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ABSTRACT

It is sometimes argued that an increase in stock market
volatility raises required stock returns, and thus lowers stock
prices. This paper modifies the generalized autoregressive
conditionally heteroskedastic (GARCH) model of returns to allow
for this volatility feedback effect. The resulting model 1is
asymmetric, because volatility feedback amplifies large negative
stock returns and dampens large positive returns, making stock
returns negatively skewed and increasing the potential for large
crashes. The model also implies that volatility feedback is more
important when volatility is high. 1In U.S. monthly and daily
data in the period 1926-88, the asymmetric model fits the data
better than the standard GARCH model, accounting for almost half
the skewness and excess kurtosis of standard monthly GARCH
residuals. Estimated volatility discounts on the stock market
range from 1% in normal times to 13% after the stock market crash
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1. Introduction

One striking characteristic of the stock market is that the volatility of returns can
be very different at different times. Estimates of the standard deviation of monthly stock
returns reported in French, Schwert, and Stambaugh (1987), Schwert (1989) and this paper
range from a low of 2% in the early 1960’s to a high of 20% in the early 1930’s. Daily
volatility also fluctuates, and can change very rapidly; for example we estimate below
that the standard deviation of daily returns increased from about 1% to almost 7% in the
few days around the stock market crash of October 1987. These 10- or 7-fold changes in
standard deviation correspond to 100- or 50-fold changes in variance.

It seems plausible that changes in volatility of this magnitude may have important
effects on required stock returns, and thus on the level of stock prices. This “volatility
feedback” effect has been emphasized by Pindyck (1984) and French, Schwert, and Stam-
baugh (1987). Volatility feedback is an appealing idea because it has the potential to help
explain some other facts about stock returns.

First, large negative stock returns are more common than large positive ones, so
stock returns are negatively skewed (this might be called “contemporaneous asymmetry”).
Contemporaneous asymmetry shows up clearly in the pattern of extreme moves in stock
prices in the postwar period. Of the five largest one-day movements in the S&P 500 index
since World War II, four are declines in the index and only one is an increase. Of the
ten largest movements, eight are declines and only two are increases (Cutler, Poterba, and
Summers 1989).1

Second, extreme stock market movements are more common than would be expected if
stock returns were drawn from a normal distribution, so stock returns have excess kurtosis.
This is not just the result of changing volatility, because excess kurtosis remains after one
normalizes returns by their estimated conditional standard deviations (Bollerslev 1987).
The stock market decline on October 19, 1987 was a large drop even conditional on price
movements observed earlier that month.

Third, volatility is typically higher after the stock market falls than after it rises, so
stock returns are negatively correlated with future volatility (this might be called “predic-
tive asymmetry”). Predictive asymmetry was first discussed by Black (1976), who argued
that it could be due to the increase in leverage that occurs when the market value of a

firm declines; however it seems that the leverage effect is too small to account for this

! Over a longer period starling in 1885, however, the dominance of large price drops is much weaker. Of the ten largest
movements in this period, six are declinea and four are increases (Schwert 1990b).
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phenomenon (Christie 1982, Schwert 1989).

In principle, volatility feedback can explain these characteristics of returns even if the
underlying shocks to the market are conditionally normally distributed. The reason is
very simple. Suppose there is a large piece of good news about future dividends. Large
pieces of news tend to be followed by other large pieces of news (volatility is persistent), so
this piece of news increases future expected volatility. This in turn increases the required
rate of return on stock and lowers the stock price, dampening the positive impact of the
dividend news. Now consider a large piece of bad news about future dividends. Once again
the stock price falls because higher volatility raises the required rate of return on stock,
but now the volatility effect amplifies the negative impact of the dividend news. Large
negative stock returns will therefore be more common than large positive ones, and the
amplification of negative returns can produce excess kurtosis.

We have emphasized that all large pieces of news have a negative volatility effect; con-
versely, all small pieces of news have a positive volatility effect. The arrival of a small piece
of news lowers future expected volatility and increases the stock price. In the extreme case
where no news arrives, the market rises because “no news is good news”. Volatility feed-
back therefore implies that stock price movements will be correlated with future volatility.

A number of authors have explored these ideas. Poterba and Summers (1986) ar-
gued that volatility feedback could not be important because changes in volatility are
too short-lived to have a major effect on stock prices. French, Schwert, and Stambaugh
(1987) regressed stock returns on innovations in volatility and found a negative coefficient,
which they attributed to volatility feedback. The earlier literature tended to use moving
average measures of volatility, but more recent authors (Akgiray 1989, Bollerslev 1987,
Chou 1988, French, Schwert, and Stambaugh 1987) have used the generalized autoregres-
sive conditionally heteroskedastic (GARCH) model of Engle (1982) and Bollerslev (1986).
Typically GARCH estimates of stock market volatility are more persistent than moving
average estimates, and this allows a greater role for volatility feedback.?

Unfortunately, there is no fully worked out model of volatility feedback in the lit-
erature. Volatility feedback has instead been discussed informally and used to interpret
estimates of GARCH models for stock returns. The basic GARCH model does not cap-

ture any of the implications of volatility feedback, because it has a constant mean and is

2 Attanmio and Wadhwani (1989) and Chou (1988) present some Monte Carlo evidence that moving average persistence
estimates are biased downwards.



symmetric, with normal innovations whose variances depend only on past squared innova-
tions. Various second-generation GARCH models do capture some of the implications of
volatility feedback. The GARCH-in-mean or GARCH-M model, for example, allows the
conditional mean return to depend on the conditional variance of returns.® Other variants
of the GARCH model make the conditional variance depend on past returns as well as their
squares, and make the distribution of return innovations negatively skewed and fat-tailed
(Nelson 1991, Engle and Gonzailez-Rivera 1989, Sentana 1990). But these variants deliver
only a statistical description of asymmetry, not an economic model of volatility feedback.*

The basic problem is that stock returns are determined endogenously in general equi-
librium. One cannot explain the behavior of stock returns in economic terms by applying a
statistical model directly to returns. An economic explanation requires that the statisticnl
model be applied to exogenous variables, with the behavior of stock returns emerging from
the solution of an economic model.

In this paper we develop the first formal model of volatility feedback. We do not
attempt to specify a full general equilibrium model of the economy; rather, we rely on
two simple assumptions. First, we assume that the news about stock dividends follows a
standard symmetric, conditionally normal GARCH model. Second, we assume that the
expected return on stock is a linear function of the conditional variance of the news about
dividends.> We combine these two assumptions with the log-linear approximate asset
pricing framework of Campbell and Shiller (1988a,b) and Campbell (1990a, 1991) to get
an implied process for stock returns. The model generates contemporaneous asymmetry
and excess kurtosis, as well as a form of predictive asymmetry.

As motivation for our model, Table 1 illustrates the nonnormality of U.S. stock return
data. The table reports skewness and excess kurtosis for raw stock returns and for the
normalized residuals of a standard symmetric GARCH-M model with normal innovations.
Stock returns are log excess returns on the Center for Research in Securities Prices (CRSP)

value-weighted index of New York Stock Exchange and American Stock Exchange stocks

3 French, Schwert, and Stambaugh (1987) used a GARCH-M model and found a significant positive relation between the
conditional mean and variance of stock returns. They argued that their GARCH-M results might be misleading because of the
specification error caused by ignoring negative skewness from volatility feedback (pp. 22-23). Chou (1988) also combines an
informal discussion of the negative effect of volatility on prices with a formal GARCH-M model which cannot accommodate
this effect.

{ Turner, Startz, and Nelson (1989) abandon the GARCH framework altogether and use a two-state Markov model for the
variance of returns. Their model allows stock prices to fall when agents are surprised by the high variance state, but they do not
relate the size of this effect to the other parameters of their model. Haugen, Talmor, and Torous (1990) use a moving-average
measure of variance and show that increases in variance are associated with conlemporaneous decreases in stock prices and
delayed increases in average retumns, but again they do not Link these effects together in a formal model.

3 As explained further below, these j can be kened. We can allow for other sources of variation in expected
returna {which appear to be important in practice), provided that a GARCH process adequately characterizes the innovations
in stock prices caused by dividend news and by non-volatility-induced changes in expected returna.
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over a I-month Treasury bill, measured at monthly and daily intervals over the period
1926-88 and the subperiods 1926-51 and 1952-88. The table clearly shows that neither
log excess returns nor residuals from a GARCH-M model are normal or symmetric. In
particular, there is evidence that log excess returns are negatively skewed and leptokurtic.
In Figures la and 1b we show that the negative skewness is robust to sample period by
plotting the sample skewness of standardized GARCH-M residuals over shorter subsamples.
The standardized residuals for monthly log excess returns are strongly negatively skewed
in each of the decades of our sample. Although the evidence for daily data is somewhat
weaker, there is still negative skewness in the overwhelming majority of years.®

The organization of the paper is as follows. In the next section we explain our model
of volatility feedback. In section 3 we apply it to U.S. stock market data. Section 4

summarizes our conclusions and discusses some interesting directions for further research.

8 The strong evidence for negative skewness reported here does not depend on our use of 8 GARCH-M rather than a simple
GARCH model. It does depend on our using log retumns rather than simple retums. The log return is the appropriate concept,
since the standard geometric Brownian motion model of stock prices implies that the log return, not the simple return measured
in discrete time, is normally distributed.



2. An Asymmetric Model of Changing Volatility

2.1. The Campbell-Shiller Framework

If we are to model the effect of changing volatility on stock prices, we need a framework
that allows prices to be affected by changing expectations about both dividends and re-
quired returns. The difficulty is that the standard present value relation is nonlinear when
expected returns vary through time. This makes it intractable except in a few special
cases.’

Campbell and Shiller (1988a,b) propose a log-linear approximation to the standard
model. They argue that the approximation is both tractable and surprisingly accurate.
The Campbell-Shiller approach begins with the definition of the one-period log real holding
return on stock, he4y = log( P41+ Diy1)—log( Pt), where Py is the real stock price measured
at the end of period ¢ (ex dividend), and Dy is the real dividend paid during period ¢8
The right hand side of this identity is a nonlinear function of the log stock price and the

log dividend; it can be approximated, using a first-order Taylor expansion, as

hiyr = k+ppir1 +(1 —p)diy1 —pr, (2.1)

where lower-case letters are used for logs. The parameter p is the average ratio of the stock
price to the sum of the stock price and the dividend, a number slightly smaller than one,
and the constant & is a nonlinear function of p. Equation (2.1) replaces the log of the sum
of price and dividend with a weighted average of log price and log dividend. Intuitively,
the future log stock price gets a much larger weight than the future log dividend because
a given percentage change is absolutely larger when it occurs in the stock price than when
it occurs in the dividend. v

Equation (2.1) can be thought of as a difference equation relating py to pt+1, di+1 and
hys1. It holds ez post, but it also holds ez ante as an expectational difference equation.
Campbell and Shiller impose the terminal condition that lim; . E'gpipt+; = 0. This
condition rules out “rational bubbles” which would cause explosive behavior of the log

stock price. With this terminal condition, the ez ante version of (2.1) can be solved

7 One relatively tractable case assumes a discrete-state Markov process for dividends, and combines this with the assumption
that dividends equal consumption (Mehra and Prescott 1985). Even this case has to be solved numerically.

8 Campbell and Shiller derived their approximation for a beginning-of-period (cum dividend) stock price. Here we will follow
Campbell (1990a, 1991) and work with an end-of-period price, which is more standard in the finance Literature.
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forward to obtain

k X R
O + (1-p) E ZPJdt+1+j - E ZP”IHH;‘- (2.2)
j=0 j=0

This equation is useful because it enables one to calculate the effect on the stock price
of a change in expected stock returns. It says that the log stock price p; can be written
as an expected discounted value of all future dividends dy4; less future returns hy ;4 ,
discounted at the constant rate p plus a constant k/(1 — p). If the stock price is high
today, this must mean that future expected dividends are high unless returns are expected
to be low in the future. Note that (2.2) is not an economic model, but has been derived
by approximating an identity and imposing a terminal condition. It is best thought of as
a consistency condition that must be satisfied by any reasonable set of expectations.
Campbell (1990a, 1991) uses equation (2.2) to substitute p; and py41 out of (2.1).

This gives another useful expression:

oo x
hivt = Ethepr = (Bip1—E) Y P Adigrgj — (Bl —EDY Phugryys (23)
Jj=0 i=1

or in more compact notation,

Vhiel = Ndt+l — Thi+l (2.4)

where vp, ;.1 denotes the unexpected stock return at time ¢ + 1, and 14,41 and np 41
denote news about dividends and future returns respectively. Once again, this equation
should be thought of as a consistency condition for expectations. If the unexpected stock
return is negative, then either expected future dividend growth must be lower, or expected
future stock returns must be higher, or both. There is no behavioral model behind (2.4);
it is simply an approximation to an identity.

Below we will work with excess log stock returns, measured relative to a short-term

interest rate. Campbell (1991) shows that the decomposition (2.4) is equally valid for excess
6



stock returns, provided that 74,1 is reinterpreted to include news about real interest rates
as well as news about real dividends.? In this paper we will use the notation of equation
(2.4) and refer to nq4 ;.1 as “news about dividends”. In our empirical work, however, we
do not directly measure 74 ,41. It is a residual term that may contain real interest rate
shocks as well as other shocks that we do not explicitly model. In practice we believe that
changes in expected excess stock returns, arising from some other source than changing
volatility, are an important component of the shock we write as n4,.1. The shock we
write as 7,41 should be thought of as capturing the volatility feedback effect, but not
necessarily all changes in expected excess stock returns. We discuss this point further in

section 4 below.

2.2. A GARCH-M Model for News About Dividends

The first determinant of the stock return in (2.4) is the news about future dividends,
14,t+1- We treat this as an exogenous shock which follows a conditionally normal GARCH
process. For simplicity we will begin with the GARCH(1,1) case and generalize to the
GARCH(p, q) case below. The GARCH(1,1) model is

Nagrr ~ N(O,07), (2.5)
a? = w + ar]i, + ﬁa?_x‘ (2.6)

In order to ensure that the conditional variance is always positive, the parameters w, a,
and 3 must all be positive.

The parameter a measures the extent to which a squared return today feeds through
into future volatility, while the sum a + § measures the persistence of volatility. The
unconditional variance of the process is w/(1 — (a + §)).

The other determinant of the stock return in (2.4) is the news about future expected
returns. We assume that the conditional expected return Ejhyy; is determined by the

volatility of the news variable g4 41:

? Campbell (1991) finds that news about real interest rates is not an important force moving the stock market in monthly
U.S. data in the period 1927-88.



Ethiyy = s+ 1Emiy = u + ot (2.7)

As we shall see, this is not quite equivalent to the conventional assumption that the ex-
pected return is linear in the volatility of the return itself, but our empirical estimates
imply that the discrepancy is small. Following Merton (1980), the coefficient v is usually
interpreted as the coeficient of relative risk aversion.!0

Equation (2.7) and the GARCH(1, 1) process (2.6) imply that the expected return at

any date in the future can be written as

Ehipryj = p + 1—(1—w+/3) + 7(Q+B)j<03_tZ:Tﬂ))' (2.8)

The second term on the right hand side of (2.8) is 7 times the unconditional variance of the
news process. The third term is  times the deviation of today’s conditional variance from
the unconditional variance, discounted using the persistence of volatility a + 3. Equation

(2.8) implies that the discounted sum of all future expected returns is

o0

j #

Et ) phiry = i,
~

* lzp(l—(:+5)) * l—p(1+5)(”t2_1_(:+5)). (2.9)

This discounted sum of expected returns helps determine the level of the stock price in
equation (2.2). The second and third terms on the right hand side of (2.9) can be inter-
preted as the “volatility discount” on the stock price, the extent to which the price is lower
than it would be if there were no uncertainty about future dividends. The second term is
the unconditional mean volatility discount, while the third term represents the variation

in the discount caused by the changing conditional volatility of news about dividends.

' Even ignoring the difference between the stock return and the news variable nd,¢+1, equation (2.7) can be derived in general
equilibrium only under restrictive assumptions, In a model that distinguishes the coefficient of relative risk aversion from the
elastidty of intertemporal substitution, Campbell (1990b) shows that (2.7) holds for the market portfolio, with v equal 1o
relative risk aversion, if Lhe elasticty of intertemporal substitution is one. Campbell also di other cir under
which (2.7) holds as an approximation,




These equations describe the levels of expected returns. It is also straightforward to
calculate the revision from time ¢ to time ¢t + 1 in the discounted value of future returns.
This is

oo
(Bt —E) Y phrs; = ’\(’73,!+1_°t2)7 (2.10)
j=1

Th,t+1

where A is related to the other parameters of the model by

Ypa '
et (2.11)

At time t + 1 the innovation to volatility is the difference between the squared innovation
173‘“’1 and its conditional expectation alz. To obtain the revision in the discounted value
of future stock returns, one multiplies this innovation by the parameter A, which depends
on the effect of volatility on the expected stock return, +, the effect of an innovation on
next period’s volatility, a, and the persistence of volatility, a + 3.

Equations (2.4), (2.7), (2.10) and (2.11) can now be combined to write the stock return

hiy1j = p + 70,2 + nge4r — /\('73'44,1 —a?). (2.12)

The first three terms in equation (2.12) are the standard GARCH-M model that has
previously been used to describe stock returns. The final term is new. This term says that
an unusually large realization of dividend news, of either sign, will lower the stock price
and cause a negative unexpected stock return. The strength of this effect is measured by
the parameter A.

Our analysis so far has assumed a GARCH(1, 1) process for volatility. However we
show in Appendix A that equation (2.12) holds for any GARCH(p, ¢) process provided
that the parameter ) is appropriately redefined in terms of the underlying parameters
governing the evolution of variance. In the GARCH(1,2) case, for example, the variance

process is 0,2 = amgt + ngng -1t ﬂa;"_l and A has the form given in (2.11) except that
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a is replaced by ay + pas. Thus equation (2.12) is quite general and we can proceed to

discuss its implications for the behavior of stock returns.

2.3. Characteristics of the Returns Process

To understand equation (2.12), it is helpful to plot the relationship between cash fow
news ng ;41 and the unexpected stock return Vptpl = NMd i+l — /\(n?in_l - 012). Figures 2a
and 2b plot the stock return against the news for parameter values that we estimate below
(in Table 2a) using monthly U.S. data. The two figures differ in the level of conditional
standard deviation oy that is assumed; Figure 2a sets oy = 0.04 (a low to normal level
of volatility in the postwar period), while Figure 2b sets oy = 0.20 (close to the 1926-88
maximum reached in the early 1930’s). Each figure has a horizontal range three standard
deviations on either side of zero, so news events lying outside the range of the figures are
exceedingly unlikely.

In each figure the unexpected stock return (the dashed curve) lies above the 45° line
in the middle of the figure, where the absclute value of the news is less than its conditional
standard deviation. This is the “no news is good news” effect. If there is no dividend news
at all, the stock market will rise because the absence of dividend news implies that volatility
and required returns will tend to be lower in the future. Conversely, the unexpected return
lies below the 45° line at the left and the right of the figure, where the dividend news is
large in absolute value. Large declines in stock prices are amplified, while large increases
are dampened. In fact, the model implies that the maximum possible return is a?/\-l— 1/4A,
which is achieved when 74,,1 = 1/2). Any larger piece of good dividend news actually
gives a lower stock return because the indirect volatility effect outweighs the direct dividend
effect.11
The degree of curvature in the relation between news and returns depends on the level
of cr?. If Ut2 is small, then "§.t+l is almost always small and the quadratic term has little
weight relative to the linear term in (2.12). On the other hand if o7 is large, the quadratic
term becomes much more important. This can be seen in a particular case by comparing
Figures 2a and 2b. To understand this point more generally, cbserve that (2.12) can be

rewritten as

1! Whether this behavior is relevant for observed stock returns depends on the parameter A and the range of o?. In our
empirical work we assume that all observed retums were generated by underlying shocks n4,¢41 less than 1/2\. We oblain
moderate estimates of A, for which this assumption is not restrictive.

10



3'% = (1+Aa¢)[1+1,\6t{"d;fl}+1i";at{1-("”’;‘)2}]. (2.13)

The variable n4,41/0; has a standard normal distribution. Thus the distribution of unex-
pected returns, normalized by oy, is a mixture of a normal distribution and a demeaned,
negative y2(1). The normal distribution has relative weight 1/(1+ Ac), while the negative
x2(1) has relative weight Ao¢/(1+ Agy). In times of low volatility returns will be very close
to normal, but in periods of high volatility returns will take on some of the characteristics
of a negative x2(1) distribution.

This shifting distribution of returns is the result of an important property of the
GARCH model: the volatility of GARCH variance increases very rapidly with the level of
GARCH variance. To see this for the GARCH(1, 1) case, lead equation (2.6) by one period
and divide through by atz to obtain

= w o+ aof{ (M) 1} 4 @it (214)

The innovations to afﬂ are the product of a"t2 and a demeaned x%(1) random variable.
The conditional variance of ‘7?+l is therefore proportional to a‘,‘. This feature of the
GARCH model enables it to generate long periods of calm with occasional episodes of
high and rapidly changing volatility, as seen for example in Figure 3 below. It also means
that volatility feedback will distort the distribution of returns away from the normal more
strongly when volatility is high than when it is low. As volatility increases the variance of
news about dividends increases with 012, but the variance of news about variance, which
creates the nonnormality of returns, increases with 04 12

Further insight can be gained by deriving the conditional moments of the returns
process. The conditional mean return has already been given in equation (2.7). The
conditional variance of the return changes through time in the manner of the underlying
GARCH process for dividend news. The return variance is in fact slightly higher and more

variable than the news variance. The difference, or excess variance, is given by

12 The fact that the variance of GARCH variance increases with its level is char istic of hasti that are
constrained to be positive, such as lognormal processes or the continuous-time interest rate process of Cox, ln;crnoll and Ross
(1985). What is important here, however, is that the variance of GARCH variance increasea more than proportionally with its
level.

11



Varg(hpy) — o} = 22%% (2.13)

For small o7 the excess variance will be small relative to the underlying news variance.
The returns process is negatively skewed, and the skewness increases with the condi-
tional variance. The expression for skewness is complicated by the fact that the conditional

variance of returns does not equal 012. It is

(3 + 422%)

. = —gy —— 7t
Skewy(he11) 2Xay (1 22

(2.16)

which increases in absolute value with Aoy, approaching a limit of —2v/2 which is the
skewness of a negative x%(1) distribution.

The conditional distribution of stock returns has fat tails even though the GARCH
process for dividend news is conditionally normal. The conditional excess kurtosis of

returns is

2,2 (1 + Mah)

EK(hey1) = 483207 REEIvE (2.17)

which again increases with Aoy, approaching a limit of 12 which is the excess kurtosis of a
x*(1) distribution.

Comparing equations (2.15), (2.16), and (2.17), it is noteworthy that for small A the
conditional excess variance and kurtosis of returns approach zero at a rate proportional
to A2, The skewness of returns approaches zero at a rate proportional to A, however, so
in this sense our model generates “first-order” skewness but only “second-order” excess
variance and kurtosis.

These calculations show that our model can explain the contemporaneous asymme-
try and excess kurtosis of stock returns. The model also generates a form of predictive

asymmetry. The covariance between today’s return and tomorrow’s volatility is

Cove(hiy1,08p1) = —2ahdf. (2.18)

12



This follows directly from the contemporaneous asymmetry discussed above: the.stock
return is negatively correlated with the contemporaneous innovation in volatility, which
means that it is negatively correlated with future levels of volatility.

A stronger form of predictive asymmetry does not hold in our model, however. It
is not true that for any squared return ht2+lv future volatility is higher if the return is
positive than if it is negative. To see this, consider Figure 2a or 2b. To get a zero
unexpected return, the underlying news must be slightly negative. This means that for
small squared returns, positive returns correspond to larger declines in volatility. On the
other hand, the curvature of the news-return relation means that larger underlying pieces
of news are required to get large positive returns than large negative returns. Since large
pieces of news raise volatility, when the squared return is large positive returns correspond
to greater increases in volatility.

It is also possible to derive the unconditional variance of stock returns, but unlike the
conditional moments, this is specific to the particular GARCH model used. We calculate
unconditional variances for the GARCH(1, 1) and GARCH(1, 2) cases in Appendix B. The
main interest of the calculation is that it enables us to measure the contribution of volatility

feedback to the unconditional variance of returns.
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3. Application to U.S, Stock Market Data

3.1. Data and Estimation Method

In this section we apply our model to monthly and daily data on excess stock returns
over the period 1926-88. The monthly excess return series is the log return on the value-
weighted CRSP index, less the log return on a 1-month Treasury bill as reported by
Ibbotson Associates (1989). The daily return series is the log value-weighted CRSP index
return from July 3, 1962, spliced to Schwert’s (1990a) daily index return for the earlier
part of the sample period. These daily returns include dividends. To form a daily excess
return we subtract 1/NV; times the Ibbotson 1-month Treasury bill rate, where N; is the
number of trading days in month j. We split the 1926-88 sample period at the end of
1951.13

We estimate our model using numerical maximum likelihood. This procedure is sub-
ject to the same caveat that applies to all empirical work with GARCH-M models, namely,
that sufficient regularity conditions for consistency and asymptotic normality of the max-
imum likelihood estimator are not yet available.14

In Appendix C we derive the likelihood function for our model. Several complications
arise from the quadratic relation between excess returns hyy; and dividend news 7444 ;.
First, the likelihood function needs to include a Jacobian term to account for the fact that
the observed variable hy4] is a nonlinear function of the underlying conditionally normal
variable 7441, where the functional relation depends on the unknown parameters of the
model. Second, for certain parameter values the observed return may exceed the maximum
that can be generated by our model. We handle this by imposing a prohibitive penalty
on the likelihood for parameters which cause this problem. In practice this means that
the estimated parameters cannot imply too much curvature; the maximum possible return
must be larger than any observed return, so that the relevant part of the news-return
relationship is upward-sloping, as it is in Figures 2a and 2b. Third, for any observed
return there are two possible realizations of 74441. We assume that the probability of

the larger root, on the downward-sloping part of the news-return relationship, is zero,

13 Campbell (1990a, 1991) uses the same break point, which corresponds to a change in interest rate regime with the Fed-
Treasury Accord. This break point also separates the Great Depression from the bulk of the postwar period (see Pagan and
Schwert 1990 for evidence that the behavior of volatility was different during the Great Depression period). French, Schwert,
and Stambaugh (1987) use a similar break point. We also estimated models over the period 1952-86, thereby excluding the
stock market crash of October 1987, Results were generally similar to those for 1952-88, although parameters were less precisely
estimated when we excluded the crash,

14 Recent work by Lumasdaine {1990} proves both consi y and asy! ic Jity for a class of GARCH and integrated
GARCH models. However, the results cannot be directly extended to GARCH-M models.
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so that we always pick the smaller root. Strictly speaking this means that our estimation
procedure is only an approximation to maximum likelihood, but it is an extremely accurate

approximation when the model has the moderate curvature illustrated in Figures 2a and
2b.13

3.2. Basic Empirical Results

Tables 2a and 2b report maximum likelihood parameter estimates for monthly arnd
daily data respectively. In each table the top panel gives results for the full sample period
1926-88, the middle panel gives results for the first subsample 1926-51, and the bottom
panel gives results for the second subsample 1952-88. Within each panel, the top row
reports parameter estimates for the standard GARCH-M model (equation (2.12) with
A = 0 but nonzero y). The second row estimates our asymmetric GARCH-M model
with A restricted as in equation (2.11), and the third row estimates a more general model
in which A is a free parameter. Preliminary exploration of the data suggested that a
GARCH(1,1) model is sufficient for monthly data, while a GARCH(1, 2) model is required
to capture the dynamics of the variance in daily data 18 Accordingly Table 2a reports a
monthly GARCH(1, 1) specification, while Table 2b reports a daily GARCH(1, 2).

In the daily GARCH(1,2) estimation we allowed the coefficient on the lagged error,
a9, to be negative. Coefficients in GARCH models are often restricted to be positive in
order to guarantee that the variance otz is positive; however this restriction is stronger
than necessary. In a GARCH(1,2) model 012 will be positive if w, a) and § are strictly
positive and —ag < fa). We found that allowing a negative ag significantly improves the
fit of the model without violating the positivity restriction on 012.

The qualitative features of our results are quite similar in monthly and daily data,
and across the two subsamples. First, the estimates of the GARCH variance parameters,
w, a (or a] and ag), and 3, are very little affected by the changes in specification across
rows of the tables. The sum a + 3 (or a) + a2 + 3), which governs the persistence of the
GARCH process, is always close to one. The implied half-life of a volatility shock is about
2 years in monthly data over the full sample and the prewar subsample, and 7 months in

postwar monthly data. In daily data the half-life is about 10 months over the full sample,

13 After estimating the parameters, we can compute the implied probability at each point in the sample of a shock greater
than the larger root. This probability never exceeds 10~7 in any of the models we estimate.

18 We also tried to account for possible non-trading eflects in the daily returns series by first removing a short moving average
from retwms. However, Lhis did not noticeably change the results.
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4 months in the prewar subsample, and 6 to 7 months in the postwar subsample. These
half-life estimates are greater than those reported by Poterba and Summers (1986), which
were just over 2 months for the full sample period and just over 1 month for the postwar
period. The difference is probably due to Poterba and Summers’ use of a moving average
of daily data to compute monthly volatility. Chou (1988), estimating a GARCH model on
weekly data in the period 1962-85, finds a volatility half-life of about 1 year.

Although volatility half-lives tend to be lower in the postwar period, the fitted values
of volatility are similar whether one estimates the model over the whole period or the
subperiods. Figure 3 shows the estimated values of o in monthly data. The solid line is
based on full sample estimates, while the dashed line is based on subsample estimates, and
the two lines are always very close together.

A second result is that the coefficient v is imprecisely estimated in the first and third
rows of each panel. In these rows the only information on vy comes from the changing
conditional mean return. This is not sufficient to identify v very well, given that our
information set includes only the past history of returns. Qur estimates of v are positive,
except in prewar monthly data, but they are often not significantly different from zero.l?

Third, the coefficient A is highly significant in the models where it appears. In monthly
data A is four or five standard errors from zero, and in daily data it is about nine standard
errors from zero. When A and v are linked together by the restriction (2.11), v becomes
smaller and more precisely estimated. In the postwar period, A tends to be larger than in
the full sample or the prewar period.

Tables 3a and 3b report likelihood ratio tests of the restricted models against more
general alternatives. Again the results are quite similar for monthly and daily data. The
data strongly reject models with A = 0 against models with nonzero A. There is much less
evidence against the restriction relating A to the other parameters, although this restriction

can be rejected at conventional significance levels in some daily models.

3.3. The Economic Importance of Volatility Feedback

We have shown that volatility feedback is statistically significant, but what is its
economic significance? In this section we present several measures of the effect of volatility

feedback on stock prices. We begin in Figure 4 by plotting the volatility discount implied

7 We also estimated a model imposing 4 = 0 as well as A = 0. As one would expect from the standard errors on v, we could
not reject this model against the altemative of a free 4 with A = 0. French, Schwert, and Stambaugh (1987) also found weak
evidence against v = 0.
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by our model at each point in the sample. The volatility discount is defined as the log
difference between the actual stock price and the price that would prevail in the absence
of uncertainty about future dividends. It is given by the second two terms on the right
hand side of equation (2.9). In Figure 4 the solid line is based on full sample monthly
parameter estimates, while the dashed line uses subsample parameter estimates. The two
lines are close to one another in the prewar period, but they diverge in the postwar period
because the postwar estimates of A are larger. Figure 4 shows that the volatility discount
is extremely sensitive to the level of volatility. In quiet times the discount is only about
1%, but it exceeds 25% in the early 1930’s. In the postwar period, the maximum discounts
are 8 or 9% in 1974 and 1987.

The contribution of volatility feedback to the variance of returns also varies with
the level of volatility, but it is generally very small. In monthly full sample estimates
the conditional excess variance of returns, given by equation (2.15), is only 0.3% of the
underlying news variance on average, and it reaches a maximum of 4.6% in the early 1930’s.
(In the postwar period these numbers are 0.6% and 1.9% respectively.) The unconditional
excess variance of returns, calculated using the results of Appendix B, is only 0.7% in
the full sample and 1% in the postwar period. These small numbers for excess variance
suggest that there is little difficulty with our assumption (2.7) that the expected return
on the market depends on the news variance rather than the overall return variance.
They also suggest that volatility feedback cannot explain the findings of Campbell and
Shiller (1988a,b) and Campbell (1990a,b) that returns are considerably more variable than
revisions of dividend forecasts.

Volatility feedback has a more important effect on the skewness of returns. This is
shown in Figure 5, which has the same format as Figure 4. Most of the time the conditional
skewness of returns is modest at -0.2 or -0.3, but in the early 1930’s it peaks (in absolute
value) at almost -0.9, and in 1974 and 1987 it reaches double its normal level. Conditional
excess kurtosis is normally only about 0.05, but it peaks at 1.0 in the early 1930’s. The
postwar maximum for excess kurtosis is 0.4 (based on postwar parameter estimates). These
moments are generated by the mixture of a normal and a x2(1) distribution given in
equation (2.13), where the weight on the (1) is usually about 3%, rising to 13% in the
early 1930's.

Another measure of the importance of volatility feedback is its ability to produce
model residuals that have the standard normal distribution implied by the underlying

theory. Tables 4a and 4b report simple specification tests of our various models. For
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each model we divide the residuals by their estimated standard deviations. We then
compute the mean, variance, skewness, and excess kurtosis of the normalized residuals. If
a particular model is well specified, then its normalized residuals should have a standard
normal distribution with zero mean, unit variance, and zero skewness and excess kurtosis.

All the models have residuals with a small but significantly negative mean. French,
Schwert, and Stambaugh (1987) noted that a standard GARCH-M model overpredicts the
average excess stock return (equivalently, produces residuals with a negative mean). They
conjectured that a model allowing for skewness might account for this; unfortunately, cur
model does not eliminate this problem. The model residuals all have a variance very close
to one, but they are all negatively skewed and fat-tailed. However, the residuals from
models with volatility feedback have smaller skewness (50% smaller in monthly data, 30%
smaller in daily data) and smaller excess kurtosis (40% smaller in monthly data, 10%
smaller in daily data) than the residuals from the standard models with A = 0. There is
little difference between the model with free A and the model with restricted A.

These results give an interesting perspective on the debate between Pindyck (1984)
and Poterba and Summers (1986) over the importance of volatility feedback for stock
market movements. According to our estimates, most of the time Poterba and Summers
are right that volatility has very little effect on the level of stock prices. But during periods
of high volatility, the feedback effect can become dramatically more important.!3

Furthermore, the importance of the feedback effect is not limited by the low persistence
of volatility. When we restrict A to be the appropriate function of p, v, and the variance
parameters, our estimates of v based on monthly data become small: less than 0.2 in the
full sample and the prewar period, and only 1.3 in the postwar period. Since the volatility
discount is proportional to 7, it would be possible to have a strong volatility feedback
effect with reasonable levels of risk aversion.

The reason that we do not estimate larger values of v and A seems to be that the
skewness and excess kurtosis of stock returns do not increase with volatility in the way
required by our model. When we regress the third and fourth powers of standard GARCH
model residuals onto GARCH variance estimates, our model predicts that we should find
negative and positive coefficients respectively (equations (2.16) and (2.17)). In fact, we
tend to obtain positive and insignificant coefficients. What this means is that our model

cannot fully explain the average level of skewness and excess kurtosis without predicting

18 This is obscured in Poterba and Summers’ analysis by their use of an elasticity, the proportional change in the stock price
implied by a given proportional change in variance. In our model this elasticity depends on the initial level of the variance; what
is constant is the semi-elaslicily, the proportional change in the stock price implied by a given absolute change in variance.
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exaggerated levels of skewness and excess kurtosis in periods of high volatility.!9
Finally, we note that our model is more successful in explaining the skewness and
excess kurtosis of returns than in explaining predictive asymmetry. A simple measure of

predictive asymmetry is the correlation between today's realization of a random variable

2
+1°

malized residuals of our various models, we find that it always lies between -0.05 and -0.07,

X; and tomorrow’s squared realization X, When we calculate this correlation for nor-
depending on the sample period. Allowing for volatility feedback has almost no effect on

this measure of predictive asymmetry.

3.4. The Stock Market Crash of October 1987

The discussion in the previous section has emphasized the behavior of monthly stock
returns over our full sample, 1926-88. In this section we use daily data to look more
carefully at the behavior of the stock market around the stock market crash of October
1987. Since volatility feedback is more important when volatility is high, it should have
an important role to play in this period.

Figure 6 shows our estimates of the underlying standard deviation of news o;. The
figure covers the period from September 1, 1987 through January 31, 1988. The stock
market crash is clearly visible as a sudden increase in the standard deviation of daily
returns from 1% to almost 7%, followed by a gradual decline back to 1.5% at the end of
the period. (As noted by other authors, the decline in volatility after the crash was more
rapid than normal; our model implies that the normal half-life of a volatility shock is 6 to 7
months in postwar daily data.) The solid line is based on full sample daily estimates, while
the dashed line uses postwar daily estimates, but there is very little difference between the
two.

The implied volatility discount is shown in Figure 7. Full sample estimates show the
discount increasing from less than 0.5% to 2 maximum of 6%, and then gradually declining.
Postwar estimates show a maximum volatility discount of 13%, because the coefficients ¥y
and A are larger in postwar data. These discounts are large enough to play an important
auxiliary role in our understanding of the crash period. Of course they did not cause the
crash (large discounts are obtained only when large underlying news shocks occur), but

they help to explain the severity of the market decline.

19 Another way to make this point is to note that with high values of A, our model will not be able to account for rebounds
following large stock market crashes. The constraint on the maximum possible retum will become binding. We are grateful to
Robert Engle for suggesting the regreasion specification test of our model.
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Another way to view the importance of the volatility discount is to plot the actual
log price level (with dividend reinvestment), together with the level net of the volatility
discount. We do this in Figure 8. The solid line is the actual log price, normalized to
equal 100 at the close on October 16, 1987. The dashed line is what the price would have
been without the volatility discount. In the middle of the figure there is a substantial gap
between the two lines, and the dashed line declines less suddenly. By the end of the period
the two lines are again close together, as volatility and the implied discount had returned

almost to normal levels.
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4. Conclusion

We have shown that an asymmetric GARCH-M model, incorporating a volatility feed-
back or “no news is good news” effect, fits U.S. stock return data significantly better than
the standard symmetric GARCH-M model over the period 1926-88. When we estimate our
model on monthly data, we find that the volatility discount in stock prices has varied from
a normal level of only about 1% to a maximum of 25% in the early 1930’s, with postwar
peaks of 8 or 9% in 1974 and 1987. Looking at daily data around the period of the stock
market crash of October 1987, we find that the volatility discount increased from 0.5% to
13% over a few days. Overall, our model explains somewhat less than half the skewness
and excess kurtosis of standard GARCH model residuals. It is less successful in correcting
the negative mean and predictive asymmetry that are characteristic of standard GARCH
residuals.

Our model has the feature that volatility feedback is more important when volatility
is high than when volatility is low. The reason is that the variance of variance of a GARCH
process increases more than proportionally with the level of variance of the process. Thus
news about variance becomes more important relative to underlying news when variance
is already high than when it is low.

This feature of our model could be changed by applying our basic approach to other
models of changing variance. Friedman and Laibson (1989), for example, suggest that large
shocks to variance have lower persistence than small shocks; if this is true, it could moderate
or even reverse the positive relation between variance and the volatility feedback effect.
Alternatively, one could postulate a model in which the conditional standard deviation
of returns follows a linear GARCH-like process, where the shocks are absolute values of
returns rather than squared returns. This could be combined with the assumption that
the expected return is linear in conditional standard deviation, as suggested by French,
Schwert, and Stambaugh (1987) among others.?l The resulting model has a news-return
relationship which is tent-shaped rather than parabolic, and it implies that the conditional
skewness and excess kurtosis of returns are constant rather than increasing in conditional
standard deviation. Unfortunately, the nondifferentiability of the absolute value function

means that this model has a discontinuous and nondifferentiable likelihood function, which

20 For tractability, it is essential that the expected return be linear in whatever function of conditional standard deviation
follows a linear time series process. Thus in the standard GARCH model, the squared conditional standard deviation (the
conditional variance) follows a linear time series process and the expected return must be linear in variance. Nelson (1991) has
recently proposed a model in which the Jog condiiional standard deviation follows a linear process. Unfortunately, we cannot
apply our approach to Nelson’s model without making the unorthodox assumption that the expected return is linear in the log
conditional standard deviation of retums,
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greatly complicates estimation and inference.?!

Another interesting extension of the model studied here would be to allow asymmetries
in the underlying news process. This would permit us to fit those asymmetries that are
not perfectly captured by our model, and to judge the importance of volatility feedback
relative to other sources of asymmetry in stock returns. We could allow news shocks to
have negative skewness and excess kurtosis; we could also allow for predictive asymmetry
in the news process, along the lines of Nelson (1991) or Engle (1990) and Sentana (1990).22

We conclude with one caveat about the interpretation of our results. Our formal
model assumes that all changing expected excess returns are driven by changing volatility,
It treats the remaining component of returns as being driven by news about dividends
(strictly speaking dividends and real interest rates). However it is quite possible that the
underlying shock which we write 74,1 also contains innovations in required excess returns
arising from some other source than changing volatility. The only way to distinguish this
from the dividend news interpretation of 74,1 is by testing for the constancy of the
volatility-adjusted conditional mean excess stock return. The methods of this paper are
not well suited for doing this. Earlier work reported in Campbell and Shiller (1988a,b)
and Campbell (1990a, 1991) finds that changing expected stock returns are an important
source of variation in unexpected stock returns, but in this paper we find that volatility
feedback contributes little to the unconditional variance of returns. We therefore believe
that much of the variance of 77441 is in fact due to other changes in expected excess

returns, and not to news about future dividends,

2! Hentschel (1991) reports preliminary results for this model. He finds that it does not fit the data substantially better than
the model studied in this paper. .

22 Engle {1990) proposes and Sentana (1990) develops a quadmtic model that is close to the standard GARCH model and
therefore easy for us to incorporate into our approach. Hentsche (1991) reports some preliminary results for this model.
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Appendix A: The GARCH(p,q) Model

The text of the paper discusses the GARCH(1, 1) model in considerable detail. Here we
extend the model to accommodate general GARCH(p, q), and calculate some unconditional
moments for the GARCH(1,1) and GARCH(1, 2) models.

For a GARCH(p, q) process the variance is described by

of = w+ zal”dtﬂ—i + 23101-1 (A.1)

j=l

Some algebraic manipulations allow us to solve (A.1) for ’73.t+l in the following form:

max(p,q)

’?dt+l = w+t z (ai+5i) ’7d1+1 |+(’7dt+l al)+zﬂj(”d!+l—] "t—J) (A.2)
=1 j=t

where §; =0 for i > p and a; = 0 for ¢ > ¢q. Equation (A.2) is an ARMA(max(p, q), p)
process for n:‘; 1+1- In standard ARMA notation (A.2) becomes

max(p,q)
”3,t+l = w+ z ¢’l”dt+l i t e + zo€!+l—1v (A.3)
i=1 i=1

where ¢; = (a; + f;) and 8; = -4;.

Having written ”3,t+l m ARMA(max(p, q), p) form we can apply a well-known result
for the discounted sum of revisions in the expected future values of an ARMA process
(Flavin 1981, Hansen and Sargent 1981):

x
Mhert = 79 (Ert — EDPnd g
i=t

x
7Z(Et+l - Et)PJ'?Z,I-f-H-J‘ = 7(Et41 — E‘)”Z,H'l
i=0
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1-— Emu(P ,9) |¢

i=1

(p.q)
PR LIRS B a gl
( = (03,:+1—0?), (Ad)

which becomes 7y ¢4 = ’\(7’3,&1 - 012) in our earlier notation.

Consequently equation (2.12) will hold in the GARCH(p, q) case. The conditional
moments of the returns process will be unchanged in terms of ), although A will, of
course, be a different function of the underlying parameters. In the GARCH(1, 2) case, for

example, p = 1 and ¢ = 2, so max(p, ¢) = 2 and

y = 1l01+é1+pds) _ vp(ay + pasg)
1~ pg1 — p42 1-play + pag + B)

(A.5)

As it must, when ag = 0 this reduces to the coefficient we derived for the GARCH(1,1)
process in equation (2.11).
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Appendix B: Unconditional Moments of Returns

This appendix gives some of the lower order unconditional morments of returns, The

unconditional mean return is given by

E(hey1) = u + YE(}). (B.1)

The unconditional variance of the stock return can be derived as follows,

Var(hyy1) = Var(Ethisy) + E(Varghyy)

(224 )E(o}) + E(]) - +H(B(e}))? (B.2)

In the case of GARCH(1, 1) the above are

E(hyy1) = o + 7(1—_:—_,3) (B.3)
and
2 2 2 2 2
Var(hys1) w M +v) (1 +a+ flw Yéw (BA)

a3 ' 0—a—Bl-F-28-30%  (l-a-p)

respectively. Note that w/(1 — a — 3) is the unconditional variance of the GARCH(1,1)
process for dividend news. The unconditional variance of returns is always larger than the
variance of dividend news.

For the GARCH(1,2) process the unconditional mean is

E(hiy1) = » + 7(___————1—012}-02—[?)' (B.5)
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The unconditional variance can be found by making use of equation (B.2) and the fact
that

wil+a+B+aer+agf—ad)/(1-aj—ay—9)

E(a}) = —
(o) (1-203-52- 30% —6ajasf —ag — 30%02 - 30% —ag3? + 30:3)

(B.6)

From the above derivations it can be seen that the unconditional variance of returns

will only be well defined when the fourth moment of n4 ;| exists.
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Appendix C: Maximum Likelihood Estimation

The standard GARCH-M model is linear in the conditionally Gaussian error term.
Nt+1, and the likelihood function is easily derived as the product of the conditional den-
sities.23 Equivalently the log likelihood function is given by the sum of the logarithms of
the conditional densities.

In the extension of the GARCH-M framework discussed in this paper returns are a
quadratic function of ;4 |. Therefore the derivation of the likelihood function requires the
use of some basic results for the transformation of random variables.

Recall that for a one-to-one transformation y = g(z) the distribution of y, fy(y), is

given by

fola™Hw)) (C1)

foly) = ‘;;g—l(y)

where fz(z) is the distribution of z. Furthermore, if the transformation is not one-to-one,
so that there are multiple roots gi_l(y), we can find the density of the transformed random

variable by summing over all regions for which the transformation is one-to-one. Thus

f=(97 1 w)), (C.2)

fly) = Z(%gfl(y)

where gi_l(y) are the roots of the transformation.
In our model the observed variable y is the stock return h;4, and the underlying

variable is the news 7,4 ). The transformation ¢ is

heyt = glmer) = —Mnfe + mal + o+ (v + Mol (C.3)

As shown in Figures 2a and 2b, this has the form of an inverted parabola, with two roots.
The smaller root is associated with a positive slope.
When (C.2) is applied to (C.3) we find that

2 For notational simplicity the d subscript on ny 4, will be dropped in this appendix. Since nj.r4; is never méntioned this
should not lead to confusion.
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1
falhisr) = (1+aMu+ G NoF = hiatl) T (Falor er) + falaz (hesi))) (C4)

where

1 1= /140 + (v + 0)F ~ heg]
Tk
9 (het1) 2\

and

14 /1 4+ 4Au + (1 + Nof — heya]
97 (hes1) /i o : (C.5)

We assume that observed returns always have a positive derivative with respect to
the underlying shocks which generate them. In other words the shocks occur in the range
where the inverted parabola in Figures 2a and 2b is upward sloping. Consequently we
will always pick the smaller of the two roots above, 74 = gl_l(hg.H), which amowits
to assuming f,,(g{l(hgﬂ)) = 0. Since dy/dz = (dz/dy)~! we can write the conditional
density of hyy| as

falhes1) = (1 =22041)7" fr(iee1)- (C.6)

Finally we can write the conditional log likelihood function of h;1 as a function of the

conditionally normal errors 7j;4] as

~2

. 1 1 17 -

L(hiy1) = —log(l-2Xiep1) — log(2r) — log(of) ~ 5-5h. (€.7)
= t

This is the log likelihood function of the standard GARCH model for the implied shock

fis+1, plus an additional term arising from the Jacobian of the quadratic transformation.
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Note that the likelihood function reduces to the standard GARCH-M case when \.
the coefficient on the quadratic term, is zero. In addition, when the roots gl"l(hH.l) and
gf_,'l(h,_H) are rea] and distinct, then 1 — 2Ad;,1 > 0 and the likelihood is well defined.
The cases of identical or complex roots correspond to a situation where an observed return
equals or exceeds the maximum return which can be produced by the model. This situation
will be ruled out by penalizing the log likelihood function whenever the current parameter
values imply 1 ~ 2Aj,41 < 0.

After estimating the parameters of the model, we can check the accuracy of the approx-
imation that f,,(g{l(h¢+1)) = 0 by calculating at each point in the sample the probability
of a shock larger than gz—l(hH.l), conditional on the model parameters and our current
estimate of the state variable 0‘2. When we do this we find that the probability never

exceeds 1077, so there should be only trivial error introduced by our approximate method.
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Table 1: Moments of Monthly and Daily Stock Returns

Data Set Mean Variance Skewness Excess Kurtosis
Monthly CRSP ER 4.797 3.240 -0.443 6.877
2601-8812 (2.070) (0.167) (0.089) (0.178)
Monthly GARCH-M -0.040 1.020 -0.838 2.562
2601-8812 (0.037) (0.052) (0.089) (0.178)
Monthly CRSP ER 5.213 5.306 -0.342 4.933
2601-5112 (4.124) (0.425) (0.139) (0.277)
Monthly GARCH-M -0.058 1.084 -0.838 2.313
2601-5112 (0.050) (0.087) (0.089) (0.277)
Monthly CRSP ER 4.505 1.796 -0.648 3.086
5201-8812 (2011) | (0.121) (0.116) (0.232
Monthly GARCH-M -0.025 1.007 -0.783 3.102
5201-8812 (0.048) (0.068) (0.116) (0.232
Daily CRSP ER 0.215 0.128 -0.344 19.926
260102-881230 (0.087) (0.001) (0.019) (0.038)
Daily GARCH-M -0.039 1.010 -0.507 3.369
260102-881230 (0.008) (0.011) (0.019) (0.038)
Daily CRSP ER 0.213 0.204 0.016 10.909
260102-511231 (0.163) (0.003) (0.028) (0.056)
Daily GARCH-M -0.041 1.011 -0.491 2.812
260102-511231 (0.011) (0.016) (0.028) (0.056)
Daily CRSP ER 0.216 0.066 -1.782 45.515
520102-881230 {0.084) (0.001) (0.025) (0.051)
Daily GARCH-M -0.043 1.011 -0.441 3.391
520102-881230 {0.010) (0.015) (0.025) (0.051)

Notes: Excess returns (ER) are log excess returns on the value-weighted CRSP index
over a l-month Treasury bill return. GARCH-M residuals are the residuals from the
GARCH(1,1)-M and GARCH(1,2)-M models estimated in Tables 2a and 2b, divided by
their estimated standard deviation. If the GARCH-M models are correctly specified,
these residuals should have a standard normal distribution. Mean and variance have
been multiplied by 1000 for excess returns. Standard errors are computed under the
null hypothesis that returns or residuals are normally distributed.




Table 2a

: Parameter Estimates for Monthly Data

Model w x 10° a 8 ux 103 v A
{SE) (SE) (SE) (SE) (SE) (SE)
A=0 8.115 0.112 0.861 5.348 0.658 0.000
(2.239) (0.017) (0.016) (2.568) (0.992)
A restricted 8.555 0.125 0.845 6.501 0.199 0.731
(2.455) (0.020) (0.020) (1.549) (0.089) (0.130)
A free 8.932 0.125 0.843 3.175 1.918 0.841
(2.742) (0.021) (0.022 (2.214) (0.908) (0.178)
Sample Period: January 1926-December 1988. Number of observations: 736.
Model w x 10° o 8 ux 103 - A
(SE) (SE) (SE) (SE) (SE) (SE)
A=0 7.784 0.124 0.855 11.757 -0.381 0.000
(4.533) {(0.020) (0.017) (3.971) (1.113)
A restricted 8.486 0.140 0.836 10.527 0.132 0.655
(4.789) (0.025) (0.023) (2.706) (0.101) (0.192)
A free 8.576 0.140 0.835 9.953 0.361 0.670
(6.695) (0.026) (0.023) (3.690) (1.050) (0.219)
Sample Period: January 1926-December 1951. Number of observations: 312.
Model w x 10° o 8 ux 108 ¥ A
(SE) (SE) (SE) (SE) (SE) (SE)
A=0 15.764 0.068 0.844 -5.511 6.165 0.000
(0.865) (0.030) (0.059) (7.891) (4.601)
A restricted 15.020 0.085 0.829 3.171 1.342 1.275
(7.160) (0.030) (0.054) (1.992) (0.775) (0.284)
A free 14.884 0.074 0.839 -7.311 7.851 1.294
(6.976) (0.029) (0.050) (9.156) (5.674) (0.280)

Sample Period: January 1952-December 1988. Number of observations: 444.

Note: The restricted model sets A =

P 5 S
1—p(a+5)




Table 2b: Parameter Estimates for Daily Data

Model w x 107 ay ag 8 ux 101

A
(SE) (SE) (SE) (SE) (SE) (s‘;:) (SE)

A=0 6.153 0.146 -0.069 0.920 4.163 1.620 0.000
(0.735) | (0.096) | (0.010) | (0.045) | (0.684) | (0.780)

A restricted |  5.843 0.145 -0.069 0.921 5.028 0.050 1.033
(0.669) | (0.096) | (0.010) | (0.042) | (0.054) | (0.015) | (0.11G)

X free 5.886 0.145 -0.069 0.920 4.075 1.827 1.044
0.713) | (0.097) | (o.011) | (0.044) | (0.683) | (0.786) | (0.115)

Sample Period: January 2, 1926-December 30, 1988. Number of observations: 16,980.

Model w x 107 ay ag 8 ux 104 ¥ b
(SE) (SE) (SE) (SE) (SE) (SE) (SE)
A=0 17.249 0.108 -0.011 0.894 5.629 0.946 0.000
(2402) | (0.013) | (0014) | (0.0s1) | (1.269) | (0.952)
A restricted 16.439 0.111 -0.015 0.896 6.382 0.059 0.655
@314) | (0.013) | (0.015) | (0.080) | (1.002) | (0.021) | (0.161)
A free 16.525 0.111 -0.015 0.895 5.535 1.107 0.664

(2.337) | (©.013) | (0.015) | (0.081) | (1.266) | (0.957) | (0.162)

Sample Period: January 2, 1926-December 31, 1951. Number of observations: 7,656.

Model w x 107 a g ] ux 10 v A
(SE) (SE) (SE) (SE) (SE) (SE) (SE)
A=0 4.345 0.179 -0.113 0.929 3.266 3.482 0.000
(0751) | ©o14) | (0.014) | (0.055) | (0936) | (1.658)
A restricted 4.318 0.167 -0.100 0.927 4.606 0.187 2.214
(0.733) | (0.014) | (0.014) | (0.055) | (0.645) | (0.058) | (0.281)
M free 4.304 0.167 -0.100 0.927 3.067 4.020 2.252

(0757 | (0.014) | (0.014) | (0.056) | (0.972) | (1.803) | (0.288)

Sample Period: January 2, 1952-December 31, 1988. Number of observations: 9,324.

N

Note: The restricted model sets A = 1—_%%%




Table 3a: Likelihood Ratio Tests for Moﬁthly Data

Sample Period Hy:2=0 Hy : ) restricted
January 1926-December 1988 28.210 2.522
736 Observations (0.000) (0.112)
January 1926-December 1951 11.986 0.044
312 Observations (0.001) (0.835)
January 1952-December 1988 17.970 2.285
444 Observations (0.000) (0.131)

. . . . - o
Note: Hp: A restricted imposes that A -_L—l—p(a+/3)'

Table 3b: Likelihood Ratio Tests for Daily Data

Sample Period Hy:A=0 Hyp : A restricted
January 2, 1926-December 31, 1988 63.831 4.892
16,980 Observations (0.000) (0.027)
January 2, 1926-December 31, 1951 14.737 1.190
7,656 Observations (0.000) (0.275)
January 2, 1952-December 30, 1988 62.984 4.533
9,324 Observations (0.000) (0.033)

(et

Notes: Hp: A restricted imposes that A = T=e,+pantB)"

All tests are against the alternative of an unrestricted \. Asymptotic probability values
are given in parentheses.



Table 4a: Sample Moments of Normalized Residuals
Monthly Data

Model Mean Variance Skewness Exc. I(urtosis;
(SE) (SE) (SE) (SE)
A=0 -0.040 1.020 -0.838 2.562
(0.037) (0.052) (0.089) (0.178)
A restricted -0.043 1.018 -0.436 1.489
(0.037) (0.052) (0.089) (0.178)
A free -0.057 1.015 -0.406 1.319
(0.037) (0.052) (0.089) (0.178)

Sample Period: January 1926-December 1988. Number of observations: 756.

Model Mean Variance Skewness Exc. Kurtosis
(SE) (SE) (SE) (SE)
A=0 -0.058 1.084 -0.838 2.313
(0.059) (0.087) (0.089) (0.277)
A restricted -0.069 1.075 -0.484 - 1.330
(0.059) (0.086) (0.139) (0.277)
A free -0.073 1.073 -0479 1.294
(0.059) (0.086) (0.139) (0.277)

Sample Period: January 1926-December 1951. Number of observations: 312.

Model Mean Variance Skewness Exc. Kurtosis
(SE) (SE) (SE) (SE)
A=0 -0.025 1.007 -0.783 3.102
(0.048) (0.068) (0.116) (0.232)
A restricted -0.035 1.007 -0.205 1.424
(0.048) (0.068) (0.116) (0.232)
A free -0.041 1.006 -0.208 1.408
(0.048) (0.068) (0.116) (0.232)

Sample Period: January 1952-December 1988. Number of observations: 444.

Note: Standard errors for mean and variance are sample standard errors for N{u, 02).
Standard errors for skewness and excess kurtosis are theoretical standard errors for
N(0,1). The restricted A model sets A = l_—}(l::;_ﬂ)'



Table 4b: Sample Moments of Normalized Residuals

Daily Data
Model Mean Variance Skewness Exc. Kurtosis
(SE) (SE) (SE) (SE)
A=0 -0.039 1.010 -0.507 3.369
(0.008) (0.011) (0.019) (0.038)
A restricted -0.035 1.010 -0.364 3.010
(0.008) (0.011) (0.019) (0.038)
A free -0.040 1.010 -0.363 2.980
(0.008) (0.011) (0.019) (0.038)

Sample Period: January 2, 1926-December 30, 1988. Number of observations: 16,980.

Model Mean Variance Skewness Exc. Kurtosis
(SE) (SE) (SE) (SE)
A=0 -0.041 1.011 -0.491 2.812
(0.011) (0.016) (0.028) (0.056)
A restricted -0.038 1.012 -0.387 2.786
(0.011) (0.016) (0.028) (0.056)
A free -0.042 1.012 -0.386 2.765
(0.011) (0.016) (0.028) (0.056)

Sample Period: January 2, 1926~December 31, 1951. Number of observations: 7,636.

Model Mean Variance Skewness Exc. Kurtosis
(SE) (SE) (SE) (SE)
A=0 -0.043 1.011 -0.441 3.391
(0.010) (0.015) (0.025) (0.051)
A restricted -0.040 1.012 -0.226 2.438
(0.010) (0.015) (0.025) (0.051)
A free -0.044 1.011 -0.222 2.397
(0.010) (0.015) (0.025) (0.051)

Sample Period: January 2, 1952-December 31, 1988. Number of observations: 9,324.

Note: Standard errors for mean and variance are sample standard errors for N (u, 02).
Standard errors for skewness and excess kurtosis are theoretical standard errors for

N(0,1). The restricted A model sets A = T=p(o; +rastB)’



Skewness Within Decades for Monthly Log Excess Returns
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Figure la: Sample Skewness Within Decades for Monthly Data

The circles connected by the solid line plot the sample skewness of GARCH(1,1)-M resid-
uals normalized by their conditional standard deviations. The residuals are taken from the
model estimated in Table 2a, top panel, row 1, using monthly log excess returns on the
value-weighted CRSP index over a 1-month Treasury bill return. Skewness is computed in
each of the seven calendar decades during the period January 1926-December 1988. The
dotted lines connect 1.96 standard error bounds marked by plus signs.



Skewness Within Years for Daily Log Excess Returns
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Figure 1b: Sample Skewness Within Years for Daily Data

The solid line plots the sample skewness of GARCH(1, 2)-M residuals normalized by their
conditional standard deviations. The residuals are taken from the model estimated in
Table 2b, top panel, row 1, using daily log excess returns on the value-weighted CRSP
index over a 1-month Treasury bill return. Skewness is computed in each of the sixty three
calendar years during the period January 2, 1926-December 30, 1988. The dotted lines
plot 1.96 standard error bounds.



Unexpected Returns and News
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Figure 2a: Unexpected Returns and News When Volatility is Low

The straight solid line is a 45° line which gives the relation between unexpected returns
and news when A = 0. The dashed curve gives the relation between unexpected returns
and news when A = 0.731, the value estimated over the full sample in Table 2a, top panel,
row 2. The relation plotted is given by the last two terms on the right hand side of equation
(2.12) in the text: n4:41 — /\(rlng_l - o), where Ndt+1 is the news at time ¢t + 1. The
conditional standard deviation oy = 0.04, and the horizontal range of the figure is three
conditional standard deviations on either side of zero.
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Figure 2b: Unexpected Returns and News When Volatility is High

The straight solid line is a 45° line which gives the relation between unexpected returns
and news when A = 0." The dashed curve gives the relation between unexpected returns
and news when A = 0.731, the value estimated over the full sample in Table 2a, top panel,
row 2. The relation plotted is given by the last two terms on the right hand side of equation
(2.12) in the text: ng¢41 — A(r]:f‘H‘1 — o}), where 7Mdt+1 is the news at time ¢t + 1. The
conditional standard deviation oy = 0.20, and the horizontal range of the figure is three
conditional standard deviations on either side of zero.



Monthly CRSP Data
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Figure 3: The Conditional Standard Deviation of Monthly News, 1926-88

The solid line is the conditional standard deviation of monthly news implied by the re-
stricted model estimated over the full sample (Table 2a, top panel, row 2). The dashed
line is the conditional standard deviation implied by the restricted model estimated over
subsamples (Table 2a, bottom two panels, row 2).



Monthly CRSP Data
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Figure 4: The Monthly Volatility Discount on the Stock Market, 1926--88

The volatility discount is given by the second and third terms on the right hand side
of equation (2.9) in the text. The solid line uses full sample monthly estimates of the
restricted model (Table 2a, top panel, row 2). The dashed line uses monthly estimates
over subsamples of the same model (Table 2a, bottom two panels, row 2).



Mcnthly CRSP Data
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Figure 5: The Conditional Skewness of Monthly Stock Returns, 1926-88

Conditional skewness is given by equation (2.16) in the text. The solid line uses full sample
monthly estimates of the restricted model (Table 2a, top panel, row 2). The dashed line
uses monthly estimates over subsamples of the same model (Table 2a, bottom two panels, -
row 2).



Daily Schwert & CRSP Data
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Figure 6: The Conditional Standard Deviation of Daily News
September 1987-January 1988

The sample period for this figure is 9/1/87-1/29/88. The solid line is the conditional
standard deviation of daily news implied by the restricted model estimated over the full
sample (Table 2b, top panel, row 2). The dashed line is the conditional standard deviation
implied by the restricted model estimated over the postwar subsample (Table 2b, bottom
panel, row 2).



Daily Schwert & CRSP Datg

~N
o
(@]
|
< 1
[{o]
39
oo
[
2>
é
o
Lo
o
, -
<
'_. U S STU SR VE N NUVEUETUUNE FESUTUTSUSUEE FUTENTRUNVETE SUTENUTET VU SUUT T FTSUSUSIVENERC VIS IVENITEUTE Y
' 14 27 40 53 66 79 92 105

Day

Figure 7: The Daily Volatility Discount on the Stock Market
September 1987-January 1988

The sample period for this figure is 9/1/87-1/29/88. The volatility discount is given by the
second and third terms on the right hand side of equation (2.9) in the text. The solid line
uses full sample daily estimates of the restricted model (Table 2b, top panel, row 2). The
dashed line uses daily estimates over the postwar subsample of the same model (Table 2b,
bottom panel, row 2).



Daily Schwert & CRSP Data
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Figure 8: The Actual and Volatility-Adjusted Daily Stock Price
September 1987-January 1988

The sample period for this figure is 9/1/87-1/29/88. The solid line is the actual log stock
price with dividend reinvestment, normalized to equal 100 at the close on 10/16/87. The
dashed line is the solid line less the volatility discount plotted as a dashed line in Figure 6,
based on daily estimates over the postwar subsample of the restricted model {Table 2b,
bottom panel, row 2).





