Fingerprinting Codes and the Price of Approximate Differential Privacy

Mark Bun ‡
Harvard University SEAS
mbun@seas.harvard.edu

Jonathan Ullman ‡
Harvard University SEAS
jullman@seas.harvard.edu

Salil Vadhan §
Harvard University SEAS
salil@seas.harvard.edu

ABSTRACT

We show new lower bounds on the sample complexity of (ε, δ)-differentially private algorithms that accurately answer large sets of counting queries. A counting query on a database \(D \in \{(0,1)^d\}^n \) has the form “What fraction of the individual records in the database satisfy the property \(q \)?” We show that in order to answer an arbitrary set \(Q \) of \(2^n \) counting queries on \(D \) to within error ±α it is necessary that

\[
n \geq \Omega\left(\frac{\sqrt{\log |Q|}}{\alpha^2\varepsilon}\right).
\]

This bound is optimal up to poly-logarithmic factors, as demonstrated by the Private Multiplicative Weights algorithm (Hardt and Rothblum, FOCS’10). It is also the first to show that the sample complexity required for (ε, δ)-differential privacy is asymptotically larger than what is required merely for accuracy, which is \(O(\log |Q|/\alpha^2) \). In addition, we show that our lower bound holds for the specific case of \(k \)-way marginal queries (where \(|Q| = 2^k \binom{n}{k} \)) when \(\alpha \) is a constant.

Our results rely on the existence of short fingerprinting codes (Boneh and Shaw, CRYPTO’95; Tardos, STOC’03), which we show are closely connected to the sample complexity of differentially private data release. We also give a new method for combining certain types of sample complexity lower bounds into stronger lower bounds.

Categories and Subject Descriptors

G.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms

Security, Theory

Keywords

differential privacy, fingerprinting codes

1. INTRODUCTION

Consider a database \(D \in X^m \), in which each of the \(n \) rows corresponds to an individual’s record, and each record consists of an element of some data universe \(X \) (e.g. \(X = \{0,1\}^d \)), corresponding to \(d \) binary attributes per record. The goal of privacy-preserving data analysis is to enable rich statistical analyses on such a database while protecting the privacy of the individuals. It is especially desirable to achieve (ε, δ)-differential privacy [14, 13], which (for suitable choices of ε and δ) guarantees that no individual’s data has a significant influence on the information released about the database. A natural way to measure the tradeoff between these two goals is via sample complexity—the minimum number of records \(n \) that is sufficient in order to achieve both differential privacy and statistical accuracy. Some of the most basic statistics are counting queries, which are queries of the form “What fraction of individual records in \(D \) satisfy some property \(q \)?” In particular, we would like to design an algorithm that takes as input a database \(D \) and, for some family of counting queries \(Q \), outputs an approximate answer to each of the queries in \(Q \) that is accurate to within, say, ±0.1. Suppose we are given a bound on the number of queries \(|Q| \) and the dimensionality of the database records \(d \), but otherwise allow the family \(Q \) to be arbitrary. What is the sample complexity required to achieve (ε, δ)-differential privacy and statistical accuracy for \(Q \)? Of course, if we drop the requirement of privacy, then we could achieve perfect accuracy when \(D \) contains any number of records. However, in many interesting settings the database \(D \) consists of random samples from some larger population, and an analyst is actually interested in answering the queries on the population. Thus, even without a privacy constraint, \(D \) would need to contain enough records to ensure that for every query \(q \in Q \), the answer to \(q \) on \(D \) is close to the answer to \(q \) on the whole population, say within ±0.1. To achieve this form of statistical accuracy, it is well-known that it is necessary and sufficient for \(D \) to contain \(\Omega(\log |Q|) \) samples. In this work we consider whether

† Supported by an NDSEG Fellowship and NSF grant CNS-1237235.
‡ Supported by NSF grant CNS-1237235.
§ Supported by NSF grant CNS-1237235, a gift from Google, and a Simons Investigator Award.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

STOC ’14, May 31 - June 03 2014, New York, NY, USA
Copyright 2014 ACM 978-1-4503-2710-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591796.2591877

1 For a specific family of queries \(Q \), the necessary and suffi-
there is an additional “price of differential privacy” if we require both statistical accuracy and \((\varepsilon, \delta)\)-differential privacy (for, say, \(\varepsilon = O(1), \delta = o(1/n)\)). This benchmark has often been used to evaluate the utility of differentially private algorithms, beginning with the seminal work of Dinur and Nissim [12].

Some of the earliest work in differential privacy [12, 18, 5, 14] gave an algorithm—the so-called Laplace mechanism—whose sample complexity is \(\Theta(|Q|^{1/2})\), and thus incurs a large price of differential privacy. Fortunately, a remarkable result of Blum, Ligett, and Roth [6] showed that the dependence on \(|Q|\) can be improved exponentially to \(O(d \log |Q|)\) where \(d\) is the dimensionality of the data. Their work was improved on in several important aspects [16, 19, 30, 25, 22, 24]. The current best upper bound on the sample complexity is \(O(\sqrt{d} \log |Q|)\), which is obtained via the private multiplicative weights mechanism of Hardt and Rothblum [25].

These results show that the price of privacy is small for datasets with few attributes, but may be large for high-dimensional datasets. For example, if we simply want to estimate the mean of each of the \(d\) attributes without a privacy guarantee, then \(\Theta(d)\) samples are necessary and sufficient to get statistical accuracy. However, the best known \((\varepsilon, \delta)\)-differentially private algorithm requires \(\Omega(\sqrt{d})\) samples—an exponential gap. In the special case of pure \((\varepsilon, 0)\)-differential privacy, a lower bound of \(\Omega(d \log |Q|)\) is known (using the techniques of [26]). However, for the general case of \((\varepsilon, \delta)\)-differential privacy the best known lower bound is \(\Omega(\log |Q|)\) [12].

In this work we close this gap almost completely, and show that there is indeed a “price of approximate differential privacy” for high-dimensional datasets.

Theorem 1.1 (Informal). Any algorithm that takes as input a database \(D \in \{(0, 1)^d\}^n\), satisfies approximate differential privacy, and estimates the mean of each of the \(d\) attributes to within error \(\pm 1/3\) requires \(n \geq \tilde{O}(\sqrt{d})\) samples.

We establish this lower bound using a combinatorial object called a fingerprinting code, introduced by Boneh and Shaw [9] for the problem of watermarking copyrighted content. The use of “secure content distribution schemes” to prove lower bounds for differential privacy originates with the work of Dwork et al. [16], who used cryptographic “traitor-tracing schemes” to prove computational hardness results for differential privacy. Extending this connection, Ullman [33] used fingerprinting codes to construct a novel traitor-tracing scheme and obtain a strong computational hardness result for differential privacy. We then give a composition theorem that allows us to combine our new lower bound of \(\tilde{O}(\sqrt{d})\) with (variants of) known lower bounds to obtain nearly-optimal sample complexity lower bounds for certain families of queries.

In addition to its dependence on \(d\) and \(|Q|\), we can consider how the sample complexity changes if we want to answer counting queries accurately to within \(\pm \alpha\). As above, if we assume the database contains samples from a population, and require only that the answers to queries on the sampled database and the population are close, to within \(\pm \alpha\), then \(\Theta(\log |Q|/\alpha^2)\) samples are necessary and sufficient for just statistical accuracy. When \(|Q|\) is large (relative to \(d\) and \(1/\alpha\)), the best sample complexity is again achieved by the private multiplicative weights algorithm, and is \(O(\sqrt{d} \log |Q|/\alpha^2)\). The other hand, the best known lower bound is \(\Omega(\max(\log |Q|/\alpha, 1/\alpha^2))\), which follows from the techniques of [12]. Using our composition theorem, as well as our new lower bound, we are able to obtain a nearly-optimal sample complexity lower bound in terms of all these parameters. The result shows that the private multiplicative weights algorithm achieves nearly-optimal sample-complexity as a function of \(|Q|, d, \alpha\).

Theorem 1.2 (Informal). For every sufficiently small \(\alpha\) and \(s \geq d/\alpha^2\), there exists a family of queries \(Q\) of size \(s\) such that any algorithm that takes as input a database \(D \in \{(0, 1)^d\}^n\), satisfies approximate differential privacy, and outputs an approximate answer to each query in \(Q\) to within \(\pm \alpha\) requires \(n \geq \tilde{O}(\sqrt{d} \log |Q|/\alpha^2)\).

The previous theorem holds for a worst-case set of queries, but the sample complexity can be smaller for certain interesting families of queries. One family of queries that has received considerable attention is \(k\)-way marginals [see e.g. [1, 27, 21, 32, 10, 17]]. A \(k\)-way marginal query on a database \(D \in \{(0, 1)^d\}^n\) is specified by a set \(S \subseteq [d]\), \(|S| \leq k\), and a pattern \(t \in \{0, 1\}^{|S|}\) and asks “What fraction of records in \(D\) has each attribute \(j\) in \(S\) set to \(t_j\)?” The number of \(k\)-way marginal queries on \(\{0, 1\}^d\) is about \(2^k \binom{d}{k}\). For the special case of \(k = 1\), the queries simply ask for the mean of each attribute, which was discussed above. We prove that our lower bound holds for the special case of \(k\)-way conjunction queries when \(\alpha\) is a constant. The best previous sample complexity lower bound for constant \(\alpha\) is \(\Omega(\log |Q|)\), which again follows from the techniques of [12].

Theorem 1.3 (Informal). Any algorithm that takes a database \(D \in \{(0, 1)^d\}^n\), satisfies approximate differential privacy, and outputs an approximate answer to each of the \(k\)-way marginal queries to within \(\pm \alpha_0\), for a universal constant \(\alpha_0\), requires \(n \geq \tilde{O}(k\sqrt{d})\).

1.1 Our Techniques

We now describe the main technical ingredients used to prove these results. For concreteness, we will describe the main ideas for the case of \(k\)-way conjunction queries.

Fingerprinting Codes.

Fingerprinting codes, introduced by Boneh and Shaw [9], were originally designed to address the problem of watermarking copyrighted content. Roughly speaking, a (fully-collusion-resilient) fingerprinting code is a way of generating codewords for \(n\) users in such a way that any codeword can be uniquely traced back to a user. Each legitimate copy of a piece of digital content has such a codeword hidden in it, and thus any illegal copy can be traced back to the user who copied it. Moreover, even if an arbitrary subset of the users collude to produce a copy of the content, then under...
a certain marking assumption, the codeword appearing in the copy can still be traced back to one of the users who contributed to it. The standard marking assumption is that if every colluder has the same bit in the j-th bit of their codeword, then the j-th bit of the “combined” codeword in the copy they produce must be also b. We refer the reader to the original paper of Boneh and Shaw [9] for the motivation behind the marking assumption and an explanation of how fingerprinting codes can be used to watermark digital content.

We show that the existence of short fingerprinting codes implies sample complexity lower bounds for 1-way marginal queries. Recall that a 1-way marginal query q_j is specified by an integer $j \in [d]$ and asks simply “What fraction of records in D have a 1 in the j-th bit?” Suppose a coalition of users takes their codewords and builds a database $D \in (\{0,1\}^d)^n$ where each record contains one of their codewords, and d is the length of the codewords. Consider the 1-way conjunction query $q_j(D)$. If every user in S has a bit b in the j-th bit of their codeword, then $q_j(D) = b$. Thus, if an algorithm answers 1-way conjunction queries on D with non-trivial accuracy, its output can be used to obtain a combined codeword that satisfies the marking assumption. By the tracing property of fingerprinting codes, we can use the combined codeword to identify one of the users in the database. However, if we can identify one of the users from the answers, then the algorithm cannot be differentially private.

This argument can be formalized to show that if there is a fingerprinting code for n users with codewords of length d, then the sample complexity of answering 1-way conjunctions must be at least n. The nearly-optimal construction of fingerprinting codes due to Tardos [31], gives fingerprinting codes with codewords of length $d = \tilde{O}(n^2)$, which implies a lower bound of $n \geq \Omega(\sqrt{d})$ on the sample complexity required to answer 1-way conjunction queries.

Composition of Sample Complexity Lower Bounds.

Given our lower bound of $\Omega(\sqrt{d})$ for 1-way conjunctions, and the known lower bound of $\Omega(k)$ for answering k-way conjunctions implicit in [12, 29], a natural approach is to somehow compose the two lower bounds to obtain a nearly-optimal lower bound of $\Omega(k\sqrt{d})$. Our composition technique uses the idea of the $\Omega(k)$ lower bound from [12, 29] to show that if we can answer k-way conjunction queries on a large database D with n rows, then we can obtain the answers to the 1-way conjunction queries on a subdatabase of roughly n/k rows. Our lower bound for 1-way marginals tell us that $n/k = \Omega(\sqrt{d})$, so we deduce $n = \Omega(k\sqrt{d})$.

Actually, this reduction only gives accurate answers to most of the 1-way marginals on the subdatabase, so we need an extension of our lower bound for 1-way marginals to differentially private algorithms that are allowed to answer a small fraction of the queries with arbitrarily large error. Proving a sample complexity lower bound for this problem requires a “robust” fingerprinting code whose tracing algorithm can trace codewords that have errors introduced into a small fraction of the bits. We show how to construct such a robust fingerprinting code of length $d = \tilde{O}(n^2)$, and thus obtain the desired lower bound. Fingerprinting codes satisfying a weaker notion of robustness were introduced by Boneh and Naor [8, 7].

1.2 Related Work

We have mostly focused on the sample complexity as a function of the number of queries, the number of attributes d, and the accuracy parameter α. There have been several works focused on the sample complexity as a function of the specific family Q of queries. For $(\varepsilon,0)$-differential privacy, Hardt and Talwar [26] showed how to approximately characterize the sample complexity of a family Q when the accuracy parameter α is sufficiently small. Nikolov, Talwar, and Zhang [28] extended their results to give an approximate characterization for (ε,δ)-differential privacy and for the full range of accuracy parameters. Specifically, [28] give an (ε,δ)-differentially private algorithm that answers any family of queries Q on $\{0,1\}^d$ with error α using a number of samples that is optimal up to a factor of $\text{poly}(d, \log |Q|)$ that is independent of α. Thus, their algorithm has sample complexity that depends optimally on α. However, their characterization may be loose by a factor of $\text{poly}(d, \log |Q|)$. In fact, when α is a constant, the lower bound on the sample complexity given by their characterization is always $O(1)$, whereas their algorithm requires $\text{poly}(d, \log |Q|)$ samples to give non-trivially accurate answers. In contrast, our lower bounds are tight to within $\text{poly}(\log d, \log \log |Q|, \log(1/\alpha))$ factors, and thus give meaningful lower bounds even when α is constant, but apply only to certain families of queries.

For the particular family of k-way conjunction queries, there have been attempts to prove optimal sample complexity lower bounds. In particular, when k is a constant, Ka-siviswathan et al. [27] give a lower bound of $\min(|Q|^{1/2}/\alpha, 1/\alpha^2)$ on the sample complexity. Their result was improved by De [11], who proved that the same sample complexity lower bound applies even for algorithms that can introduce arbitrarily large error on a constant fraction of the queries. In the regime we consider where α is constant, these lower bounds are $O(1)$.

There have also been attempts to explicitly and precisely determine the sample complexity of even simpler query families than k-way conjunctions, such as point functions and interval functions [2, 3, 4]. These works show that these families can have sample complexity lower than $\tilde{O}(\sqrt{d} \log |Q|/\alpha^2)$.

2. PRELIMINARIES

2.1 Differential Privacy

We define a database $D \in X^n$ to be an ordered tuple of n rows $(x_1, \ldots, x_n) \in X$ chosen from a data universe X. We say that two databases $D, D' \in X^n$ are adjacent if they differ only by a single row, and we denote this by $D \sim D'$. In particular, we can replace the ith row of a database D with some fixed element of X to obtain another database $D_{-i} \sim D$.

Definition 2.1 (Differential Privacy [14]). Let $A : X^n \rightarrow \mathcal{R}$ be a randomized algorithm (where n is a varying parameter). A is (ε, δ)-differentially private if for every two adjacent databases $D \sim D'$ and every subset $S \subseteq \mathcal{R}$,

$$
\Pr[A(D) \in S] \leq e^\varepsilon \Pr[A(D') \in S] + \delta.
$$

2.2 Counting Queries and Accuracy

to erase a large fraction of the coordinates of the combined codeword, and must reveal which coordinates are erased.
In this paper we study algorithms that answer counting queries. A counting query on X is defined by a predicate $q : X \rightarrow \{0,1\}$. Abusing notation, we define the evaluation of the query q on a database $D = (x_1, \ldots, x_n) \in X^n$ to be its average value over the rows,

$$q(D) = \frac{1}{n} \sum_{i=1}^{n} q(x_i).$$

Definition 2.2 (Accuracy for Counting Queries). Let Q be a set of counting queries on X and $\alpha, \beta \in [0,1]$ be parameters. For a database $D \in X^n$, a sequence of answers $a = (a_q)_{q \in Q} \in \mathbb{R}^{|Q|}$ is (α, β)-accurate for Q if $|q(D) - a_q| \leq \alpha$ for at least a $1-\beta$ fraction of queries $q \in Q$.

Let $A : X^n \rightarrow \mathbb{R}^{|Q|}$ be a randomized algorithm. A is (α, β)-accurate for Q if for every $D \in X^n$,

$$\Pr[A(D) \text{ is } (\alpha, \beta)-\text{accurate for } Q] \geq 2/3.$$ When $\beta = 0$ we may simply write that A or α or α-accurate for Q.

In the definition of accuracy, we have assumed that A outputs a sequence of $|Q|$ real-valued answers, with a_q representing the answer to q. Since we are not concerned with the running time of the algorithm, this assumption is without loss of generality.

An important example of a collection of counting queries is the set of k-way marginals. For all of our results it will be sufficient to consider only the set of monotone k-way marginals.

Definition 2.3 (Monotone k-way Marginals). A (monotone) k-way marginal q over $\{0,1\}^d$ is specified by a subset $S \subseteq [d]$ of size $|S| \leq k$. It takes the value $q_S(x) = 1$ if and only if $x_i = 1$ for every index $i \in S$. The collection of all (monotone) k-way marginals is denoted by $\mathcal{M}_{k,d}$.

2.3 Sample Complexity

In this work we prove lower bounds on the sample complexity required to simultaneously achieve differential privacy and accuracy.

Definition 2.4 (Sample Complexity). Let Q be a set of counting queries on X and let $\alpha, \beta > 0$ be parameters, and let ε, δ be functions of n. We say that (Q,X) has sample complexity n^* for (α, β)-accuracy and (ε, δ)-differential privacy if n^* is the least $n \in \mathbb{N}$ such that there exists an (ε, δ)-differentially private algorithm $A : X^n \rightarrow \mathbb{R}^{|Q|}$ that is (α, β)-accurate for Q.

We will focus on the case where $\varepsilon = O(1)$ and $\delta = o(1/n)$. This setting of the parameters is essentially the most-permissive for which (ε, δ)-differential privacy is still a meaningful privacy definition. However, pinning down the exact dependence on ε and δ is still of interest. Regarding ε, this can be done via the following standard lemma, which allows us to take $\varepsilon = 1$ without loss of generality.

Lemma 2.5. For every set of counting queries Q, universe X, $\alpha, \beta \in [0,1], \varepsilon \leq 1$. (Q,X) has sample complexity n^* for (α, β)-accuracy and $(1, o(1/n))$-differential privacy if and only if it has sample complexity $\Theta(n^*/\varepsilon)$ for (α, β)-accuracy and $(\varepsilon, o(1/n))$-differential privacy.

2.4 Re-identifiable Distributions

All of our eventual lower bounds will take the form a “re-identification” attack, in which we possess data from a large number of individuals, and identify one such individual who was included in the database. In this attack, we choose a distribution on databases and give an adversary 1) a database D drawn from that distribution and 2) either $A(D)$ or $A(D_{-i})$ for some row i, where A is an alleged sanitizer. The adversary’s goal is to identify a row of D that was given to the sanitizer. We say that the distribution is re-identifiable if there is an adversary who can identify such a row with sufficiently high confidence whenever A outputs accurate answers. If the adversary can do so, it means that there must be a pair of adjacent databases $D \sim D_{-i}$ such that the adversary can distinguish $A(D)$ from $A(D_{-i})$, which means A cannot be differentially private.

Definition 2.6 (Re-identifiable Distribution). For a data universe X and $n \in \mathbb{N}$, let D be a distribution on n-row databases $D \in X^n$. Let Q be a family of counting queries on X and let $\gamma, \xi, \alpha, \beta \in [0,1]$ be parameters. The distribution D is (γ, ξ)-re-identifiable from Q if there exists a (possibly randomized) adversary $B : X^n \times \mathbb{R}^{|Q|} \rightarrow \{n \cup \bot\}$ such that for every randomized algorithm $A : X^n \rightarrow \mathbb{R}^{|Q|}$, the following both hold:

1. $\Pr_{D \sim \xi D}[B(A(D) = \bot) \wedge \gamma(A(D)) = (\alpha, \beta)-\text{accurate for } Q] \leq \gamma$.
2. For every $i \in [n]$, $\Pr_{D \sim \xi D}[B(D,A(D_{-i})) = i] \leq \xi$.

Here the probability is taken over the choice of D and i as well as the coins of A and B. We allow D and B to share a common state.

If A is an (α, β)-accurate algorithm, then its output $A(D)$ will be (α, β)-accurate with probability at least $2/3$. Therefore, if $\gamma < 2/3$, we can conclude that $\Pr[B(D,A(D)) \in [n]] \geq 1 - \gamma - 1/3 = \Omega(1)$. In particular, there exists some $i^* \in [n]$ for which $\Pr[B(D,A(D)) = i^*] \geq \Omega(1/n)$. However, if $\xi = o(1/n)$, then $\Pr[B(D,A(D_{-i})) = i^*] \leq \xi = o(1/n)$. Thus, for this choice of γ and ξ we will obtain a contradiction to (ε, δ)-differential privacy for any $\varepsilon = O(1)$ and $\delta = o(1/n)$. We remark that this conclusion holds even if D and B share a common state.

3. LOWER BOUNDS VIA FINGERPRINTING CODES

In this section we prove that there exists a simple family of d queries that requires $n \geq \Omega(\sqrt{d})$ samples for both accuracy and privacy. Specifically, we prove that for the family of 1-way marginals on d bits, sample complexity $\Omega(\sqrt{d})$ is required to produce differentially private answers that are accurate even just to within $\pm1/3$. In contrast, without a privacy guarantee, $\Theta(\log d)$ samples from the population are necessary and sufficient to ensure that the answers to these queries on the database and the population are approximately the same. The best previous lower bound for (ε, δ)-differential privacy is also $O(\log d)$, which follows from the techniques of [12, 29].

In Section 3.1 we give the relevant background on fingerprinting codes and in Section 3.2 we prove our lower bounds for 1-way marginals.
3.1 Fingerprinting Codes

Fingerprinting codes were introduced by Boneh and Shaw [9] to address the problem of watermarking digital content. A fingerprinting code is a pair of randomized algorithms \((Gen, Trace)\). The code generator \(Gen\) outputs a codebook \(C \in \{0,1\}^{|S| \times d}\). Each row \(c_i\) of \(C\) is the codeword of user \(i\). For a subset of users \(S \subseteq \{n\}\), we use \(C_S \in \{0,1\}^{|S| \times d}\) to denote the set of codewords of users in \(S\).

The security property of fingerprinting codes asserts that any codeword can be “traced” to a user \(i \in \{n\}\). Moreover, we require that the fingerprinting code is “fully-collusion-resistant” — even if any “coalition” of users \(S \subseteq \{n\}\) get together and “combines” their codewords in any way that respects certain constraints known as a marking assumption, then the combined codeword can be traced to a user \(i \in S\). That is, there is a tracing algorithm \(Trace\) that takes the codebook and combined codeword and outputs either a user \(i \in \{n\}\) or \(\perp\), and we require that if \(c'\) satisfies the constraints, then \(Trace(C, c') \in S\) with high probability. Moreover, \(Trace\) should act as an innocent user, i.e., \(Trace(C, c') \in [n] \setminus S\), with very low probability. Analogous to the definition of re-identifiable distributions (Definition 2.6), we allow \(Gen\) and \(Trace\) to share a common state. When designing fingerprinting codes, one tries to make the marking assumption on the combined codeword as weak as possible.

The basic marking assumption is that each bit of the combined word \(c'\) must match the corresponding bit for some user in \(S\). In order to prove sample-complexity lower bounds for \((\alpha, \beta)\)-accuracy with \(\beta > 0\), we will need fingerprinting codes that are secure under an even weaker marking assumption. Specifically, that most bits of the combined word \(c'\) must match the corresponding bit for some user in \(S\). Formally, for any \(\beta \in [0, 1]\), we define

\[
F_\beta(C_S) = \left\{ c' \in \{0,1\}^d \mid \Pr_{j \in [d]} \left[\exists i \in S, c'_j = c_{ij} \right] \geq 1 - \beta \right\}
\]

Definition 3.1 (Robust Fingerprinting Codes)

For any \(n, d \in \mathbb{N}\), \(1/2\)-accurate fingerprinting codes with respect to \(\beta\) fractions of users when \(\beta = 1/2\) are known [7]. In contrast, our codes are robust to adversarial “errors.” Robustness to a \(\beta\) fraction of errors can be seen to imply robustness to nearly a \(2\beta\) fraction of erasures but the converse is false. Thus for corresponding levels of robustness our definition is strictly more stringent. Unfortunately we don’t currently know how to design a code tolerant to a \(1/2 - o(1)\) fraction of errors, so our Theorem 3.2 does not subsume prior results on robust fingerprinting codes.

3.2 Lower Bounds for 1-Way Marginals

We are now ready to state and prove the main result of this section, namely that there is a distribution on databases \(D \in \{0,1\}^d\), for \(n = \tilde{\Omega}(\sqrt{d})\), that is re-identifiable from accurate answers to 1-way marginals.

Theorem 3.3. For every \(n, d \in \mathbb{N}\), and \(\xi \in [0, 1]\) if there exists an \((n, d)\)-fingerprinting code with security \(\xi\), robust to a \(\beta\) fraction of errors, then there exists a distribution on \(n\)-row databases \(D \in \{0,1\}^d\) that is \((\xi, \xi)\)-re-identifiable from \((1/3, \beta)\)-accurate answers to \(M_{1,d}\).

In particular, if \(\xi = o(1/n)\), then there is no algorithm \(A : \{0,1\}^n \to \mathbb{R}^{[M_{1,d}]}\) that is \((1/3)\)-differentially private and \((1/3, \beta)\)-accurate for \(M_{1,d}\).

By combining Theorem 3.3 with Theorem 3.2 we obtain a sample complexity lower bound for 1-way marginals, and thereby establish Theorem 1.1 in the introduction.

Corollary 3.4. For every \(d \in \mathbb{N}\), the family of 1-way marginals on \([0,1]^d\) has sample complexity at least \(\tilde{\Omega}(\sqrt{d})\) (for \((1/3,1/75)\)-accuracy and \((O(1), o(1/n))\)-differential privacy).

Proof of Theorem 3.3. Let \((Gen, Trace)\) be the promised fingerprinting code. We define the re-identifiable distribution \(D\) to simply be the output distribution of the code generator, \(Gen\). And we define the privacy adversary \(B\) to take the answers \(a = A(D) \in \{0,1\}^{[M_{1,d}]}\), obtain \(\pi \in \{0,1\}^{[M_{1,d}]}\) by rounding each entry of \(a\) to \([0,1]\), run the tracing algorithm \(Trace\) on the rounded answers \(\pi\), and return its output. The shared state of \(D\) and \(B\) will be the shared state of \(Gen\) and \(Trace\).

Now we will verify that \(D\) is \((\xi, \xi)\)-re-identifiable. First, suppose that \(A(D)\) outputs answers \(a = (a_{ij})_{i \in [d]}\) that are \((1/3, \beta)\)-accurate for 1-way marginals. That is, there is a set \(G \subseteq [d]\) such that \(|G| \geq (1 - \beta)d\) and for every \(j \in G\), the answer \(a_{ij}\) estimates the fraction of rows having a 1 in column \(j\) to within \(1/3\). Let \(\pi_{ij}\) be \(a_{ij}\) rounded to the nearest value in \([0, 1]\). Let \(j\) be a column in \(G\). If column \(j\) has all 1’s, then \(a_{ij} \geq 2/3\), and \(\pi_{ij} = 0\). Similarly, if column \(j\) has all 0’s, then \(a_{ij} \leq 1/3\), and \(\pi_{ij} = 1\). Therefore, we have

\[
a = (1/3, \beta)\)-accurate \(\implies \pi \in F_\beta(D).
\]

By security of the fingerprinting code (Definition 3.1),

\[
Pr[\pi \in F_\beta(D) \land Trace(D, \pi) = \perp] \leq \xi.
\]

Combining (1) and (2) implies that

\[
Pr[A(D) \in (1/3, \beta)\text{-accurate} \land Trace(D, \pi) = \perp] \leq \xi.
\]
But the event $\text{Trace}(D, \mathbb{R}) = \bot$ is exactly the same as $B(D, \mathcal{A}(D)) = \bot$, and thus we have established the first condition necessary for D to be (ξ, ξ)-re-identifiable.

The second condition for re-identifiability follows directly from the soundness of the fingerprinting code, which asserts that for every adversary \mathcal{A}_FP, in particular for \mathcal{A}, it holds that $\Pr[\text{Trace}(D, \mathcal{A}_FP(D_{\cdot i})) = \bot] \leq \xi$. □

Although our lower bound is stated for constant accuracy $\alpha = 1/3$, a simple argument, which appears in the full version of this work, shows that a lower bound of n^* for $(1/3, \beta)$-accuracy implies a lower bound of $\Omega(n^*/\alpha)$ for (α, β)-accuracy. Thereby we obtain the following corollary, which is nearly optimal in both d and α.

Corollary 3.5. For every $d \in \mathbb{N}$ and $0 < \alpha \leq 1/3$, the family of 1-way marginals on $[0, 1]^d$ has sample complexity at least $\Omega(\sqrt{d}/\alpha)$ for $(\alpha, 1/75)$-accuracy and $(O(1), o(1/n))$-differential privacy.

Remark 3.6. As pointed out to us by Adam Smith, our connection can also be combined with standard algorithmic results in differential privacy (namely, the Gaussian mechanism) to give a simpler proof of Tardos' tight lower bound on the length of fingerprinting codes [31]. See the full version of our paper for details.

4. A COMPOSITION THEOREM FOR SAMPLE COMPLEXITY

In this section we state and prove a composition theorem for sample complexity lower bounds. At a high-level the composition theorem starts with two pairs, $(\mathcal{Q}, \mathcal{X})$ and $(\mathcal{Q}', \mathcal{X}')$, for which we know sample-complexity lower bounds of n and n' respectively, and attempts to prove a sample-complexity lower bound of $n \cdot n'$ for a related family of queries on a related data universe.

Specifically, our sample-complexity lower bound will apply to the “product” of \mathcal{Q} and \mathcal{Q}', defined on $\mathcal{X} \times \mathcal{X}'$. We define the product $\mathcal{Q} \times \mathcal{Q}'$ to be

$$Q \land Q' = \{q \land q' : (x, x') \rightarrow q(x) \land q'(x') \mid q \in \mathcal{Q}, q' \in \mathcal{Q}'\}.$$

Since q, q' are boolean-valued, their conjunction can also be written $q(x)q'(x')$.

We now begin to describe how we can prove a sample complexity lower bound for $Q \land Q'$. First, we describe a certain product operation on databases. Let $D \in \mathcal{X}^n$, $D = (x_1, \ldots, x_n)$, be a database. Let $D'_1, \ldots, D'_n \in (\mathcal{X}')^n$ where $D'_i = (x'_{i1}, \ldots, x'_{in})$ be n databases. We define the product database $D^* = D \times (D'_1, \ldots, D'_n) \in (\mathcal{X} \times \mathcal{X}')^n$ as follows:

For every $i = 1, \ldots, n, j = 1, \ldots, n'$, let the (i, j)-th row of D^* be $x_{i(j)} = (x_i, x'_{ij})$. Note that we index the rows of D^* by (i, j). We will sometimes refer to D'_1, \ldots, D'_n as the "subdatabases" of D^*.

The key property of these databases is that we can use a query $q \land q' \in Q \land Q'$ to compute a "subset-sum" of the vector $s_{q'} = q'(D'_1), \ldots, q'(D'_n)$ consisting of the answers to q' on each of the n subdatabases. That is, for every $q \in Q$ and $q' \in Q'$,

$$\langle q \land q' \rangle(D^*) = \frac{1}{nn'} \sum_{i=1}^{n} \sum_{j=1}^{n'} \langle q \land q' \rangle(x_{i(j)}) = \frac{1}{n} \sum_{i=1}^{n} q(x_i)q'(D'_i).$$

(3)

Thus, every approximate answer $a_{q \land q'}$ to a query $q \land q'$ places a subset-sum constraint on the vector $s_{q'}$. (Namely, $a_{q \land q'} \approx \frac{1}{n} \sum_{i=1}^{n} q(x_i)q'(D'_i)$) If the database D and family \mathcal{Q} are chosen appropriately, and the answers are sufficiently accurate, then we will be able to reconstruct a good approximation to $s_{q'}$. Indeed, this sort of "reconstruction attack" is the core of many lower bounds for differential privacy, starting with the work of Dinur and Nissim [12]. The setting they consider is essentially the special case of what we have just described where D_1, \ldots, D_n are each just a single bit ($\mathcal{X}' = \{0, 1\}$, and Q' contains only the identity query). In Section 5 we will discuss choices of D and \mathcal{Q} that allow for this reconstruction.

We now state the formal notion of reconstruction attack that we want D and \mathcal{Q} to satisfy.

Definition 4.1 (Reconstruction Attacks). Let \mathcal{Q} be a family of counting queries over a data universe \mathcal{X}. Let $n \in \mathbb{N}$ and $\alpha', \beta', \beta \in [0, 1]$ be parameters. Let $D = (x_1, \ldots, x_n) \in \mathcal{X}^n$ be a database. Suppose there is an adversary $\mathcal{B}_D : \mathbb{R}^{|\mathcal{Q}|} \rightarrow [0, 1]^n$ with the following property: For every vector $s \in [0, 1]^n$ and every sequence $a = (a_q)_{q \in Q} \in \mathbb{R}^{|\mathcal{Q}|}$ such that

$$|a_q - \frac{1}{n} \sum_{i=1}^{n} q(x_i) s_i| < \alpha$$

for at least a $1 - \beta$ fraction of queries $q \in Q$, $\mathcal{B}_D(a)$ outputs a vector $t \in [0, 1]^n$ such that

$$\frac{1}{n} \sum_{i=1}^{n} |t_i - s_i| \leq \alpha'.$$

Then we say that $D \in \mathcal{X}^n$ admits an α'-reconstruction attack from (α', β')-accurate answers to \mathcal{Q}.

A reconstruction attack itself implies a sample-complexity lower bound, as in [12]. However, we show how to obtain stronger sample complexity lower bounds from the reconstruction attack by applying it to a product database D^* to obtain accurate answers to queries on its subdatabases. For each query $q' \in \mathcal{Q}'$, we run the adversary promised by the reconstruction attack on the approximate answers given to queries of the form $(q \land q') \in \mathcal{Q} \land \mathcal{Q}'$. As discussed above, answers to these queries will approximate subset sums of the vector $s_{q'} = (q'(D'_1), \ldots, q'(D'_n))$. When the reconstruction attack is given these approximate answers, it returns a vector $t_{q'} = (t_{q',1}, \ldots, t_{q',n})$ such that $t_{q',i} \approx s_{q',i} = q'(D'_i)$ on average over i. Running the reconstruction attack for every query q' gives us a collection $t = (t_{q',1}, \ldots, t_{q',n})$ where $t_{q',i} \approx q'(D'_i)$ on average over both q' and i. By an application of Markov’s inequality, for most of the subdatabases D'_i, we have that $t_{q',i} \approx q'(D'_i)$ on average over the choice of q' in \mathcal{Q}'. For each i such that this guarantee holds, another application of Markov’s inequality shows that for most queries $q' \in \mathcal{Q}'$ we have $t_{q',i} \approx q'(D'_i)$, which is our definition of (α', β')-accuracy (later enabling us to apply a re-identification adversary for \mathcal{Q}').

The algorithm we have described for obtaining accurate answers on the subdatabases is formalized in Figure 1.

We are now in a position to state the main lemma that enables our composition technique. The lemma says that if we are given accurate answers to $Q \land Q'$ on D^* and the database $D \in \mathcal{X}^n$ admits a reconstruction attack from ac-
Let \(a = (a_{q,q'}) \) be an answer vector. Let \(B_D : \mathbb{R}^d \rightarrow \{0,1\}^n \) be a reconstruction attack.

For each \(q' \in Q \)

Let \((t_{q',i}, \ldots, t_{q',n}) = B_D((a_{q,q'})_{q \in Q}) \)

Output \((t_{q',i})_{q' \in Q', i \in [n]} \).

Figure 1: The reconstruction \(R_D(a) \).

Figure 2: The new distribution \(D^* \).

Figure 3: The privacy adversary \(B^*(D^*, A(D^*)) \).

Then there is a distribution on databases \(D^* \in (X \times X')^{n-n'} \) that is \((\gamma + 1/6, \xi)\)-re-identifiable from \((\alpha, \beta)\)-accurate answers to \(Q \).

Let \(D = (x_1, \ldots, x_n) \in X^n \) be a database that admits reconstruction.

Let \(D' \) be a new distribution on \((X')^{n'} \)

Choose a random \(i \in [n] \).

Output \(B'(D', (t_{q',i})_{q' \in Q'}) \).

Proof Sketch. Let \(D = (x_1, \ldots, x_n) \in X^n \) be the database that admits reconstruction (Definition 4.1). Let \(D' \) be the promised re-identifiable distribution on databases \(D \in (X')^{n'} \), \(D' \) has a re-identification attack from \((\alpha, \beta) \)-accurate answers to \(Q \).

In Figure 2, we define a distribution \(D^* \) on databases \(D' \). In Figure 3, we define an adversary \(B^* : (X \times X')^{n-n'} \rightarrow \{0,1\} \) for a re-identification attack. The shared state of \(D^* \) and \(B^* \) will be the shared state of \(D' \) and \(B^* \). The next two claims show that \(\gamma + 1/6, \xi \)-re-identifiable distribution (Definition 2.6).
2. \(A'(D') \) where \(D' \leftarrow_R D' \).

Thus the left-hand side of (4) is equal to
\[
\Pr_{D' \leftarrow_R D'} \left[\land(A(D'), A'(D')) = \bot \right] \leq \gamma
\]
which follows because \(D' \) is a \((\gamma, \xi)\)-re-identifiable from \((6\alpha', 2/c)\)-accurate answers to \(Q' \). Thus we have established (4), completing the proof of the claim. \(\square \)

The next claim follows directly from the definition of \(B^* \) and the fact that \(D' \) is \((\gamma, \xi)\)-re-identifiable.

CLAIM 4.5. For every \((i, j) \in [n] \times [n']\),
\[
\Pr_{D \leftarrow_D D^*} \left[B^*(D, A(D_{-(i, j)})) = (i, j) \right] \leq \xi.
\]

Combining Claims 4.4 and 4.5 suffices to prove that \(D^* \) is \((\gamma + 1/6, \xi)\)-re-identifiable from \((\alpha, \beta)\)-accurate answers to \(Q \land Q' \), completing the proof of the theorem.

5. APPLICATIONS OF THE COMPOSITION THEOREM

In this section we show how to use our composition theorem (Section 4) to combine our new lower bounds for 1-way marginal queries from Section 3 with (variants of) known lower bounds from the literature to obtain our main results. In Section 5.1 we prove a lower bound for \(k \)-way marginal queries when \(\alpha \) is a constant that establishes Theorem 1.3 from the introduction. Then in Section 5.2 we show a stronger lower bound for arbitrary counting queries when \(\alpha \) is a varying parameter, thereby proving Theorem 1.2 in the introduction.

5.1 Lower Bounds for Answering \(k \)-Way Marginals with Constant Accuracy

In this section, we carry out the composition of sample complexity lower bounds for \(k \)-way conjunctions as described in the introduction. Recall that we obtain our new \(\tilde{\Omega}(k\sqrt{d}) \) lower bound by combining the re-identification based \(\Omega(\sqrt{d}) \) lower bound for 1-way marginals (Section 3.2) with a known \(\Omega(k) \) lower bound based on a reconstruction attack. The lower bound of \(\Omega(k) \) for \(k \)-way marginals is a special case of a lower bound of \(\Omega(VC(Q)) \) due to [29] and based on [12], where \(VC(Q) \) is the Vapnik-Chervonenkis (VC) dimension of \(Q \). To apply our composition theorem, we need to formulate this reconstruction attack in the language of Definition 4.1. In particular, we observe that the same proof generalizes to allow us to reconstruct fractional vectors \(s \in [0, 1]^n \), instead of just Boolean vectors as in [12, 29]. We emphasize that we apply the same argument as in those works.

DEFINITION 5.1 (VC DIMENSION). Let \(Q \) be a collection of counting queries over a data universe \(X \). We say a set \(\{x_1, \ldots, x_k\} \subseteq X \) is shattered by \(Q \) if for every string \(v \in \{0, 1\}^k \), there exists a query \(q \in Q \) such that \(q(x_1), \ldots, q(x_k) = (v_1, \ldots, v_k) \). The VC-Dimension of \(Q \) denoted \(VC(Q) \) is the cardinality of the largest subset of \(X \) that is shattered by \(Q \).

The following fact is well-known.

FACT 5.2. The set of \(k \)-way conjunctions \(M_{k,d} \) over any data universe \(\{0, 1\}^d \) with \(d \geq k \) has VC-dimension \(VC(M_{k,d}) \geq k \).

Lemma 5.3 (Variant of [12, 29]). Let \(Q \) be a collection of counting queries over a data universe \(X \) and let \(n = VC(Q) \). Then there is a database \(D \in X^n \) which admits a 4\(\alpha \)-reconstruction attack from \((\alpha, 0)\)-accurate answers to \(Q \).

The proof is a simple variant of the arguments in [12, 29], and appears in the full version of this work.

We can now prove our sample-complexity lower bound for \(k \)-way marginals, thereby establishing Theorem 1.3 in the introduction.

THEOREM 5.4. There exists a universal constant \(\alpha_0 > 0 \) such that for every \(k, d \in \mathbb{N}, k \leq d \), there is an \(n = n(k, d) = \tilde{\Omega}(k\sqrt{d}) \) such that there exists a database \(D \in (\{0, 1\}^d)^n \) that is \((1/3, o(1/n))\)-re-identifiable from \((\alpha_0, 0)\)-accurate answers to the \(k \)-way marginals \(M_{k,d} \).

Proof. The previous results will imply the existence of two privacy attacks, and we obtain the result by applying the composition theorem (Theorem 4.3) to them.

1. By combining Theorem 3.3 and Theorem 3.2, there exists a distribution on databases \(D' \in (\{0, 1\}^{d/2})^n' \) that is \((\gamma = 1/6, \xi = o(1/n'k))\)-re-identifiable from \((6\alpha' = 1/3, 2/c = 1/75)\)-accurate answers to the 1-way marginals \(M_{1,d/2} \) for \(n' = \tilde{\Omega}(\sqrt{d}/\log(dk)) \).

2. By Lemma 5.3 and Fact 5.2, there exists a database \(D \in (\{0, 1\}^{d/2})^{k-1} \) that admits a \((\alpha' = \alpha_0)\) -reconstruction attack from \((\alpha = \alpha_0, \beta = 0)\)-accurate answers to the \((k-1)\)-way marginals \(M_{k-1,d/2} \) for any \(\alpha_0 \).

By applying Theorem 4.3 (with parameter \(c = 150 \)) to these two distributions, we obtain a new distribution on \((\{0, 1\}^{d/2})^{k-1}\) that is \((1/3, o(1/n))\)-re-identifiable from \((\alpha_0, 0)\)-accurate answers to \(M_{k-1,d/2} \land M_{1,d/2} \) on \(\{0, 1\}^{d/2} \times \{0, 1\}^{d/2} \). Note that this family of queries is a subset of \(M_{k,d} \) on \(\{0, 1\}^d \), but \((\alpha_0, 0)\)-accuracy for \(M_{k,d} \) (accuracy for all queries in \(M_{k,d} \)) implies \((\alpha_0, 0)\)-accuracy for any subset of \(M_{k,d} \). \(\square \)

Moreover, just as with the 1-way marginals (cf. Corollary 3.5), we can show the sample complexity increases at least linearly with \(1/\alpha \) for vanishing \(\alpha \).

COROLLARY 5.5. For every \(d \in \mathbb{N} \) and \(0 < \alpha \leq \alpha_0 \), the \(k \)-way marginals \(M_{k,d} \) have sample complexity at least \(\tilde{\Omega}(k\sqrt{d}/\alpha) \) for \((\alpha, 0)\)-accuracy and \((O(1), o(1/n))\)-differential privacy.

5.2 Lower Bounds for Arbitrary Queries

Using our composition theorem, we can also prove a nearly-optimal sample complexity lower bound as a function of the \(|Q|, d \), and \(\alpha \) and establish Theorem 1.2 in the introduction. The result will follow from three lower bounds: the \(\tilde{\Omega}(\sqrt{d}) \) lower bound for 1-way marginals and the \(\Omega(VC(Q)) \) bound that we have already discussed, and a lower bound of \(\Omega(1/\alpha^2) \) that is a simple variant of the seminal reconstruction attack of Dinur and Nissim [12], and related attacks such as [15, 20]. Roughly, the results of [12] can be interpreted in our framework as showing that there is an
Theorem 5.7. Let \(\alpha' \in (0, 1) \) be a constant, let \(\alpha > 0 \) be a parameter with \(\alpha \leq (\alpha')^2 / 240 \), and let \(n = 1/576e^2\alpha^2 \). For any data universe \(X = \{x_1, \ldots, x_n\} \) of size \(n \), there is a set of counting queries \(Q \) on \(X \) of size at most \(O(n \log(1/\alpha)) \) such that the database \(D = \{x_1, \ldots, x_n\} \) admits a \(\alpha' \)-reconstruction attack from \((\alpha, 1/3)\)-accurate answers to \(Q \).

Proof Sketch. First we will give a reconstruction algorithm \(B \) for an arbitrary family of queries. We will then show that for any set of random queries of the appropriate size, the reconstruction attack succeeds for every \(s \in [0, 1]^n \) with non-zero probability, which means that there exists a set of queries satisfying the conclusion of the theorem. We will use the shorthand

\[
(q, s) = \frac{1}{n} \sum_{i=1}^{n} q(x_i) s_i
\]

for vectors \(s \in [0, 1]^n \).

In order to show that the reconstruction attack \(B \) from Figure 5.2 succeeds, we must show that \(\frac{1}{n} \sum_{i=1}^{n} |t_i - s_i| \leq \alpha' \).
there is a family of queries \mathcal{Q} of size $O(hd \log(1/\alpha)/\alpha^2)$ and
an
\begin{equation}
n = n(h, d, \alpha) = \Omega\left(\frac{\sqrt{d \log h}}{\alpha^2}\right)
\end{equation}
such that there exists a distribution on n-row databases $D \in (\{0,1\}^d)^n$ that is $(1/2, o(1/n))$-re-identifiable from $(\alpha, 0)$-accurate answers to \mathcal{Q}.

Acknowledgements

We thank Kobbi Nissim for drawing our attention to the question of sample complexity and for helpful discussions and the anonymous reviewers for helpful comments.

6. REFERENCES

