation on a firmer footing. 

Moisture deficit, or saturation deficit, has been used as a control on convection before 

(Raymond, 2000), except in terms of precipitation instead of the height of convection. 

We shall consider the adjustment of the U/L ratio (denoted as r) to moisture deficit to be 

instantaneous. One could take into consideration the finite response time of r so that: 

 
!r

!t
= "

r

#1
r
eq
# r( )  (12) 

where req is the ratio anomaly that is in statistical equilibrium with its large-scale 

environment (Eq. (10)) and τr is the adjustment time for r to approach that equilibrium. 

We consider τr to be of the same order as the time for convective updrafts to rise from the 

lower troposphere to the upper troposphere (hours or less). For τr values in this range, 

inclusion of this adjustment process does not change the basic behavior of the model so 
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we will leave it out in this paper. Note that τr is not the relaxation time for moisture 

anomalies, which will be discussed in section 3 and is on the order of a day.  

Second, we consider that saturation moist static energy averaged over a layer above the 

cloud base is in quasi-statistical equilibrium (QE) with the subcloud layer moist static 

energy. When the equilibrium is achieved instantaneously, we have 

 !h
b

!t
=

!h
*

!t
 (13) 

The bracket on the right hand side denotes averaging over a layer above the cloud base. 

The variable h* is the saturation moist static energy. We then rewrite Eq. (13) as 

 
!hb
!t

= F
!

!t
fT
1
+ 1" f( )T

2
#$ %&  (14) 

where F=∂h*/∂T. The factors f and (1-f) are the relative weights of T1 and T2. We shall 

interpret f as measuring the importance of undiluted parcels in the total convective mass 

flux. An f close to 1 implies that the convective mass flux is dominated by undiluted 

parcels, and Eq. (13) holds with <h*> taken as an average over the whole troposphere. In 

this case, the approximate invariance of convective available potential energy (CAPE) is 

effectively used as a simplification for QE over the whole depth of the troposphere, as in 

e.g. Emanuel et al. (1994). An f close to 0 implies that the convective mass flux is 

dominated by heavily entraining parcels, and Eq. (13) holds with <h*> averaged over a 

shallow layer above the cloud base. In this case, Eq. (14) effectively assumes convective 

inhibition (CIN) (within the two-vertical mode framework) to be approximately invariant. 

This is known as the boundary layer quasi-equilibrium (BLQ) (Emanuel, 1995;Raymond, 

1995). Our normative value for f is 0.5 where <h*> may be viewed as an average over 
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the lower half of the troposphere. To emphasize the instantaneous adjustment, we will 

refer to Eq. (14) (or Eq. (13)) as strict quasi-equilibrium (SQE), following Emanuel et al. 

(1994), where the word “strict” simply means that the adjustment is instantaneous. 

For a given U/L ratio, we plug Eqs. (3) and (5) into Eq. (14) and make use of Eqs. (8), 

(9), and (10) to solve for the lower tropospheric heating in SQE, denoted as Leq:  

 Leq = B
!1

Arqq
+
+ fw

1
+ 1! f( )w

2
"# $%  (15) 

where 
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Eq. (15) is a straightforward restatement of the SQE condition of Eq. (14), and the 

various terms have clear physical meanings: provided that A and B are positive, uplifting 

in the lower troposphere or a moist mid-troposphere increases convective heating in the 

lower troposphere in SQE. Leq can also be expressed in terms of ∂T/∂t. This form will be 

used in section 3. In Eq. (16) and for the rest of the paper, we omit the subscript in qmid to 

simplify the notation. Taking into consideration the finite adjustment time to achieve QE, 

denoted as τL, we have: 
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We expect τL to be on the order of a few hours, the time for a few turnovers of shallow 

cumulus convection. From L and the U/L ratio, J1 and J2 can be easily determined, 

completing our convective parameterization.  

The present convective parameterization falls within the QE framework first introduced 

by Arakawa and Schubert (1974), which states that convection should be in a state of 

statistical equilibrium with the large-scale flow. In some previous simple models of the 

interaction between large-scale circulation and deep convection (e.g. Emanuel et al., 

1994), the approximate invariance of convectively available potential energy (CAPE) is 

used as a simplification for SQE over the whole depth of the troposphere (i.e. f=1). As 

noted earlier, this emphasizes the role of undiluted parcels in deep convective mass flux, 

based on which CAPE is computed. Recent evidence, however, indicates that this is not a 

good simplification of SQE, at least in cases such as convectively coupled waves. High-

resolution numerical studies show that undiluted parcels do not make a significant 

contribution to the overall convective mass flux (Khairoutdinov and Randall, 

2006;Kuang and Bretherton, 2006). This is corroborated by the observed and simulated 

sensitivity of convection to tropospheric moisture (see discussion in relation to Eq. (10)).  

In the present treatment, we are using the invariance of a shallow CAPE as a 

simplification of SQE over the lower half of the troposphere (with f=1/2 in Eq. (14)). The 

shallow CAPE measures the integrated buoyancy for undiluted parcels only up to the 

mid-troposphere. This is a simplification for the present simple model with only two 

vertical modes in the free troposphere. It by no means suggests that cloud parcels do not 

experience entrainment in the lower troposphere. However, the cumulative effect of 

entrainment is smaller in the lower troposphere because of the shorter distance traveled 
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by the cloud parcels and their smaller moist static energy difference from the 

environment (for the regions that we are concerned with, the lower troposphere is taken 

to be always sufficiently moist so that its moist static energy is close to that of the cloud 

parcels). Therefore, neglecting the effect of entrainment and using Eq. (14) is a 

reasonable simplification for SQE over the lower half of the troposphere. We then use 

Eq. (10) to explicitly include the effect of entrainment on the convective mass flux that 

can reach from the lower to the upper half of the troposphere. In Eq. (10), we have 

neglected the role of the traditional CAPE (defined for undiluted parcels over the whole 

depth of the free troposphere). This reflects the view that the mass flux reaching the 

upper troposphere is in significantly diluted updrafts, and mid-tropospheric moisture 

deficit is the dominating factor that controls the depth of convection (through 

entrainment). The CAPE anomalies can become important when they are sufficiently 

negative so that the background CAPE is substantially consumed, and is a nonlinearity 

that can limit the growth of the waves. Further discussions of nonlinearity, however, will 

not be presented in this paper.  

c. Linearized equations and normative parameter values 

The system is linearized by replacing Eq. (10) with 

 U = r
0
L + r

q
q
+  (18) 

The linearized model thus consists of the prognostic equations (3), (6), and (17), and the 

auxiliary equations (8), (9),  (15), and (18).  

Observed and simulated data from, for example, K07 and Haertel and Kiladis (2004), 

may be used to estimate the parameters by viewing such data in the framework of the 
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present model. This is discussed in Appendix A. Table 1 lists the normative parameter 

values used in the paper based on these estimates. It is important to stress that because of 

the highly simplified nature of the present model, viewing observations or the CSRM 

results in its framework is very approximate and the parameter estimates are only 

intended as educated guesses of plausible values. 

d. Linear Analysis 

Results from a linear analysis of this system are shown in Figure 1. Waves with 

wavelengths from 1500km to 40000km are unstable with a maximum growth rate of 

about 0.13/day at 5000km. The unstable waves have phase speeds around 20m/s, slightly 

slower than the dry wave speed of the second vertical mode. The eigenvector at a 

wavelength of 8640km is expressed in physical space in Figure 2a,b. The eigenvector is 

scaled so that T1 is a sine function with amplitude of one. We have further reconstructed 

the vertical structure of temperature and convective heating (Figure 2c,d) so that it is 

visually more direct to compare with observations. We have used sin(jπz/HT), j=1,2 as 

the vertical structures with HT=14km. These figures show that the linear model yields 

instability at wavelengths and with structures that compare well with the CSRM 

simulations and observations. Note that convective heating here is dominated by the first 

vertical mode and has a significant tilt, consistent with the observations/ simulations 

(Haretel and Kiladis, 2004; K07). In contrast, in the model of KM06, heating in the upper 

troposphere is substantially stronger than that in the lower troposphere (their Fig. 6). 

There is also a tendency for this to be true in MS01 as the wavelength increases to 

beyond 2000km (their Fig. 4). The substantially stronger heating in the upper troposphere 

indicates a larger contribution from the second mode heating and a more in-phase relation 
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between J1 and -J2, compared to Figure 2d. Figure 3 shows the phase lag between J1 and  

-J2 as a function of wavenumber. Substantial phase lag is seen at all wavenumbers. Over 

a wide range of wavelengths (from 1500km to 10000km), the phase lag is between ~85 to 

~65 degrees. This is consistent with the CSRM simulation results from K07.  

We have repeated the linear analysis with the parameters perturbed around their 

normative values one at a time. The parameter dependence of the maximum linear growth 

rate is shown in Figure 4. While not shown, the phase speeds of the most unstable modes 

are between 10 and 25m/s except with b1<0.6, b2>3.3, d1<0.9, d2>-0.6, a1>1.6, or a2<-0.4, 

where the phase speeds of the most unstable modes are a few m/s or less. While it is 

useful to know the parameter sensitivities of the model, for the purpose of revealing the 

basic instability mechanisms, it is more informative to consider certain limiting cases, as 

discussed in section 3.  

It is useful to note that while rq and f are separate parameters in the model and are varied 

independently in Figure 4, they are related to the conceptual picture of whether upper 

troposphere convective mass flux is dominated by nearly undiluted or significantly 

diluted updrafts. When significantly diluted updrafts dominate, the mid-troposphere 

humidity has an important effect on the depth of convection, and rq will be large, f will be 

small (a smaller depth of the atmosphere can be assumed to be in QE regardless of the 

environment humidity). Thus one should in principle vary these parameters together to be 

conceptually consistent, although this is not done here.  

3. The basic instability mechanisms 

3.a A slightly simplified version of the model 
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To reveal its basic instability mechanisms, we make a few simplifications to the model 

described in section 2. First, we replace the two-way wave equations Eq. (3) with one-

way wave equations with a Newtonian cooling coefficient ε:  
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and use Eq.(7) instead of Eq.(6) to evolve mid-tropospheric humidity. Replacing the two-

way wave equations by one-way wave equations has some quantitative effects, as 

discussed in Appendix B. For example, heating drives temperature anomalies more 

effectively in the one-way wave equations, and this effect is stronger for the first vertical 

mode. However, these changes do not alter the basic behavior of the model. It is also 

convenient to rewrite Eq.(18) in terms of J1 and J2: 
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and include the finite adjustment time to achieve QE as: 

 
!J

1

!t
= "

J

#1
J
1,eq

# J
1( )  (22) 

where  

 J
1,eq =

1

b
1
+ b

2
!
0

b
2
! qq

+ " F
#
#t

fT
1
+ 1" f( )T2$% &'

(
)
*

+
,
-

 (23) 



 18 

Here, we have expressed J1,eq in terms of ∂T/∂t, although one can also write it in a form 

similar to Eq. (15). We shall take τJ=τL. Physically, it is perhaps more natural to apply the 

finite adjustment time on lower tropospheric heating L instead of J1, as L is more locally 

determined by the subcloud layer and the lower troposphere. However, since 

J1=(1+r0)L+rqq+, the difference in relaxing J1 instead of L lies in the ∂q+/∂t term. Because 

τL is considerably shorter than the timescale for q+ to vary (on the order of the wave 

period), Eq. (22) has the same basic effect as Eq. (17).  

The phase speeds and the linear growth rates for this simplified version are shown in 

Figure 5 and the structures for a wavelength of 8640km are shown in Figure 6. The 

higher wavenumbers are more stable compared to Figure 1 and the amplitudes of J1 and 

J2 are smaller compared to those in Figure 2. The latter is because heating is more 

effective in driving temperature anomalies in one-way equations (Appendix B). When 

this difference is accounted for following discussion in Appendix B, the amplitudes of J1 

and J2 become similar to those in Figure 2. We have also repeated the linear analysis with 

the parameters perturbed around their normative values one at a time for this simplified 

version of the model. The parameter dependence of the maximum linear growth rate is 

shown in Figure 7, and is similar to that in Figure 4 in terms of its basic pattern. The 

parameter dependence on m1 and m2 are shown instead of a1, a2, d1, and d2 because Eq (7) 

is used. The dependence on ε is also similar to that in Figure 4 (not shown). Similar to the 

model in section 2, all unstable waves have phase speeds between 10 and 25m/s except 

with b1<0.6, b2>10/3, m1>0.5, or m2<0.6, where the phase speeds of the most unstable 

modes are a few m/s or less. This dependence is explained in section 3.b.2 and Appendix 
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C. The similarity in the basic parameter dependence indicates that the simplified system 

captures the basic behavior of the model described in section 2c. 

In this paper, we focus on regimes with m1>0. Moistening of the mid-troposphere by 

deep convection is clearly seen in K07. With m1>0, the basic behavior of the system is 

preserved without including contribution of T1 in q+ so we will take q+=q. The 

contribution of T1 in q+ has an important stabilizing role when m1<0. This regime, 

however, is not the subject of this paper, and will not be discussed further.  

3.b The regime with γ0≥0 and a moisture stratiform instability 

We first consider the model behavior with γ0≥0 (i.e. r0≤1), which corresponds to an 

atmosphere in which, climatologically speaking, the convective heating in the lower 

troposphere is greater than or equal to that in the upper troposphere. We shall try to 

identify the model’s basic instabilities by considering limiting cases. To simplify the 

discussion, we take b2=0 and γ0=0. Physically, b2=0 means that convection in the upper 

and lower troposphere have the same effect on hb per unit heating and γ0=0 means that 

the background convective heating is of the same strength in the upper and lower 

troposphere. These are not required but help to simplify our discussion. The results are 

largely representative of general cases with γ0≥0 and non-representative results will be 

pointed out along the way. Limiting cases with general parameter choices can be reduced 

to the same form by redefining the parameters as discussed in Appendix C.  

3.b.1. Limiting case I: f=1 

Let us first consider the limiting case with f=1 so that Eq. (23) reduces to  
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Physically, this represents a case where convective mass flux is dominated by undiluted 

updrafts. In this case the sub-cloud layer moist static energy hb is changed only by J1 (as 

b2=0) and is in equilibrium with T1 alone (as f=1). Eq. (24) simply states that J1,eq is that 

required to keep ∂hb/∂t the same as F∂T1/∂t. In this case, the first mode (temperature and 

heating) is no longer affected by the second mode or moisture. This reduces the system to 

the first baroclinic mode model discussed in previous studies (Emanuel, 1987;Neelin et 

al., 1987). Let us start with ε=0 (no Newtonian cooling) and τJ=0 (i.e. in SQE), so that 
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The convectively coupled first vertical mode has a zero growth rate and a phase speed 

c1
*=c1/(1+F/b1) due to the reduced effective static stability. The first vertical mode also 

forces a response in T2 and q (in a one-way interaction) through the effect of J1 on J2, 

both directly (Eq.(20)), and indirectly through J1’s effect on moisture, and resonance 

occurs when c2=c1
*. The direct effect vanishes with γ0=0, but does not with more general 

parameter choices. The temperature and heating structures for a simple case (b2=0, γ0=0, 

ε=0, τJ=0, and m2=0; other parameters take their normative values) are shown in Figure 

8. The q field in this case is simply -J2/γq. The phase speed c1
* is 10m/s and the wave 

structures in many aspects resemble the observed patterns.  

So far, the growth rate is 0 for all wavenumbers. Introducing a finite τJ causes heating J1 

to lag T1 by more than π/2 in phase, which gives rise to a damping effect that is stronger 
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at high wavenumbers. This has been pointed out before and was named moist convective 

damping (MCD) (Emanuel, 1993;Emanuel et al., 1994;Neelin and Yu, 1994;Yu and 

Neelin, 1994). A positive ε further damps the waves. 

3.b.2. Limiting case II: f=0 

Let us now consider f=0, corresponding to an atmosphere in which heavily entraining 

parcels dominate the convective mass flux. Here, the sub-cloud layer hb is in equilibrium 

with T2 alone, and there is no more dependence on T1 of the other variables. Again, we 

take b2=0 and γ0=0 for simplicity. In this case, Eq. (23) reduces to  
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i.e., J1 is that required to keep ∂hb/∂t the same as F∂T2/∂t. First consider a system in SQE, 
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where we have used J2 =-γqq (as γ0=0). Assuming solutions of the form exp[i(kx-ωt)], we 

obtain the dispersion relationship 
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Eqs. (27) and (28) describe a coupled system of T2 and q. The effect of T2 on q (through 

its effect on J1 and, in turn, the moistening effect of J1 on q, as expressed in Eq.(28)) 

coupled with the effect of q on T2 (through its effect on J2 and, in turn, the heating effect 

of J2 on T2, as expressed in Eq. (27)) give rise to an instability. This is best seen with 
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m2=0. Putting aside the less interesting solution ω=0, we have q=-(m1F/b1)T2 and the 

heating J2 is exactly in phase with T2 and ω=c2k+im1γqF/b1, i.e. the phase speed is c2 and 

the growth rate is m1γqF/b1 at all wavelengths. The growth rate is proportional to m1γq, 

which measures how strongly the depth of convection depends on q (the factor γq) and 

how strongly moisture depends on J1 (the factor m1). It is also proportional to F/b1, which 

measures how strongly J1 depends on ∂T2/∂t. While we have chosen b2=0 and γ0=0 here, 

this picture holds for more general parameter choices as well (Appendix C), except the 

strict dependence on m1, which is specific to the choice of b2=0, γ0=0. For more general 

parameter choices, a modified m1, m̂1
!
m
1
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1+ b
2
"
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/ b

1

, should be used (Appendix C).  

In this limiting case, T1 is forced by J1 but does not feed back onto J1. The physical 

structure of the wave with a wavelength of 8640km from this limiting case in SQE is 

shown in Figure 9. The q field in this case is again simply -J2/γq. 

A positive m2, which implies that the net effect of the second mode heating is to moisten 

the troposphere, brings a damping effect on q (Eq. (28)). The physical picture is simple: 

when, for instance, the troposphere is dry (q<0), convection is shallower (J2>0); the 

combined effect of vertical advection and precipitation associated with the second mode 

heating moistens the atmosphere (i.e. m2J2>0), reducing the dry anomaly. That m2 is 

positive should be expected based on observations: the effect of second mode vertical 

advection on mid-troposphere moisture is small; more shallow convection and less 

stratiform precipitation reduce the removal of moisture by precipitation. The factor m2γq 

defines a relaxation timescale for moisture anomalies when the ∂T2/∂t term in Eq. (28) 
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vanishes. For our normative parameter choices, the relaxation timescale is about a day 

and half.  

With a nozero ∂T2/∂t term in Eq. (28), moisture is coupled to T2. In this case, a relaxation 

timescale for moisture alone is not defined, and the –m2γqq term acts to reduce the growth 

rate of the unstable mode. This effect is stronger at lower frequencies, i.e. the moistening 

effect of J2 acts to preferentially damp low wavenumbers. More quantitatively, consider 

small departures in ω from its value for m2=0, i.e. ω=δω+c2k+ im1γqF/b1. Plugging this 

into (29) and ignoring second order terms of δω, we have 
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Therefore, this damping effect becomes significant for wavenumbers lower 

than m
2
+ m

1
F / b

1( )! q / c2 . With the normative parameter values, this corresponds to a 

wavelength of 9000km. The effect of m2 on the growth rate is shown in Figure 10 (thin 

solid line). With m2<0, Eq. (28) contains a unstable moisture mode; without the ∂T2/∂t 

term, it has zero phase speed and a growth rate of m2γq. For general parameter choices, an 

effective m2 m̂2
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should be used and the effective m2 becomes negative 

when b1<0.6, b2>10/3, m1>0.5, or m2<0.6, which are unstable regimes in Figure 7 with 

very small phase speeds. These modes are therefore attributed to a moisture instability 

described by Eq. (28) with a negative (effective) m2. These modes are similar to the 

standing modes found in KM06 (their Fig. 4a). 

Departing from SQE by introducing a finite response time, i.e. replacing Eq. (28) by   
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shifts J2 out of phase with T2 and reduces the growth rate. This is similar to the MCD 

effect discussed in the f=1 case and is stronger for higher wavenumbers. Figure 10 shows 

the growth rate with the effect of τJ included (dotted line) and with the effects of both m2 

and τJ included (diamond symbol). The mathematical reason for the different effects of 

m2 and τJ is simply that the latter involves ∂/∂t and the former does not.  

The above discussion paints the following physical picture for the basic instability in the 

limiting case II: Start with SQE, zero net moistening from the second mode heating 

(m2=0) and no dissipation (ε=0), and with the propagation of a second vertical mode 

temperature anomaly T2. The T2 anomaly modulates deep (or first baroclinic) convective 

heating J1 by perturbing the statistical equilibrium between the lower troposphere and the 

subcloud layer. The result is a J1 field that lags T2 by 90° in phase. This changes the 

moisture field, which lags J1 by another 90° and is therefore 180° out of phase with T2. 

As J2=-γqq, it is in phase with T2 and causes growth. This basic instability is illustrated 

schematically in Figure 11 and will be referred to as the moisture-stratiform instability. 

While an eastward propagating wave is chosen for the illustration, the same instability 

mechanism also operates in westward propagating or standing waves. In the case of a 

standing wave, the phase lag will be manifested as a lag in time. Note that while we have 

used the name “stratiform” following M00, it is intended here to represent both phases of 

J2, i.e., both stratiform and shallow/congestus convection. Building upon this basic 
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instability, we now add the moistening effect of J2, which reduces growth rates more 

strongly at low wavenumbers, and the finite time to approach QE, which reduces growth 

rates more strongly at high wavenumbers, and the dissipation ε, which damps the waves 

more or less uniformly in wavenumber. These damping mechanisms shape the otherwise 

uniform growth rate curve to favor wavelengths of a few thousand kilometers (circles in 

Figure 10). 

3.b.3. Basic difference between the two limiting cases 

The following steps shown in Figure 11 are the same in both limiting cases: 

(b)→(c)→(d)→(a). The main difference between the two is that in the limiting case II 

with f=0, the second baroclinic temperature anomaly controls the first baroclinic heating, 

and the feedback loop illustrated in Figure 11 is complete, giving rise to the moisture-

stratiform instability, while in the limiting case I with f=1, the first baroclinic temperature 

anomaly controls the first baroclinic heating, the feedback loop is not complete, and all 

waves are stable. The basic reason for the different behavior of the two vertical modes is 

that the first baroclinic heating J1 is more strongly tied to ∂T/∂t (controlled by shallow or 

deep CAPE) while the second baroclinic heating J2 is more strongly tied to moisture 

(moisture control). This allows J2 to be more in phase with T2 when J1 is controlled by T2, 

but constrains J1 to be largely in quadrature with T1 when it is controlled by T1. While we 

have taken b2=0, γ0=0 for conceptual simplicity, the same conclusion can be drawn with 

more general parameter choices, as discussed in Appendix C.  

3.b.4. Intermediate cases: 0<f<1 
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We are unaware of general mathematical results that relate intermediate cases to the two 

limiting cases in a simple and physically meaningful way. We have therefore examined 

the model behavior for intermediate values of f empirically. The moisture stratiform 

instability remains the basic instability (all waves are stable when either m1 or γq is zero), 

and the moistening effect of J2 and the MCD effect continue to shape the growth rate 

curve by reducing the growth rates, more strongly at low and high wavenumbers, 

respectively. Although, even with m2=0, as f increases, the instability is reduced more 

strongly at low wavenumbers (Figure 12), indicating the presence of other stabilization 

effects at low wavenumbers in addition to the moistening effect of J2. There is enhanced 

instability near f~0.2 particularly at higher wavenumbers. This is associated with the 

resonance effect present in the limiting case I (when c2~c1*). The larger resonance effects 

at higher wavenumbers can be understood in mathematical terms. However, given the 

highly idealized nature of the present model and the strong MCD damping effect at high 

wavenumbers, the relevance of such resonance to the real atmosphere is not clear.  

3.c The case of γ0<0, γq=0 and the stratiform instability of Mapes (2000) 

As seen in Figure 7d (and Figure 4d), there is a branch of unstable waves with r0>1 (or 

γ0<0) that behaves differently from that with r0≤1 (or γ0≥0). This represents a case where 

the background mean convective heating is stronger in the upper troposphere. Its 

behavior is best exposed by setting γq=0. To simplify the discussion, we will also take 

b2=0, ε=0, and τJ=0, although these are not required. The system is now reduced to: 
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Figure 13a shows that this simple system qualitatively reproduces the r0>1 branch of the 

unstable modes seen in Figure 7d and Figure 4d. The large growth rates in Figure 13a, 

particularly those at high wavenumbers, are reduced and come to closer agreement with 

Figure 7d when an adjustment time to QE (τJ=2hr) is included (Figure 13b). 

The dispersion relation for this system is quadratic and can be readily derived. It is easy 

to show analytically that a necessary condition for instability is γ0<0 and that the growth 

rate is proportional to wavenumber. Therefore, this mechanism depends on positive 

stratiform heating (negative J2) being tied to positive deep convective heating (J1) directly 

through γ0 being less than 0 instead of indirectly through J1’s effect on q. We shall refer to 

this as the direct stratiform instability mechanism to distinguish it from the moisture-

stratiform instability mechanism discussed in section 3.b. 

An example of the structure of the unstable waves from Eq. (32) with f=0.5 and γ0 =-0.2 

is shown in Figure 14. With f=0.5, the phase and amplitude relationship between T1 and 

T2 is such that J1, which is proportional to ∂(T1+T2)/∂t, is roughly in opposite phase with 

T2. This sets up a feedback loop that is the same as that of M00: when T2 is negative 

(cold below and warm above), deep convection is enhanced; with γ0 <0, a negative J2 

(cooling below and heating above) is tied to enhanced deep convection (positive J1), and 

amplifies the T2 anomaly. Therefore, the basic instability mechanism in this regime is 
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identified to be the same as the stratiform instability of M00. The wave structure is 

affected by replacing two-way wave equations with one-way wave equations. While not 

shown, when the two-way wave equations are used with r0=1.5 (i.e. γ0=-0.2) and rq=0, the 

temperature structure of the wave captures the salient features of the observed waves 

quite well. 

The formulation in Eq. (32) is indeed similar to that of M00 and MS01, except that M00 

has an additional prognostic equation for the subgrid-scale triggering energy. The effects 

of T2 and T1 on J1 are similar to their roles in the CAPE calculation in M00 and MS01 

except that here J1 is determined implicitly from ∂T/∂t based on the QE concept instead 

of the explicit prognostic approach of M00 and MS01. As discussed in section 2b, the 

relative importance of ∂T2/∂t and ∂T1/∂t in determining J1, as measured by the parameter 

f, indicates the depth of the troposphere that is in QE regardless of the environmental 

humidity, and is physically interpreted as the importance of undiluted parcels in the 

convective mass flux. A similar interpretation can be made for the role of T2 in the CAPE 

calculation in MS01 as this includes the effect of entrainment. Values used in MS01 and 

KM06 imply an f of 0.9. The relative weights of T1 and T2 in the CAPE calculation in 

M00 imply an f value of 0.8, although the role of T2 on convection is further enhanced by 

its role in his CIN calculation, which would imply an f value of ~0.1-0.2. The effective f 

in M00 therefore varies between 0.1 to 0.8, depending on how strong the CIN control is 

relative to the CAPE control, and can be close to our normative value.  

The system of Eq. (32) constrains J2 to be in opposite phase with J1, so there is no tilted 

heating structure as in observations. The tilt can be introduced with a time lag between J2 

and J1: 
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as done in M00, where a 3hr time lag is used, representing the time lag between the 

stratiform phase and the convective phase of a mesoscale convective system (MCS). 

This, however, provides appreciable tilts only at short wavelengths; a 3hr time lag 

corresponds to only 270km with a wave speed of 25m/s. For a wavelength of 864km, for 

example, and a 3hr time lag, J2 lags -J1 by ~40° and appreciable tilt is indeed seen in the 

heating structure. However, for longer wavelengths (for example, the case with a 

wavelength of 8640km shown in Figure 14), the same time lag produces little tilt (J2 lags 

-J1 by ~8°), as one should expect from Eq. (33). Indications of this behavior are also 

evident in MS01 (e.g. their Fig.4). Therefore, it is difficult for the basic instability 

mechanism in this regime (γ0<0 and γq=0) to produce the significant tilt seen in the 

observed heating field of large-scale waves. While we have taken b2=0, ε=0, and τJ=0 to 

simplify the discussion, the basic results remain the same without these simplifications. 

Eq. (33) with an adjustment time of 3hr also has the effect of further reducing the growth 

rates at high wavenumbers, and selecting waves of synoptic scale (~2000km in 

wavelength) as the fastest growing (not shown). 

As discussed in section 2.b, we have neglected the role of undiluted CAPE on the depth 

of convection based on the view that all updrafts experience significant entrainment and 

midtropospheric moisture deficit is the main factor affecting the depth of convection. In 

this section, as we have set γq=0, one may wish to include the effect of undiluted CAPE 

and replace Eq. (20) with  
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which changes the second equation in (32) to  
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This adds a simple damping effect on T2, which is the same as the cumulus congestus 

damping effect on the second mode temperature in section 2b3 of M00. 

3.d Moisture-stratiform instability versus direct stratiform instability 

From the CSRM simulations of K07, which are idealized simulations based on the 

Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment 

(TOGA-COARE) (Webster and Lukas, 1992), there are two pieces of evidence against 

the direct-stratiform instability being the main instability. First, when vertical advection 

of moisture is disabled in K07, convectively coupled waves are largely suppressed, while 

the direct-stratiform instability mechanism is not affected by the removal of vertical 

moisture advection. Second, substantial tilt in the heating structure is found in K07 across 

a wide range of wavenumbers. This is also inconsistent with the direct-stratiform 

instability mechanism. When stratiform heating is tied to deep convective heating with a 

fixed time lag based on the life cycle of MCSs, the tilt in the heating structure is expected 

to become increasingly small as wavelength increases. This is noted by Mapes et al. 

(2006). In contrast, the moisture-stratiform instability requires the vertical advection of 

moisture and yields substantial tilt in the convective heating structure over a wide range 

of wavenumbers (Figure 3). Indeed, in its limiting form, Eqs.(27) and (28), J2 lags –J1 by 

a quarter cycle. The moisture-stratiform instability is therefore more in line with the 

CSRM simulations of K07, and is suggested as the main instability mechanism in these 

simulations, and likely in the real atmosphere under TOGA-COARE conditions as well. 



 31 

Whether and how this might change with the background mean state is a subject of 

interest and warrants further research. 

4. Summary and discussion 

In this paper, we have developed a toy model of convectively coupled waves. Its main 

new feature is a conceptually simple treatment of convection based on the quasi-

equilibrium concept, simplified for a model of crude vertical structure. For convection in 

the lower troposphere we neglect the effect of entrainment and for convection reaching 

the upper troposphere, we emphasize the effect of entrainment and thus the impact of 

environmental moisture deficit. For realistic model parameters based on the results of 

CSRM simulations of K07, the toy model produces unstable waves at wavelengths and 

with structures that compare reasonably well with the CSRM results.  

It is of interest to contrast the present treatment with that of M00, which is an influential 

model of convectively coupled waves. M00 introduced his model by raising the question: 

“if CIN is in equilibrium with a statistically ubiquitous population of small entraining 

cumuli, then how can it be a significant factor inhibiting deep-convective cells, which 

should presumably suffer less entrainment due to their larger size?” This led to his 

separate treatments for shallow and deep convection, where the role of shallow 

convection is a simple damping effect on the second mode temperature anomaly, and the 

effect of inhibition and triggering is emphasized through the effect of convective 

inhibition (CIN) and subcloud layer kinetic energy (or triggering energy) on the deep 

convective mass flux. This separate treatment, however, does not resolve the 

inconsistency raised by M00, and was recognized as a conceptual deficiency by M00, as 

shallow and deep convection are obviously interrelated. This inconsistency is absent in 
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our treatment, where CIN is indeed not a significant factor in inhibiting deep-convective 

cells; instead, mid-troposphere moisture deficit is the main factor. We also eliminate 

triggering and inhibition from the conceptual picture and consider convection to be in 

quasi-equilibrium with the large-scale flow. Triggering and inhibition do occur; however, 

they reflect more of a view on individual storm scale instead of that on a large scale. On a 

large scale, we maintain that a quasi-equilibrium view is an adequate conceptual 

simplification. 

We further analyzed the basic instability mechanisms of this model. We identified a 

moisture-stratiform instability, illustrated in Figure 11, which arises from the effect of 

mid-tropospheric humidity deficit on the depth of convection. We found that the net 

moistening effect of the second mode convective heating and the finite time to approach 

QE both act to reduce the growth rates, preferentially at low and high wavenumbers, 

respectively. These damping mechanisms help to select wavelengths of a few thousand 

kilometers as the fastest growing. An earlier study (KM06) included moisture in their 

convective parameterization, but their treatment is conceptually complicated and their 

analysis did not reveal a clear instability mechanism involving moisture. KM06 

concluded that second baroclinic mode low-level moisture convergence plays a major 

role in the generation of the basic instability, whereas here this effect (included in m2) is 

found to damp the waves as discussed in section 3.b.2.  

When the background convective heating profile is stronger in the upper troposphere than 

in the lower troposphere, the model contains an additional instability mechanism. This is 

named the direct-stratiform instability and is identified to be the same as the stratiform 

instability of M00. The direct stratiform instability mechanism, however, is inconsistent 
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with the importance of moisture advection and the substantial tilt in the convective 

heating structure (especially at low wavenumbers) seen in the CSRM simulations of K07. 

The moisture-stratiform instability on the other hand is consistent with the CSRM 

simulation results, and is suggested as the main instability mechanism in these 

simulations, and likely in the real atmosphere under TOGA-COARE conditions as well. 

Whether and how this might change with the background mean state is a subject of 

further research. 
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Appendices 

A. Parameter Estimation  

In this appendix, we try to obtain rough estimates of the parameters used in the simple 

model. The CSRM simulations of K07 will be used to guide the estimates. In those 

simulations, a CSRM is coupled to linear gravity wave dynamics and convectively 

coupled waves spontaneously develop. The reader is referred to K07 for details about the 

simulations. We will use the first 20 days (i.e. the initial growth period) of the case with a 

lid at 14km, constant surface fluxes and a wavelength of 10,000km. A longer wavelength 

(and wave period) is preferable because convection and the large-scale wave can be 

expected to be closer to statistical equilibrium and the effect of the finite response time of 

convection, which would complicate the interpretation, is smaller.  

We first construct CSRM counterparts of the simple model variables. Vertical mode 

decomposition (with a lid at 14km) is used to obtain J1, J2, w1, w2, T1, and T2. To be 

consistent with Eq. (4), the modes are normalized so that their absolute values average to 

1. The subcloud layer is defined to be between the surface and 930hPa. The variable qmid 

is chosen to be that averaged over 400-600hPa. It is important to emphasize that the 

simple model is a gross simplification of the CSRM simulations (and the real 

atmosphere). Therefore, viewing the CSRM results in the simple model framework is 

approximate and uncertainties in the resulting estimates are far greater than those implied 

by the goodness of the fit. We only intend to use these estimates as educated guesses of 

plausible values.  
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With the above cautionary words in mind, we show in Figure 15a the regression of 

convective moistening (Q2) of qmid against the two convective heating modes J1 and J2. In 

the CSRM simulations, the large-scale advective tendencies are explicitly calculated and 

convective tendencies such as convective moistening and heating are computed as 

residuals, similar to e.g. Yanai et al. (1973). Contributions from J1 and J2 to convective 

moistening are shown in red and green, respectively. Their sum reproduces Q2 almost 

perfectly on the scale plotted and is omitted. Convective drying (negative Q2) is 

dominated by the first heating mode (d1=1.3). The second heating mode has a moistening 

effect (d2=-1.1). This represents a moistening (drying) effect in the mid-troposphere by 

congestus (stratiform) convection. Figure 15b shows the regression of the qmid tendency 

due to vertical advection against w1 and w2, which yields a1=1.6 and a2=0.0. The effect of 

the second mode is small because the midtroposphere is around the nodal point of w2. 

Similar results are obtained from applying the vertical structures of w1 and w2 on the 

background moisture stratification and integrating from 400-600hPa. The actual time 

derivative of qmid is the sum of convective drying and vertical moisture advection, and is 

substantially smaller because these two effects tend to cancel. In particular, there is a 

large compensation between adiabatic cooling and convective heating associated with the 

first mode: w1 is well correlated with J1 (correlation 0.98) and is only slightly larger (by 

~3%) than J1. Note that a larger adiabatic cooling (w1) than convective heating J1 is 

consistent with the notion of a positive gross moist stability for the deep convective 

heating mode (e.g. Emanuel et al., 1994). Combined with the smallness of a2, it appears 

reasonable to neglect moisture advection by w2 and combine convective drying and 

vertical moisture advection effects of the first mode, as in Eq. (7). This simplified 
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treatment reproduces the total qmid tendencies reasonably well (Figure 15c). While the 

estimates are subject to many uncertainties, that m1=a1-d1 is positive, i.e. the net effect of 

deep convective heating, J1, is to make the mid-troposphere more humid, is a robust 

result.  

We compute ∂hb/∂t as the mass weighted averages of moist static energy tendencies over 

the depth of the sub-cloud layer.  Figure 15d shows a regression of ∂hb/∂t by convection 

against J1 and J2 (Eq. (5) with E=0). Contributions from large-scale vertical advection in 

the subcloud layer are smaller and neglected. This yields b1=1.0 and b2=2.3. A positive b2 

implies that convective heating in the lower troposphere is more effective at reducing hb 

than that in the upper troposphere on a per unit heating basis. This is perhaps somewhat 

counter-intuitive, but is quite clear in the CSRM simulations because boundary layer 

cooling and drying peaks before the maximum first mode heating, i.e. it is shifted 

towards the congestus phase (Figure 15d). Some indication of this is also seen in the 2-

day wave study of Haertel and Kiladis (2004).  

We now try to constrain the parameters in Eq.(10). This formulation on the control of the 

height of convection is very approximate, so uncertainties in the estimates are large. To 

reflect these uncertainties, we simply choose r0=1 and rq=0.7. Figure 15e indicates this is 

a plausible choice. A better fit can be achieved through a regression, but would convey a 

false sense of accuracy and is deemed more misleading than informative.  

In Figure 15f, we plot the regression of subcloud layer moist static energy to the 

temperature averaged over the lower troposphere (between 930hPa and 500hPa), 

assuming that the wave period is sufficiently long so that strict (or close to strict) 
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statistical equilibrium is satisfied (Eq. (13)). This gives F≈4. This is larger than ∂s*/∂T at, 

say, 3km (~ 285K, ~700hPa), which is ~3. A possible reason for this is that factors such 

as entrainment may have diluted the hb variations as air parcels rise through the lower 

troposphere.  

B. Connections between Eq.(3) and Eq.(19) 

Let us first add a Newtonian cooling ε in the thermodynamic equations in Eq. (3). 

Assuming a wave solution of the form exp(iωt-ikx), and diagonalizing the system, we 

have: 

 
i! + " + ikcj( ) #iwj + kcjTj( ) = kcjJ j
i! + " # ikcj( ) iwj + kcjTj( ) = kcjJ j

 (36) 

Eliminating wj leads to 

 i! + " # ikcj( )Tj = J j
i! + "

i! + " + ikcj
 (37) 

For waves with periods substantially shorter than 2π/ε (~60 days with our choice of ε), 

we have approximately 

 
!Tj

!t
+ cj

!Tj

!x
=

"

" + kcj
J j # $Tj

 (38) 

Therefore, Eq. (3) is connected to Eq. (19) with  

 J j
Eq3

= J j
Eq19

1+
kcj

!
"
#$

%
&'

 (39) 

Eq. (39) indicates that convective heating is more effective in forcing temperature 

variations in the one-way wave equations. This is particularly true for the first vertical 

mode. For waves with a phase speed of 25m/s, the first vertical mode heating is three 
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times as effective and the second vertical mode heating is twice as effective in the one-

way wave equations compared to the two-way wave equations.  

C. Limiting cases with general parameter choices 

In this appendix, we consider the limiting cases with general parameter choices to extend 

the results with the simplifying parameter choices presented in Sections 3b and 3c. We 

shall consider the system to be in SQE. The effect of τJ is similar to that with the 

simplifying parameter choices. 

When f=1, Eq.(23) becomes 
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We have continued to neglect T1’s contribution in q+. At SQE, we have 
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where  
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Here T2 is forced by modes of Eq. (41) and does not feed back onto T1 and q. This is the 

same as the limiting case I discussed in section 3.b.1 except with the parameters modified 

and an additional moisture equation.  

When f=0, we have  

 J
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Therefore: 
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where 
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Here T1 is forced by the modes of Eq. (44), and does not feedback on T2 and q. This is 

the same as the limiting case II discussed in section 3.b.2 except with the modified 

parameters. Comparing Eq. (44) and Eq. (41), we see that the two systems have the same 

form. In terms of linear stability, the main difference is in the coefficients in front of q in 

the temperature equation, K1 and K2. Using our normative parameter values and allowing 

for a reasonable range, K1 is close to 0.4, and K2 is close to -1. Therefore, the f=1 case 

with general parameter choices may be viewed as having a negative effective γq.  
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 Figure Captions 

Figure 1 Phase speed (left) and growth rate (right) as functions of wavenumber from the 

linearized version of the full model described in section 2c (with 2-way wave 

equations), using normative parameter values.  Modes with positive growth rates 

are highlighted with circles in the phase speed diagram. The phase speeds are 

symmetric about 0. 

Figure 2 Physical patterns of the eigenmodes of the linearized full model described in 

section 2c (with 2-way wave equations) for an eastward propagating wave with a 

wavelength of 8640km. Normative values are used for all parameters. (a) T1 

(solid), T2 (dashed) and q (dotted) as functions of x (zonal distance). (b) J1 (solid) 

and J2 (dashed) as functions of x. (c) Zonal and height pattern of the combined 

temperature anomaly. The contour interval is 0.5K. (d) Zonal and height pattern 

of the combined convective heating anomaly. The contour interval is 2K/day. In 

both (c) and (d), negative contours are dashed and the zero contour is omitted. 

Figure 3 Phase lag between J1 and -J2 as a function of wavenumber for the linearized full 

model described in section 2c with normative parameter values. 

Figure 4 Maximum linear growth rates for the linearized full model described in section 

2c with individual parameters varied and the other parameters kept at their 

normative values. 

Figure 5 Same as Figure 1 except for the simplified version described in section 3a. 

Figure 6 Same as Figure 2 except for the simplified version described in section 3a and a 

contour interval of 0.5K/day in (d). 
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Figure 7 Same as Figure 4 but for the system described in section 3a. 

Figure 8 Same as Figure 6 except for the limiting case I (f=1) described in section 3.b.1 

with b2=0, γ0=0, ε=0, τJ=0, m2=0. 

Figure 9 Same as Figure 8, except for limiting case II (f=0) described in section 3.b.2 

with b2=0, γ0=0, ε=0, τJ=0, m2=0. 

Figure 10 Growth rates as a function of wavenumber for limiting case II described in 

section 3.b.2 with m2=τJ=ε=0 (thick solid), τJ=ε=0 (thin solid), m2=ε=0 (dotted), 

and ε=0 (diamond symbols), and none of m2, τJ, ε is zero (circles). When a 

parameter is not zero, it takes its normative value. 

Figure 11 A schematic of the moisture-stratiform instability, illustrated for an eastward 

propagating wave viewed in a reference frame that follows the wave. All fields 

shown are anomalies. We start with (a) temperature and vertical velocity (arrows) 

anomalies associated with the wave. The large-scale lifting cools the lower 

troposphere as part of the wave signal. This induces a positive deep convection 

anomaly, which cools the subcloud layer to maintain quasi-equilibrium with the 

large-scale flow (b). The deep convection anomaly also makes the 

midtroposphere more humid (c). An anomalously moist mid-troposphere allows 

convection to reach higher, while an anomalously dry one makes convection 

lower. This produces a convective heating anomaly pattern that is in phase with 

the original temperature anomaly and causes instability (d). 

Figure 12 Growth rates as a function of wavenumber and f with b2=0, γ0=0, ε=0, τJ=0, 

m2=0. 
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Figure 13 (a) Linear growth rate of the unstable mode as a function of wavenumber and 

r0 for the system described by Eq. (32) and with f=0.5. (b) Same as (a) but with 

the effect of a 2hr adjustment time to QE included. 

Figure 14 Same as Figure 8, except for the system described by Eq. (32), and with f=0.5 

and γ0 =-0.2. 

Figure 15 (a) Contributions to convective drying of the mid-troposphere (∂qmid/∂t)conv 

(black) by -d1J1 (red) and -d2J2 (green) based on a linear regression. (b) 

Contributions to advective moistening of the mid-troposphere (∂qmid/∂t)adv 

(black) by a1w1 (red) and a2w2 (green) based on a linear regression. (c) Total 

tendencies of the mid-troposphere humidity ∂qmid/∂t (black) and (a1-d1)J1-d2J2 

(red). (d) A linear regression of convective tendencies of boundary moist static 

energy ∂hb/∂t (black) against J1 and J2. (e) The second mode heating (black) and 

rq(1.5T1-qmid) (red) with rq=0.7. (f) A linear regression of hb against lower 

tropospheric temperature Tlow.
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Figure 1 Phase speed (left) and growth rate (right) as functions of wavenumber from the 
linearized version of the full model described in section 2c (with 2-way wave equations), 
using normative parameter values.  Modes with positive growth rates are highlighted with 
circles in the phase speed diagram. The phase speeds are symmetric about 0. 
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Figure 2 Physical patterns of the eigenmodes of the linearized full model described in 
section 2c (with 2-way wave equations) for an eastward propagating wave with a 
wavelength of 8640km. Normative values are used for all parameters. (a) T1 (solid), T2 
(dashed) and q (dotted) as functions of x (zonal distance). (b) J1 (solid) and J2 (dashed) as 
functions of x. (c) Zonal and height pattern of the combined temperature anomaly. The 
contour interval is 0.5K. (d) Zonal and height pattern of the combined convective heating 
anomaly. The contour interval is 2K/day. In both (c) and (d), negative contours are 
dashed and the zero contour is omitted. 
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Figure 3 Phase lag between J1 and -J2 as a function of wavenumber for the linearized full 
model described in section 2c with normative parameter values. 
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Figure 4 Maximum linear growth rates for the linearized full model described in section 
2c with individual parameters varied and the other parameters kept at their normative 
values.  
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Figure 5 Same as Figure 1 except for the simplified version described in section 3a. 



 54 

 

 
Figure 6 Same as Figure 2 except for the simplified version described in section 3a and a 
contour interval of 0.5K/day in (d). 
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Figure 7 Same as Figure 4 but for the system described in section 3a. 
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Figure 8 Same as Figure 6 except for the limiting case I (f=1) described in section 3.b.1 
with b2=0, γ0=0, ε=0, τJ=0, m2=0.  
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Figure 9 Same as Figure 8, except for limiting case II (f=0) described in section 3.b.2 
with b2=0, γ0=0, ε=0, τJ=0, m2=0. 
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Figure 10 Growth rates as a function of wavenumber for limiting case II described in 
section 3.b.2 with m2=τJ=ε=0 (thick solid), τJ=ε=0 (thin solid), m2=ε=0 (dotted), and ε=0 
(diamond symbols), and none of m2, τJ, ε is zero (circles). When a parameter is not zero, 
it takes its normative value. 
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Figure 11 A schematic of the moisture-stratiform instability, illustrated for an eastward 
propagating wave viewed in a reference frame that follows the wave. All fields shown are 
anomalies. We start with (a) temperature and vertical velocity (arrows) anomalies 
associated with the wave. The large-scale lifting cools the lower troposphere as part of 
the wave signal. This induces a positive deep convection anomaly, which cools the 
subcloud layer to maintain quasi-equilibrium with the large-scale flow (b). The deep 
convection anomaly also makes the midtroposphere more humid (c). An anomalously 
moist mid-troposphere allows convection to reach higher, while an anomalously dry one 
makes convection lower. This produces a convective heating anomaly pattern that is in 
phase with the original temperature anomaly and causes instability (d).  
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Figure 12 Growth rates as a function of wavenumber and f with b2=0, γ0=0, ε=0, τJ=0, 
m2=0. 



 61 

 

 
Figure 13 (a) Linear growth rate of the unstable mode as a function of wavenumber and r0 
for the system described by Eq. (32) and with f=0.5. (b) Same as (a) but with the effect of 
a 2hr adjustment time to QE included. 
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Figure 14 Same as Figure 8, except for the system described by Eq. (32), and with f=0.5 
and γ0 =-0.2. 
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Figure 15 (a) Contributions to convective drying of the mid-troposphere (∂qmid/∂t)conv 
(black) by -d1J1 (red) and -d2J2 (green) based on a linear regression. (b) Contributions to 
advective moistening of the mid-troposphere (∂qmid/∂t)adv (black) by a1w1 (red) and a2w2 
(green) based on a linear regression. (c) Total tendencies of the mid-troposphere humidity 
∂qmid/∂t (black) and (a1-d1)J1-d2J2 (red). (d) A linear regression of convective tendencies 
of boundary moist static energy ∂hb/∂t (black) against J1 and J2. (e) The second mode 
heating (black) and rq(1.5T1-qmid) (red) with rq=0.7. (f) A linear regression of hb against 
lower tropospheric temperature Tlow. 
 



 64 

 

Tables: 

Table 1 A summary of parameters used in the simple model 

 

Symbol Normative 
values 

Unit Description 

b1,b2  1,  2 ⎯ Reduction in hb per unit J1 and J2 (Eq.(5)) 

a1,a2 1.4,  0 ⎯ Increase in qmid (by advection) per unit w1 and w2, Eq. (6) 

d1,d2 1.1, -1 ⎯ Decrease in qmid per unit J1 and J2, Eq. (6) 

m1,m2 0.3,  1 ⎯ Increase in qmid per unit J1 and J2, Eq. (7), m1,2=a1,2-d1,2 

r0 1 ⎯ Background mean U/L ratio, Eq.(10) 

γ0 0 ⎯ (1-r0)/(1+r0) 

rq 0.7 1/day Dependence of the U/L ratio on moisture deficit, Eq.(10) 

γq 0.7 1/day 2rq/(1+r0) 

F 4 ⎯ Ratio between saturation moist static energy and 
temperature, Eq. (14) 

f 0.5 ⎯ Relative weight used to linearly combine T1 and T2, Eq. (14) 

τL 1/12 day Adjustment time to approach QE over the lower troposphere 

c1,c2 1, 0.5 50m/s Dry speeds of the first and second mode 

ε 1/10 1/day Damping coefficient 

 

 

 


