DIGITAL ACCESS 10 —
SCHOLARSHIP s HARVARD e for Scnolry Communicaton

DASH.HARVARD.EDU

Crystal Growth and Solute Trapping

Citation
Aziz, Michael J. Crystal Growth and Solute Trapping. 1984. Materials Research Society
Symposium Proceedings 23: 369-374.

Published Version
http://www.mrs.org/s_mrs/sec.asp?CID=1727&DID=38980&SID=1

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3306021

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:3306021
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Crystal%20Growth%20and%20Solute%20Trapping&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=352d44bfd435a12974209aae5cfeb6f4&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

CRYSTAL GROWTH AND SOLUTE TRAPPING

MICHAEL J. RZIZ
Division of Applied Sciences, Harvard University, Cambridge, MA 02738



369

CRYSTAL GROWTH AND SOLUTE TRAPPING

MICHAEL J. AZIZ*
Divisicn of Applied Sciences, Harvard University, Cambridge, MA 02138

ABSTRACT

A simple model for solute trapping during rapid seolidi-
fication is presented in terms of a single unknown parameter,
the interfacial diffusivity Dj. A transition from
equilibrium segregation to complete solute trapping occurs
over roughly an order of magnitude in growth speed, as the
interface speed surpasses the maximum speed with which
solute atoms can diffuse across the interface to remain
ahead of the growing crystal. This diffusive speed is given
by D3y/A, where X is the interatomic spacing, and is typi-
cally of the order 10 meters per second. Comparison is made
with experiment. The steady-state speed of a planar inter-
face is predicted by calculating the free energy dissipated
by irreversible processes at the interface and eguating it
to the available driving free energy. A solute drag term
and an intrinsic interfacial wmobility term are included in
the dissipation calculations. Steady-state solutions are
presented for Bi-doped Si during pulsed laser annealing.

INTRODUCTION

Laser annealing experiments have reached a crystal growth regime where
deviations from local equilibrium are obviocus and interface motion is no
longer heat-flow limited. These experiments allow us the opportunity to
study the interface kinetics in high-mobility systems for the first time.
In this paper I describe a simple meodel for the kinetics of the fundamental
atomic processes occurring at the interface during rapid solidification of
binary alloys, one of which, of course, is doped silicon. The result is a
pair of "interface response functiens" which predict (a) how much impurity
should be incorporated into the solid, and (b) how fast the interface should
move; in terms of the local conditions at the interface, namely temperature
and composition.

The experiments [1,2] that have inspired the modeling efforts have
shown that the chemical potential of the minor component of a binary alloy
often increases as the partition coefficient k approaches unity during rapid
solidificatien. A number of plausible models have been proposed [3-9] to
explain how the host atoms persuade the impurity atoms to increase their
chemical potential and join the crystal. The basis for the model described
in this paper is shown in Fig. 1, which illustrates the fundamental dif-
ference between crystallization and interdiffusicon according to the model
for collision-limited growth of pure systems with simple interatomic poten-
tials, which has been developed by Turnbull and coworkers [18]. A crystal-
lization event consists of an atom shifting its position a small distance
to move from a potential well in the liquid structure to a well on the
crystal lattice as the solid arrows indicate. Since no bonds must be
breoken, the activation barrier for this reaction ought to be quite small;
in the Turnbull collision-limited growth model the barrier is zero. A
diffusive jump, on the other hand, is a different atomic process in this
system. Position shifts of a fraction of an interatomic distance do not
accomplish interdiffusion, which requires a good deal of cooperation from
neighboring atoms. Since the crystallization process can occur without
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these difficulties, the growth speed u can very much exceed the maximum
diffusive speed given by u_ = D;/\, where D;j is the coefficient for inter-
diffusion across the interface and A is the interatomic distance. The
model has received recent support from the molecular dynamics calculations
of Broughtor et al. [11], as disussed by Jackson in this session [12].
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SOLUTE TRAPPING MODEL

The solute trapping model described herein considers solute-solvent
redistribution, which ig necessary to avoid sclute incorporation into the
crystal, to be the same as the interdiffusive process described above.
Thus a solute atom must accomplish three things to avoid crystallization:
Tt must escape from its potential well, as shown by the dashed arrow in
Fig. 1, as the energy of the well increases and the well moves to the lat-
tice site. It must push selvent atoms out of the way. And it must be
replaced by a solvent atom on the lattice site, or else it will be pushed
right back to where it came from. This process occurs in the interface
region as the atoms attempt to establish equilibrium compositions on either
side of the moving interface. As the interface passes, solute-soclvent



redistribution can only occur for a limited time. Before the interface
arrives, the driving force for redistribution is zero; afterwards, atomic
mobilities are too low to permit significant interdiffusion. When u << u_,
there is plenty of time for the atoms at the interface to eguilibrate. B&s
the growth velocity becomes greater, solute and solvent atoms have less
time while they are in the interface region to interdiffuse and maintain
local eguilibrium. When u >> u_, the atoms have no, time to interdiffuse;
the interface passes and locks [he liguid composition into the bulk of the
sc0lid before the atoms have a chance to react.

In the formalism of this model, crystsl growth and solute-solvent
redistribution are written as separate reactions with different meobilities.
Sclute trapping follows simply and directly as the interface speed surpasses
up. The derivation and discussion of the solute trapping model for dilute
and congentrated sclutions during stepwise and continuocus interface motion
can be found elsewhere [13-16]. The results for stepwise growth and for
continuous growth at the same interface speed differ guantitatively but
exhibit the same qualitative features. A transition from equilibrium
segregation [k = ky) to complete solute trapping (k = 1) is centered at the
diffusive speed, as shown by the curve in Fig. 2.

Plotted along with the curve are the solute trapping data of Baeri et
al. [17] and of White et al. (18] for Si(Bi}) <100>. The single unknown
parameter in the model is the interface diffusivity Dj, which has been
chosen to fit the data. When plotted on a logarithmic wvelocity scale like
this, the only effect of varying Dj is a shift of the curve to the laft or
right. Thus the slope of the curve is independent of D;, and when it
matches that of the data it is an encouraging sign. The comparison is only
preliminary because the experimental velocities are not measured. Nominal
velocities wu,,y have been calculated from complicated numerical solutions
of the heat equation for pure silicon uging the heat-flow-Ilimit assumption
that the interface temperature T; is at the melting point of pure silicon,
T+ 'The possible errors introduced by such assumptions are discussed later.

The curiocus phenomenon called "saturation" is seen in the data of
Baeri et al. but apparently ncot in those of White et al. Most simple
solute trapping models yield smooth, fairly straight curves when plotted as
Linear x vs. log u, and "saturation", which Baeri has alsc seen in
$i{In} [19], may be pointing out inadequacies in the simple models if the
velocity calculations are correct. One possible way to account for
"saturation" is to assign to the interface thermodynamic properties dif-
ferent from those of either bulk phase {3,4,6,8,20). Further experimental
investigation of this effect is needed if we are to understand thoroughly
the kinetics of the solute trapping process.

DISSIPATION THEORY

Solute trapping models require knowledge of the interface velocity.
Deviations from heat-flow-limited growth are expected at high speeds and
salute concentrations. A dissipation-theory treatment [15,16] can be used
to predict the steady-state wvelocity of the interface as a function of its
temperature and composition. If the sum of the physical forces on a unit
area of the interface is zevo, its wvelccity will remain unchanged. From
the driving force for solidification we =subtract the "solute drag" force
due to the snowplow-like action of the interface upon the solute, and the
"interface friction" force due to the limited mobility of the interface in
the pure system. Alternatively and equivalently, we are requiring that the
available driving free energy be dissipated by the irreversible reactions
cccurring at the interface. 1In the steady state, the driving free energy
does no work on the surroundings and so it must be entirely dissipated by
irreversible processes during the transformation. If we can calculate the
dissipation and the driving free energy as functions of velocity, we have
an equation that predicts the growth velocity. Ignoring heat conduction,
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the two dissipative processes at the interface are the aforementioned
crystallization and redistribution reactions. The dissipative terms asso-
ciated with them are, respectively, the "interface friction energy" and the
"solute drag energy" [21,22]. By assuming interface friction to be the
same for alloys as for pure systems, we can calculate these terms [15,16]}
and make predictions. The result is that in some regimes the interface
velocity can be significantly slowex than the reportéed "isotherm velocities™
of heat-flow calculations.

APPLICATION TO LASER ANNEALING

In order to apply these ideas to laser annealing, some account must be
made of the effect of an undercooled interface upon the temperature profile
during regrowth. The heat-flow problem in laser annealing is a complex one.
Since finite-element heat-flow programs that account properly for inter-
facial undercooling are not yet available, a crude analysiz of the effect
of undercooling [23] is summarized below. Heat-flow calculations [24,25]
have in the past solved the heat equation for temperature profiles during
regrowth by assuming the interface temperature T; to be fixed at the
melting point Ty. If the heat-flow problem were strictly linear and the
details of how the undercooling is set up were unimportant, the actual
temperature profile during regrowth would be scaled down relative to the
calculated one by the factor (T;-Tams)/{Ty—Tamb)s, where Tpnp is the ambient
substrate temperature. All gradients would also scale accordingly and
therefore the regrowth speed, which is proportional to the gradient in the
s0lid at the interface, would do the same. (The discrepancy between
measured and calculated regrowth speeds at the "amorphization threshold”
has been interpreted in this manner; the undercooling necessary to account
for it is ~230 K. The analysis yields an estimate of the melting point of
amorphous silicon of Ty ~ 1180°C and an intrinsic mobility of the <100>
crystal-melt interface of u, ~ 34 m/s [23}1.)

This heat-flow analysis has been combined with dissipation theory to
predict the effect of solute concentration upen the regrowth velocity.
Heat-flow calculations predict z nominal regrowth veleocity which is
independent of sclute concentration. The reduced driving force for the
solidification of impure material, the interface friction term, and the
concentration~dependent solute drag term in the dissipation calulations
reduce the interface speed relative to the heat-flow-limit predictions.

The equations are solved simultaneously along with the crude analysis of
the gradients mentioned above.

One result is presented in Fig. 3, which shows the velocity u predicted
by dissipation theory in terms of the "strength of quench", eor nominal
velocity upey predicted by the heat flow calculations that assume T = Ty.
The dissipation calculations are done for bismuth-doped silicon. The
required input parameters are the diffusive speed u,., taken from a fit to
the kgj;(u) data; the intrinsic interface mobility u,, taken from [23]; and
the thermodynamics of supersaturated Si{Bi}, for which very crude gquesses
were made. A parabolic regular solution was assumed for the solid and the
liguid with interaction parameters of 23 and 10 kcal/mole, respectively.
The melting point of pure diamond cubic Bi was taken ta be 100 K. Due to
the poor thermodynamic model, the crude treatment of the heat flow, and the
steady-state nature of the analysis, the results can ke thought of as only
gualitative. But the trends will not change. For sufficiently dilute
solutions (i.e. curve labelled "-=" in Fig. 3), the effects are negligible
below about 10 m/s. But for a given quenching condition, the velocity drops
as the Bi dose increases. The magritude of the effect is considerable at
velocities where the partition ccefficient is far frem both k, and 1. The
solute drag force turns out to be greatest in this regime [15]. For large
enough solute concentrations, three solutions are found for some quenching
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conditions, as in the curves labelled "=-1.8" in Fig. 3. The lower branch
corresponds to a slow-moving interface laden with solute. The middle branch
is probably unstable. And the top branch corresponds to an interface which
has "broken away" from its solute atmosphere. The analogy with the treat-
ment of grain boundary migration [21] is evident. However, morpholegical
instability during solidification has not been taken into account; cellular
breakdown may make most of the lower branch unobserwvable.

Comparison with experiment. Galvin and coworkers have been looking
for this effect; they appear to have found it [26]. For identical laser
annealing conditicns, indium~doped Si grows back slower than pure Si. 1In
the foreseeable future quantitative compariscns of theory and experiment
should be possible.

CONCLUSIONS

A simple solute trapping model can be understood as a direct con-
sequence of the collision-limited growth model discussed by Turnbull and by
Jackson, which asserts that crystal growth can occur much more rapidly
than interdiffusion. The interface velocity can be predicted by balancing
the physical forces on the interface. The theory predicts that the presence
of dopants reduces the regrowth speed from laser-induced melting. There
are preliminary indications of experimental confirmation of the predictions.

One of the major advantages of this model is that the calculations are
simpie enough to be performed by anyone. The trouble with a model this
simple is that it must gloss over a lot of complexities and it certainly
cannot be correct to several significant digits. However, with only a
single free parameter it seems to predict the right trends.
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