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MULTIPLE SULFUR ISOTOPE APPLICATIONS IN DIAGENETIC 

MODELS AND GEOCHEMICAL PROXY RECORDS 
 

ABSTRACT 
 

 Many of the long-term geochemical fluxes influencing the surface sulfur cycle are 

microbially catalyzed and a substantial portion of active S cycling occurs in organic-rich continental 

margin sediments. Stable S isotopes historically provide the most powerful analytical tool for 

understanding these small and large scale fluxes and for relating them back to laboratory 

characterizations of microbial metabolisms—particularly that of dissimilatory sulfate reduction. A 

more recent expansion of stable S isotope geochemistry to include the minor isotopes (33S and 36S) has 

demonstrated the capacity to diagnose the presence of additional S metabolic processes and to further 

characterize the response of microbial sulfate reduction to environmental forcing. In particular, 

emerging work suggests that multiple S isotope signatures in laboratory experiments are dictated by 

the physiological rate of a metabolic process. This is especially true for sulfate reduction. In this thesis 

we expand the scope of minor S isotope geochemistry to include early diagenetic processes, exploring 

the fidelity of laboratory calibrations and how they translate both to the modern marine sediments as 

well as an S isotope proxy records of seawater sulfate through the Cretaceous and Cenozoic. 

 Early diagenesis of organic carbon in marine sediments via sulfate reduction is a dominant 

microbial process, and leaves a characteristic isotopic imprint in pore water and solid phase S-bearing 

species. To place those S isotope signatures into a physical context, we construct reactive transport 

models that take sulfur, carbon, and in one case, iron cycling into account for two geochemically well-

characterized sedimentary environments: Alfonso basin and Aarhus bay. Alfonso basin is an anoxic-

silled marginal basin in the Gulf of California and Aarhus bay is a well-oxygenated, shallow coastal 

system. We demonstrate in both cases that large S isotope fractionations during microbial sulfate 

reduction (34εSR = 70‰) are required to explain the pore water isotope signatures, and there is no need 



 iv 

for a depth or rate-dependent fractionation relationship. Furthermore, in the case of Aarhus Bay, it is 

clear that that isotopic contribution from oxidative S processes is negligible.  Both these results – an 

apparent fixed 34εSR in sediments and little to no isotopic sensitivity to oxidative reactions  – should 

hold true across similar, common shallow water marginal sediments.  

 In parallel to work targeting the behavior of modern marine sediments, we revisit a well-

known δ34S proxy record for Cretaceous and Cenozoic seawater sulfate.  Using minor isotope 

techniques, we demonstrate that Δ33S and Δ36S values are isotopically homogeneous (Δ33SSO4 = 

0.043±0.016‰ and Δ36SSO4 = -0.39±0.15‰) despite δ34S variability. These observations, the first of 

their kind, place upper limits on pyrite burial and evaporite dissolution over the last 120 million years.  

Together, this thesis highlights analytical advances in stable isotope geochemistry and 

complements those measurements with reactive transport environmental modeling. To date much 

attention has focused on the laboratory scale generation and controls on the production of microbial 

isotope signature. Using high-precision minor isotope measurements, paired with the construction of 

the models incorporating multiple S isotope systematics, allows for the placement of quantitative 

constraints on sedimentary S cycling and for understanding the global scale consequences for seawater 

sulfate S isotope proxy records. More succinctly, this furthers our understanding of the imprint that 

microbial processes have on the multiple S isotope record. 
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CHAPTER 1 
 
INTRODUCTION 

 

1     INTRODUCTION  

Understanding and quantifying biogeochemical sulfur cycling at its smallest analytically practical 

scale—marine sediments and their interstitial waters—is key to reconstructing the cycle’s larger scale 

interaction with the carbon and iron cycles. Sulfur isotope geochemistry has historically provided the 

most powerful tool for understanding microbially mediated sedimentary S cycling, and in recent years, 

a renaissance in the analytical techniques of minor S isotope (33S and 36S) geochemistry has opened up 

a new avenue of research (Farquhar et al., 2000, Farquhar et al., 2003). The ensuing studies provided 

key insights into microbial metabolism and physiology (Fike et al., 2015; Bradley et al. 2015; Leavitt 

et al., 2014; Leavitt et al., 2013; Sim et al., 2011a; Sim et al., 2011b; Johnston et al., 2011; Zerkle et 

al., 2009; Johnston et al., 2008; Farquhar et al. 2008; Johnston et al., 2007; Johnston et al., 2005; 

Farquhar et al., 2003). While some of those studies have highlighted the potential of multiple S 

isotopes as a tool for reconstructing environmental S cycling, none have employed direct 

measurements to place those physiological and metabolic constraints into a broader geochemical 

context.   

 This thesis chronicles the methodological development of multiple S isotope measurements at 

Harvard University and provides the first quantitative study of how minor S isotope biosignatures are 

produced and diagenetically inherited in sedimentary systems. One dimensional reactive transport 

models of two geochemically well-characterized continental margin settings (Alfonso Basin, Gulf of 

California, and Aarhus Bay, Denmark) are presented and their isotope signatures placed in the context 

currently understood from microbial calibrations. Additionally, this thesis revisits a critical historical 



 
EARTH’S SURFACE SULFUR CYCLE 
 

 

2 

(0-120 Ma) sulfate proxy record of marine barite (Paytan et al., 2004; Paytan et al., 1998) using minor 

isotope techniques, to place constraints on the magnitude of fluxes (e.g., sedimentary pyrite burial) 

capable of influencing that isotope record on million year time scales. As a preface to the thesis, in 

this chapter I introduce sulfur isotope geochemistry and its use in reconstructing Earth’s surface S 

cycle, detail the nomenclature used by the minor S isotope community, and provide a brief overview 

of the work to date in understanding microbial physiology and the role of S in marine sediment 

geochemistry. This provides the foundation from which the manuscripts that comprise this dissertation 

will draw. 

 
  

1.1 EARTH’S SURFACE SULFUR CYCLE 

Sulfur is the 15th most abundant element in the continental crust, representing ~0.042% by mass. Its 

multiple stable oxidation states allow for its deep role in the redox evolution of the Earth’s surface.  

The burial of reduced sulfur as pyrite (FeS2), in addition to reduced carbon burial allow for the net 

accumulation of O2 in Earth’s atmosphere on geologic timescales (Hayes and Waldbauer, 2006; 

Berner, 1982). On the other hand, the oxidative weathering of sulfides—including igneous and 

sedimentary pyrite, has produced the largest reservoir of S on the Earth’s surface, as seawater sulfate 

(SO4). At ~28 mmol/L, seawater sulfate constitutes ~3.8x1019 moles S and carries more oxidative 

capacity than atmospheric O2 (Hayes and Waldbauer, 2006).  

 Sulfate serves as a terminal electron acceptor for microbially mediated organic matter 

remineralization, and in marine sediments is responsible for >50% of total sedimentary particulate 

organic carbon (POC) oxidation (JØrgensen, 1982). Microbial sulfate reduction (MSR), a metabolism 

that couples the dissimilatory reduction of sulfate (cf. Bradley et al., 2011) to electron donor (organic 

carbon) oxidation produces hydrogen sulfide (H2S). This biogenic sulfide is either lost to pyrite burial, 

or is alternatively reoxidized to sulfate in an intricate pathway of biologically and abiologically 

mediated reactions (Zopfi et al., 2004). Terminal sulfide loss via sedimentary pyrite represents the 

largest flux out of the seawater sulfate reservoir. Globally averaged estimates of sulfate reduction rates
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(SRR) for marine sediments vary depending on the technique used, but range from (1.1x1013 moles/yr 

to 7.5x1013 moles/yr) (e.g., JØrgensen, 2006, Bowles et al., 2014), whereas pyrite burial estimates are 

an order of magnitude lower. This implies that a substantial portion of the sulfate reduced to sulfide in 

situ is reoxidized and escapes terminal burial. This oxidative sulfur cycling, and the consequently long 

residence time of sulfate in the oceans, carries deep implications for the isotope records used to 

understand and quantify the fluxes in the biogeochemical sulfur cycle, introduced and discussed 

below. 

 
 
1.2 SULFUR ISOTOPE SYSTEMATICS 

Sulfur has four stable isotopes (32S, 33S, 34S, 36S) with atomic masses and mole fractions as listed in 

Table 1.1 below (Audi and Wapstra, 1993; Ding et al., 2001; Coplen et al., 2002): 

Of the four stable isotopes, 32S is the most abundant (95.04%), followed by 34S (4.20%). The two less 

abundant of the four isotopes are frequently referred to as minor isotopes, and include 33S (0.75%) and 

36S (0.015%). For analytical and historical reasons, the 32S and 34S are the most frequently measured, 

and reported as (34S/32S) ratios with respect to a standard (Vienna Canon Diablo Troilite, ‘VCDT’) 

using δ-notation: 
 
 
 

                      (1.1) 

Table 1.1: Atomic Masses and mole fractions of the four stable isotopes of sulfur, with an 
assumed composition of δ34S = 0‰. Information is as compiled in Coplen et al. (2002). 
1 Audi and Wapstra (1993) 
2 Ding et al., (2001) 

Isotope Atomic Mass1 Mole Fraction2 

32S 31.972 070 73(15) 0.950 3957(90) 
33S 32.971 458 54(15) 0.007 4865(12) 
34S 33.967 866 87(14) 0.041 9719(87) 
36S 35.967 080 88(25) 0.000 1459(21) 
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where δ−values are reported in parts per thousand, or per mil (‰). The R34 is shorthand notation for 

an isotope abundance ratio (e.g., 34S/32S) and can be written with the other isotopes of sulfur in mind, 

in sum referred to as the multiple S isotopes.  
 
 

1.2.1  MULTIPLE S ISOTOPE NOMENCLATURE 

Although researchers initially measured all four stable isotopes more than fifty years ago for 

cosmochemical studies (Hulston and Thode, 1965a; Hulston and Thode, 1965b), it was thought that 

the variations in the abundance of 33S and 36S were predictable using accurate measurements of δ34S 

values and quantum mechanical first principles. For example, consider a single-step (bio)chemical 

process imparting a fractionation (denoted by the fractionation factor α), which, for a dual isotope 

system, e.g., for 34S/32S: 
 
 

(1.2) 
 

Introducing a second isotope system (33S/32S), simple quantum mechanical characterizations of 

equilibrium processes detail that the relationship between the fractionation factors 33α and 34α can be 

described by a mass fractionation law (cf. Young et al., 2002): 

 
 

(1.3) 
 
 

Using atomic masses from Table 1.1 this mass law predicts a 33βA-B  = 0.5159 for high temperature 

equilibrium processes. Repeating for the remaining triple isotope system (32S/34S/36S) yields a 

theoretical 36βA-B  = 1.89. Most natural processes (microbial, chemical) operating on the Earth’s 

surface abide closely by these mass laws, and produce characteristic fractionation arrays (e.g., δ33S vs. 

δ34S) with a predictable correlation (δ33S ~ 0.5δ34S). Given this predictable fractionation array, and 

with the analytical complexity of the minor isotope measurements, sulfur isotope geochemistry for 
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most of the next 35 years (1965-2000) focused almost exclusively on natural variability in (34S/32S) 

ratios, excluding 33S and 36S.  

 The discovery of large mass-independent signatures in the Archean sulfur isotope record and 

the elucidation of the physical chemical processes that produce them (Farquhar et al. 2000; Farquhar 

et al., 2001; Farquhar and Wing, 2003) renewed interest in minor S isotope geochemistry. Subsequent 

measurements of 33S and 36S in biological samples (Farquhar et al., 2003) opened the door for the 

study of mass-dependent variability observed in microbiological samples. Studies of both mass-

dependent and mass-independent S isotope fractionation emplace a reference frame that relies on the 

high-T equilibrium relationship (e.g., Eq. 1.3) to quantify Δ33S and Δ36S values: 
 
 
 

(1.4) 
 
 
 
 

(1.5) 
 

where Δ33SA-B and Δ36SA-B relate the isotopic compositions between two pools, A and B. Those values 

are frequently reported on a universal reference frame with VCDT defining δ34S  = 0, Δ33S = 0, and 

Δ36S = 0, (cf. Wing and Farquhar, 2015; Ono et al., 2006). In reality, the isotopic relationship between 

any two analytical pools can be described using Eqns 1.4 and 1.5. In the case of positive Δ33S and Δ36S 

values, samples contain more 33S and 36S than described by high-T equilibrium, and vice versa. 

Additionally, it is possible to describe the relationship between two different pools (again A and B) 

using the values 33λA-B and 36λA-B:    
 
 

(1.6) 
 
 
 

(1.7) 
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where these values approximate the slope of a line connecting the two compositional points A and B 

in a triple isotope reference frame. Two samples at equilibrium in this case would possess 33λA-B and 

36λA-B values of 0.515 and 1.9, respectively. Deviations from those values, related to compositional 

variability, will also manifest as non-zero Δ33SA-B and Δ36SA-B values. This can be the result of mass-

conservation (and mixing), both at the metabolic and geochemical levels (cf. Farquhar et al., 2007). 

The usage of this notation (Δ and λ values) is the primary means of describing the minor isotope 

fractionation characteristics detailed for microbial experiments. 

 
 
1.2.2 MULTIPLE S ISOTOPE INSIGHTS INTO MICROBIAL METABOLISMS  

Historically, researchers in low temperature S isotope biogeochemistry focused on understanding the 

factors controlling the fractionation capacity of a specific organism or metabolism, like microbial 

sulfate reduction. These experimental constraints are then used in drawing the connection to modern 

sediments to infer characteristics about environmental S cycling. The earliest research primarily 

considered MSR and its biochemical and isotopic characteristics (e.g., Rees et al., 1973; Kemp and 

Thode, 1968; Kaplan and Rittenberg, 1964; Peck, 1961; Peck, 1959; Harrison and Thode, 1958; Jones 

and Starkey, 1957). From that early work emerged a model (Rees et al., 1973) that considered 

dissimilatory sulfate reduction (DSR, the biochemical pathway of sulfate reducers) as a series of 

enzymatic steps to which individual (34S/32S) fractionation characteristics can be ascribed: 
 
 

(1.8) 
 

 

where the reactants, intermediates, and products are sulfate (SO4
2-), adenosine-5’-phosphosulfate 

(APS), sulfite (SO3
2-) and hydrogen sulfide (H2S) (modeled after Johnston, 2011; Bradley et al., 2011). 

Rees et al. (1973) initially prescribed empirically derived fractionation factors for the steps in the 

network (sulfate transport, APS activation, APS reduction, and sulfite reduction) to explain the total 

fractionation of the DSR pathway between sulfate and sulfide. The application of his steady state 
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isotope fractionation model, in concert with the recycling of S intermediates, was the first to aim to 

quantify the influence of S intermediate recycling on the fractionation magnitude of the DSR pathway. 

A subsequent study of organic-carbon limited continuous cultures of a laboratory sulfate reducer 

Desulfovibrio desulfuricans (Chambers and Trudinger, 1975) demonstrated that the S isotope 

fractionation also varies inversely as a function of the specific rate of sulfate reduction—S isotope 

fractionation is not fixed by individual biochemistry of a sulfate reducer, but is instead related to the 

rate of metabolism. Since specific rate is also related to the recycling of S-intermediates, those 

continuous culture experiments can be recognized as one of the earliest empirical validations of Rees’ 

steady-state model.  

 In the late 1980’s, researchers isolated a new energy metabolism coupled to the inorganic 

fermentation of inorganic sulfur compounds, (e.g., sulfite, thiosulfate, and elemental sulfur).(Bak and 

Pfennig, 1987). An isolated organism produced both sulfate and sulfide from the fermentation of a 

single S compound of intermediate valence—carrying important implications for the interpretation of 

environmental S cycling where chemical oxidation of sulfide in the presence of O2 and Fe3+ produces 

a vast array of S intermediates (cf. Zopfi et al., 2004). The discovery of additional types of microbial S 

disproportionation (MSD) (Thamdrup et al., 1993), and the isotopic characterization of those 

collective pathways (Habicht et al. 1998; Habicht et al., 1997) demonstrated that oxidative sulfur 

cycling plays a powerful role both in the geochemistry of modern marine sediments, and their S 

isotopic characteristics. Researchers extended that understanding of oxidative sulfur cycling to deep 

time records, and used the temporal range of variability in δ34S proxy records to infer the history of the 

progressive oxygenation of Earth’s surface (Canfield, 2004; Canfield et al., 1998; Canfield and Teske, 

1996). The central issue in using δ34S-based records to infer the presence of a metabolism and its 

geochemical drivers, however, are the non-uniqueness of their signatures. Microbial sulfate reduction 

and microbial sulfur disproportionation each produce 34S-enriched sulfate, and 34S-depleted sulfides 

and only non-quantitative estimates of the contribution of each metabolism can be inferred.  
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 With the re-emergence of minor isotope techniques in the early 2000’s — in response to the 

discovery of mass-independent S isotope fractionation signatures in Archean (Farquhar et al., 2000) 

sedimentary sulfides — studies of purely mass-dependent systems (microbial, biochemical) showed 

that significant variations in Δ33S (≥ ±0.05‰) and Δ36S (≥ ±0.2‰) also exist. These variations, entirely 

within the analytical precision of SF6-based techniques (Farquhar and Wing, 2003), expanded the 

understanding of S metabolisms. This is true both in terms of the network structure of MSR and MSD, 

as well as in the extension of those relationships to the geological sulfur isotope record (Johnston et 

al., 2008; Johnston et al., 2007; Ono et al., 2006; Johnston et al., 2005a; Johnston et al., 2005b; 

Farquhar et al., 2003). Furthermore, those studies showcased the benefits of including 33S and 36S 

measurements in microbial and geochemical studies because the precision of Δ33S and Δ36S 

measurements allowed for the distinction of MSR and MSD independent of δ34S measurements alone. 

That research led to a series of studies highlighting the minor isotope characteristics of MSR in batch 

experiments (Leavitt et al., 2014; Sim et al., 2012; Sim et al., 2011a; Sim et al., 2011b), continuous 

culture experiments (Leavitt et al., 2013) and pure enzyme studies (Leavitt et al., 2015).  Leavitt et al. 

(2013) provided evidence corroborating the results of Chambers and Trudinger (1975) that 

fractionation relationships—in this case both 34αSR and 33λSR—are linked to the specific rate of sulfate-

reduction. Low rates are correlated with large (>50‰) S isotope fractionation and 33λSR approaching 

the thermodynamic limit of ~0.515, with a diminution of both at high specific rates. It is unknown 

whether this rate relationship holds in natural systems, and quantitatively how important that 

relationship is in controlling the S-isotope characteristics of marine sediments. This final question is 

one of the key targets of this dissertation. 

 
 
1.2.3 ANALYTICAL METHODS FOR MULTIPLE S ISOTOPE GEOCHEMISTRY 

The analytical methods for multiple S isotope geochemistry were established in the early 1960’s for 

cosmochemical studies exploring the abundance of 33S and 36S in meteorites (Hulston and Thode, 

1965a; Hulston and Thode, 1965b). These studies used fluorination chemistry to generate SF6 as an 



 
 
ROLE OF SULFUR IN THE EARLY DIAGENESIS OF MARINE SEDIMENTS 

 

9 

analyte gas. This is useful given that fluorine is mono-isotopic. In contrast to studies using common 

SO2-based methods, which are largely only useful for (34S/32S) measurements, SF6-based techniques 

have sufficient precision to be useful for studying mass-dependent variability in Δ33S and Δ36S due to 

the purity and physical chemical properties of the analyte, and the high mass resolution achievable by 

measuring SF5
+ (m/z = 127, 128, 129, 131 for 32SF5

+, 33SF5
+, 34SF5

+, 36SF5
+). The difficulty lies in 

generating SF6
 from geologically relevant materials, requiring a fluorination agent, either bromine 

pentafluoride (BrF5) or pure fluorine gas (F2), and Ag2S as the starting S compound. The introduction 

of methods for purifying F2 gas aided the problem of dealing with contaminating gases like CF4 and 

O2  (Asprey, 1976). Further, the application of laser-based microanalytical techniques in fluorination 

also improved precision and sample throughput (Rumble et al., 1997). With developments in mass-

spectrometry and purification chemistry, sulfur hexafluoride based methods for S isotope chemistry 

have improved precision on Δ33S and Δ36S measurements to the parts per million level (cf. Johnston et 

al., 2014; Ono et al., 2012), with σ-Δ33S = 0.006‰, and σ-Δ36S = 0.1‰ frequently reported. This high 

precision of quadruple S isotope variability is precisely the reason that the natural range of mass-

dependent signatures (0.3‰ and 2.0‰, respectively), such as those detailed in this study, can be 

readily explored. 

 
1.3 ROLE OF SULFUR IN EARLY DIAGENESIS OF MARINE SEDIMENTS 

The high concentration of sulfate in the seawater (28 mmol/L), its role as a terminal electron acceptor 

for microbial metabolism, and the interaction of its reduced products (e.g., H2S) with reactive iron 

oxy(hydroxides) mean that sulfur has an integral part in the biogeochemistry of early diagenesis. A 

full description of that role is beyond the scope of this contribution, thus this section focuses on (i) the 

use of sulfate concentration profiles to infer aspects of organic matter degradation kinetics, and (ii) the 

use of S isotope distributions in marine sediments and interstitial waters to infer microbial activity. 
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1.3.1 SEDIMENTARY S/C CYCLING 

Determination of in situ sulfate reduction rates with radiotracer (35SO4
2-) techniques have been used in 

concert with benthic dissolved oxygen concentrations to estimate the contribution of sulfate reduction 

to total organic carbon remineralization in marine sediments at greater than 50% (JØrgensen, 1982). 

Sulfate is a terminal electron acceptor for ‘classic’ organoclastic sulfate reduction, where the electron 

donors are generally short chain organic compounds (acetate, lactate, propionate), and anaerobic 

methane oxidation (AOM), where the electron donor is dissolved methane (CH4) derived from 

methanogenic degradation of organic carbon under sulfate-limiting conditions (cf. Tarpgaard et al., 

2011; Boetius et al., 2000). Although other terminal electron acceptors (NO3
-, Fe3+, Mn4+) are 

responsible for some organic carbon remineralization in marginal sediments, it is thought that, on 

average, they contribute <10% to the total oxidant budget of shelf environments (Aller, 2014; Meister, 

et al., 2013). It is worth noting that the fraction of sedimentary organic carbon lost to sulfate reduction 

drops off significantly at water depths >1000 m, driven primarily by lower TOC contents of deep sea 

sediments and an increased role for oxic respiration.  

 Empirical and model studies of sulfate concentration profiles are employed frequently to infer 

organic carbon degradation kinetics in marine systems. With the mathematical formulations of Berner, 

1980, studies validated the ‘G’ model of POC remineralization (Westrich and Berner, 1984). Here, G 

is a term describing the pool of reactive organic carbon in a sedimentary system that is subject to first-

order decay kinetics. Multi-G models (Berner and Westrich, 1984) expanded this to include multiple 

‘G’ pools that are binned by their reactivity, and share a single decay constant. These studies also 

recognized that in situ rates of sulfate reduction are also largely independent of sulfate concentration 

above ~1 mmol/kg, and likely even less than that threshold. Together these results implied that sulfate 

loss due to microbial sulfate reduction in sediments is independent of sulfate concentration and the 

kinetics of its consumption are driven almost exclusively by organic carbon reactivity. Subsequent 

research has updated the sulfate concentration thresholds to include different microbial physiologies, 

with different sulfate affinities, but the threshold is still estimated to be between 50-200 µmol/kg 
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(Bradley, 2015; Tarpgaard et al., 2011). The abundance and reactivity of sedimentary POC thus 

controls the sulfate concentration profile in marine sediments, and is the primary factor controlling the 

bulk rate of in situ sulfate reduction. 

 The organic carbon that escapes remineralization via sulfate reduction in marine sediments is 

available to be converted to methane deeper in the sediment column. Pore water methane is then free 

to diffuse towards the sediment water interface, and most is lost to AOM mediated by a microbial 

consortium with sulfate as an electron acceptor (cf. Alperin and Hoehler, 2010; Alperin and Hoehler, 

2009; Boetius et al., 2000; Hoehler et al., 1994). The exact mechanism of AOM is unclear, but what is 

agreed upon is that AOM represents another significant loss pathway for sulfate within marine 

sediments. Estimates for the total fraction of sulfate consumed via AOM, as opposed to organoclastic 

sulfate reduction, vary widely (1-90%) and depend strongly on environment (cf. JØrgensen, 2010; 

Reeburgh, 2007).  

 

 
1.3.2 REACTIVE TRANSPORT MODELING OF SEDIMENTARY SYSTEMS 

Diagenetic modeling, a branch of reactive transport modeling in porous media, is the primary means 

of inferring in situ biogeochemical rate information in sedimentary systems. Complementing the 

analytically challenging, radiometric measurements that are frequently used, diagenetic modeling 

quantifies rates by reconciling concentration information with physical transport processes (diffusion 

and advection). Marine sediments are, by volume, mostly interstitial water and, except in cases of 

extreme sedimentation, aqueous diffusion represents the primary means of transport. The 

mathematical modeling of sediments and pore waters has been diligently described in several 

textbooks (Boudreau, 1997; Berner, 1980) and reams of scientific papers. Numerous software 

packages, such as PROFILE have been created for reactive transport modeling of sedimentary systems 

(cf. Berg et al., 1998). With that said, we provide only very brief overview of the models constructed 

and employed in this thesis. 
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 Steady-state diagenetic modeling relies on the assumptions that (i) pore water concentrations 

of species/metabolites are not changing and (ii) boundary conditions, such as those inferred from the 

sediment water interface (SWI), also remain constant. Certainly this is not always true, and 

researchers have noted particular cases in dynamic physical regimes where sedimentation and pore 

water geochemistry are fundamentally out of steady-state.  The Amazon Delta and regions near Papua 

New Guinea are now classic examples (e.g., Aller et al., 2010). However, many, relatively quiescent 

continental margin sediments approximate steady-state conditions. For that case, a reactive transport 

equation frequently used (eq 1.9) modified from Boudreau (1997): 
 
 
 
 

(1.9) 
 

 
 

where c is a general pore water species, D is a the diffusivity, ϕ is the porosity, ω is the sedimentation 

rate, and R is the reactive production or loss of species c. The terms approximating the diffusion, 

advection and reaction are shown. In the non-steady case, eq. 1.9 equals ∂c/∂t, the depth-dependent 

change in concentration with time. All the terms in eq. 1.9, with the exception of the reaction term, are 

measured or known for a specific environment (diffusion terms are known for most species in 

seawater, as are their relationship to pressure, temperature, and salinity, and the sedimentation rate is 

usually known from site-specific radiometric assays). Thus, the primary goal of most diagenetic 

models is to infer the depth-dependent reaction term, and to reconcile it with measured or empirically 

calibrated biogeochemical rate information. Predictive models are occasionally used in the absence of 

any analytical information. In this thesis, we use variations of equation 1.9 to predict rate information, 

such as the sulfate reduction rate (SRR), the methane oxidation rate (MOR), and the pyrite 

precipitation rate (FeS2FR), to understand the concentration data of two margin settings, and use an 

isotope-dependent modified version of equation 1.9 to understand S isotope distributions for the S-

bearing species observed in those systems. Those S isotope-specific models have been constructed by

diffusion                                 advection                 reaction 
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 others researchers to explain isotope distributions (Dale et al., 2009; Donahue et al., 2008; JØrgensen, 

1979), but have never explicitly included 33S.   
 
 
1.4 ISOTOPE RECORDS OF THE GLOBAL BIOGEOCHEMICAL S CYCLE 

 Our understanding of the global biogeochemical sulfur cycle in the late Cretaceous and 

Cenozoic has benefited from the construction of a time-calibrated δ34S record of seawater sulfate from 

marine barite (BaSO4) isolated from deep sea sediment cores. A pair of studies produced the δ34S 

record of Cenozoic (0-65 Ma) seawater sulfate (Paytan et al., 1998) and the later Cretaceous (Paytan 

et al., 2004). In the light of substantial variability in the major ion composition of seawater, including 

sulfate, through the Phanerozoic (e.g., Brennan et al., 2013; Lowenstein et al., 2003; Horita et al., 

2002; Lowenstein et al., 2001), researchers have attempted to understand the changes in the 

biogeochemical S cycle by modeling the δ34S excursions in this proxy record. Models have suggested 

major perturbations in the C cycle at the Paleocene-Eocene Thermal Maximum (PETM), and invoked 

massive changes in the pyrite and evaporitic sulfate burial fluxes in the Cretaceous (Wortmann et al., 

2012; Halevy et al., 2012) to explain earlier isotopic excursions. Previous researchers suggest that the 

characteristic Δ33S/δ34S isotope signatures associated with sulfate reduction—and indeed other 

microbial processes—are reflected in other Phanerozoic S isotope records (Wu et al., 2014; Wu et al., 

2010), and have incorporated 33S into global models of the S cycle. In this thesis, I present a similar 

analysis for the samples original presented in Paytan et al. (2004) and Paytan et al. (1998), re-

evaluated to include Δ33S and Δ36S measurements. 
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 1.5 SUMMARY OF THESIS CHAPTERS 

 In this thesis, I describe the implementation of multiple S isotope analytical techniques at 

Harvard University and the development of reactive transport diagenetic models to include 33S. The 

thesis has three body chapters and three separate appendices. Chapter 2 describes the development of 

a pore water sulfate diagenetic model for an anoxic basin in the California-Mexico margin (Alfonso) 

that estimates sulfate reduction rates from pore water geochemical data, and uses laboratory-calibrated 

S isotope fractionation characteristics to understand the Δ33S and δ34S signatures observed in the 

multi-core pore water data. Chapter 3 is an extension of Chapter 2 that reconstructs the sedimentary S 

cycle of a shallow continental margin site (Aarhus Bay, Denmark) and extends the modeling 

techniques to include other sulfur species of interest, including sulfide and pyrite (solid phases). In 

Chapter 4, I revisit a historical marine sulfate δ34S record and provide additional information with 

paired Δ33S and Δ36S records and conduct a simple sensitivity study to place limits on the 

biogeochemical fluxes (e.g., sulfate weathering and pyrite burial) allowable within the range 

demonstrated by marine sulfate Δ33S and Δ36S values over 120 Ma. Further, Appendix 1 details 

measurements of IAEA standards and the calibration of VCDT and seawater sulfate δ34S, Δ33S, and 

Δ36S values over approximately three years of analyses—one of the more rigorous calibrations of its 

kind. Appendix 2 describes the triple isotope signatures (δ34S and Δ33S) for pore waters within the 

Amazon delta, and Appendix 3 is a published manuscript (Johnston et al., 2014) describing the rate 

limits that can be placed on microbial sulfate reduction within a water column oxygen minimum zone 

(OMZ). This thesis describes the utility of minor S isotope techniques in understanding and 

quantifying aspects of the sulfur cycle in modern sediments and in deep time, using a variety of 

analytical and modeling techniques. 
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CHAPTER 2 
 
A MULTIPLE SULFUR ISOTOPE DIAGENETIC MODEL FOR ANOXIC 
SEDIMENTS OF THE CALIFORNIA-MEXICO MARGIN: ALFONSO BASIN* 
 
 
 
ABSTRACT 

Recent studies targeting the metabolic, physiological, and biochemical controls of S isotope 

fractionation in microbial systems have drawn linkages between culture experiments and the sulfur 

isotope signatures observed in natural environments. Several of those studies have used newer 

techniques to explore the minor isotope (33S and 36S) variability in those systems, and also have 

attempted to place them in an ecophysiological context. Sparingly few have incorporated this 

newfound understanding of minor isotope behavior into natural systems (sediments, water columns) 

and none of them have refined existing isotope-dependent reactive transport models to explicitly 

include 33S.  In this study, we construct a three-isotope (32S, 33S, and 34S) reactive transport model of 

pore water sulfate for a well-characterized sedimentary system within the California-Mexico Margin 

(Alfonso Basin) that aids in placing recent microbial studies into a natural context. The model first 

reproduces the bulk geochemical characteristics of the pore water—including [SO4
2-], [CH4], [DIC], 

and [Ca2+]—and predicts bulk (non-isotope-specific and depth-dependent) rates of sulfate reduction. 

Next, the model uses those depth-dependent bulk rates, in combination with empirically calibrated 

fractionation factors, to explain the minor isotope characteristics of the core-top pore water SO4
2-, 

including δ34S and Δ33S values. The down core, isotopic evolution of pore water sulfate requires a 

large fractionation associated with sulfate reduction (34εSR = 70±5‰) that appears to be independent of 

bulk rate. The minor isotope characteristics (33λSR = 0.5130±0.0005) are also independent of rate and 

*A version of this chapter has been submitted to the American Journal of Science with co-authors 
Marc J. Alperin, William M. Berelson and David T. Johnston. 
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fall near the range expected from microbial calibrations, but differ from predictions from 

thermodynamic equilibrium. This raises key questions in relating the physiological state of marine 

microorganisms relative to their laboratory counterparts, as well as points toward exceedingly low 

metabolic rates in marine sediments.  
 
 
 
2.1 INTRODUCTION 
 
Microbial sulfate reduction (MSR) is quantitatively the most important remineralization pathway for 

organic matter in modern continental margin sediments (Jørgensen, 1982), and carries profound 

geochemical consequences for the environmental interpretation of biogeochemical cycling (Canfield, 

2004). Sulfur isotope geochemistry is a primary analytical tool for tracking and quantifying the 

influence of MSR and other sulfur metabolic pathways in those environments. Several decades of 

research focused on understanding the S isotope biochemistry of MSR (Rees, 1973; Detmers et al., 

2001; Canfield, 2001) and metabolisms such as microbial sulfur disproportionation (Bak and 

Pfenning, 1987; Canfield and Thamdrup, 1994; Thamdrup et al., 1994; Canfield and Teske, 1996; 

Finster et al., 1997; Habicht et al., 1998). Those studies concerned only the two isotope system of S 

(34S/32S) and largely used the magnitude of a fractionation (34ε; see below for definition) as a 

diagnostic feature for distinguishing between different metabolisms.  

 With the application of multiple or minor S isotope (33S/32S and 36S/32S) systematics to 

microbial systems (Farquhar et al., 2003), researchers expanded the understanding of microbial 

metabolisms and S isotope fractionation behavior to include 33S and 36S. The physical chemistry of 

mass-dependent isotope fractionation has a solid theoretical foundation (Bigeleisen and Mayer, 1947; 

Young et al., 2002; Farquhar et al., 2003), and the application of such principles to biological systems 

highlighted the added level of interpretability that comes with exploring paired metrics such as δ34S, 

Δ33S, and 33 λSR. The common nomenclature used to define these systematics is based on standard delta 

notation: 

(2.1) 
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that then gives rise to two minor isotope short-hands. The first is a deviation from a reference line in 

units of parts per thousand (or ‰):  

 

(2.2) 
 

whereas the fractionation factors from a defined system can also be used to define an effective slope 

of a triple isotope relationship: 

(2.3) 
 

Together these terms serve as the means for cataloging variability in 33S/32S, 34S/32S and 36S/32S. 

 Variability in Δ33S values, paired with an understanding of how mass is conserved at the 

cellular scale, demonstrated that the signatures of MSR and sulfur disproportionation are potentially 

unique. This feature led to minor S isotopes being used to understand S cycling in ancient systems 

(Johnston et al., 2005a; Johnston et al., 2005b; Johnston et al., 2008). Subsequent studies have further 

characterized those multiple S isotope signatures in microbial experiments (Johnston et al., 2007; Sim 

et al., 2011a; Sim et al. 2011b) and improved our understanding of the influence of rate (Leavitt et al., 

2013) sulfate concentration (Bradley et al., 2015) and enzyme effects (Leavitt et al., 2015) in the 

ultimate expression of multiple S isotope biosignatures. Due to the overwhelming importance of MSR 

in the historical S isotope record (e.g., Strauss et al., 1999), multiple S isotope studies have also tried 

to interpret these mass dependent Δ33S signatures in proxy records (Johnston et al., 2008; Wu et al., 

2010; Wu et al., 2015; Sim et al., 2015; Masterson et al., 2016). The variability in the Δ33S record is 

clearly connected to microbial metabolism, but the proper quantification of the connection between 

laboratory calibrations of microbial (δ34S and Δ33S) signatures depends on placing those isotopic 

systematics into a diagenetic context. Such has been done for the (34S/32S) system, but has never been 

explicit done to include the minor isotopes. 
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 Diagenetic reactive transport modeling is the primary means for reconstructing rates of low 

temperature (including microbial biogeochemistry) from the concentrations of pore water and solid 

phase species in continental margin sediments. The mathematical framework underlying the modeling 

has long been established (Berner, 1980; Boudreau, 1997), and models of increasing complexity are 

continuing to be constructed (cf. Arndt et al., 2013). Such models have been used to understand 

organic matter degradation kinetics (Aller, 2014), methane biogeochemistry (e.g., Alperin et al., 

1994), and S cycling (Berner, 1964; Jørgensen, 1979; Aller and Blair, 1996, Aller et al., 2010). 

Sometimes bulk geochemical rates serve as model inputs, but more often biogeochemical rates, 

ascertained from concentration profiles, are the desired model output (Bowles et al., 2014). A small 

cadre of studies have constructed such models for the S isotope system, beginning with the seminal 

study of Jørgensen (1979), and later to the deep biosphere (Wortmann et al., 2001), and Cariaco Basin 

(Donahue et al., 2008). The only attempt to apply a multiple S isotope diagenetic model to a 

sedimentary system, Mangrove Lake, Bermuda (Pellerin et al., 2015), used pore water sulfate 

concentration and isotope information alone to construct the model. Needed is a more comprehensive 

diagenetic study that interprets sulfate concentration profiles in parallel with those of other 

geochemical species (organic matter, CH4, DIC) to improve the quantification of biogeochemically 

important rates like sulfate reduction and anaerobic methane oxidation. In concert with multiple S 

isotope information, this next generation of model will allow for a better understanding of the 

connection between microbial signatures—where rates are generally well understood—and natural 

systems. 

 In this study we target pore water data and samples from an anoxic basin in the California-

Mexico margin—Alfonso Basin to reconstruct sedimentary S cycling and to understand the 

implications for interpreting minor S isotope (Δ33SSO4) pore water sulfate profiles. The anoxic-silled 

basins of the California-Mexico margin are an ideal place to study S cycling due to their low bottom 

water O2 content (<5µM), laminated sediments, and high POC content (>5%). Alfonso Basin in 

particular has been well-studied (Berelson et al., 2005; Gonzalez-Yajimovich et al., 2007; Staines- 
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Urias et al., 2015).  Sediment and pore water data previously sampled and measured  (Berelson et al., 

2005) during the CalMex campaign of 2001 include POC, [SO4
2], [CH4], [DIC], and [Ca2+], and form 

the basis for our model, which includes organic matter degradation kinetics, sulfate reduction, 

methanogenesis, anaerobic methane oxidation, and authigenic carbonate precipitation. The essential 

output of that bulk model is a net sulfate reduction rate (SRR) that is used as a model input for running 

an isotope-specific reactive transport model for the isotopologues of interest (32SO4
2-, 33SO4

2-, 34SO4
2-). 

We ignore 36SO4
2- because of its very low abundance (<0.02%). The model inputs include 

fractionation factors associated with sulfate reduction—33αSR and 34αSR—and the model outputs
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Figure 2.1:  Map showing the sampling locality within Alfonso Basin for the cores 
studied herein. The cores were sampled at approximately 408 m water column 
depth, at latitude of 24°38.18’ (N) and longitude of 110°36.06’ (W) in November 
2001. Separate cores (multi cores and gravity cores) were retrieved, and archived 
sulfate provided the material for analysis in this study. The details of the cruise, 
and the sampling were originally published in Berelson et al. (2005). The left panel 
provides the location of Alfonso Basin, and the right panel, a modified version of 
that appearing in Staines-Urias, et al. (2015), provides the details of the 
bathymetry of the California-Mexico margin. 
 

Figure 2.1 
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include pore water sulfate δ34S and Δ33S profiles/gradients. The results demonstrate that it is possible 

to extract S isotope fractionation behavior from a sediment column, and to use pore water Δ33S and 

δ34S profiles to extrapolate microbial calibrations to natural environments where biogeochemical rates 

are largely unconstrained. 

 

 

2.2 ALFONSO BASIN SAMPLING AND ANALYTICAL METHODS 

2.2.1 CORING AND PORE WATER SAMPLING 

Coring and pore water sampling of Alfonso Basin took place during the CalMex cruise of October and 

November 2001. That particular sampling cruise processed sediment cores from numerous sites along 

the California and Mexican Margin (Berelson et al., 2005). We have focused on Alfonso Basin and 

briefly describe the sample site characteristics and pore water sampling protocols. Although there is 

some temporal variability, in general, bottom water oxygen concentrations are less than 5 µM, and 

sediments are laminated, indicating long-term bottom water anoxia. Alfonso Basin, station 15 (24° 

38.18’, 110° 36.06) lies off the coast of La Paz (Baja Mexico) and was sampled at a water depth of 

408 m (see Fig. 2.1). Sample coring was done with a combination of a multicorer, and via gravity 

coring. Cores with a well-preserved sediment-water interface were utilized for whole-core squeezing 

to extract pore waters to define gradients in the upper few centimeters. Additional multicores from 

each station were sectioned in an anoxic glove bag. Sections were alternatingly sectioned for methane 

(CH4) and dissolved SO4
2-, Ca2+, TCO2, NH4

+, and silica. Methane was sampled and analyzed as 

described in Sansone et al. (2004), as revisited in Berelson et al. (2005). Pore water was filtered and 

stored in glass syringes for DIC analysis and bottled for the remaining constituents. See the appendix 

for all of the pore water and isotope data used for this model study.  
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2.2.2 SULFUR ISOTOPE ANALYSES 

 Frozen, unacidified pore waters from the CalMex (2001) cruise were shipped to the 

laboratory for Stable Isotope Geobiology at Harvard University in 2014 for further sample preparation 

and isotope analyses. Thawed pore water samples were acidified with 1N HCl to a pH of ~2.5, and to 

each sample (ranging in volume from 0.25 mL to 3.0 mL) 500 µL of a concentrated solution of barium 

chloride (1M BaCl2) was added in order to precipitate sulfate as BaSO4. Barium sulfate precipitates 

were rinsed several times with deionized water and dried for a minimum of 12 hours for δ34SSO4 

analyses. Isotope analyses for δ34SSO4
 were done directly on BaSO4 precipitates at the Harvard 

University using continuous flow IRMS. Samples for δ34SSO4 were performed with CF-IRMS and 

analyzed as SO2. Online combustion utilizing a V2O5 catalyst at 500°C was performed with a Costech 

EA, mated to the Delta V. Reproducibility was estimated from repeat analyses of IAEA-S-1, S-2, S-3, 

as well as NBS-127, to be better than ±0.2‰ (1σ).  

 For minor isotope measurements (Δ33SSO4), samples were first chemically converted to Ag2S 

by reductive distillation with a mixture of hydriodic acid (HI), hypophosphorous (H3PO4) and 

hydrochloric acid (HCl) at ~90°C for 3 hours (Forrest and Newman, 1978). The reactors were purged 

with N2 and product H2S was captured as ZnS and converted to Ag2S by cation exchange with AgNO3. 

Samples were rinsed with ~100 mL of millipore water, 15 mL of 1M NH4OH, an additional ~100 mL 

of Millipore water, and dried in a 90°C oven overnight. Powdered Ag2S samples were fluorinated at 

300°C in a F2 atmosphere at 10X stoichiometric excess. Product SF6 was cryogenically and 

chromatographically purified and analyzed on a Thermo Finnigan 253 in Dual Inlet mode. Analyses of 

repeat standards of IAEA-S-1, S-2, S-3, yield a reproducibility of ±0.2‰ and ±0.006‰ for δ34S and 

Δ33S, respectively. Samples are reported versus VCDT, calibrated from the long-term running average 

of IAEA-S-1 versus the working standard gas at Harvard University.  
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2.3 MODEL CONSTRUCTION 

2.3.1 MODEL ARCHITECTURE AND OPERATION 

All reactive-transport models used in this study are steady-state finite-difference models, and were 

coded and run in Fortran 77 to a specified depth (i.e. model domain length, L). The baseline 

geochemical model that reproduces the bulk pore water profiles consists of two parts (i) An organic 

carbon degradation model that produces a remineralization rate profile (GRR), and (ii) a reactive 

transport model that calculates depth-dependent reaction rates, such as organoclastic sulfate reduction, 

methanogenesis, and anaerobic methane oxidation and solves that boundary value problem to 

reproduce the pore water profiles of [SO4
2-], [CH4], DIC, and [Ca2+]. Key outputs of the model are the 

depth-dependent rate profiles, such as sulfate reduction rate (SRR) and anaerobic methane oxidation 

rate. The output SRR, in concert with the [SO4
2-] boundary conditions, and isotope information is then 

used to run the isotope-specific reactive transport model that computes independent rates (e.g., 32SRR, 

33SRR, and 34SRR), as well as isotope (δ34S and Δ33S) profiles that can be used to fit the measured 

data. Discussed below are the more explicit details of the model construction (boundary conditions, 

diffusion coefficients, kinetics parameters) that were used to run each of the models. 

 

2.3.2 BULK PORE WATER GEOCHEMICAL (‘G’, SO42-, CH4, DIC, CA2+) MODEL   

2.3.2.1 POROSITY 

Porosity (φ), or the fraction of whole sediment volume occupied by pore water, was measured at the 

time of pore water sampling of the multi and gravity cores. The extracted porosity follows a 

characteristic, exponential decay function with steady-state compaction (see Fig 2.2a). The model fit 

is used throughout the domain and everywhere it appears in the reactive transport equations.  

 

2.3.2.2 PORE WATER BOUNDARY CONDITIONS 

Although a bottom water sample was not retrieved in this study, other work (Gonzalez-Yajimovich et 

al., 2007) have estimated the bottom water salinity to be S = 35 psu. These data were used to estimate 
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the upper boundary concentration conditions for [SO4
2-] = 28.93 mM and [Ca2+] = 10.2 mM. The 

upper boundary conditions for [CH4] and DIC were as determined in Sansone et al., (2004). In all 

model runs, the upper boundary conditions for the five species were constant (Dirichlet) 

concentrations ([C]), and the lower boundaries were Neumann (d[C]/dx = 0) gradients. Boundary 

conditions for all species used in the baseline geochemical model, including POC, and described in 

more detail below, are shown in Table 2.1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Boundary Conditions of the Baseline Geochemical Model 
Solid phase and pore water concentration boundary conditions for the 
baseline geochemical model. In this table and the remaining tables, the 
Source terms refer to L = Literature, I = calculated from other model 
conditions, and C = Model parameterization. 
 

 
Solute Concentration (mmol/L) Source 
SO4

2- 28.93 I† 

CH4 0.00025 L1 

DIC 2.35 L2 

Ca2+ 10.53 I† 

   
Solid Concentration (%) Source 
POC 7.79 L3 

POC∞ 2.24 C 
G 5.55 C 
   
Solid Flux (mmol cm-2 y-1) Source 
G1 0.990 C 
G2 4.170 C 

G3 4.760 C 
 

 
†Determined from a salinity of S = 35. 
1Sansone, and others (2004) 
2Berelson, and others (2005) 
3Silverberg, and others (2014) 
 

Table 2.1 
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2.3.2.3 PHYSICAL PARAMETERS AND DIFFUSION COEFFICIENTS 

There are a number of physical parameters that are critical to the analysis. For instance, model inputs 

for the baseline simulation are physical parameters, such as the size of the model domain (L = 3000 

cm), below which compaction is negligible, and rates are largely constant.  Water depth, z = 408 m, 

temperature, T= 9C, and salinity, S = 35 were all specified and are used to compute the diffusion 

coefficients, which are influenced by the physical chemical characteristics of seawater (see Tables 2.2 

and 2.3). Sediment density, ρSM = 2.65 g/cm3 and the mass accumulation rate FSM = 0.0149 g/cm2 are 

also necessary to properly compute the coefficients in the diffusion and advection terms of the reactive 

transport equations. Mass accumulation rate is critical in determining the flux of POC into the model 

domain since it parameterized as a weight %. 

 
Symbol Description Value Units Source 
z Water depth 408 m L1 

T Bottom water temperature 9 °C L2 

S Bottom water salinity 35 - L1 

L Length of model domain 3000 cm C 
φo Porosity at sediment surface 0.945 - C 
φ∞ Porosity below zone of compaction 0.835 - C 
β Porosity attenuation coefficient 0.0147 cm-1 C 
ρSM Dry sediment density 2.65 g cm-3 L1 
FSM Mass accumulation rate 14.9  mg cm-2 y-1 L1 

     

1 Gonzalez-Yajimovich, et al. (2007) 
2 Berelson, et al. (2005) 
 

Table 2.2: Physical parameters used in the baseline model 
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2.3.2.4 ORGANIC CARBON DEGRADATION 

Organic carbon remineralization is parameterized using a ‘3G’ model (Dale et al., 2009; Westrich and 

Berner, 1984). In this formulation, particulate organic carbon (POC) deposited at the sediment water 

interface is divided into four fractions, an unreactive fraction, the concentration of which remains 

constant throughout the model domain (POC∞), and three fractions (G1, G2, and G3) with decreasing 

reactivity towards remineralization. The relative contributions of each fraction to the total reactive 

carbon pool are adjustable as model inputs. The solution to the 3G model was solved as a first order 

decay model for each fraction of G, and the remineralization rate normalized to reflect the pore water 

concentration of C remineralized—thus GRRpw is determined in units of µmol cm-3d-1 (see Appendix 

for a more elaborate description of the calculation of GRR). The remineralization rate constants, k1 > 

k2 > k3, were adjustable as model inputs. Of course, the reactive fractions Gn do not resemble actual 

carbon compounds, but are a simplified means of modulating the rate kinetics of the whole model—

since all other rates, including SRR and anaerobic methane oxidation (AOM) are calculated from 

GRR, the concentration profiles are most easily adjusted by changing the fraction of each Gn and their 

remineralization rate constants.  

 
 25°C, 0 psu, 0 m1 9°C, 35 psu, 408 m2 

DSO4 10.7x10-6 6.5x10-6 
DCH4 16.7x10-6 10.1x10-6 
 CO2: 19.7x10-6 CO2: 11.7x10-6 (αo = 2.92%)3 
DDIC HCO3

-: 11.9x10-6 HCO3
-: 7.23x10-6 (α1 = 95.26%)3 

 CO3
2-: 9.31x10-6 CO3

2-: 5.65x10-6 (α2 = 1.82%)3 
  DIC: 7.33x10-6(4) 

DCa 8.08x10-6 4.91x10-6 
1 Boudreau (1997) 
2 Corrected to in situ temperature, salinity, and pressure used in the Stokes-Einstein equation. 
3α values calculated at in situ temperature, salinity, and pressure (assumed pH 7.5) using csys  
            (Zeebe and Wolf-Gladrow, 2001). 
4DDIC = αoDCO2 + α1DHCO3 + α2DCO3 
 

Table 2.3: Diffusion coefficients 
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2.3.2.5 SULFATE REDUCTION RATE, METHANOGENESIS, AND CH4 OXIDATION 

The bulk model assumes that organic carbon is degraded via only two pathways: organoclastic sulfate 

reduction and methanogenesis. Thus, aerobic oxidation, which is minimal in an anoxic basin like 

Alfonso, is neglected. Dissimilatory Fe reduction is also excluded. Quantifying the sulfate reduction 

rate, SRR, with respect to GRR requires knowledge of the oxidation state of organic matter (XS) as it 

influences the stoichiometry of remineralization (C/S). Moreover, the mathematical constraints of the 

diagenetic model require parameterizing sulfate limitation (to dampen rates at low sulfate thresholds) 

for SRR, and require a similar parameterization of sulfate inhibition for methanogenesis. These are 

accomplished with the error function (erfc), a smoothed version of a step function that dials down 

rates when sulfate concentrations reach the threshold ([SO4
2-]*) of limitation and inhibition. Here the 

thresholds are shared for both limitation –in the case of sulfate reduction—and inhibition—in the case 

Parameter Description Value Unit Source 
k1 Reactivity of POC pool G1 0.0100 y-1 C 
k2 Reactivity of POC pool G2 0.0010 y-1 C 
k3 Reactivity of POC pool G3 0.0001 y-1 C 
f1 Fraction of reactive POC pool as G1 0.100 - C 
f2 Fraction of reactive POC pool as G2 0.420 - C 
kAOM Rate constant for methane oxidation 0.250 yr-1 C 
[SO4

2-]* Threshold concentration for sulfate uptake 0.200 mM L1 

[Ca2+]* Threshold concentration for calcium  5.0 mM C 
kCaCO3 Rate constant for calcite precipitation 0.030 mM y-1 L 

KADS Equilibrium adsorption coefficient for Ca2+ 1.6 cm3 g-1 L2 

K'
sp,calcite Solubility product for calcite 4.92x10-7 M2 L3 

XS Oxidation state of organic matter -0.7  L4 

1  Habicht, et al.(2002) 
2  Li and Gregory (1974) 
3  Zeebe and Wolf-Gladrow (2001) 
4 Alperin, et al. (1994)  
 

Table 2.4 
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of methanogenesis, and is prescribed as [SO4
2-]* = 200 µΜ.  That limit is one of several estimated 

from sulfate affinity measurements (Tarpgaard et al., 2011) and also from isotope fractionation 

characteristics in MSR cultures (Habicht and Canfield, 2002). The incorporation of this 

parameterization into the reaction terms is detailed more clearly in the Appendix, but the most 

important consequence of this input is to prevent the occurrence of negative rates—mathematically 

feasible, but entirely unphysical, and a classical problem in early diagenetic modeling (Boudreau and 

Westrich, 1984; Boudreau, 1997). Rate constants also appearing in the model (see Table 2.4) are that 

for anaerobic methane oxidation kMO, and the kinetic and equilibrium constants associated with CaCO3 

precipitation and Ca2= adsorption.  

 

2.3.2.6 DIC PRODUCTION AND CACO3 PRECIPITATION 

To have a more realistic and complete carbon cycle, we include dissolved inorganic carbon and 

CaCO3 precipitation in the model, we have included them as a feasibility check. DIC production rates 

are directly linked to GRR and methane oxidation, and the CaCO3 precipitation rate is expressed as a 

function of the saturation state of CaCO3. Since a substantial fraction of DIC and pore water Ca2+ is 

lost to CaCO3, including these rates is necessary to reproduce the DIC and [Ca2+] pore water profiles, 

and can be used as a feasibility check on DIC production via GRR and methane oxidation. 

 

2.3.2.7 BASELINE PORE WATER GEOCHEMICAL MODEL OUTPUTS 

The details of the diagenetic equations and model run details are fully elaborated upon in the 

appendix. The principal output of the model, in addition to POC, [SO4
2-], [CH4], DIC, and [Ca2+], is 

the sulfate reduction rate, which included sulfate consumed via organoclastic sulfate reduction and 

methane oxidation, into one term, SRR. While is theoretically possible to calculate the isotope-specific 

rates of sulfate reduction (32SRR, 33SRR, and 34SRR) and incorporate them into the same model, it is 

far more straightforward to use the output bulk sulfate reduction rates, by definition SRR = 32SRR 
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+33SRR +34SRR, as the model input for a separate isotope model that considers only the sulfate 

isotopologues 32SO4
2-, 33SO4

2-, and 34SO4
2-, considered in the following section. 

 

2.3.3 TRIPLE ISOTOP(OLOGU)E MODEL FOR SO42- (32SO42-, 33SO42-, 34SO42-) 

Researchers have previously approached the problem of calculating isotope-specific rates from the 

total rate, both for sulfur (Jørgensen, 1979) and carbon (Alperin and Hoehler, 2009).  As expected, it 

requires (i) the natural abundance ratio of the two or more isotopes in a known material, usually a 

standard, (ii) knowledge of the isotopic composition of the starting reservoir or boundary condition, 

and (iii) the fractionation factors (α) for the particular microbial processes involved in order to 

calculate their abundance as a reaction proceeds. The formulation is fairly simple for two isotope 

systems, but algebraically more complex with three or more isotopes to consider. The derivation of the 

isotope-specific boundary conditions for [32SO4
2-], [33SO4

2-], and [34SO4
2-], as functions of δ34S and 

Δ33S values, as well as the isotope-specific reaction terms with respect to SRR and the fractionation 

factors (34αSR and 33αSR) are shown in the Appendix. The actual concentrations of 32SO4
2-, 33SO4

2-, and 

34SO4
2-, used as upper boundary conditions in the isotope model are shown in Table 2.5. As in the 

baseline geochemical model, all lower boundary conditions for the isotope model are Neumann 

conditions (i.e. constant gradient conditions (d[3XSO4
2-]/dx).  

 

2.3.3.1 FRACTIONATION FACTORS—34αSR AND 33αSR VIA 33λSR 

As with other S isotope reactive transport models (Aller et al., 2010; Dale et al., 2009; Jørgensen, 

1979), the input fractionation factors, the literal ratio of isotope-specific rate constants for a particular 

biogeochemical process, are an important component of quantifying the rates for individual species 

(e.g., 32SRR, 33SRR, 34SRR) with respect to bulk rate. In the case of each isotope model run, the input 

values include 34αSR and 33λSR—33αSR is calculated via: 

 

(2.4) 
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in keeping with previous determinations (cf. Young et al., 2002). The computation of the individual 

rates 32SRR, 33SRR, and 34SRR is shown in Appendix, demonstrating that the accurate determination 

of each depends on SRR, [32SO4
2-], [33SO4

2-], [34SO4
2-], 33αSR, and 34αSR. The isotope-specific diagenetic 

model considers all species independently, but they are mathematically linked through their reaction 

terms. 

 

2.3.3.2 MODEL OUTPUT 

The model output produces depth-dependent concentrations of [32SO4
2-], [33SO4

2-] and [34SO4
2-], used 

in concert with the natural abundance ratios to compute the isotope profiles δ34SSO4, δ33SSO4, and 

Δ33SSO4. Although the bulk sulfate reduction rates are fixed, the sulfate isotopologue profiles are 

adjustable with 34αSR and 33λSR only, providing the means for ascertaining how their natural expression 

 
Solute Value Units Source 
SO4

2- 28.93 mM L1 

    
Composition    
δ34S 21.150 ‰ L2 

Δ33S 0.0475 ‰ L2 

    
Ratio    
33RVCDT 0.00787726 - L3 

34RVCDT 0.04416264 - L3 

    
Species    
32SO4

2- 27.472 mM C4 

33SO4
2- 0.218 mM C4 

34SO4
2- 1.239 mM C4 

1 Gonzalez-Yajimovich (2007) 
2 Johnston et al. (2014) 
3 Coplen et al. (2002)  
4 Calculations are shown in Appendix  
 

Table 2.5 
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in Alfonso Basin is reflected in pore water sulfate δ34S and Δ33S values. To be clear, the 34αSR and 

33λSR values that are used to describe the pore water sulfate profile are comparable to the fractionations 

extracted from laboratory microbial studies. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 SEDIMENT GEOCHEMISTRY, ORGANIC CARBON (POC), AND MODEL FITS 

Previously reported measurements of the weight % organic carbon (POC) suggests that the 

concentration decreases by several weight % from the core-top to a depth of ~300 cm. Gonzalez-

Yajimovich (2004) quantified the weight % of the top 10 cm of Alfonso Basin sediments using the 

same New Horizon cores employed for this study, suggesting POC = 6.2±0.4 wt%, with the largest 

values measured at 6.85%. At 250-300 cm, those values have decreased to 3.3±0.2%. These 

measurements were also corroborated by Berelson et al. (2005). As suggested in Gonzalez-

Yajimovich et al. (2007), there is evidence of seismically induced turbidity flow in Alfonso Basin, 

leading to non-steady state conditions of sedimentation—not surprising for a small marginal basin in 

the tectonically active Gulf of California. Despite this evidence for non-steady conditions, a simple 

linear loss model (r2 = 0.8) for organic carbon implies ~1.0 wt% loss per 100 cm for the top 300 cm. 

The POC modeled in the reactive transport model (3G model) overestimates the concentration at 

shallow depths (POCo = 7.79%), but accurately reproduces the concentrations mid-depth. The upper 

boundary condition was derived from estimates of sinking POC fluxes from sediment trap data in 

Alfonso Basin (Silverberg et al., 2004). 

 The 3G model partitioned the ‘reactive’ organic matter into three different fractions, lumped 

by reactivity. Each fraction decays (independent mathematically) with first-order decay kinetics with 

decay constants k1, k2, and k3 for G1, G2, and G3, respectively. The values used for the first-order 

decay constants (k1 = 0.0100 yr-1, k2 = 0.0010 yr-1, and k3 = 0.0001 yr-1) were chosen empirically, as 

were the respective fractions of G (f1, f2, f3 = 1- f1 – f2).  The wt % of each fraction is displayed in 

Figure 2b, as is total wt% POC. It is worth noting that G1 and G2 are consumed almost entirely by 
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organoclastic sulfate reduction, and that a substantial fraction of G3, the least reactive fraction of G, 

is lost via methanogenesis. The summed remineralization rates of the fractions G leads to GRRPW, 

which decreases from ~2 µmol/cm3 d-1 at the sediment water interface to ~0 at the lower boundary. 

The output rates for the rest of the model, including SRR, are mathematically linked to GRR via 

reaction stoichiometry. Since there is no direct proxy for remineralization rates, the kinetics were 

tuned by the [SO4
2-] and [CH4] profiles, discussed below.  

 

 

 

 

2.4.2 PORE WATER SO42-, [CH4], AND DIC  

The pore water sulfate concentration data in Alfonso Basin, combined gravity core and multicore data 

exhibits a distinctly linear profile (Berelson et al., 2005). Such profiles are typical of organic carbon 

rich-sediments, and are, to first order, linked to sedimentation rate (cf. Niewohner et al., 1998; Berner, 

1978). As shown in Figure 2.4a (see Appendix for data), [SO4
2-] decreases from 27.1±1.0 mM at 1 cm 

depth to 1.35 mM at ~230 cm depth. An additional measurement from deeper within the gravity core 

yields a larger concentration measurement, but this is within error of the gravimetrically determined 

data. Pore water sulfate decreases linearly from the sediment-water-interface to the sulfate-depletion 

of depth at ~230 cm. Pore water methane reaches concentrations  >1 mM at depths greater than 180 

cm, giving a sulfate methane transition zone from approximately 175-225 cm. The concentration of 

dissolved inorganic carbon, DIC, increases from ~3 mM at 1 cm depth approximately linearly to ~40 

mM at 150 cm depth, where the slope changes and the concentration gradient decreases. Berelson et 

al. (2005) postulated that this change in slope is the result of the different reaction stoichiometries 

associated with organoclastic sulfate reduction and anaerobic methane oxidation. This, in concert with 

the precipitation of CaCO3, likely explains the deep core behavior of pore water DIC. 
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2.4.3 MODELED RATE PROFILES: GRR AND SRR 

The modeled organic carbon remineralization rate (GRR), and methane oxidation rate (CH4OR) were 

used directly to calculate the sulfate reduction rate (see Fig. 2.3). As mentioned previously, an 

assumption in the baseline model is that all organic carbon is remineralized either via organoclastic 

sulfate reduction or methanogenesis. Since anaerobic methane oxidation also has only sulfate as a 

terminal electron acceptor—by inference, all organic carbon that is remineralized in the model domain 

is ultimately oxidized with sulfate. The reaction stoichiometries of sulfate reduction, specified here as 

(C:S) of 0.5875:1 and AOM of 1:1 determine the relationship between the rates of GRR, CH4OR, and 
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Figure 2.2:  (a) Porosity (φ) data from the gravity (GC) and multicores (MC) 
used in this study, and originally published in Berelson, et al. (2005). The 
exponential fit to the porosity data is typical of continental margin sediments 
and is used to determine the porosity in the diagenetic models constructed here. 
(b) Model parameterization of organic carbon degradation kinetics. The ‘3G’ 
model used here partitions the pool of reactive carbon (G) into three fractions 
with shared reactivity (G1, G2, G3), where k1 > k2 > k3. The respective sizes of 
the pools Gn are adjustable, as are the rate constants. POC∞ is the fraction of 
organic matter completely resistant to degradation, and G+POC∞ implies the 
size (wt% C) of total organic carbon within the Alfonso Basin sediments. 
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SRR (see Fig. 2.3b). From the rate profiles, however, it is possible to estimate the fraction of POC 

that is remineralized via sulfate reduction (~70%) and AOM (~30%). These fractions agree reasonably 

with those estimated in Berelson et al. (2005), and are within the range determined for typical organic 

carbon-rich margin sediments. The output SRR, of course is the modulating factor for determining the 

sulfate concentration profile, and accurately reproduces the pore water data at depths <200 cm. 

Analytical data from deeper in the core is noisier, and the values > 2mM are likely a sampling artifact. 

 The column-integrated SRR, across the model domain, yields remineralization rates matching 

sulfate flux estimates of 400 mmol S/m2 y-1. As a check, Berelson et al., (2005) computed the DIC 

flux across the sediment-water interface in Alfonso Basin as ~660 mmol/m2 y-1, which, using the 

stoichiometry specified here equates to ~390 mmol S/m2 y-1.  This is in agreement with our estimates. 
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Figure 2.3: (a) Model output from the 3G POC degradation model that 
parameterizes the remineralization rate, GRR (µMPW d-1), the methane 
production rate CH4PR, and the methane oxidation rate CH4OR. The rates 
are the primary output of the 3G model, and are used to determine the 
sulfate reduction rate. (b) Modeled sulfate reduction rate, SRR (µMPW d-1), 
determined from the organic carbon remineralization and methane 
oxidation rates, as shown in (a). The different stoichiometries of oxidation 
(1:1 in the case of methane oxidation), control their contribution to SRR. In 
all cases, sulfate consumption is reduced in cases where sulfate is limiting 
(e.g. [SO4

2-] <[SO4
2-]*). 
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There is very little actual rate data (e.g. 35S-based) to corroborate our modeled rates, however the 

output [SO4
2-], [CH4] and DIC data realistically reflect the modeled rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.4 SULFATE δ34S AND Δ33S PROFILES 

The measured δ34S for pore water sulfate increases with depth (see Figure 2.5) as is typical of margin 

sediments, reflecting the consumption of 32SO4
2- by microbial sulfate reduction in pore waters. We 

were materially limited for most of the samples deeper in the gravity core, but the pore water sulfate 

δ34S values increase from seawater values δ34S = 21.15±0.3‰ (Johnston et al., 2014) to 33.0‰ at 

approximately 48 cm depth, where [SO4
2-] has dropped to ~22 mM. Less intuitive is the increase in 

Δ33S values with depth (see Figure 2.6), rising from near seawater values of 0.047±0.006‰ to 

0.089±0.006‰ at 48 cm depth. A few other studies have observed similar behavior in pore waters 

(Pellerin et al., 2015; Johnston et al., 2008), and researchers demonstrated that closed-system reaction 
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Figure 2.4: (a) Model concentration outputs and Alfonso pore water data 
for [SO4

2-] and [CH4]. The smaller data points (core top) are multi-core 
samples, and the larger data points are gravity core samples. The model fits 
are produced by parameterizing SRR as a function of organic carbon 
remineralization (GRR). See Appendix for the details of the model 
construction. (b) Dissolved inorganic carbon (DIC) and pore water calcium 
(Ca2=) concentrations and diagenetic model fits. The DIC profile is largely 
controlled by organic carbon remineralization, and Ca2+ is largely 
controlled by authigenic CaCO3 precipitation. 
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of sulfate via MSR leads to similar behavior (increases in the values of both δ34S and Δ33S) (Ono et 

al., 2006). Rayleigh distillation modeling of such systems shows that a similar trajectory is possible, 

and is a universal consequence of sulfate consumption with 34αSR and 33λSR values typical of MSR.  
 

 
 

2.4.5 FRACTIONATION FACTORS (34αSR AND 33λSR) AND OPEN-SYSTEM MODELING 

 A primary goal of this study is to determine if the rate – fractionation relationship observed in 

experimental studies is captured in marine sediments (Leavitt et al., 2013). Importantly, the isotopic 

model inputs were tunable in the values and down core behavior of 34εSR and 33λSR, while still taking 

the SRR from the same bulk geochemical model. Recognizing that closed-system modeling of sulfate 

reduction yields an increase of both δ34S and Δ33S values, it is important to highlight that sedimentary 
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Figure 2.5: (a) Pore water δ34SSO4 values with respect to depth, and corresponding 
model fits output by the triple isotope reactive transport model. The model uses 
bulk SRR as an input and recalculates isotope specific rates using fractionation 
factors (34αSR). The model fits here demonstrate that the best fit comes with a large 
applied fractionation associated with sulflate reduction (e.g. 34εSR = 70‰). Other 
model fits demonstrate the range of possibilities in δ34S gradients from different 
applied fractionation factors (34εSR = 50 and 90‰). (b) Same data and models as in 
(a), but for the depth range covered by the multicore data. The analytical precision 
on δ34S values including chemistry and measurement is ±0.3‰. 
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systems are open to diffusive and advective exchange with overlying seawater. First this means that 

the pore water δ34S and Δ33S signatures cannot be used directly to compute intrinsic environmental 

34αSR and 33λSR values. The seminal study that highlighted the consequence of considering sediments as 

closed systems (Jørgensen, 1979) demonstrated that Rayleigh modeling of sedimentary systems leads 

to erroneous estimates of the fractionation factors of biogeochemical processes. Though the latter is 

still frequently used to infer information about biological isotope effects, we submit that only properly 

constructed reactive transport models can accurately predict information about biologically-mediated 

isotope effects when considered for open systems. The second key assumption that is explored with 

our approach is the requirement in a classic closed-system model that the fractionation factor be 

constant, as opposed to allowing for a depth-dependence to fractionation. 

 With this in mind, we used the S isotope reactive transport model to estimate the intrinsic 

fractionation factors required to reproduce the pore water δ34S and Δ33S values. As shown in Figs. 2.5 

and 2.6, to reproduce the pore water δ34S values requires a large intrinsic fractionation associated with 

sulfate reduction (34αSR = 1.070, 34εSR = 70‰, r2 = 0.96). For reference, the model δ34SSO4 outputs 

resulting from 34εSR = 50‰ (r2  = 0.71) and 90‰ (r2 = 0.78) are included as well. Model fits using 

60‰ < 34εSR <80‰ all give r2 > 0.90, though it is important to remember that the depth range covered 

is only the top 50 cm. Repeating a similar exercise for 33λSR, a similar error estimate can be done to 

determine the best fit to the pore water Δ33S data. For that case we run only models with fixed 34αSR  

(= 1.070), as the δ34S profile is independent of the errors in the Δ33S profile estimations. The 33λSR 

value that best produces the pore water Δ33S data is 33λSR = 0.5130 (r2 = 0.85), shown in Fig 2.6. Other 

model Δ33S outputs shown result from 33λSR = 0.5110 (r2 = 0.25) and 33λSR = 0.515 (r2 = 0.25). The 

implications of these paired fractionation factors/parameters in the light of such experiments is 

discussed in more detail in the following section, with a sensitivity of these fits (including 34εSR) 

presented in the Appendix. 
 



 
 
RESULTS AND DISCUSSION 

 

42 

 

�
34SVCDT

0 10 20 30 40 50 60 70 80

�
33
S
V
C
D
T

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
33λSR = 0.515	

33λSR = 0.514	

33λSR = 0.513	

33λSR = 0.512	

33λSR = 0.511	

34εSR = 70‰!

Seawater SO4

δ34S = 21.15‰!
Δ33S = 0.047‰!

!

Figure 2.7: Triple isotope plot (Δ33SSO4 versus δ34SSO4) of Alfonso pore water sulfate that plots the 
model outputs from Fig 5 and 6 concurrently and shows the range provided by variable 33λSR values. 
It is noteworthy that  33λSR = 0.515—on the reference frame defined by Δ33S has a high positive 
trajectory—and is the isotopic consequence of closed system loss of pore water sulfate via microbial 
sulfate reduction. For reference, the isotopic composition of seawater sulfate is (δ34SSO4 = 
21.15±0.3‰, Δ33SSO4 = 0.0475‰). 
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Figure 2.6: (a) Pore water Δ33SSO4 values with respect to depth, and corresponding 
model fits output by the triple isotope reactive transport model. The model uses 
bulk SRR as an input and recalculates isotope specific rates using fractionation 
factors (34αSR), and the ‘exponent’ 33λSR, which relates that two fractionation factors 
(33αSR and 34αSR). The model outputs shown here were run with a constant 34εSR = 
70‰, but variable 33λSR values. A value of 33λSR ~0.513 fits the data, and the other 
fits demonstrate the model Δ33S gradients with 33λSR values = 0.511 and 0.515). (b) 
Same data and models as in (a), but for the depth range covered by the multicore 
data. The measurement precision on δ34S values is ±0.006‰. 
 

Figure 2.6 



 
 
RESULTS AND DISCUSSION 

 

43 
 

2.4.6 ENVIRONMENTAL EXPRESSION OF S ISOTOPE EFFECTS AND IMPLICATIONS1 

There are several environmental and sedimentary implications stemming from the interpretation of the 

diagenetic model built to explain the Alfonso Basin. For clarity, the isotopic consequence of the 

diagenetic model exercise results in an intrinsic fractionation for sulfate reduction of 34εSR = 70‰ with 

an accompanying 33λSR of 0.5130.  Until recently, researchers postulated that the natural upper limit of 

sulfur isotope fractionation via MSR was limited to 34εSR = δ34SSO4 – δ34SH2S ~ 46‰ (Johnston, 2011; 

Habicht and Canfield, 1997; Rees, 1973; Kemp and Thode, 1968; Peck, 1961; Peck, 1958). As a 

consequence, oxidative sulfur cycling was frequently invoked to explain environmental measurements 

of isotopic fractionation between sulfate and sulfides—either as H2S or iron sulfides that exceeded this 

limit (Habicht et al., 1998; Habicht and Canfield, 1997). Not only did this carry consequences for 

studying S cycling in modern systems, it also carried deep implications for interpreting ancient S 

cycling through geological proxy records (e.g., BaSO4, CaSO4, and sedimentary pyrite) (Canfield and 

Farquhar, 2009; Canfield, 2004; Canfield, 2001; Strauss, 1999; Canfield and Teske, 1996).  Despite 

the lack of empirical evidence that sulfur isotope fractionations could exceed ~46‰, theoretical 

metabolic models suggested that it was possible (Johnston, 2011; Johnston et al., 2007; Brunner and 

Bernasconi, 2005). These models called up low-temperature thermodynamics, where calculations 

suggest sulfur isotope fractionation could even approach the low temperature limit (=70-80‰) at 

Earth’s surface temperatures. More recent experimental work has since demonstrated that microbial 

fractionations can exceed the canonical 46‰ value, both in laboratory experiments with single 

cultures of sulfate reducers (Leavitt et al., 2013; Sim et al., 2011) and in environmental systems such a 

stratified lakes (Gomes et al., 2013; Canfield et al., 2010). An emerging picture highlights the 

importance of rates of sulfate reduction, modulated by temperature, and more particularly electron 

donor/carbon source (Leavitt et al., 2013; Sim et al., 2011) as playing a key role in setting the 
1  For completeness, we consider a full sensitivity analysis of different relationships between 
fractionation and SRR in the Appendix. Briefly, we explore three different dependencies. We examine 
an exponential relationship, like that seen in pure culture chemostat experiments, as well as a linear 
dependence of fractionation on SRR. Given the nature of the current data set, using a fixed fractionation 
value is the most conservative and defendable approach. As such, we explore this scenario in the main 
text. However, the exploration of the other scenarios is critical for advancing the usage of minor S 
isotopes in the future. 



 
 
RESULTS AND DISCUSSION 

 

44 

maximum 34εSR. Specific (i.e. biomass-normalized) rates of sulfate reduction are inversely 

correlated with the magnitude of an expressed isotope effect. Low metabolic rates (~fmol/cell per day) 

produce fractionations that exceed 50‰ and approach 70‰, and are a predictable consequence from 

theoretical isotope modeling studies that consider the influence of sulfate reducer biochemistry (Wing 

and Halevy, 2014). As it relates to the diagenetic model proposed here, we explore the potential for an 

exponential relationship in the appendix.  That aside, all this recent research is converging on the idea 

that metabolic rate is the governing physiological parameter that controls the magnitude of S isotope 

fractionation in sulfate reducers, and until proven incorrect, the majority of environmental isotopic 

compositions can be accommodated by sulfate reduction alone. Moreover, if the modeled 

fractionation factor demonstrated in this study (=70‰), is shared broadly across environments, it 

would demonstrate that marine sediments—particularly those in anoxic basins where oxidative S 

cycling is quantitatively less important—also foster the type of environmental conditions that keep 

metabolic rates of in situ communities of sulfate reducers operating near their physiological limit.  The 

result of this is an isotope fractionation bordering the thermodynamic prediction and elaborated upon 

below. 

 The calculated SRR changes as a function of depth.  Considering only the top 250 cm of the 

sediment column where sulfate reduction is actively taking place, the maximum bulk sulfate reduction 

rate is at the core-top, SRRmax = 1.7x10-6 mol/(L·d), and the minimum is at the base of the sulfate 

reduction zone, at 250 cm, SRRmin = 0.027 x10-6 mol/(L·d). This offers an opportunity to further revisit 

the environmental manifestation of the rate – fractionation relationship.  Importantly, this offers the 

first critical environmental test of this hypothesis. Recall that there is a coupled nature of 34εSR and 

33λSR, or more accurately 34αSR and 33λSR, and from experimental work there exists a correlation 

between the allowable range of 33λSR and 34εSR. That is, 33λ is predictable for fractionating processes 

(e.g. metabolism) that carry a specific 34εSR. In the case of sulfate reduction, which we have considered 

exclusively here, the natural range of 34εSR spans ~70‰ whereas the natural mass-dependent range in 

33λSR is 0.508-0.515 (Johnston et al., 2008; Leavitt et al., 2013). The coupled nature of 34εSR and 33λSR 
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results in a positive correlation between the two parameters. To put another way, as 34εSR increases 

towards the maximum thermodynamically predicted value, 33λSR does so concomitantly, to a value of 

approximately 0.515 (the basis for the Δ33S reference frame: Farquhar et al., 2003). In the diagenetic 

model treatment of Alfonso Basin, the two model input parameters - 34εSR and 33λSR  - are functionally 

independent with a best fit of 34εSR = 70‰ and 33λSR = 0.5130. This can be directly compared to the 

34εSR - 33λSR pairs from published experiments with sulfate reducers.  

The expectation from thermodynamic predictions, and as realized in microbial experiments, is 

that with a 34εSR near an equilibrium value, the 33λSR should similarly approach an equilibrium value of 

0.5145-0.515. The product 0.5130 from our treatment is thus unexpected. We take this as potentially 

speaking to a number of solutions. First, it is always possible that there is a fundamental difference in 

the behavior of MSR in marine sediments relative to our preferred laboratory cultures. This could be 

purely physiological or speak to the behavior of a mixed community of organisms in sediments, as 

opposed to the tuned monoculture in the laboratory. It is also possible that the environmental 

conditions – and thus physiological state – of the laboratory culture insufficiently mimics that of 

marine sediments.  Finally, it is possible that the slight mismatch between model fits and equilibrium 

predictions could reflect contributions from other metabolic processes. This would not augment 

equilibrium predictions, but would allow for additional (and largely unknown) kinetic effects. In all of 

these cases, laboratory cultures are a first-step toward interpreting sedimentary data, but necessarily 

incomplete.  Fortunately, these types of features are testable. 

 It is also important to acknowledge a limitation of the current data set. That is, given the 

requirements for our mass spectrometry, only the upper reaches of the core were accessible. Having 

access to pore water sulfate samples from the full length of the pore water sulfate column would 

certainly improve our understanding of the deep-core behavior of Δ33SSO4 systematics. There is also 

the opportunity to extend this style of analysis to a more appropriate relation to experimental data, 

drawing in data on biomass loads and cell counts. Recall that these are bulk geochemical rates, which 

differ from the normalized rates extracted from experimental microbiology.   
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There are no measurements of live cell numbers from Alfonso basin sediments. However, 

estimates exist for the concentration of cells more generally in margin sediments, ranging from 106-

1010 cells/cm3 for the top 10 cm, decreasing with depth (John Parkes et al., 2014). We can use these 

general down core observations to provide an order-of-magnitude estimate of the cell specific 

reduction in Alfonso basin sediments.  These estimates are based upon on our modeled rate profile, 

with SRRmax = 1.7x10-9 mol/cm3d and SRRmin = 2.7x10-11 mol/cm3d.  These are then simply converted 

to cell-specific rates, following: 

 

 

(2.5) 

 

(2.6) 

 

 

Over the range sulfate reduction rates measured for Alfonso Basin, we find that a reasonable estimate 

of cell-specific reduction rates of csSRR = 1.7x10-15 -1.7x10-19 mol/cell*d is the upper limit for 1010 

cells/cm3, and 2.7x10-17 and 2.7x10-21 for 106 cells/cm3. A noteworthy consequence of this calculation 

is that, despite the ~102 range in modeled bulk rates for this particular sediment column, the computed 

range of cell-specific sulfate reduction rates for Alfonso basin sediments are significantly below those 

generated in the laboratory calibration of Leavitt et al., (2013). Since the lowest rates in Leavitt et al. 

were characterized by sulfur isotope fractionations >50‰, it is reasonable to suggest that the natural 

sulfate reduction rates of microbial communities in Alfonso basin are slow enough to explain the large 

sulfur isotope fractionation as indicated by our modeled profile.  This does not amend the mismatch in 

33λSR, but does allow for a significant step toward bridging between experimental and environmental 

data.  It further points to the common behavior MSR in marine sediments operating at exceedingly 

low metabolic rates – rates approaching chemical equilibrium. 
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2.4.7 THE UNIQUENESS OF ALFONSO BASIN SEDIMENTS 

The analysis given above provides quantitative evidence for the contributions of microbial sulfate 

reduction and physical transport to an observed pore water sulfate profile. Much of this analysis, 

however, is tightly linked to the specific geochemical and sedimentological environment present in 

Alfonso Basin—leading to the question of how these results can be extended more broadly to other 

diagenetic environments. Sulfate concentration profiles from a wide range of different environments 

are present in the literature, and Alfonso basin is unexceptional in this sense. Further, there are 

numerous cases where the δ34SSO4 values of pore water sulfate has been included. Much like that for 

sulfate concentrations, there is broad similarity between the down core behavior of δ34SSO4 values and 

[SO4
2-]. This has commonly been the motivation for using a closed-system, Rayleigh model to 

describe this isotopic behavior. However, as we note from above, transport is also a key feature in 

discerning a strictly microbial feature within marine pore water profiles - a distinction that was aided 

by the inclusion of Δ33SSO4 measurements. Thus to begin to address the broader applicability of 33S and 

the model presented above, we present pore water sulfate data (δ34SSO4 and Δ33SSO4) from three other 

California margin basins: Mazatlan, Santa Monica, and San Blas. 

 A full, Alfonso basin-like model treatment of these other data sets is outside the scope of this 

study, given that the requisite supporting data are unavailable. However, the uniqueness of the minor 

sulfur isotope signature identified in Alfonso basin sediment pore water can serve as a proxy for 

whether the Alfonso result is more broadly applicable. In Fig. 8, we present data from the other 

California margin basins. What is immediately clear is that there is a consistency between the Alfonso 

Basin profiles and the other California margin sites.  That noted, there are also potential differences. It 

is first important to note that pore water sulfate measurements from the other basins cover a wide 

range of sulfate concentrations, always beginning with bottom waters as the boundary  
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condition, and carrying seawater sulfate values. Like the Alfonso Basin, as sulfate is reduced in 

other basinal sediments, the δ34SSO4, and Δ33SSO4 values increase. The overwhelming trend across all 

basins is a characteristic trajectory in δ34SSO4-Δ33SSO4 values. That noted, there is variability outside of 

analytical precision. The root of this variance is a target for further research as it could be related to 

any one of the various parameters that come to control the early diagenesis of sulfur. Fortunately, the 

general consistency among the observations leaves the inclusion of 33S as a promising direction for 

further study. 
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Figure 2.8: Triple isotope plot (Δ33SSO4−δ
34SSO4) of pore water sulfate sampled during the 

CalMex (2001) cruise, with Alfonso, Mazatlan, Santa Monica, and San Blas Basins. All 
four basins are anoxic silled basins of the California-Mexican margin. The pore water 
sulfate displayed here is largely from the multicores sampled during that cruise, except for 
Mazatlan, which also includes gravity core sulfate. Seawater sulfate is included for 
reference (δ34SSO4 = 21.15±0.15‰ and Δ33SSO4 = 0.047±0.006‰). 
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2.5 CONCLUSIONS 

Laboratory-based studies recently highlighted the dependence of metabolic rate of sulfate reduction on 

the magnitude of the product sulfur isotopic effect. In this study we examine whether isotope 

fractionation, as preserved in marine pore water sulfate, carries a memory effect of changes in 

microbial metabolic rates. In order to address this question, we analyzed a geochemically well-

characterized core for the triple isotopic composition of pore water sulfate. We also formulated a 

reactive-transport diagenetic model for a sedimentary system in order to quantitatively understand the 

triple S isotope characteristics and its relationships to microbial calibrations of sulfur metabolisms. 

The model reproduces the profiles of the major pore water species, including [SO4
2-], [CH4], DIC, and 

Ca2+, and generates realistic sulfate reduction and methane oxidation rate profiles that corroborate 

previously published data. The sulfate reduction rate profile is then used, in concert with fractionation 

parameters, to evaluate the intrinsic isotopic characteristics of sedimentary sulfate reduction required 

to reproduce the triple isotope behavior of pore water sulfate within Alfonso basin. From this we find 

a best-fit solution is where 34εSR and 34λSR are invariant with values of 70‰ and 0.5130 respectively. 

Put differently, no change in the intrinsic fractionation is necessary to account for the down core, 

evolving composition of sulfate. That noted, this result is constrained by the observational window 

presented herein, where we cover ~50 cm of depth, and 20% of sulfate removal. It is possible that in 

cases where a larger range is sampled, with the potential for greater changes in SRR, and/or a larger 

range in δ34S, such a relationship will be found. The model framework presented here is directly 

transferable to such as study. 

We demonstrate that pore water isotope signatures are characteristic of environments with 

very low specific rates of sulfate reduction – despite the fact that Alfonso basin is an organic carbon-

rich marginal setting. However, the triple isotope signatures (δ34S /Δ33S) are still within the range of 

the predictions from laboratory calibrations of sulfate reducers, and no additional need for S cycling is 

required to produce the pore water Δ33SSO4 profile. Despite the challenges in assessing a potential rate 

relationship to fractionation, what our treatment further reinforces that physical transport (advection 
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and diffusion) significantly contributes to observed isotopic behavior of pore water sulfate. The 

isotopic composition of pore water sulfate thus records more than biogeochemical processes and must 

be interpreted in the light of this finding. Future studies would benefit from whole core samples and 

more in-depth consideration of the triple isotope composition of other pore water and solid phase S 

species. 
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2.8 APPENDIX  

2.8.1 DERIVATION OF THE TERMS GRR AND SRR IN THE BULK GEOCHEMICAL (RTM) 

Diagenetic reactive transport models have been extensively applied over the past 50 years (cf. Berner, 

1964), and have been the subject of numerous papers. The mathematics behind them have also been 

fleshed out in two textbooks that are still the standard references on the subject (Berner, 1980; 

Boudreau, 1997). We apply a few of the formulations here to derive the equations used in the bulk 

geochemical model, and to demonstrate how rates are calculated from the concentrations of pore water 

species. 

 Using a combination of finite difference methods, and well-known relationship that defines 

tortuosity –the mean path of a solute through a porous medium, (DS = φ-2D, see Ullman and Aller, 

1982), the steady-state reactive transport equation for a solute c in a porous medium is defined as: 
 
 

(2.7) 
 
 

Where φ is the depth-dependent porosity, D is the bulk sediment diffusion coefficient, cpw is the 

concentration of the species in pore water, φ∞ and ω∞ are the porosity and sedimentation rate at 

infinite depth—the lower depth boundary. The term ΣRPW is sum of all the reaction terms influencing 

the pore water concentration of c. For solid phase components, the terms are simplified due to a lack 

of diffusion, and the steady state equation becomes: 

 
(2.8) 

In this case cds is the concentration of the species in the dry sediment. To parameterize OC 

remineralization, we employ a ‘3G’ model, consisting of three ‘reactive’ POC fractions that are 

binned by reactivity, and share a unique remineralization constant (e.g., k1, k2, k3). As model inputs, f1 

and f2 are the fractions of G1, and G2 in the total reactive pool G, and thus the concentrations of G1, G2, 

and G3 are determined as follows: 
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(2.9a) 
 

(2.9b) 
 

(2.9c) 

The fractions of G1, G2, and G3 are computed in this way, are used to set the upper boundary 

conditions for the model. The determination for the organic carbon remineralization rate—termed 

GRR, with respect to pore water, is derived from the Runge-Kutta finite-difference method for each of 

the reactive fractions (n =1,2,3): 
 
 
 

(2.10) 
 
 

(2.11) 
 

The term GRRpw has units of µmol/cm3/d, whereas all of the fractions G are as wt%, hence the 

normalizing term.In the bulk model, GRRpw is computed first, and is conical rate that is used to 

determine the sulfate reduction rate (SRR), and methane production rate (CH4PR). Implicit in this 

calculation is that all organic carbon remineralization taking place at depths where sulfate 

concentrations exceed a prescribed threshold ([SO4
2-] > [SO4

2-]*) takes place via sulfate reduction (i.e. 

no aerobic remineralization, no ferric iron reduction, etc.). At any depth where [SO4
2-] < [SO4

2-]*, 

remineralization takes place via methanogenesis. SRR also takes into account SO4
2- consumed via 

methane oxidation (AOM). The calculation of SRR and GRR are demonstrated below: 

 
 

(2.12a) 
 
 
Where: 
 

(2.12b) 
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Is the function that modulates SRR in the presence of sulfate limitation (i.e. to parameterize Monod 

kinetics).  The term XS is the oxidation state of organic matter (Alperin et al., 1994). The rate of 

methanogenesis CH4PR is thus: 
 

(2.13a) 
 
 
 
Where: 
 

(2.13b) 

 

This function γ2 has a similar purpose, but modulates the rates of methanogenesis due to sulfate 

inhibition about the prescribed sulfate threshold [SO4
2-]*. These two rates (SRR and CH4PR) are 

employed in the finite difference diagenetic model that solves for the concentrations of [SO4
2-] and 

[CH4]. The model for Ca2+, DIC is run separately, with the controlling rates (DIC production, CaCO3 

precipitation).  

 

2.8.2  DERIVATION OF UPPER BOUNDARY CONDITIONS FOR [32SO42-], [33SO42-], AND  

 [34SO42-] FROM δ34SSO4, AND Δ33SSO4 VALUES OF SEAWATER SO4 

For the case where [36SO4
2-] is excluded from consideration, [SO4

2-] is the sum of the constituent 

species [32SO4
2-], [33SO4

2-], and [34SO4
2-], as below in Eq. (2.14) 

 
(2.14) 

 

The terms 33F and 34F refer to the ratio of the species [33SO4
2-] and [34SO4

2-] with respect to [32SO4
2-], 

with 33Rstd
  = 0.00787726, and 34Rstd = 0.04416264 referring to the natural abundance ratios (Coplen et 

al., 2002). 
 

(2.15a) 
 
 
 
 

(2.15b) 
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(2.16) 
 

Equations 2.16, in combination with 2.15, can be used to calculate the abundance/concentration of 

each of the species [32SO4
2-], [33SO4

2-], and [34SO4
2-], with respect to the bulk SO4

2- concentration at the 

upper boundary condition, by algebraic manipulation, e.g. for [32SO4
2-]: 

 
 

(2.17) 
 
 
 

(2.18) 
 
 
 
 
 
 
And for [33SO4

2-]: 
 
 
 

(2.19) 
 
 
 

(2.20) 
 
 
And finally for [34SO4

2-]: 
 
 

(2.21) 
 
 
 

(2.22) 
 
 
 

In principal, this method can be used to derive the concentrations of the individual species anywhere 

within the domain of the reactive transport model, but only truly serves where the isotope ratios (e.g. 
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δ34SSO4, δ33SSO4 and Δ33SSO4) are satisfactorily known. The isotope model computes the concentrations 

of the species independently, but they are linked through the reaction terms 32SRR, 33SRR, and 34SRR, 

which depend upon the constitutive fractionation factors (33αSR and 34αSR, linked by 33λSR). The 

derivation of these isotope-dependent rate terms is shown in the following section. 
  
 
2.8.3 LOWER BOUNDARY CONDITIONS FOR [32SO42-], [33SO42-], AND [34SO42-] 

In principal, it is possible to prescribe the lower boundary conditions for the species[32SO4
2-], [33SO4

2-], 

and [34SO4
2-] using isotope values, and thereby concentrations, e.g., Dirichlet boundary conditions. 

However, since the isotopic composition of sulfate is unknown at depth, prescribing such values gives 

spurious results. In all cases, the model is run with Neumann boundary conditions, such that the 

isotopic composition is unchanging at depth, but without a specified composition:  
 
 

(2.23) 

 

2.8.4 DERIVATION OF ISOTOPE (32S, 33S, AND 34S) SPECIFIC RATE TERMS 32SRR, 33SRR, 

 AND 34SRR, AND CONSTRUCTION OF THE STEADY-STATE DIAGENETIC EQUATIONS 

The determination of isotope-specific rates for the sulfur system has been detailed before for the two-

isotope system (32S and 34S) (Jørgensen, 1979; Dale et al., 2009), and by similarity, it can be shown for 

the three-isotope system (32S, 33S, and 34S). The algebraic solution shares some similarities with those 

for the two isotope system, but naturally depends on two fractionation factors 33αSR and 34αSR, which 

we have described in this paper as being mathematically linked via 33λSR: 
 
 
 

(2.24) 

 

The isotope-specific rates 32SRR, 33SRR, and 34SRR depend on the concentrations of [32SO4
2-],  

[32SO4
2-], and [34SO4

2-], but also on the rate constants 32kSR, 33kSR, and 34kSR: 
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 (2.25) 

 
(2.26) 

 
(2.27) 

 
 

Intrinsic within the rate constants are the fractionations associated with sulfate reductions, and the 

fractionation factors are simply the ratios of those rate constants. This allows for the expression of the 

isotope-specific rate constants as functions of each other, linked via the fractionation factors: 
 
 
 
 

(2.28) 
 
 
 
 
 
 

(2.29) 
 
 

Recalling that the bulk sulfate reduction rate is simply the sum of the isotope-specific rates the 

equations for the isotope-specific rates can be solved as functions of the bulk rate, the isotopologue 

concentrations, and the fractionation factors: 
 
 

(2.30) 
 
 

(2.31a) 
 
 
 

(2.31b) 
 
 
 
 
 

(2.31c) 
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It is these rate determinations that appear in the final steady-state diagenetic equations for the isotope 

RTM. By analogy to those described for the bulk geochemical model, they can be written as in 

equations 2.32a-c: 
 

 
(2.32a) 

 
 

 
(2.32b) 

 
 

 
(2.32c) 

 
 

 
These equations are then solved using the same method as for the bulk geochemical model. 
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Multicore            
ID Depth 

(cm) 
porosity 

(φ) 
[SO4

2-] 
(mM 

DIC 
(mM) 

Ca2= 
(mM) 

 Depth 
CH4 
(cm) 

[CH4] 
(mM) 

 δ34SSO4 
(SO2) 
(‰) 

δ34SSO4 
(SF6) 
(‰) 

Δ33SSO4 
(SF6) 
(‰) 

MC1 1 0.93 27.1 3.661 9.7  1 0.00047  21.7 21.9 0.0476 
MC2 9.25 0.93 26.65 4.543 9.83  6.5 0.00138  22.7 21.9 0.0506 
MC3 14.75 0.92 26.19 5.568 9.47  12 0.002225  23.9 24.0 0.0471 
MC4 20.25 0.91 23.94 6.562 9.14  17.5 0.00278  25.7 25.6 0.0677 
MC5 25.75 0.91 23.26 7.558 8.8  23 0.00376  26.6 27.0 0.0684 
MC6 31.25 0.9 23.48 8.321 -  28.5 0.004625  - - - 
MC7 36.75 0.89 23.03 9.449 8.12  34 0.005035  29.2 - - 
MC8 42.25 0.89 21.9 10.485 7.78  39.5 0.00647  31.5 30.5 0.0770 
MC9 47.75 0.88 23.48 11.748 7.62  45 0.00689  33 33.0 0.0890 

             
Gravity Core            
ID Depth 

(cm) 
porosity 

(φ) 
[SO4

2-] 
(mM 

DIC 
(mM) 

Ca2= 
(mM) 

 Depth 
CH4 
(cm) 

[CH4] 
(mM) 

 δ34SSO4 
(SO2) 
(‰) 

δ34SSO4 
(SF6) 
(‰) 

Δ33SSO4 
(SF6) 
(‰) 

GC1 33 0.9 22.58 8.767 8.36  34.5 0.00501  - 29.6 0.0738 
GC2 70 0.87 16.03 20.9 6.45  73.5 0.0152  - - - 
GC3 113 0.85 10.84 30.08 5.33  114.5 0.0222  - - - 
GC4 155 0.84 4.29 42.76 4.21  156.5 0.0873  - - - 
GC5 193 0.83 3.16 39.99 3.69  194.5 1.172  - -  
GC6 234 0.83 1.35 45.22 3.76  235.5 1.950  - - - 
GC7 273 0.83 2.26 47.75 3.46  274.5 4.235  - - - 

 
Table 2.6:  Pore water geochemical and isotopic data from Alfonso Basin (CalMex Station 15) used in this study. Core samples were retrieved in October and 
November of 2001 during the California-Mexico margin (CalMex) cruise. Multi-cores (MC) and gravity cores (GC) were retrieved. Shallow multi-core (0-50 cm) 
MC1-MC9 were sectioned at higher intervals that deeper gravity core (GC1-GC7) samples. With the exception of the isotope data, all geochemical data were reported 
previously in Berelson et al. (2005). Data missing here either had an error in sampling, or there was insufficient material for measurement. 
 

Table 2.6: Pore water data from Berelson et al. (2005) and isotope data generated in this study 
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The dependence of fractionation on rate 

We tested three different depth dependences of fractionation: a constant fractionation (main 

text), a linear dependence of fractionation on SRR, and finally an exponential dependence on SRR – 

more like that seen in pure culture studies (Leavitt and others 2013). Each of the scenarios results in a 

different 33α and 34α applied at variable depths within the model domain, and results in depth-variable 

32SRR, 33SRR, and 34SRR.  In all cases, isotope mass balance was conserved and checked such that 

SRR = 32SRR + 33SRR + 34SRR.  

Each of these different model solutions carries a different prescription between SRR and 

isotope fractionation. In the first scenario, we explored a linear dependence of 34εSR on rate (at SRRmax, 

34εSR ≈ 34εmax and vice versa). Here we used the same regressed values as determined in Leavitt and 

others (2013): 

 

 

Next, we have parameterized the exponential connection between SRR and 34εSR using the model 

values from Leavitt and others (2013), where 34εmin = 17.2±1.3‰ and 34εmax = 56.5±2.6‰. We have 

used an attenuation coefficient of 34β = 10, and thus the equation can be written as: 

 

 

 

Finally, we consider a constant value for 34εSR with depth, or a fractionation that is rate independent 

over the range of values covered in the Alfonso sediments.  This last case is carried forward in the 

main text. 

 A comparison the modeled fractionation factors, the whole core isotope model profile model 

profile demonstrates the isotopic behavior of each of the different scenarios. From this, we can 

highlight several key points. For both the linear and exponential cases, where the fractionation factor 

is a function of rate, a maximum fractionation factor of 34εmax = 56‰ is insufficient to capture the 
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behavior of the pore water sulfate δ34SSO4 values. Although the 34εmax and 34εmin are the same in both 

cases, and values of 34εmax converge at depths where SRR decays to zero. The modeled isotope 

gradient in the exponential case is shallower than in the linear case because 34εSR increases more 

slowly. Furthermore, the modeled δ34SSO4 profiles largely do not reflect the structure of the 34εSR input 

profile, reflecting the consequence of diffusive/advective transport of 32SO4
2-, 33SO4

2- and 34SO4
2-.  

In all cases (exponential, linear, and constant), the sulfate δ34SSO4 profile gradients are 

approximately linear with respect to depth down to 150 cm, where [SO4
2-] ≈ 5 mM. Utilizing different 

34εmin, fit to the highest SRR at shallow depths, ranging from 34εmin = (20‰-50‰), that same linear 

behavior in the sulfate isotope gradient is observed. Although a small change in the slope of δ34SSO4 

versus depth is observed, the chosen value of 34εmax has a much stronger influence on the sulfate 

isotope gradient than does 34εmin. It is, of course, possible to model the δ34SSO4 gradient with 34εmax > 

70‰, in both the linear and the exponential case. The profile behavior is largely insensitive to the 

chosen 34εmin when 34εmax is large (> 70%). Despite the fact that there is pronounced structure in 34εSR 

associated with the sulfate depletion depth, there is comparatively little influence on the resultant 

δ34SSO4 profile. In the case where 34εSR is held constant, independent of SRR, and by inference, depth, 

the best model fit to the isotope profile is produced when 34εSR = 70‰. The model δ34SSO4 gradient is 

also linear with respect to depth until ~150cm, when the sulfate concentration profile also begins to 

approach the sulfate depletion depth. All 34εSR input values into the model where 34εSR < 60‰ produce 

a δ34SSO4 gradient that is too shallow, all input 34εSR > 80‰ produce a δ34SSO4 gradient that is too large 

to accurately reproduce the measured pore water sulfate samples within Alfonso Basin. Although the 

constant 34εSR scenario was tested simply as an end member case, we acknowledge that it provides the 

best fit with the least number of assumptions—the most conservative approach) to the δ34SSO4 values 

an accurately reproduces the pore water δ34SSO4 gradient in the top 50 cm. A scenario that 

parameterized the connection between 34εSR and SRR is not necessary. Further, it is critical to 

acknowledge that the physical transport of sulfate (diffusive and advective) results in the loss of 

information about the fractionation behavior at the reaction level.  
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 In a similar fashion to that outlined above, it is possible to demonstrate a series of model fits 

to the pore water sulfate Δ33SSO4 values. Noting that the variability in Δ33SSO4 values are modest over 

the measured range (increasing from near seawater sulfate values at the SWI of 0.047±0.006‰ to 

0.086±0.006‰ at 47 cm depth), Importantly, only minute variability in 33lSR is required to produce 

substantial changes in the trajectory of Δ33SSO4 versus depth. Demonstrating a sensitivity test, Fig. 

A4.2 exhibits the influence of variable, rate-independent 33λSR on the output pore water sulfate Δ33SSO4. 

While not all of these values are physically reasonable given the 34εSR, several features are notable.  

First, increasing 33λSR with constant 34εSR produces a more rapid increase in the Δ33SSO4 model output. 

This is an expected result, as 33λSR relates the fractionation factors 33αSR and 34αSR, larger values of 

33λSR produce a relatively larger enrichment in 33S. Secondly, despite the fact that Δ33S is calculated 

within the reference frame 33λ = 0.515, values of 33λSR > 0.510 are sufficient to produce a positive 
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Figure 2.9 

Figure 2.9: Isotope model fits (δ34SSO4 vs. depth) for different parameterization scenarios (constant 
34εSR, linear dependence of 34εSR on SRR, and exponential dependence of 34εSR on SRR). The panels 
demonstrate (a) the input 34εSR as a function of depth, as determined from the different 
parameterization scenario (b) the model δ34SSO4 profile fit for each of the scenarios in (a), plotted 
with the multi-core δ34SSO4 Alfonso Basin data throughout the entire model domain sampled by the 
gravity core (c), the δ34SSO4 for the top 70 cm, the region sampled by the multicore. 
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trajectory in triple isotope space (δ34SSO4-Δ33SSO4). It is possible that closed system behavior, such as 

that observed in pore waters can partially explain this trajectory. Thirdly, with the application of both 

constant 34εSR and 33λSR, non-linear trajectories are observed in the triple isotope composition of pore 

water sulfate. Whereas simple, Rayleigh-like models of sulfate in closed systems demonstrate linear 

arrays, the model trajectories for a diagenetic model like that constructed here are more complex.
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CHAPTER 3   
 
A MULTIPLE SULFUR ISOTOPE DIAGENETIC MODEL FOR AARHUS BAY: 
RECONCILING MEASUREMENTS WITH REACTIVE TRANSPORT* 

 
 
 
ABSTRACT 

Multiple sulfur isotope calibrations of microbial biosignatures enable the unique diagnosis of S-based 

metabolic processes: sulfate reduction, disproportionation, and sulfide oxidation. All three carry 

distinct geochemical consequences for S cycling in modern systems, and are particularly powerful for 

paleoenvironmental interpretations. To hone those interpretations and to further develop a quantitative 

context for understanding early diagenetic sulfur cycling, we constructed a multiple S isotope reactive 

transport model for the sediments of a geochemically well-characterized system (Aarhus Bay, 

Denmark). The model reconciles pore water and solid phase concentration profiles of the major 

species associated with Fe/S/C cycling, and provides for the incorporation of multiple S isotope 

systematics to predict the isotope profiles of the major S species, including pore water sulfate, sulfide 

and pyrite. We note that very large fractionations associated with sulfate reduction (34εsr = 70‰) are 

required to reproduce the observed pore water profiles, and we reconcile these fractionations with low 

temperature theoretical predictions for isotope equilibrium fractionation. The Δ33S values of sulfate 

increase at shallow depths within the Aarhus Bay core, and decrease with sulfate <10 mM. Values 

(Δ33S) for sulfide decrease nearly monotonically towards seawater sulfate values near the zone of 

sulfate depletion. Pyrite Δ33S values are nearly uniform downcore (0.170±0.010‰) despite a ~10‰ 

enrichment in surface versus deep pyrite δ34S values. Sulfate reduction is the most important process 

controlling S isotope pore water distributions, and little contribution from oxidative S cycling is 

required despite the oxygenated conditions of Aarhus Bay sediments. Further, sulfate reduction 
*A version of this chapter is in preparation for submission to Geochimica et Cosmochimica Acta 
with coauthors Marc J. Alperin, Gail A. Arnold, William M. Berelson, and David T. Johnston 
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demonstrates large fractionations typically not expected for shallow, organic rich continental 

margin systems. 
 
 
3.1 INTRODUCTION 

Microbial sulfate reduction (MSR) is a ubiquitous and quantitatively important anaerobic C-

remineralization pathway in modern continental margin sediments (e.g., Jørgensen, 1982). In addition 

to classic organoclastic sulfate reduction, sedimentary sulfur cycling is further involved in the 

oxidation of pore water CH4 via anaerobic methane oxidation (AOM) (e.g., Boetius et al. 2000; 

Knittel and Boetius, 2009; Milucka et al. 2012). This sedimentary biogeochemical linkage between 

the S and C cycle is thus globally important in determining rates of sediment metabolisms, and 

consequently rates of C burial within anoxic sediments (e.g., Bowles et al. 2014; Meister et al., 2013). 

Certain sulfur (S) metabolisms, including both sulfate reduction and sulfur disproportionation, have 

different geochemical roles and occupy different environmental niches depending on substrate, 

specific S compound present (SO4
2-, H2S, S0, S2O3

2-), and oxidant (O2, Fe3+) availability (cf. Canfield, 

2001); diagnosing the individual contributions of these and other metabolisms is important for 

understanding how sedimentary S cycling is intertwined with other diagenetic reactions. Sulfur 

isotopes (32S-34S) are an important diagnostic tool for understanding the presence, activity, and rates of 

MSR and sulfur disproportionation (MSD) in marine sediments (cf. Habicht and Canfield, 2001). 

Isotopic approaches are also heavily involved in reconstructing S cycling within both modern 

sediments (Jørgensen, 1979), and in the establishment of proxy records used to understand S cycling 

in deep time (Canfield, 2004; Canfield and Farquhar, 2009). Unfortunately, the overlap of 

characterized fractionations (i.e. the 34S/32S effect generated by MSR and MSD) for particular 

processes represents a complication in diagnosing the contributions of each to sedimentary S isotope 

reservoir. 

More recently, the use of minor (33S and 36S) S isotopes has been applied to understanding the 

contributions of juxtaposed metabolisms (Johnston et al., 2005; Johnston et al., 2007; Leavitt et al., 

2013) and promises to aide in interpreting the sedimentary S cycle. Few studies, however, have 
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incorporated minor isotope systematics into diagenetic reactive transport models (RTMs) 

(Masterson et al., submitted; Pellerin et al., 2015), and none are constructed to explicitly incorporate 

all S species of interest. Such RTMs, steady-state and otherwise, will provide the framework for 

determining how minor sulfur biosignatures, characterized in pure culture experiments, are produced 

and diagenetically inherited in different sedimentary packages and environmental regimes. Therefore, 

it is critical to develop these models and apply them in geochemically and sedimentologically well-

characterized systems (Aarhus Bay, Denmark).  

 To date, studies targeting the diagenetic reconstruction of S cycling have focused on (i) 

predicting the influence of sedimentary organic carbon (also known as particulate organic carbon, or 

POC) mineralization rates on sulfate profiles (Berner, 1964; Westrich and Berner, 1984, Masterson et 

al., submitted), (ii) understanding how depth-dependent variability in fractionation behavior (e.g. 

34αMSR) influences sulfate and sulfide isotope (δ34SSO4, δ34SH2S) depth-profiles in the light of physical 

transport (Jørgensen, 1979; Masterson et al, submitted), and (iii) reconciling those fractionation 

characteristics with laboratory calibrations of pure culture microbial experiments (Habicht and 

Canfield, 1997; Habicht et al. 1998; Habicht and Canfield, 2001; Wortmann et al. 2001; Habicht et al. 

2002). Broadly, those studies suggest that organic matter composition and reactivity has a strong 

influence on sulfate concentration profiles (Berelson et al., 2005). These reaction kinetics are further 

modulated by the particular diagenetic regime, meaning the balance between diffusion/advection, 

which relate to features like sedimentation rate, and the geochemical reactions themselves. All these 

processes then come to influences the S isotope characteristics or pore water and solid phase S-bearing 

species in early diagenetic marine systems. Still, the unresolved goal is to build a robust, quantitative 

bridge between the observed fractionation behavior and the isotope fractionations produced in well-

constrained laboratory experiments. Previous attempts to champion this goal are hindered by the 

overlapping (i.e. non-unique) fractionation behavior for processes such as sulfate reduction and sulfur 

disproportionation. In essence, it is difficult to quantitatively separate the contribution from these 

metabolisms with the classic isotope system of 34S/32S.   
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Here again we look to the incorporation of minor sulfur isotope (33S and 36S) to help 

resolve these challenges.  In detail, the inclusion of 33S calls upon a finer understanding of the mass-

dependent isotopic behavior that more accurately diagnoses (i) the activity of sulfate reducers and 

disproportionators (Johnston et al., 2005) and provides (ii) a co-varying relationship between 34εMSR 

and 33λMSR that is potentially a more accurate proxy for the variability in the natural rates of sulfate 

reduction (Leavitt et al., 2013). Those minor isotope signatures, typically measured and presented 

using triple isotope notation (e.g. δ34S-Δ33S) have only sparingly been applied to studies of modern 

sediments (Johnston et al., 2008; Strauss et al. 2012; Pellerin et al., 2015; Masterson et al., submitted). 

Only the latter two studies attempted to provide a model framework for the evaluation of S isotope 

fractionation in this light, and only the last of these actually accounted for other biogeochemically 

important (C, Fe, Ca) cycles. 

 The simplest approach that can be employed to evaluate the minor isotope behavior of S in 

sedimentary systems and that satisfies the mass-balance requirements of S/C/Fe is to construct a 

steady-state, finite difference, reactive transport model that parameterizes POC mineralization 

kinetics, resolves SO4
2- and H2S concentration profiles, and evaluates how fractionation behavior 

influences the pore water isotope signatures. In a first step toward this goal, Masterson et al. 

(submitted) expanded a complex diagenetic model, which included a carbon, iron and calcium cycle, 

to include the 33S behavior in pore water sulfate. Sulfate profiles are often seen as a proxy for the 

integrated behavior of S cycling in sediments, and as such, that study targeted sediment pore water 

from California margin sediments. However, using these types of rigorous investigations as a roadmap 

for paleoenvironmental reconstructions suffers from a nearly absent geological record of seawater 

sulfate, notwithstanding adequate pore water sulfate records. As such, geological reconstructions lean 

heavily on solid phase metal sulfide records (i.e. pyrite). The incorporation of solid phase (FeS and 

FeS2) chemistry is therefore needed in diagenetic model reconstructions, and further allows for a more 

complete S isotope mass balance. Only a few studies have done this synchronously (e.g., Dale et al., 

2009; Aller et al., 2010), and none incorporate 33S. To this end, we provide high-precision 
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measurements (σ−δ34S = 0.2‰ and σ−Δ33S = 0.006‰) of the major sulfur species from a gravity 

core taken at station M1 in Aarhus Bay, Denmark. We present these data alongside additional aqueous 

phase (CH4) and solid phase (POC, Fe) metadata and use those results to feed a new, expanded 

diagenetic isotope model. Together these results will speak to the relationship between metabolic rates 

of sulfate reduction and the manifestation of an isotopic signal, and equally as important, what exact 

biogeochemical information is captured in the geologically interpretable pyrite record from early 

diagenetic environments.   
 
 

 

 

3.1.1  ISOTOPE NOTATION 

Throughout this work we use isotope ratios (3xR = 3xr/32r) as a means to define isotopic fractionation 

between reservoirs, here A and B. This is most simply characterized via a fractionation factor, where 

3xαA-B = 3xRA/3xRB and x equals 3 or 4. This is then translated to standard delta notation (δ3xS = 

((3xRsample/3xRstd -1) *1000)), or when A and B are known, the isotopic offset can be captured via a 

34ε  value, which is calculated as (3xαA-B.- 1) *1000. Thus, when placing an isotopic composition on an 

absolute scale, often referenced to VCDT, a δ3xS value is preferred. When comparing compositions 

within a data set or isolating a fractionation effect, we present the data as an 3xε value. For the minor 

isotopes, we can use the difference between a thermodynamic prediction and the measured 

composition: Δ33S  = δ33S – 1000((1+ δ34S/1000)0.515 -1), or through measuring the slope of a line 

loosely connecting δ33S and δ34S, which is noted as 33λ. More technically, 33λ is defined as 

ln(33αA-B)/ln(36αA-B). In determining the isotopic fractionation associated with a specific process—

even if that process is constituted by a number of steps—33λ is helpful and provides a δ34S 

independent measure of fractionation. Importantly, the error associated with 33λ is largely, and non-

linearly, dependent on the δ34S.   
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3.2 AARHUS BAY SAMPLING AND ANALYTICAL METHODS 
  
3.2.1  SITE CHARACTERISTICS AND GEOCHEMISTRY 

Aarhus Bay is a partially enclosed embayment on the eastern side of the Jutland peninsula (see Figure 

3.1), at the transition between the Baltic and the North seas. Studies suggest that the sediments consist 

of glacial till overlain by ~10 m of Holocene mud (Holmkvist et al., 2011). The region has been 

studied using seismic techniques to determine the depth and presence of subsurface CH4 gas (Jensen 

and Bennike, 2008), and the depth to the zone of sulfate depletion—or sulfate methane transition zone 

(SMTZ). These characteristics have been heavily documented at two study stations (M1 and M5) 

(Dale et al., 2008). Further, Station M1 in Aarhus Bay (56◦07.0580′N and 10◦20.8650′E) – the study 

site for this work - is the site of regular coring, is relatively accessible at 15 m water depth, and the 

general geochemistry is well-documented by the METROL project and in subsequent research cruises 

(Fossing et al., 2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 

Figure 3.1: Map showing the sampling locality in Aarhus Bay, Denmark for the gravity 
core employed in this study. The cores were sampled at station ‘M1’ 56◦07.0580′N and 
10◦20.8650′E in May, 2013, in a water depth of approximately 15 m on the RV Tyra. 
The cores samples employed in this study are those from the ‘spring’ core published in 
Brunner et al., (2016).  
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3.2.2 CORING AND PORE WATER SAMPLING 

The cores used in this study were collected in May 2013 on a sampling campaign aboard the RV Tyra 

as a part of a larger sampling expedition (Brunner et al., 2016). Gravity cores were taken with a 12 cm 

steel barrel with a PVC core liner, and with a final sampled depth of ~220 cm. Upon collection, cores 

were taken to Aarhus University and processed in 4◦C cold rooms. The cores were sectioned and pore 

water extracted anoxically in a pore water squeezer. The first ~5 mL of pore water were discarded and 

the remainder collected in N2-purged 100 mL serum bottles with 1mL of 20% zinc acetate to capture 

pore water sulfide. Pore waters were split and separate analyses were done for sulfide concentrations 

and sulfate concentration by gravimetric determination. Separately, sulfate and chloride were 

determined by ion chromatography. Sulfide, precipitated as ZnS, was cation-exchanged with AgNO3 

to convert to Ag2S and filtered for S isotope analyses. To the leachate was then added a saturated 

solution (1.3 M) of BaCl2 to precipitate BaSO4, which was then filtered and dried for S isotope 

analyses.  
 
 
 
3.2.3 SULFUR ISOTOPE ANALYSES 

Additional splits of BaSO4 and Ag2S pore water splits were sent to the Harvard University Laboratory 

for Stable Isotope Geobiology for multiple S isotope analyses. Barium sulfate was further washed in 

millipore H2O, and dried in a 90◦C oven. Both Ag2S and BaSO4 were prescreened for δ34S using 

continuous flow IRMS, analyzed as SO2. Samples were combusted online using V2O5 as a catalyst in a 

Costech EA, mated to a Thermo-Fisher Delta V. Reproducibility is estimated from IAEA standard 

measurements (S-1, S-2, S-3, and NBS-127) to be better than ±0.2‰ (1σ).  

 Pyrite was extracted from solid phase sediment samples (dried and powdered) using a 

modified technique from Canfield et al. (1986). Extracted H2S was captured as ZnS and converted to 

Ag2S, which was further cleaned and dried at 90◦C for S isotope analyses. The distillation procedure 

also checked for the presence of acid-volatile sulfur (AVS) and zero-valent sulfur, but no quantifiable 
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amount was found in any of the sediment samples. Pyrite Ag2S, extracted in duplicate, was analyzed for 

δ34S values using the EA method, and a portion was also saved for multiple S isotope analysis.  

Pore water sulfate (as BaSO4) samples for multiple S isotope measurements (Δ33S) were first 

chemically converted to Ag2S by reductive distillation with a mixture of hydriodic acid (HI), 

hypophosphorous (H3PO4) and hydrochloric acid (HCl) at ~90°C for 3 hours (Forrest and Newman, 

1978). The N2-purged reactors were connected to a series of acid traps and zinc acetate capture vials 

that precipitated evolved H2S as ZnS. Cation-converted Ag2S samples were rinsed with ~300 mL of 

Millipore water, and ~15mL of 1M NH4OH to remove trace silver ions, and dried overnight in a 90°C 

oven. Powdered Ag2S samples were fluorinated at 300°C in a F2 atmosphere at 10X stoichiometric 

excess. Product SF6 was cryogenically and chromatographically purified and analyzed on a Thermo 

Finnigan 253 in Dual Inlet mode. Analyses of repeat standards of IAEA-S1, S-2, and S-3 yield a 

reproducibility of ±0.2‰ and ±0.006‰ for δ34S and Δ33S, respectively (see Appendix A1 for compiled 

standard data). Samples are reported versus VCDT, calibrated from the long-term running average of 

IAEA-S-1 versus the working standard gas at Harvard University. 
 
 
3.3 MODEL CONSTRUCTION 

3.3.1 MODEL ARCHITECTURE AND OPERATION 

The reactive-transport models constructed for this study are steady-state finite difference models 

designed and run in Fortran 77. A baseline geochemical model was constructed to describe the depth 

distribution of the major pore water and solid phase chemical species—including organic carbon (POC), 

sulfate (SO4
2-), methane (CH4), dissolved inorganic carbon (DIC), sulfide (H2S), reactive iron 

(‘FeOOH’), elemental sulfur (S0), and the iron sulfides (FeS and FeS2). Organic carbon remineralization 

was used to ‘drive’ the other major biogeochemical reactions, with the assumption that sulfate reduction 

and methanogenesis are the major loss pathways for reactive POC.  The major reactions incorporated 

into the model include sulfate reduction (SR), methane oxidation (MO), chemical sulfide oxidation 

(H2SO), sulfur disproportionation (S0D), FeS precipitation (FeSP) and pyrite formation (FeS2F). The 

depth-dependent bulk rates of each reflect the reconciliation of the concentration profiles of all of the 



 
 
MODEL CONSTRUCTION 

 

76 

major pore water and solid phase species and were the major output of the bulk geochemical model.  

These rates were then used as inputs for the isotope-dependent reactive transport model that produces 

the isotope profiles of the major S-bearing species, including δ34SSO4, Δ33SSO4, δ34SH2S, Δ33SH2S, δ34SFeS, 

and δ34SFeS2. Discussed below are the details of the model construction, including boundary conditions, 

diffusion coefficients, physical parameters, kinetic parameters, and isotope-dependent boundary 

conditions.  
 
 
3.3.2  GEOCHEMICAL (POC, CH4, SO42-, H2S, S0, FES, FES2, DIC) MODEL 
 
3.3.2.1  POROSITY 

Following in the convention of previous authors (cf. Boudreau et al., 1997), we have assumed that 

porosity follows an exponential decay function that implicitly assumes steady-state compaction of 

sediment across the model domain. Whole sediment porosity was not measured at the time of sampling 

for these particular cores in May 2013, but was measured by mass loss upon drying on a separate 

gravity core a month later. With porosity (φ) being the fraction of whole sediment volume constituted 

by pore water, the model fit and the porosity (φ = 0-1) are shown in figure 3.2a. That parameterized 

model fit is used in all of the reactive transport equations where φ appears. 

 
 
3.3.2.2   BOUNDARY CONDITIONS FOR PORE WATER  (CH4, SO42-, H2S, FE2+) SPECIES 

Aarhus Bay is a brackish body of water at the transition of the Baltic to the North Sea, and the salinity is 

known to fluctuate seasonally (Dale et al., 2008). With that in mind, the concentrations of the major 

conservative species are lower than typical for open ocean conditions. A bottom water sample was not 

taken at the time of sampling, so we have used a salinity (S = 30) to ascertain the concentration of SO4
2- 

at the sediment water interface (SWI) ([SO4
2-] = 24.797 mmol/L). The upper boundary conditions for 

the pore water species were set given the concentrations at the shallowest interval measured (~6 cm) or 

if not measurable, approximating zero and close to the ‘threshold’ concentrations for the reactions. All 

of the boundary conditions used are shown in Table 3.1. 
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3.3.2.3 SOLID PHASE (POC,’G’, FE3+, S0, FES, FES2) BOUNDARY CONDITIONS 

Sediments in Aarhus Bay—at Station M1 and elsewhere—are relatively rich in organic carbon, with 

repeated cores at M1 yielding POC between 3-4 wt% (Holmkvist et al., 2011, Dale et al., 2008). In our 

steady-state model, we prescribed the concentration of ‘unreactive’ organic matter, hereafter POC∞ to 

values approximating that at the lower limit of the model domain (= 2.5%). The flux of reactive organic 

matter, G’, is a parameterized model input that is reconciled with the sulfate and methane concentration 

profiles. The details of how this is performed are discussed below, but nevertheless the concentration of 

reactive organic carbon is set at the upper boundary at 3.5 wt%. The total flux of the reactive organic 

carbon is then determined by this fixed concentration, and by the mass accumulation rate of solid matter 

to the sediment-water interface. 

 The boundary conditions for the remainder of the solid phases (Fe3+ as ‘FeOOH’, S0, FeS, FeS2) 

with the exception of the latter, we prescribed using model parameterizations. Both S0 and acid volatile  
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Figure 3.2 

Figure 3.2: (a) Porosity (φ) data from a gravity core taken station M1 in 
Aarhus Bay-separately from the core used in this study. The exponential fit 
to the porosity data is used in the diagenetic models constructed here, and 
the values are corroborated by those used in Dale et al., (2008). (b) Model 
parameterization of POC degradation kinetics using a 3G model. The 
weight percent of each in addition to the unremineralized fraction is shown. 
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sulfur were below the limit of detection in all of the solid sediment samples (< 10 µmol/mg), but the 

upper boundary conditions were set to appropriately initialize the model scenario. The concentration of 

FeS2 was set by the concentration (in wt% Fe) in the shallowest sediment interval measured (0.05%). 

 

 
 
3.3.2.4  PHYSICAL PARAMETERS AND DIFFUSION COEFFICIENTS 

Several physical parameters are used in the reactive transport model construction for Aarhus Bay. 

Temperature and salinity are required for the determination of bulk diffusion coefficients of the pore 

water species, the size of the model domain (L = 1000 cm) is prescribed such that all the constitutive 

reactions approximate zero at the base of the model domain. The dry sediment density (ρSM = 2.50 

g/cm3) and the steady-state mass accumulation rate  (FSM = 0.02 mg/cm2 y-1)—ascertained from 14C  

Table 3.1: Boundary conditions for geochemical model 

Solute Concentration 
(mmol/L) 

Source 

SO4
2- 24.797 L1 

H2S 0.100 C 
CH4 0.00001 C 
DIC 2.3 C 
Fe2+ 0.001 C 
Ca2+ 10.3 C 
   
Solid Concentration (%) Source 
POC 6.0 C 
POC∞ 2.5 C 
G 3.5 C 
FeOOH 2.0 C 
S0 0.001 C 
FeS 0.6 C 
FeS2 0.05 C 
   

 
Table 3.1 Boundary conditions of the geochemical model 
Solid phase and pore water concentration boundary conditions 
for the baseline geochemical model. In this table and the 
remaining tables, the Source terms refer to L = Literature, I = 
calculated from other model conditions, and C = Model 
parameterization. 
1 Dale et al., (2008) 
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abundance in mollusk shells (Dale et al., 2008), are terms required for computing solid phase fluxes of 

(POC), Fe3+, FeS, and FeS2 at the top of the model domain. The bulk diffusion coefficients 

(diffusivities) of the pore water species, including SO4
2-, CH4, H2S, Fe2+, and DIC were calculated for a 

bottom water temperature of 8oC, using the values from Schulz (2006), and are listed in Table 3.3. 
 
 
3.3.2.5  POC DEGRADATION KINETICS 

As with the majority of other early-diagenetic reactive transport models, organic carbon degradation is 

the modulating reaction driving the rates of other biogeochemical processes. This is directly the case for 

sulfate reduction and methanogenesis, and indirectly for anaerobic methane oxidation, sulfide oxidation, 

Table 3.2 

Table 3.2: Physical parameters used in baseline geochemical model for Aarhus Bay  
1 Dale et al., (2008) 
 

Symbol Description Value Units Source 
z Water depth 15 m L1 

T Bottom water temperature 8 °C L1 

S Bottom water salinity 30 - L1 

L Length of model domain 1000 cm C 
φo Porosity at sediment surface 0.8096 - C 
φ∞ Porosity below zone of compaction 0.6187 - C 
β Porosity attenuation coefficient 0.00367 cm-1 C 
ρSM Dry sediment density 2.50 g cm-3 L1 
FSM Mass accumulation rate 0.02  mg cm-2 y-1 L1 

     

 
 

Table 3.3: Bulk diffusivities for Aarhus Bay sediments 
Bulk diffusion 
coefficient 

Computed1 for 8°C, 30 psu, 15 
m  (cm2/y)  

DSO4 200.63 
DH2S 396.09 
DCH4 313.72 
DFe 134.34 
DDIC 216.27 
  

 Table 3.3: Diffusion coefficients for pore water species  
1 Computed from values in Schulz (2006) 
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sulfur disproportionation and iron sulfide precipitation. With that in mind, we followed on what other 

researchers have done and parameterized organic carbon remineralization using a multi-G model (Dale 

et al., 2009; Westrich and Berner, 1984) that partitions organic carbon into different pools by reactivity. 

With the hypothetical but empirically validated approach, particulate organic carbon, with its prescribed 

flux at the sediment water interface, is divided into four fractions, including an unreactive fraction 

(POC∞) and three fractions (G1, G2, and G3) with decreasing reactivity towards remineralization (e.g., k1 

>k2>k3). The rate constants k and the fractional abundance of each pool G is adjustable in the model—

with the final output determined as a pore-water normalized depth-dependent remineralization rate, 

hereafter deemed GRRPW. Each fraction G displays a first-order loss profile with respect to depth, and 

GRRPW is the cumulative reactive loss of organic carbon. The profiles of each fraction (G1, G2, G3, and 

POC∞) are shown in Figure 3.2b, and the rate constants k1, k2, k3, and fractional abundances of each 

pool are catalogued in Table 3.5, alongside the other rate and equilibrium constants considered in the 

model.  

 
3.3.2.6  BULK GEOCHEMICAL RATES AND KINETICS 

All other reactions considered in the reactive transport model are linked to GRR via the stoichiometry of 

remineralization, and the biogeochemical kinetic thresholds required for a reaction to proceed (i.e. 

sulfate threshold required to limit sulfate reduction and methane oxidation and sulfate limitation of 

anaerobic methane oxidation). We have followed what others have done and use the error function to 

mathematically curtail these reaction rates near the thresholds. This has been demonstrated as a 

reasonable way to incorporate Monod-style kinetics into the reaction terms with a continuous function 

that does not cause issues in the solutions to the second-order differential equations. Some of these 

thresholds (KSO4) have been demonstrated empirically (Bradley et al., 2016; Tarpgaard et al., 2011; 

Habicht et al., 2002) and others have been constrained by the model at low concentrations (KFeOOH) to 

guard against the appearance of negative concentrations—mathematically reasonable but physically 

untenable. 
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Table 3.4 
 
 Reaction Rate Expression 
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Table 3.4 (continued) 
	 	 	

	 	 	

	 	 	

	 	 	

 It is worth noting that the model assumes that all POC degradation takes place via sulfate 

reduction and methanogenesis, with the latter the principal loss pathway of the least reactive pool (‘G3’). 

For the purposes of testing the isotope model, we also treat the two diagenetic loss pathways of sulfate 

as distinct. The organoclastic sulfate reduction rate, hereafter SRR, is linked to GRR by the 

stoichiometry of remineralization and the oxidation state of organic matter (Alperin et al., 1994). The 

anaerobic methane oxidation rate, hereafter MOR, is ascertained from the stoichiometry of AOM (C/S 

=1), but is limited at concentrations substantially exceeding the threshold ([SO4
2-] >> [SO4

2-]*). 

Although both reactions consume sulfate, they are treated separately to allow for potentially different 

intrinsic isotope fractionation characteristics (Jørgensen et al., 2006).   

 Simplifying the oxidation kinetics of sulfide, we have only considered the chemical oxidation 

of HS- by ferric iron Fe3+, and have not explicitly considered aerobic oxidation or biologically mediated 

oxidation. We also neglected ferric iron reduction as a source of ferrous iron to pore waters, and 

consider the only source as sulfide-mediated reduction of ferric iron. The oxidation kinetics of sulfide 

have been studied extensively, and we use reaction kinetics that are half-order with respect to sulfide 

Table 3.4: Reactions considered in the geochemical model for Aarhus Bay sediments. Reactions as 
written do not explicitly take into account organic matter oxidation state (XS), though it is considered 
in the rate expressions. All rate expression terms with the exception of POC degradation have a term γ 
which modulates the rates of a particular reaction for below a prescribed concentration threshold (e.g., 
[SO4

2-] *)—effectively parameterizing Monod or Blackman kinetics (Dale et al., 2009). 



 
 
MODEL CONSTRUCTION 

 

83 

and first order with respect to ferric iron (e.g., H2SOR = kH2SO[H2S]0.5[FeOOH]) (cf. Poulton et al., 

2004). In this scenario, zero valent sulfur (S0) is the only oxidation product, and sulfur 

disproportionation the only reactive fate of S0. Acid volatile sulfur (nominally FeS) is the product of 

ferrous iron sulfidization and pyrite FeS2 is the product of the reaction of FeS with H2S—the only pyrite 

synthesis pathway considered. The rate outputs of the baseline model scenario, at least that consider S-

bearing reactants and products, serve as model inputs for the isotope-specific reactive transport model, 

the construction of which is considered below. 
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Parameter Description  Value Unit  Source 
k1 Reactivity of POC pool G1 0.01000 y-1 C 
k2 Reactivity of POC pool G2 0.00100 y-1 C 
k3 Reactivity of POC pool G3 0.00024 y-1 C 
kMO Rate constant for methane oxidation 1.0000 y-1 C 
kH2SO Rate constant for chemical sulfide oxidation 0.00003

1 
mM-0.5 y-1 C 

kSD Rate constant for S0 disproportionation 0.0100 y-1 L1 

kFeSP Rate constant for FeS precipitation 0.00001 mM y-1 L2 

kFeS2F Rate constant for pyrite formation 0.0100 mM-1 y-1 C 
[SO4

2-]* Threshold concentration for [SO4
2-] 0.200 mmol/L L3 

[H2S]* Threshold concentration for [H2S] 0.150 mmol/L C 
[FeOOH]* Threshold concentration for [FeOOH] 0.100 % C 
     

Fractionation factor inputs    
34εSR Fractionation factor for sulfate reduction 70 ‰ C 
33λSR Lambda for sulfate reduction 0.513  C 

34εMO Fractionation factor for methane oxidation via sulfate 70 ‰ C 
33λMO Lambda for methane oxidation 0.513  C 

34εH2SO Fractionation factor for sulfide oxidation with Fe3+ -5 ‰ C 
33λH2SO Lambda for sulfide oxidation 0.515  C 
34εSoDSO4 Fractionation factor for disproportionation of S0 to 

SO4
2- 

0 ‰ C 
33λSoDSO4 Lambda for disproportionation of S0 to SO4

2- 0.515  C 
34εSoDH2S Fractionation factor for disproportionation of S0 to H2S 0 ‰ C 
33λSoDH2S Lambda for disproportionation of S0 to H2S 0.515  C 
34εFeSP Fractionation factor for FeS precipitation 0 ‰ C 
33λFeSP Lambda for FeS precipitation 0.515  C 
34εFeS2F Fractionation factor for FeS2 precipitation 0 ‰ C 
33λFeS2F Lambda for FeS2 precipitation 0.515  C 
     
 

Table 3.5 

Table 3.5: Kinetic parameters for the bulk geochemical and fractionation factor inputs for the 
isotope reactive transport model. 
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3.4  RESULTS AND DISCUSSION 

The central goal of this work is to blend the interpretation of the pore water concentration profiles of 

Aarhus Bay, the modeled rates extracted, and the paired isotopic data. In the light of constructing this 

reactive transport model, a secondary goal is to quantify the intrinsic isotope fractionations necessary 

to generate the observed isotope profiles. These fractionations, noted below as 34ε and 33λ are then 

relatable to a real catalogue of how microorganisms generate fractionation—experimental data sets 

from both continuous and batch pure cultures of with known metabolic functions (sulfate reduction, 

disproportionation, etc.). 

 Dissimilatory sulfate reduction rests at the core of early diagenetic reactions within marine 

sediments like Aarhus Bay. Sulfate loss to organoclastic and methanotrophic oxidation leaves pore 

water sulfate 34S enriched downcore, and recent work has focused on interpreting those profiles 

(Masterson et al., submitted; Pellerin et al., 2015). Although powerful on its own, the complementary 

sulfur pools in marine sediments offer added insight in the bulk biogeochemical activity as well as 

building a bridge to aid in interpreting geological signatures. In what follows, we expand the scope of 

previous work to include models for aqueous sulfide and solid phase metal sulfides. We focus on the 

fractionations associated with sulfate reduction, and then move to systematically test the role of other 

fractionation pathways present in the system. Furthermore, we highlight additional features that can be 

tested with new approaches to diagenetic modeling of sulfur isotopes in marine systems. 

 
3.4.1 SEDIMENT AND PORE WATER GEOCHEMISTRY 

Several biogeochemical studies of Aarhus Bay sediments have measured the weight percent organic 

carbon in the top 3-5 m of the sediment column. All suggest that at Station M1 the sediments are 

organic rich and methanic, with 3-5 wt% POC. Holmkvist et al. (2011) measured 2-3 wt% in the top 2 

m, decreasing at the sediments transition into brackish marine unit. Our results for the core taken in 

May 2013 indicate sediment with 3.1±0.4 wt % POC, increasing slightly downcore to ~4 wt% at 140 

cm depth. Although this is evidence of non-steady state conditions—or possibly lateral transport of 

sedimentary material at M1, we suggest that the diagenetic/diffusive timescale for the domain 
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represented by our model makes the fitting of the POC depth profile less important than the fitting of 

the pore water species. Nevertheless, the 3G model used partitioned reactive organic matter into three 

fractions (G1, G2, G3)—and the values used for the first order decay constants (k1 = 0.0100 y-1, k2 = 

0.0010 y-1, and k3 = 0.00024 y-1) were chosen empirically in order to effectively reproduce the sulfate 

and methane concentration profiles.  

 The pore water chemistry also resembles that exhibited in other studies that have sampled 

station M1 (Dale et al., 2008; Holmkvist et al., 2011). The pore water sulfate concentration, [SO4
2-] ≈ 

25 mmol/L in the shallowest depth intervals, is that expected for site with a slightly brackish salinity. 

Pore water sulfate concentrations decrease to < 1 mmol/L at a depth of ~150 cm. Other studies have 

demonstrated similar sulfate depletion depths (SDD) (Holmkvist et al., 2011), however there is 

variability of the SDD within station M1 from core to core (±80 cm), and perhaps even seasonally 

associated with temperature-dependent variations in methane biogeochemical cycling (Dale et al., 

2008). Dissolved pore water methane remains below ~ 0.1 mmol/L at depths shallower than 170 cm, 

but rises to ~0.4 mmol/L deeper than 200 cm. The only solid phase S species detected in the M1 

sediment samples was ‘chromium-reducible sulfide’ or pyrite sulfur. Extractions done on the frozen 

sediment cores yielded no acid volatile sulfur or zero valent sulfur species. Pyrite (FeS2) is the primary 

stable S phase, and its concentration—in wt% Fe per gram of dry sediment weight—increases from 

0.1% to ~1.0% at ~150 cm depth. Total acid and chromium extractable reactive iron is relatively 

constant over the same interval (1.5±0.1%).  

 
3.4.2 DEPTH—RATE AND DEPTH—CONCENTRATION PROFILES 

Through the parameterization of the organic carbon remineralization rate, and the additional reactions 

considered in table 3.4, all other downcore rates are resolved in the baseline simulation. These include 

the organoclastic sulfate reduction rate (SRR), the methane oxidation rate (MOR), the chemical 

sulfide oxidation rate (H2SOR), the sulfur disproportionation rate (SoDR), and the iron sulfide and 

pyrite precipitation rates (FeSPR/FeS2FR). The depth profile of SRR (Figure 3.4) demonstrates that 

most sulfate is lost to organoclastic sulfate reduction, of that, a substantial fraction is consumed in the 
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top ~50 cm of the profile. Additional sulfate is consumed via AOM between ~130 and 170 cmbsf. The 

column integrated SRR and MOR suggest fractional contributions to sulfate consumption of ~80% 

and 20%, respectively. This MOR fraction (~20%) has been suggested by additional modeling studies 

(Holmkvist et al., 2011) of Aarhus Bay pore waters. From the other rate profiles (H2SOR and SoDR), 

only a small fraction of sulfide that is produced in situ is oxidized and disproportionated downcore, 

largely reflecting ferric oxide limitation. Our estimate for the total fraction of H2S oxidized relative to 

that produced is on the order of 10%, whereas the majority of the sulfide is precipitated as FeS and 

incorporated into pyrite.  The remaining sulfide is available for oxidation via alternative oxidants (like 

O2 and NO3
-).  Even neglecting these sulfide sinks, what is clear is that the canonical estimates of 

>90% of biogenic sulfide reoxidized (cf. Jørgensen, 1982) are gross overestimates for depositional 

environments like Aarhus Bay. 

 The baseline model generates reactions rates that satisfy the concentration profiles of the 

major early diagenetic species. Most importantly, this includes the sulfur-bearing species of interest: 

[SO4
2-], [H2S], and FeS2. Some of the remaining species were not measured in this study (Ca2+, and 

DIC) but were nonetheless included to maintain the model architecture. The determined sulfate 

depletion depth of approximately ~150-160 cm matches the concentration, and is within the range of 

other studies at station M1 (Holmkvist et al., 2011; Dale et al., 2008). The methane profile (modeled) 

is slightly overestimated in our simulation—we did not expressly include methane gas ebullition 

which influences sampling at depth and results in aqueous concentrations lower than predicted, and is 

a common analytical problem pervasive in the methane literature. 
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Figure 3.4: (a) Model concentration outputs and Aarhus bay sediment pore water 
data for [SO4

2-], [H2S], and [CH4]. Heavy lines are reactive transport model 
outputs, and circles are from core samples taken at Station M1. (b) Model FeS2 
data, and pyrite (in wt % Fe per gram d.w.t.) for Aarhus bay sediments. The 
model outputs for other Fe species, including FeS (‘acid volatile sulfur’) and 
ferric oxide (binned as FeOOH) are included for reference. 

Figure 3.4 

Figure 3.3: Modeled rate profiles for the major reactions 
influencing the concentration of sulfur species within the 
diagenetic model, including the sulfate reduction rate 
(SRR), methane oxidation rate (MOR), and sulfide 
oxidation rate (H2SOR). The rate of disproportionation 
(kSoDR >> kH2SOR) closely approximates the sulfide 
oxidation rate, limiting the accumulation of zero valent 
sulfur (S0). 
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3.4.3 ISOTOPE DYNAMICS—34εSR AND δ34S MODEL FITS 

The inclusion of multiple S isotopes (δ34S and Δ33S) into a fully articulated diagenetic model allows 

for an entirely new suite of biogeochemical information.  This is most simply approached via a 

discussion of the ‘best-fit’ fractionation parameters (34εSR, 34εMO, 34εH2SO) and the sensitivity of the 

output model profiles (δ34SSO4, δ34SH2S, and δ34SFeS2) to those parameters.  These synthetic model data 

can then be merged with known isotope systematics and fit into a broader understanding of the 

sedimentary S cycle in Aarhus Bay and beyond.  

 The measured δ34S values of pore water sulfate increase from δ34S ~ 27‰ at 6 cm to ~80‰ 

near the sulfate depletion depth at 150 cm. Similarly, the δ34S values of pore water sulfide increase 

from -39.8‰ at 6 cm to 15.6‰ at 150 cm. The δ34S isotope profiles of both sulfate and sulfide follow 

a strikingly linear pattern with depth, with a near constant coeval offset of δ34SSO4 - δ34SH2S = 66±2‰. 

This is archetypal behavior for sulfate and sulfide in marine sediments. Such little variability in the 

slope of the δ34S-depth profiles leads to the necessity of a depth- (and thus rate-) independent 

fractionation factor for sulfate reduction. This is the same conclusion derived from studies of 

California margin sediments (Masterson et al., submitted), where different relationships between rate 

and fractionation were explored more thoroughly. With this in mind, we employed the S isotope 

reactive transport model to predict the intrinsic fractionation factors associated with each 

biogeochemical process (beyond just sulfate reduction), and to ultimately fit the δ34S profiles of the 

three major species. Figure 3.5 demonstrates the sensitivity of these isotope profiles to variations in 

those fractionation factors for sulfate reduction (a), methane oxidation (b), sulfide oxidation (c), and 

sulfur disproportionation (d).  

The isotope-specific model allows for the physical transport of each species, and we consider 

the ‘fit’ of the prescribed fractionation factors to each profile separately. Figure 3.5a demonstrates the 

results of several model fits from prescribed fractionation factors for sulfate reduction (34εSR = 50-

90‰). The best ‘fit’ fractionation factor for the δ34SSO4
 profile is 70‰, a value at the high end of 

laboratory calibrations for microbial calibrations (Leavitt et al., 2013; Sim et al., 2011a; Johnston, 
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2011; Johnston et al., 2007), but in keeping with theoretical predictions from low temperature 

thermodynamics (Wing and Halevy, 2014). Such a value has been modeled before for a hypersaline, 

hypersulfidic system (Wortmann et al., 2001), and in the meromictic euxinic Lago di Cadagno 

(Canfield et al., 2010a), and is equal to the value recently inferred for the pore waters of Alfonso 

Basin (Masterson et al., submitted). Other applied fractionation factors within the reactive transport 

model predict a δ34SSO4
 gradient that is too shallow (34εSR = 50‰) or too steep (34εSR = 90‰). As 

mentioned previously, there is no apparent need for 34εSR to be depth-dependent in order to explain the 

sulfate isotope profile. Far and away, the isotopic composition of pore water sulfate and sulfide 

reflects the signature of microbial sulfate reduction. However, since the two species are free to diffuse 

independently, the direct offset between the measured isotope profiles of sulfate and sulfide do not 

reflect the intrinsic fractionation factor 34αSR (or 34εSR) associated with sulfate reduction—a major 

result from this work. 

 The δ34SH2S
 profile gradient is very similar to that for δ34SSO4 (δ34SSO4 - δ34SH2S = 66±2‰), but 

the δ34S values are also set by physical transport, with DH2S > DSO4. Using the fractionation factors 

tested—also shown in Fig. 3.5a, an 34εSR value (= 70‰) accurately predicts the δ34SH2S values at 

depths >120 cm, but predicts values more 34S-enriched (5-10‰) at shallow depths. This enrichment 

appears to be independent of the choice of boundary condition (δ34Sx=0) and largely independent of the 

diffusion coefficient as well. It appears that values 34εSR > 80‰ provide an improved fit to the upper 

core data, but we suggest, and discuss below, several alternative possibilities for this slight misfit. It is 

worth noting that the δ34SSO4 of pore water sulfate displays continual enrichment at concentrations <1 

mmol/L (likely a product of the model output, sulfate concentrations < 1 mmol/L are analytically 

challenging to measure using multiple S isotopes techniques), whereas the δ34SH2S values reach a 

constant value (= 16±1‰) at depth, independent of the choice of fractionation factor. Likely, this 

value reflects complete consumption of sulfate with an initial composition reflecting that of seawater 

(δ34SSO4 = 21.15‰) and the isotope gradient (δ34SH2S) reflects the diffusional profile between sulfide 

produced by microbial sulfate reduction at the surface, and that produced by the near-complete 
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consumption of pore water sulfate at depth. Perhaps most importantly from a geochemical perspective, 

the isotopic composition of pyrite (FeS2) displays far less variability downcore than δ34SSO4 and 

δ34SH2S, indicating that the large majority of pyrite formation takes place near the sediment surface. 

Quantitatively, much less pyrite formation takes places at depth. It the solid phase species can be 

approximated from steady-state conditions, then the gravimetric FeS2 data would suggest that ~30-

40% of pyrite is formed within the top 20 cm of the sediment column. Again assuming the system is 

in steady state, then the shallow gradient in the isotopic composition of pyrite (δ34SFeS2) from core top 

to core bottom of ~10‰ reflects the gradual inheritance of 34S-enriched H2S from 34SO4
2- enriched 

pore waters. This is all also in keeping with the iron source for pyritization, which is in the solid phase 

and delivered to the top of the sediment column. 

It is worth noting and discussed in more detail below the type of signature preserved in the 

geologically observable fraction of the early diagenetic environment.  That is, the oft-applied 34εPY  (= 

1000 (34RSWS/34RPY -1)), or the isotope ‘fractionation’ between seawater sulfate and pyrite in shallow 

sediments is between 50-60‰ despite an intrinsic sulfate reduction fractionation of 70‰. Also 

exhibited in Figure 3.5a, the input fractionation factors (34εSR) carry little consequence for the isotopic 

composition of pyrite sulfur, even when varied (50-90‰). The information behind this mismatch, and 

more importantly what it means for future interpretation of geologically preserved sedimentary 

environments, is explored later in this contribution. 

 To summarize, the modeled fractionation factor 34εSR (=70‰) reproduces the sulfate δ34SSO4
 

gradient, and also adequately reproduces the δ34SFeS2 isotope profile. A reasonable fit for δ34SH2S 

values can be observed at depths >120 cm, but 34εSR =70‰ does not capture the behavior of shallow 

pore water sulfide. We discuss this further with respect to Fe chemistry in section 3.4, but first discuss 

the influence of additional biogeochemical processes on the pore water and solid phase isotope 

distributions in Aarhus Bay. 
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3.4.4  INFLUENCE OF METHANE OXIDATION, SULFIDE OXIDATION AND 

 DISPROPORTIONATION ON S ISOTOPE GEOCHEMISTRY OF AARHUS BAY SEDIMENTS 
 

The S isotope community frequently calls upon additional biogeochemical S processes to explain the 

isotope records in deep time (Canfield and Farquhar, 2009; Canfield, 2004; Canfield and Teske, 1996) 

and draws analogies to those processes observed in modern sediments (Habicht and Canfield, et al., 

2001; Habicht and Canfield, 1998; Habicht and Canfield, 1997). Oxidative S cycling—such as sulfur 
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Figure 3.5: Model fits (δ34S) of Aarhus Bay pore water and solid phase S species, including 
SO4

2-, H2S, and FeS2
. The four panels demonstrate the results of testing a baseline case with 

variable (a) Fractionation associated with sulfate reduction 34εSR (b) Methane oxidation 34εMO 
(c) Chemical sulfide oxidation 34εH2SO and (d) Sulfur disproportionation 34εSoDSO4/34εSoDH2S. The 
most pronounced influence of the isotope profiles results from the variation in 34εSR values. 
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disproportionation and chemical sulfide oxidation can complicate S isotope interpretations in two 

ways.  First, they provide additional, and frequently non-unique, isotope fractionations associated with 

their specific biochemistries.  Next, these alternative pathways catalyze sulfate recycling and allow for 

multi-stepped oxidation-reduction reactions that create additive isotope effects. Sulfur 

disproportionation, which is the inorganic fermentation of species like S0, SO3
2-, and S2O3

2- to SO4
2- 

and H2S, has in particular been targeted as a likely explanation for large S isotope fractionations 

observed in modern marine sediments (Habicht and Canfield, 2001; Habicht and Canfield, 1997). 

Chemical and biological sulfide oxidation, with O2 and NO3
- as terminal electron acceptors or oxidants 

has also been invoked as means of explaining small, but not insignificant (5-30‰) S isotope effects 

(Dale et al., 2009; Fry et al., 1986).  

 As a means of testing the isotopic importance of each of these individual processes to the δ34S 

distributions in Aarhus Bay sediments and pore waters (including the potentially for unique behavior 

during AOM), we systematically varied the input fractionation parameters (34εMO, 34εH2SO, 34εSoDSO4, 

34εSoDH2S) from the base model scenario (Table 3.5, 34εSR = 70‰, 34εMO = 70‰, 34εH2SO = -5‰, 34εSoDSO4 

= 0‰, 34εSoDH2S = 0‰).  The results of this sensitivity analysis are displayed as Figure 3.5b-d. 

Although there is no biogeochemical reason to suspect that AOM carries a different S isotope effect 

than organoclastic sulfate reduction, the isotope model allows for the two processes to be 

parameterized separately in order to characterize the influence on deep pore water sulfate δ34SSO4 

values. With ~20% of SO4
 lost to AOM, and the large majority below ~130 cm, a fractionation factor 

of 34εMO < 34εSR would lead to a shallower δ34SSO4 gradient within the vicinity of the sulfate depletion 

depth. Several model profiles are shown in 3.5b—with 34εMO = 20‰-40‰, both sharing a shallower 

δ34SSO4 gradient proportional to the prescribed fractionation factor. However, a comparison with the 

base case demonstrates that the effect of changing 34εMO is small, and is not distinguishable from the 

base case 34εMO at depths < 80 cm. Thus, although AOM constitutes ~20% of sulfate consumption 

within the whole core, the influence of its respective isotope characteristics on the final δ34SSO4 is 
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minimal. There is no statistically significant influence on either the pore water (H2S) or solid phase 

(FeS2) sulfides.  

The fractionation associated with sulfide oxidation is also important to explore.  In varying 

34εH2SO and 34εSoDSO4/34εSoDH2S – in both cases tested allowing for fractionations of ±50‰, there is no 

statistically distinguishable influence on the pore water δ34SSO4 and δ34SH2S or δ34SFeS2 distributions. 

We note that ~10% of sulfide produced in situ is oxidized to S0 and ultimately disproportionated to 

SO4 and H2S and those rates (H2SOR and SoDR) are fairly uniformly distributed over the top ~100 

cm. Nevertheless large isotope effects associated with oxidation (34εH2SO ≈ δ34SS0 – δ34SH2S) and 

disproproportionation  (34εSoDH2S ≈ δ34SS0 – δ34SH2S, 34εSoDSO4 ≈ δ34SS0 – δ34SSO4) exert minimal isotopic 

influence on the δ34SSO4 and δ34SH2S profiles. This stands in stark contrast to the studies of marine 

sediment pore waters that required contributions from disproportionation to explain large magnitude 

isotope effects between coeval (depth) measurements of δ34SSO4 and δ34SH2S values (Habicht and 

Canfield, 2001; Habicht and Canfield, 1997). 

 

3.4.5 TRIPLE ISOTOPE (32S, 33S, 34S) SIGNATURES   

In the light of the δ34S results, we explore the triple isotope (Δ33S and δ34S) signatures of the pore 

water and solid phase samples. As shown in Figure 3.6, the Δ33S values of pore water sulfate 

demonstrate an initial enrichment in Δ33S values with depth and covary with the enrichment in δ34S 

values. Such an enrichment in Δ33S (~0.12±0.01‰) proceeds until ~60 cm depth (δ34SSO4 = 60‰) 

before Δ33S values begin to decline. A single measurement at ~150 cm displays Δ33S = 0.073±0.006‰ 

with a δ34S value of 81.4±0.2‰. Although the existing data sets are sparse, this is the first time that 

declining Δ33S values are observed at a large fraction of sulfate consumption. All other pore water 

sulfate samples demonstrate continuous enrichment in 33S with progressive sulfate loss (Masterson et 

al., submitted; Pellerin et al., 2015; Strauss et al., 2012). It is worth noting that entirely closed-system 

consumption of sulfate (i.e. Rayleigh-like behavior) displays a linear Δ33S vs. δ34S array that is related 

to the paired fractionation factors (33αSR and 34αSR, or 34αSR and 33λSR). Deviation from that linear 
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behavior reflects open system behavior and mixing from other sources (Ono et al., 2006). Shallow 

pore water sulfide demonstrates Δ33S values 33S-enriched with respect to seawater sulfate (Δ33S  = 

0.220±0.006‰ vs. Δ33S = 0.0470.006‰ for seawater sulfate—pairing typical of systems where 

microbial sulfate reduction is dominant—and corresponding to 34εSR ~ 60‰ and 33λSR
 = 

0.5120±0.0005 (Johnston, 2011; Johnston et al., 2007). The Δ33S values of pore water H2S display a 

near-monotonic drop in Δ33S values with depth, toward the calibrated seawater sulfate value. As 

discussed previously, pore water sulfide δ34S values follow are similar pattern, demonstrating a nearly 

linear 34S enrichment with depth, and reaching a value of ~15‰ near the sulfate depletion zone at 

~150 cm. The Δ33S values of sedimentary pyrite display approximately uniform values, despite an 

enrichment in 34S of approximately ~10‰ from 6 cm to 150 cm depth within the Aarhus Bay core. 

The average value of all sedimentary pyrite measured (Δ33S = 0.170±0.009‰) indicates that pyrite 

possesses less 33S than predicted from the composition of shallow pore water sulfide, and indicates 

one of three processes: either (i) the S contained within pyrite reflects the consequences of oxidative S 

cycling that have a large influence on Δ33S values, but little influence on δ34S values, or  (ii) the 

composition of pyrite reflects multiple stages of mixing of sulfide and shallow pore water sulfide does 

not adequately capture the composition of solid phase S or (iii) the system is not in steady state, and 

the composition of pore  water sulfide does not reflect the longer term history of pore water H2S Δ33S  

values. The first process (i) is less likely, although there is some evidence from microbial oxidation 

experiments that large 33S effects are possible with sulfide oxidation (Zerkle et al., 2009). The latter 

two (ii and iii) are more likely: pyrite Δ33S reflects multiple stages of mixing of pore water H2S Δ33S, 

and the sulfide that is ultimately captured to form FeS2 is not reflected by the sulfide ‘snapshot’ 

sampled at Station M1. 
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Figure 3.6: (a) Triple isotope plot (Δ33S vs. δ34S) of Aarhus bay pore water species, including SO4
2-, H2S, and FeS2, with the 

composition of seawater sulfate (SW-SO4
2-) shown as a black diamond (δ34S = 21.15‰ and Δ33S = 0.047‰) (Johnston et al., 

2014). All measurements have reproducibility of σ−δ34S = 0.25‰ and σ−Δ33S = 0.006‰. (b) Depth binned box plot of ranges of 
values (δ34S and Δ33S) for S species. Sulfate bins include 6-41 cm, 51-91 cm, and >101 cm, where with sulfide bins including 6-41 
cm, 51-91 cm, 101-131 cm, and > 141 cm). Bin for FeS2

 includes all depths and displays little variability in Δ33S values. Solid 
boxes represent (1σ) variability in δ34S and Δ33S for that particular depth bin and whiskers represent (2σ).  
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3.4.6  FE AND OXIDATION CHEMISTRY 

A few possibilities exist for reconciling the mismatch in the model output for sulfide δ34SH2S values 

and the measured coretop values. Recall that both the concavity and absolute value of the model 

prediction differ slightly from measured values in the upper reaches of the core.  The most likely 

candidate mechanisms to amend this disparity relate to either oxidation and ferric iron sulfidization 

(Fe geochemistry), and/or the oxidation chemistry associated with bioturbation and biorrigation. We 

have parameterized Fe oxidation chemistry using a single reaction scheme (H2SOR = 

kH2SOR[H2S]0.5[FeOOH]), where [FeOOH] is an amorphous ferric iron(oxy)hydroxide. Iron 

(oxy)hydroxides are well known to have a range (~107) in their reactivities towards sulfide (Poulton et 

al., 2004; Poulton, 2003; Canfield et al., 1992; Canfield et al., 1989) that depends upon their 

crystallinity and surface area. Researchers have attempted to directly infer the reactivity of 

sedimentary iron oxides in situ in marine sediments (Haese et al., 1997; Canfield et al., 1992) using 

chemical and spectroscopic techniques—demonstrably, the rate of sulfide oxidation by ferric iron 

cannot be fully encapsulated by the rate term used in the baseline model. The model fit overpredicts 

sulfide concentrations at shallow depths (<75 cm) within Aarhus Bay sediments, and perhaps 

relatedly, the isotope model overpredicts the δ34SH2S at shallow depths as well. Further, we have not 

expressly included any bioturbation or bioirrigation in the baseline simulation, both of which can alter 

the diffusion regime of the upper reaches of the sediment. That said, there appears to be no evidence 

from the pore water data that bioirrigation influences the concentration profile, and this has been 

asserted by previous author (Dale et al., 2008). 

 
3.4.7 ENVIRONMENTAL IMPLICATIONS OF 34εSR 

Several recent studies of the environmental S isotope effects document apparent, large magnitude 

fractionations associated with sulfate reduction (34εSR) in the water columns of euxinic systems 

(Gomes and Hurtgen, 2013; Canfield et al., 2010; Zerkle et al., 2009). A single study of a deep 

biosphere drill hole, encountering hypersaline, hypersulfidic (>10 mmol/L H2S) sedimentary 
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conditions documented an isotopic fractionation between sulfate and sulfide of >65‰ (Wortmann et 

al., 2001).  For environmental reasons, this study called on sulfate reduction alone to satisfy the large 

isotope effect.  These environmental studies, in parallel to laboratory work illustrating the capacity of 

sulfate reduction to generate large isotope effects (Sim et al., 2011; Leavitt et al., 2013), hint at the 

potential for sulfate reduction to be dominating the entire environmental isotope signal, even at larger 

offsets between sulfate and sulfide.  However, as we have demonstrated above, directly measuring the 

difference between sulfate and sulfide does not adequately (or faithfully) capture the 34εSR (or 33λSR), 

but instead reflects biogeochemistry with the added effects of physical transport.  What is required in 

order to isolate the biogeochemistry is a more rigorous approach that incorporates these physics.   

Our analysis of Aarhus bay allows for the observed isotope signal to be broken out into its 

component parts.  We find that when transport is removed, large intrinsic S isotope fractionations (≳	

70‰) are possible in a place like Aarhus Bay, an organic-rich shallow marine continental margin 

system where sulfate reduction rates are reasonably high. This is a similar predicted intrinsic sulfate 

reduction isotope effect as extracted from a modeling/data study continental margin sediments under  

>400 m of water (Masterson et al., submitted). These values are in keeping with recent theoretical 

studies that predicted the potential for 34εSR = 70-80‰ at very low rates of sulfate reduction, 

characterized by a highly reversible sulfate reduction network (Wing and Halevy, 2014; Leavitt et al., 

2013; Johnston et al., 2007; Brunner and Bernasconi, 2005). The modeled fractionation factors in this 

study provide an additional example to ground truth those theoretical predictions, and suggest that in 

marine sediments, 34εSR values are almost invariably larger than those observed in laboratory cultures 

and most commonly in line with theoretical equilibrium predictions (see Farquhar et al., 2003; 

Johnston et al., 2007).  This also means that there is no expressed requirement for a depth-dependent 

34εSR to explain the pore water data. The extension of this is that there appears to be negligible 

dependence of 34εSR on organic matter, or more specifically, electron-donor (OM, CH4) on controlling 

S isotope fractionation magnitude in situ. Finally, and equally as striking, our modeling demonstrates 
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that other biogeochemical processes, like sulfide oxidation and disproportionation, contribute little to 

the isotopic composition of pore water δ34S distributions. 

There is one additional level of discussion that is warranted given the data set and modeling 

presented herein. One goal of this work it to better understand how early diagenetic signals (i.e. 

biogeochemistry) are translated to the geological record. In turn, it is an open question what we can 

learn about in situ processes like rates of reactions and substrate delivery from these isotope records.   

The geological record does not capture or preserve pore water profiles, but instead records solid phase 

metal sulfide (i.e. pyrite) and sparingly seawater sulfate. For our study, this sulfate value is the 

boundary condition at the sediment water interface. We can then take the integrated picture of how 

geochemical and isotopic systematics down core come to reflect, or are related to the composition 

preserved in pyrite. In essence, the result is a simple one – the isotopic composition of pyrite is fixed 

near the sediment water interface. Thus, the down core systematics provides a rich record of modern 

biogeochemistry but will not be preserved geologically. 

We can finally come to draw a final distinction between the effects of sulfate reduction as a 

metabolic process and remineralization catalyst, and broader isotopic records.  As captured in Figure 

3.7, we take both from this study and that of the Alfonso basin that the intrinsic isotope effect from 

sulfate reduction is near 70‰. This differs from the directly measured offset between pore water 

sulfate and aqueous sulfide – a commonly applied approach, by ~ 5‰. The offset is the result of 

diffusive and advective smoothing rather than oxidative metabolic processes. Equally as important, 

geological proxy records of the fractionation with respect to pyrite burial (δ34SSO4 – δ34Spy) would 

record a net fractionation 50-60‰, misinterpreting that of sulfate reduction. The next natural goal 

from this style of analysis is building a large scale, time dependent geochemical model that 

incorporates information like that reported here to make more use of the rich historical record of 

sedimentary pyrite.  
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3.5  CONCLUSIONS 

We have conducted an extensive survey of the geochemistry and isotope systematics of Aarhus Bay 

sediments and pore waters using multiple S isotope measurements in concert with a reactive transport 

model that (i) uses the concentrations of pore water species ([SO4
2-], [CH4], [H2S]) to ascertain rates of 

biogeochemical processes like sulfate reduction, anaerobic methane oxidation and sulfur 

disproportionation, and (ii) prescribes fractionation characteristics (34α and 33λ) to understand pore 

water δ34S and Δ33S values. The site and samples studied here demonstrate the following conclusions. 

 

• All pore water δ34S values can largely be explained by a single, depth and rate independent 

fractionation associated with sulfate reduction. That fractionation factor (34εSR) is large 

(~70‰) and fits pore water δ34S values quite well. The observed 33λSR fits nicely with that 

expected for a mass-dependent fractionation and previous laboratory studies.   
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Figure 3.7: Modeled and measured fractionation 
factors for Aarhus Bay and Alfonso Basin (Masterson 
et al., submitted), and the values predicted from pyrite 
δ34S values (34εSR) and for the offset observed in pore 
water δ34S values (δ34SSO4 – δ34SH2S). 
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• Explaining the isotope systematics of Aarhus bay sediment and pore water is largely 

insensitive to additional S cycling processes like sulfur disproportionation and sulfide 

oxidation.  Sensitivity analyses demonstrate that even if the intrinsic isotope effect associated 

with these metabolic processes is large, the overall isotopic characteristics preserved are those 

derived from sulfate reduction. 

• The δ34S isotope gradients reflect the influence of biogeochemical processing but also that of 

diffusive transport. It is possible that much of the isotopic information archived in sulfate is 

lost to the ‘resetting’ associated with physical transport. 

• Pyrite δ34S values reflect S isotope fractionations of slightly lower magnitude (= 50-60‰) 

than those predicted by the diagenetic modeling—reflecting the closed system effects 

associated with progressive down core pyrite precipitation. 
 

These results are robust, and share many similarities with the results of Chapter 2 – a study of marine 

sediment deposited along the California – Mexico margin.  As such, we suggest that these results can 

and should be applicable to the study and interpretation of other marginal marine sedimentary 

environments, both in the modern and throughout Earth history.  For the later, the results noted above  

serve as a word of caution, calling attention to the need for careful evaluation of what geologically 

observable phases/minerals are being compared, and exactly what biogeochemical information 

phases/minerals will record.   

That noted, there is still an opportunity to further expand the modeling captured here.  

Specifically, the complexities of Fe oxidation/reduction chemistry in early diagenetic environments is 

still coming to light and can be further incorporated. This should include similar studies to those noted 

here in environments with significantly different Fe:S ratios, and more variable POC loading in order 

to better cover the types of environments preserved throughout Earth history. Finally, the role of 

bioturbation, purposefully absent here (Dale et al., 2011), should be more rigorously handled in the 

future. 



 
 
REFERENCES 

 

102 
 

3.6  ACKNOWLEDGEMENTS 

We acknowledge the crew of the RV Tyra for assistance with, and preparation for, core sampling, and 

Hans Røy and Bo Barker Jørgensen for graciously passing along samples, analytical information, and 

for helpful discussions. 
 
 
 
3.7  REFERENCES 
 
Aller, R.C., Madrid, V., Chistoserdov, A., Aller, J.Y., and Heilbrun, C. (2010) Unsteady diagenetic 
 processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope 
 cycles and the sedimentary record. Geochimica et Cosmochimica Acta 74, 4671–4692. 
 
Berelson, W.M., Prokopenko, M., Sansone, F.J., Graham, A.W., McManus, J., and Bernhard, J.M. 
 (2005) Anaerobic diagenesis of silica and carbon in continental margin sediments: Discrete zones 
 of TCO2 production. Geochimica et Cosmochimica Acta 69, 4611–4629. 
 
Berner, R.A. (1964) An idealized model of dissolved sulfate distribution in recent sediments. 
 Geochimica et Cosmochimica Acta 28, 1497–1503. 
 
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., 
 Jørgensen, B.B., Witte, U., and Pfannkuche, O. (2000) A marine microbial consortium apparently 
 mediating anaerobic oxidation of methane. Nature 407, 623–626. 
 
Boudreau, B.P. (1996) Diagenetic models and their interpretation. Springer. 414 pp. 
 
Bowles, M.W., Mogollón, J.M., Kasten, S., Zabel, M., and Hinrichs, K.U. (2014) Global rates of 
 marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science 344, 889–
 891. 
 
Bradley, A.S., Leavitt, W.D., Schmidt, M., Knoll, A.H., Girguis, P.R., and Johnston, D.T. (2015) 
 Patterns of sulfur isotope fractionation during Microbial Sulfate Reduction. Geobiology 1–11. 
 
Brunner, B., Arnold, G.L., Røy, H., Müller, I.A., and Jørgensen, B.B. (2016) Off Limits: Sulfate 
 below the Sulfate-Methane Transition. Front. Earth Sci. 4, 4. 
 
Canfield, D.E. (2001) Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry 
 43, 607–636. 
 
Canfield, D.E. (2004) The evolution of the Earth surface sulfur reservoir. American Journal of Science 
 304, 839–861. 
 
Canfield, D.E., and Farquhar, J. (2009) Animal evolution, bioturbation, and the sulfate concentration 
 of the oceans. Proceedings of the National Academy of Sciences 106, 8123–8127. 
 
Canfield, D.E., Farquhar, J., and Zerkle, A.L. (2010) High isotope fractionations during sulfate 
 reduction in a low-sulfate euxinic ocean analog. Geology 38, 415–418. 
 
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A. (1986) The use of 
 chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical 
 Geology 54, 149–155. 



 
 
REFERENCES 

 

103 
 
Dale, A.W., Brüchert, V., Alperin, M., and Regnier, P. (2009) An integrated sulfur isotope model for 
 Namibian shelf sediments. Geochimica et Cosmochimica Acta 73, 1924–1944. 
 
Dale, A.W., Aguilera, D.R., Regnier, P., Fossing, H., Knab, N.J., and Jørgensen, B.B. (2008) Seasonal 
 dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) 
 ediments. Journal of Marine Research 66, 127–155. 
 
Forrest, J., and Newman, L. (1977) Silver-110 microgram sulfate analysis for the short time resolution 
 of ambient levels of sulfur aerosol. Analytical Chemistry 49, 1579–1584. 
 
Fossing, H., Berg, P., Thamdrup, B., Rysgaard, S., Sorensen, H.M., and Nielsen, K., 2004, A model 
 set-up for an oxygen and nutrient flux model for Aarhus Bay (Denmark).  
 
Habicht, K.S., and Canfield, D.E. (1997) Sulfur isotope fractionation during bacterial sulfate reduction 
 in organic-rich sediments. Geochimica et Cosmochimica Acta 61, 5351–5361. 
 
Habicht, K.S., and Canfield, D.E. (2001) Isotope fractionation by sulfate-reducing natural populations 
 and the isotopic composition of sulfide in marine sediments. Geology 29, 555–558. 
 
Habicht, K.S., Canfield, D.E., and Rethmeier, J.O. (1998) Sulfur isotope fractionation during bacterial 
 reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta 62, 
 2585–2595. 
 
Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., and Canfield, D.E. (2002) Calibration of sulfate 
 levels in the Archean ocean. Science 298, 2372–2374. 
 
Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011) A cryptic sulfur cycle driven by iron in 
 the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica 
 Acta 75, 3581–3599. 
 
Jensen, J.B., and Bennike, O. (2009) Geological setting as background for methane distribution in 
 Holocene mud deposits, Århus Bay, Denmark. Continental Shelf Research 29, 775–784. 
 
Johnston, D.T., Farquhar, J., Wing, B.A., Kaufman, A.J., Canfield, D.E., and Habicht, K.S. (2005) 
 Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and 
 sulfur disproportionators. American Journal of Science 305, 645–660. 
 
Johnston, D.T., Farquhar, J., and Canfield, D.E. (2007) Sulfur isotope insights into microbial sulfate 
 reduction: When microbes meet models. Geochimica et Cosmochimica Acta 71, 3929–3947. 
 
Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed—the role of sulphate 
 reduction. Nature 296, 643–645. 
 
Knittel, K., and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown 
 process. Annu Rev Microbiol 63, 311–334. 
 
Leavitt, W.D., Halevy, I., Bradley, A.S., and Johnston, D.T. (2013) Influence of sulfate reduction rates 
 on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci U S A 110, 11244–11249. 
 
Meister, P., Liu, B., Ferdelman, T.G., Jørgensen, B.B., and Khalili, A. (2013) Control of sulphate and 
 methane distributions in marine sediments by organic matter reactivity. Geochimica et 
 Cosmochimica Acta 104, 183–193. 
 
Milucka, J., Ferdelman, T.G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., 
 Wagner, M., Widdel, F., and Kuypers, M.M. (2012) Zero-valent sulphur is a key intermediate in 
 marine methane oxidation. Nature 491, 541–546. 
 



 
 
REFERENCES 

 

104 
Pellerin, A., Bui, T.H., Rough, M., Mucci, A., Canfield, D.E., and Wing, B.A. (2015) Mass-dependent 
 sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, 
 Bermuda. Geochimica et Cosmochimica Acta 149, 152–164. 
 
Poulton, S.W., Krom, M.D., and Raiswell, R. (2004) A revised scheme for the reactivity of iron 
 oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta 68, 3703–
 3715. 
 
Strauss, H., Bast, R., Cording, A., Diekrup, D., Fugmann, A., Garbe-Schönberg, D., Lutter, A., Oeser, 
 M., Rabe, K., and Reinke, D. (2012) Sulphur diagenesis in the sediments of the Kiel Bight, SW 
 Baltic Sea, as reflected by multiple stable sulphur isotopes. Isotopes in environmental and health 
 studies 48, 166–179. 
 
Tarpgaard, I.H., Røy, H., and Jørgensen, B.B. (2011) Concurrent low- and high-affinity sulfate 
 reduction kinetics in marine sediment. Geochimica et Cosmochimica Acta 75, 2997–3010. 
 
Boudreau, B.P., and Westrich, J.T. (1984) The dependence of bacterial sulfate reduction on sulfate 
 concentration in marine sediments. Geochimica et Cosmochimica Acta 48, 2503–2516. 
 
Wortmann, U.G., Bernasconi, S.M., and Bottcher, M.E. (2001) Hypersulfidic deep biosphere indicates 
 extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29, 
 647–650. 



 
 
APPENDIX 

 

105 
 
 
 
Table 3.6 
 
Mid-
depth 
(cm) 

[SO4
2-] 

(mM) 
[H2S] 
(mM) Wt %S δ 34SSO4 Δ 33SSO4 δ 34SH2S Δ 33SH2S δ 34SCRS Δ 33SCRS 

          
6 23.7 0 0.22 27.6 0.077 -38.9 - -36.48 0.166 
21 19.8 0.6 0.36 33.3 0.105 -34.8 0.215 -35.13 0.159 
31 17.7 0.7 0.37 36.9 0.130 -31.3 0.184 -34.13 0.166 
41 16.3 1.0 0.47 39.0 0.142 -28.4 0.203 -34.09 0.176 
51 14.1 0.8 0.4 41.5 0.147 -24.6 0.205 -31.00 0.166 
61 12.3 1.8 0.33 45.5 0.152 -20.1 0.191 -31.27 0.188 
71 10.8 2.2 0.52 46.1 0.155 -17 0.186 -30.46 0.175 
81 8.3 3.1 0.75 52.2 0.160 -12.6 0.181 -28.22 0.178 
91 6.7 2.6 0.34 56.2 - -8.3 0.173 -29.97 0.175 
101 6.5 3.3 0.37 57.8 0.158 -6.3 0.164 -27.59 0.170 
111 4.3 1.5 0.48 61.9 0.138 -0.1 0.127 -28.96 0.172 
121 2.7 3.0 0.52 68.9 0.132 4.5 0.127 -26.30 0.172 
131 1.8 2.7 0.49 75.1 - 8.1 0.107 -28.80 0.170 
141 1.3 1.3 0.72 80.8 0.063 10.3 0.108 -28.52 0.160 
151 0.6 2.2 1.04 81.4 - 14.6 0.073 -27.72 0.153 
161 0.5 0.8 - - - - - - - 
171 0.5 1.0 - - - - - - - 
181 0.6 1.3 - - - - - - - 
191 0.8 1.6 - - - - - - - 
201 0.5 2.4 - - - - - - - 

Table 3.6: Pore water and S isotope data from core sampled at Station M1 in Aarhus Bay 
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CHAPTER 4  

 
THE MINOR SULFUR ISOTOPE COMPOSITION OF CRETACEOUS AND 
CENOZOIC SEAWATER SULFATE* 
 

ABSTRACT 

The last 125 million years captures major changes in the chemical composition of the ocean and 

associated geochemical and biogeochemical cycling. The isotopic composition of seawater sulfate, as 

proxied in marine barite, is one of the more perplexing geochemical records through this interval. 

Numerous analytical and geochemical modeling approaches have targeted this record. Recently, 

measurement of the minor sulfur isotopes has provided unique insight into sulfur metabolisms and 

diagenetic sulfur cycling. In this study we extend the empirical isotope record of seawater sulfate to 

therefore include the two minor sulfur isotopes, 33S and 36S. These data record a distribution of values 

around averages of Δ33SSO4 = 0.043±0.016‰ and Δ36SSO4 = -0.39±0.15‰, which, regardless of δ34S-

based binning strategy, are consistent with a single population of values throughout this interval. We 

demonstrate with simple box modeling that a substantial change in pyrite burial or evaporitic sulfate 

weathering can be accommodated within the range of our observed isotopic values. 

 

 

 

 
*A version of this chapter was published as Masterson, A.L., Wing, B.A., Paytan, A., Farquhar, J., and 
Johnston, D.T. (2016) The minor sulfur isotope composition of Cretaceous and Cenozoic seawater 
sulfate. Paleoceanography 31, 1-10. doi: 10.1002/2016PA002945, Copyright Wiley and Sons. 
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4.1  INTRODUCTION 

Reconstructing records of seawater sulfate and atmospheric oxygen are central to understanding Earth 

surface change over the last four billion years (Canfield, 2004; Hayes and Waldbauer, 2006). Through 

the Phanerozoic, where geological and geochemical records are more robust, more refined estimates 

of the concentration and isotopic composition of seawater sulfate are possible (Bergman et al., 2004; 

Berner and Canfield, 1989; Kampschulte and Strauss, 2004; Lowenstein et al., 2001; Paytan et al., 

1998; Paytan et al., 2004). For instance, fluid inclusion records suggest large and bidirectional 

changes in sulfate concentrations over the Phanerozoic (Brennan et al., 2013; Horita et al., 2002; 

Lowenstein et al., 2003; Lowenstein et al., 2001). Further, isotopic records are also variable (Canfield 

and Farquhar, 2009; Kampschulte and Strauss, 2004), with the rate of change related to sulfate 

concentrations (Wortmann and Paytan, 2012). Matching isotopic and concentration records can, 

however, be challenging to interpret given the uncertainty associated with any given isotopic or 

concentration record. Fortunately, a high precision record is possible for the last 125 Ma-present via 

authigenic barite minerals extracted from deep-sea cores (Paytan et al., 1998; Paytan et al., 2004).  

The isotopic composition of seawater sulfate is controlled by the same set of fluxes and 

mechanisms that establish and drive changes in seawater sulfate concentrations. The controls on both 

the concentration and isotopic composition of seawater sulfate are sulfate inputs to the ocean via 

oxidative weathering and evaporite dissolution, with delivery via rivers. These inputs are countered by 

sulfur removal through hydrothermal and sedimentary sulfide minerals, as well as sulfate mineral 

sinks (evaporites, anhydrite, and carbonate associated sulfate). Each of these input and output fluxes 

carry their own unique, time-dependent isotopic composition. The control on each is partly 

environmental, tectonic, and biological and each carries characteristic timescales for change.  At 

present, however, the large marine sulfate reservoir (3.9x1019 moles) (Petsch and Berner, 1998) is 

buffered against modern perturbations given the long residence time of ~107 years (Claypool et al., 

1980) and resultant well-mixed ocean isotopic composition (Johnston et al., 2014). However, this 
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noalways the case throughout earlier intervals of Earth history when sulfate concentrations my have 

been substantially lower.   

It is within this framework, balancing inputs and outputs, that marine barite records have been 

interpreted. The composition of seawater sulfate as recorded in barite shows a distinctive and 

perplexing structure (Fig. 4.1) (Kurtz et al., 2003; Paytan et al., 2004; Paytan et al., 1998; Wortmann 

and Paytan, 2012). Namely the last 125 Ma is marked by a series of three relatively stable isotopic 

compositional period (120-100 Ma, 95-50 Ma, and 45-5Ma), separated by abrupt transitions (denoted 

by color scheme) 

Notably, standard approaches thus require either a massive, punctuated changes in fluxes or 

intrinsic fractionations, an exceedingly small sulfate reservoir, or some combination of both. This is 

simply to satisfy the rate of isotopic change. Further, from first principles, changes in fluxes should 

manifest as an isotopic decay related to the size of the forcing, and modulated by the residence time of 

sulfate at that time. In originally interpreting these records, Paytan and colleagues rightfully evaluated 

possible biogeochemical and tectonic controls on marine sulfate (Paytan et al., 1998). A more 

mathematically driven C-S study (Kurtz et al., 2003) followed shortly thereafter and, similarly, 

demonstrated the changes necessary to the sulfur cycle in order to account for barite δ34S records.  

Often, the driver of δ34S changes is a major swing in pyrite burial in a low sulfate ocean.  Ensuing 

studies moved away from pyrite burial and brought sulfate evaporite distributions to bear on the δ34S 

record (Wortmann and Paytan 2012; Wortmann and Chernyavsky, 2007). For instance, massive 

evaporite deposition associated with the opening of the south Atlantic in the early Cretaceous (Hayes 

et al., 2006; Wortmann and Chernysavsky, 2007; Wortmann and Paytan, 2012) could serve as large 

and temporally punctuated sink for sulfate without imposing an extreme isotope effect. The substantial 

decrease in the standing stock of seawater sulfate, estimated to reach a minimum of ~2 mM, thus 

allows for the rapid (< 5 million years) changes preserved in δ34S between 125 and 50 million years 

ago.  As this hypothesis is framed, much of this gypsum is reintroduced to the ocean at ~45 Ma, again
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an event that would not carry a significant point source of isotopic change in δ34S of sulfate but 

impose a rapid change to the buffering capacity of the seawater sulfate reservoir.   

In this study we present δ33S, δ34S, and δ36S values of marine barite. These analyses are 

possible only through fluorination to SF6, and in keeping with minor isotope literature (e.g., Farquhar 

et al., 2003), we present these data as Δ33S and Δ36S values. The inclusion of minor sulfur isotope data 

allows for a sensitivity analysis on the mechanisms proposed to explain the published δ34S barite 

record. Models outlined below explore perturbations to both pyrite burial and evaporite 

burial/weathering, each of which would carry a different multiple sulfur isotopic consequence for 

marine sulfate. 

 

 

4.2 MATERIALS AND METHODS 

The barite samples analyzed in this study are the same as those presented previously for the δ34S 

composition (Paytan et al., 1998; Paytan et al., 2004). For that original work, barite minerals were 

chemically separated from core material and processed to convert barite to silver sulfide. This Ag2S  

was generated prior to our study. Here, we fluorinated Ag2S to generate SF6 at both the University of 

Maryland and Harvard University. In both labs, an excess of F2 is introduced to a reaction vessel 

containing the sample. The vessel is heated for approximately 8 hours to ensure a complete conversion 

of Ag2S to SF6. The product SF6 is cleaned cryogenically and chromatographically prior to the 

introduction to a dual-inlet gas source mass-spectrometer (Thermo Scientific MAT 253). Analyte SF6 

is measured as SF5
+ at m/e 127, 128, 129, 131. In both labs, full reproducibility of 1σ (Δ33S) and 1σ 

(Δ36S) is 0.008‰ and 0.2‰, respectively. We use a standard minor isotope notation to report variance 

in 33S and 36S. The variability is defined as a deviation from a prediction rooted in low-temperature 

thermodynamic equilibrium. This results in the following two expressions (Johnston et al., 2007; 

Johnston et al., 2011; Farquhar et al., 2003, Farquhar and Wing, 2003): 
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(4.1) 

 

(4.2) 

 

For these data, we assume a composition of VCDT, relative to IAEA-S-1 of -0.3‰, -0.107‰, and -

0.5‰ for δ34S, Δ33S, and Δ36S, respectively.  

 

 

4.3 RESULTS 

The minor isotope records documented below were generated from the same silver sulfide samples-the 

product of sulfate reduction chemistry (Forrest and Newman, 1977) as reported on previously (Paytan 

et al., 1998; Paytan et al., 2004). This redundancy is used as a test of the higher precision methods. 

That is, the new δ34S data record is tightly correlated (m = 1.000±0.023; b = 0.015±0.45‰) with 

published values (Paytan et al., 1998; Paytan et al., 2004). Here we add to the δ34S compositions the 

Δ33S and Δ36S values (Fig. 4.1b, c).  The mass-dependent nature of these records leaves the 

composition and variability of Δ33S smaller than Δ36S offset by a scaling factor that varies around 6.85 

(e.g., Ono et al., 2006a), depending on the particular mass law (Young et al., 2002; Miller et al., 

2002). Contamination in 36S is common, and as such, anomalously enriched Δ36S values were vetted at 

the time of analysis. Viewed as an entire time series, the Δ33S values vary around a mean of 

0.043±0.016‰, 1σ) with no statistically significant trend through time (p = 0.3653; Fig. 4.2).  A 

similar result is captured in Δ36S values, where the mean is -0.37±0.14‰, 1σ) and p = 0.4717 for the 

125 Ma record (Fig. 4.2). Notably the composition of the modern ocean is Δ33S = 0.047‰ and Δ36S = -

0.50‰ and is noted as a black circle (with error) in Figures 4.1 and 4.2. 
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Figure 4.1: The barite record of (top) δ34S, (middle) Δ33S, and (bottom) Δ36S 
versus time for the Cretaceous and Cenozoic. Samples in gray (background in 
Fig. 4.1, top) are previously published, whereas those in color represent this 
study. This color code is used throughout and based on the δ34S compositions. 
Errors are 2σ. All data are placed upon a common V-CDT scale. Gray bar across 
each frame is the composition (and error) of the modern marine sulfate reservoir 
(Johnston et al., 2014; Tostevin et al. 2014).  

Figure 4.1 
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4.4 DISCUSSION 

The isotopic variability preserved within marine sulfate records over the last 125 million years can be 

explained by a combination of purely mass-dependent isotope effects, meaning that the isotopic 

fractionation mechanisms scale with the mass differences of the isotopes (Young et al., 2002; Miller, 

2002) and mass conservation effects that arise from the mixing and unmixing of pools with different 

Figure 4.2: The δ34S values versus Δ33S and Δ36S values for the samples 
presented in Fig. 4.1 (same color coding). Errors are 2σ. The regressions 
reflect a 95% confidence interval on the entire population. 

Figure 4.2 



 
 
DISCUSSION 

 

113 

isotopic compositions (e.g. Farquhar et al., 2007). This mass-dependence results in a δ33S value that 

scales to δ34S value offset by a factor that varies from 0.507 to 0.515, whereas the δ34S value versus δ36S 

value ratio fluctuates around 1.9 (Farquhar and Wing, 2003; Johnston, 2011). This covariance is defined 

as 33λ, which approximates the slope of a line on a three-isotope plot (δ33S versus δ34S), or 

ln(33α/34α). The same expression can be cast for 36S. Much of the variability within sulfur isotope 

records can be linked to biological activity and metabolic processes that induce fractionations within 

variable 3Xλ because of mixing and unmixing at the cellular level (Johnston et al., 2005a; Johnston et al., 

2007; Farquhar et al., 2007; Farquhar et al., 2003). In many cases, these 3Xλ values manifest as 

resolvable Δ33S values, providing a potential fingerprint of the processes that influenced a given 

measured composition (note that the magnitude of change in Δ values will vary as a function of the 

absolute change in δ3xS values. Put differently, the specific δ33S-δ34S-δ36S of seawater sulfate should 

reflect the amalgamation of the biological cycling within the S cycle over the mixing time of that 

reservoir. This approach holds true in interpreting modern marine sulfate (Tostevin et al., 2014; 

Johnston et al., 2014; Ono et al., 2012; Li et al., 2010), as it does in assessing paleo-environmental 

records (Johnston et al., 2005b, Wu et al., 2015; Wu et al., 2010; Sim et al., 2015). Given the larger 

signal/noise in Δ33S records when compared to Δ36S (a result of larger Δ36S analytical error), mass-

dependent studies generally focus on Δ33S values. Thus although we include 36S where necessary, much 

of the discussion and interpretation only considers 33S systematics. Where this is done, it can be 

assumed that the inclusion of 36S would result in the same conclusions 

 The largest isotopic effects measured within the sulfur cycle are microbial in origin. The two 

processes capable of generating large δ34S effects, microbial sulfate reduction and sulfur 

disproportionation, produce highly resolvable 33λ (Johnston et al., 2005a; Johnston et al., 2011) In the 

case of sulfate reduction, which is responsible for a majority of organic carbon remineralization in 

marine sediments (e.g., Jørgensen et al., 1982) isotopic fractionation scales inversely as a function of 

metabolic rate (Leavitt et al., 2013) and results in 33λ (values less than that predicted for thermodynamic 

equilibrium (~0.5145) (Johnston et al., 2007; Farquhar et al., 2003). At high rates, the 34εMSR values are 
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generally small, approaching 17‰ (Goldhaber and Kaplan, 1975; Leavitt et al., 2013), with a 33λMSR 

approaching 0.510. At low metabolic rates, much larger 34εMSR and 33λMSR, are observed, often 

approaching thermodynamic equilibrium values of 70‰ and 0.5145 for 34εMSR and 33λMSR, respectively 

(Farquhar and Wing, 2003; Johnston et al., 2007; Wing and Halevy, 2014). Much less is known about 

disproportionation, however existing data point to a wide range of possible 34S/32S fractionation effects, 

often scaling with both substrate (e.g., Habicht et al., 1998) and metal availability (Bottcher and 

Thamdrup, 2001); here, metals serve to scavenge biogenic sulfide, keeping HS- low and helping overall 

metabolic energetics. The net effect of disproportionation can however, be summarized as variable 

34εMSR with 33λMSR, always greater than 0.5145 (Johnston et al., 2005a). Importantly, this allows 

disproportionation to be resolved from effects associated with sulfate reduction, even where 34ε values 

are similar (Johnston et al., 2005b). The final microbial process of note is sulfide oxidation, which 

imparts a small 34S/32S isotope effect (Fry et al., 1985; Fry et al., 1986; Zerkle et al., 2009) and a unique 

range of 33λ values.  

 

4.4.1 THE FIDELITY OF BARITE RECORDS  

Barite harvested from marine sediments is inferred to capture the contemporaneous isotopic 

composition of seawater sulfate and has been validated for δ34S records (Paytan et al., 1998). That is, 

core-top barite is statistically indistinguishable from modern water column sulfate. This was recently 

confirmed through a series of studies on modern seawater sulfate (Johnston et al., 2014; Tostevin et al., 

2014; Wu et al. 2010; Ono et al., 2012), yielding a composition of δ34S = 21.14±0.15‰, Δ33S = 

0.048±0.006‰, and Δ36S = 0.5±0.20‰. In comparison, modern core-top barite reported here measure 

20.81±0.2‰, 0.038±0.008‰, and -0.45±0.2‰, respectively, statistically indistinguishable from modern 

seawater sulfate. The correspondence in S isotope composition between seawater sulfate and core top 

barite is consistent with the suggested long residence time of sulfate and the use of marine barite as a 

proxy for the isotopic composition of seawater sulfate in the past. 
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4.4.2 A 125 MILLION YEAR RECORD OF SEAWATER SULFATE 

The interpretation of barite records can be approached with a number of different goals.  First, when the 

data are coarsely binned according to the time domains displayed in Fig. 4.1 (see also Fig. 4.3) the 

entire 125 Ma data set is not normally distributed (according to a D'Agostino and Pearson normality 

test) in 33S or 36S.  For 33S, this may provide real insight into the nature of the variance, meaning that the 

mechanisms operating on the S cycle are more likely to enrich 33S than deplete it, with the mean value 

reflecting some more robust steady state condition or compositional 'floor' (i.e., a common state of the 

sulfur cycle represented by a lower Δ33S value). However, the asymmetry in 36S is possibly analytical. 

Figure 4.3: A box and whisker analysis of the different data populations. The errors 
reflect 95% confidence intervals on the population, with median values plotted as the 
center bars. 

Figure 4.3 
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As noted above, contamination on the m/z=131 where 36S is measured as 36SF5
+ will pull Δ36S 

compositions toward more enriched values, which is the direction of the skew of the data.  Of the more 

data-rich bins (the most recent three geological bins, with n = 11, 32 and 27), most of the data is, in fact, 

normally distributed for both Δ33S values and Δ36S values for a given time domain. This reinforces 

arguments made on an average composition of those bins. The exceptions are the 49-98 million year bin 

in Δ33S values and the 0-10 million year bin in Δ36S values. This is evident in the box and whisker 

analysis in Fig. 4.3 where the asymmetry is evident in the 95% confidence intervals. 

Despite the nature of the distributions, Fig. 4.2 demonstrates the mass-dependence of the barite 

record and illustrates that little to no change in Δ33S values and Δ36S values accompanies the small (but 

resolvable) perturbations in the δ34S record. As noted above, this is perhaps not unexpected, however 

does limit the available mechanisms that could be underpinning the δ34S transitions. Recall that the 

nature of mass-dependent fractionation predicts that for any given change in δ34S value, an 

accompanying magnitude of change in Δ33S value and Δ36S value is expected-the absolute change will 

be a function of both how far 33λ values varies from the reference values of 0.515 and 1.9 that are used 

to define the values of Δ33S and Δ36S = 0, and the magnitude of the change in δ34S values. For example, 

the early Eocene transition is marked by a 4‰ change in δ34S, but an unresolvable signal in Δ33S and 

Δ36S. If this event was triggered solely as a result of changes in sulfate reduction (setting all other 

factors aside for the moment) at a 33λ = 0.510 and 36λ = 1.95, then the associated changes in Δ33S value 

and Δ36S value would be roughly 0.02‰ and 0.2‰, respectively. As our measurement analytical 

uncertainty is similar in magnitude to the expected signal, actually 'seeing' this event in 33S and 36S 

would be near our analytically resolvable limit and thus unlikely. In order for a unique minor isotope 

effect to be discernible then, the 34ε values would have to be larger, or the 33λ and 36λ values would have 

to deviate more significantly from the reference line value. Thus, it is perhaps not unexpected that no 

resolvable minor isotope signal exists associated with the early Eocene change in δ34S record. The 

example presented here could also be viewed as a simple sensitivity analysis of the capacity for the 

minor sulfur isotopes to capture large, resolvable effect when viewed in light of the δ34S variability 
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captured over the last 125 million years. Note that in a proper statistical analysis of the entire 125 

million year time series, values of both Δ33S and Δ36S are unchanged (Figs. 4.1, middle and bottom, and 

Figs. 4.2-4.4). This places constraints on the type of changes undergone by the sulfur cycle over the last 

125 Ma, and places limits on how changes in certain fluxes might be contributing to these records. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This treatment can be handled more rigorously. In traditionally interpreting δ34S records, the 

fraction of sulfur leaving the oceans as pyrite (fpy) is commonly the metric of interest (Berner and 

Canfield, 1989; Canfield, 2004; Canfield and Farquhar, 2009). In such treatments, the microbial effects 

are often summarized as a single, constant fractionation factor (34ε), so that the only variable is the 

fraction of burial (Kurtz et al., 2003; Halverson and Hurtgen, 2007). In much the same way, there are 

isotopic consequences in 33S and 36S that relate to how mass is partitioned within the marine sulfur 

cycle. The difference comes with the varying definitions of isotope notations. Mixing relationships are 

effectively linear in δ33S-δ34S-δ36S relationships, but non-linear in Δ33S and Δ36S fractionation 

relationships (cf., Farquhar et al., 2007; Johnston, 2011). 

Figure 4.4: The barite record of (top) Δ33S versus (bottom) Δ36S versus 
time. The color coding is shared with Fig. 4.1, and errors are 2σ. 

Figure 4.4 
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In order to test the sensitivity of the isotopic composition of sulfate, and specifically Δ33S 

values, to the fluctuations that must relate to the changes preserved in the δ34S record (e.g., pyrite burial) 

we have constructed a pseudo steady-state box model. Using this simple approach, we test the capacity 

to induce a change in the Δ33S values as a function of the companion δ34S values. Recall that these 

effects are mass-dependent, so the change in both metrics is necessarily coupled. For this analysis, we 

arbitrarily chose a perturbation in the magnitude of pyrite burial. Following along the lines of similarly 

published models (e.g., Kurtz et al., 2003), weathering rates are held constant, and pyrite burial rates are 

doubled over the course of one million years. The isotopic compositions (δ34S and Δ33S values) are held 

constant. For the weathering input, we have used Fw = 1.5x1012 mol S/yr, and a constant flux of 

evaporite deposition of Fev = 1.05x1012 mol S/yr. Pyrite burial was initially held constant at 4.5x1011 

mol S/yr, and doubled over 1.0 Myr to 9.0x1011 mol S/yr. Fractionation due to pyrite burial was also 

held constant at 34εpy = 35‰ (34αpy = 0.965), independent of the variability within the burial flux. 

Finally, we have explored two different cases, with starting concentration of [SO4
2-] = 25.0 mM and 

[SO4
2-] = 5.0 mM. The concentration of sulfate was allowed to evolve accordingly. To introduce isotope 

systematics to the model, we have used isotope ratios directly, and utilized the trace-abundance 

approximation 32F ≡ F (e.g., Farquhar et al., 2007). In this case, the bulk mass-balance equations for a 

single box ocean can be written as: 

 

(4.3) 

 

Where dMo/dt is the rate of change in the concentration of seawater sulfate reservoir, FW, FEV, and FPY 

are the weathering, evaporite deposition, and pyrite burial fluxes, respectively. The isotope mass 

balance equation (e.g., for 34S), can be written accordingly: 

 

     (4.4) 
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Expanding equation (4.4), incorporating equation (4.3) and assuming that 34REV = 34ROC, yields the 

following non-steady state equations (4.5 and 4.6), in this case written for 33S and 34S: 
 

 

(4.5) 

 

(4.6) 

 

Assuming that the fractionation associated pyrite deposition remains constant, the following substitution 

can be made: 

 

(4.7) 

 

(4.8) 

 

Using a finite difference approach, equations (4.7) and (4.8) can thus be solved for the case where both 

MOC and 3XR0 are changing with time. Fig. 4.5 demonstrates the model output for the cases where [SO4
2-

]0 =  5 and 25 mM. In both cases, a doubling of the pyrite burial flux for 1Myr (distributed as a 

Gaussian) produces positive excursions in the δ34S value of the ocean form the initial value of δ34S 

=15.2‰. As expected, the rate of increase varies inversely with the initial size of the sulfate reservoir. 

Notably, a new ‘steady-state’ value of δ34S is not reached in the [SO4
2-]0 = 25 mM case due to the long 

residence time of sulfate in the ocean. 

 Introducing 33S systematics, in both cases, a doubling of the pyrite burial flux yields subtle 

variations in the evolution of the δ34SOC values. Using 33λ values representative of microbial sulfate 

reduction (e.g., 33λ = 0.512-0.514), the evolution of Δ33SOC positively correlated with the evolution of 

δ34SOC, but the magnitude of the change from the initial value (set at Δ33S = 0.047‰), though 

measurable, is small (±0.01‰). Thus, even with a large perturbation in δ34SOC associated with a 
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doubling of pyrite burial flux, the sensitivity of Δ33SOC to the same perturbation is small, and would 

be difficult to detect within the range of δ34SOC variability within the last 120 Ma (e.g., δ34SOC = 15-

22‰).  

 Along similar lines, it is possible to test the case where a substantial contribution from an 

evaporitic source (e.g., Wortmann and Paytan, 2012) produces a perturbation in the isotopic 

composition of δ34SOC and Δ33SOC values. Although this can be incorporated into a steady-state model 

like the previous pyrite burial case, a mixture between two different isotopic end-member sources can 

be used to demonstrate the range of isotopic values that would result from the contribution of a large 

evaporitic source (i.e., a simple mixing calculation). To do so, it is necessary to assume an evaporite 

composition, we suggest it falls within the range of isotopic values measured for barite within this study 

(δ34S = 15-22‰, and Δ33S = 0.02-0.08‰). The resulting mixture is a linear combination of the two 

isotopic sources, with fEV as the fractional contribution of evaporitic sulfate to total seawater, and can be 

calculated as follows: 

 

(4.9) 

 

(4.10) 

 

The δ34S and Δ33S values are, of course, functions, both of the end-member compositions and fEV. 

Isotope mass-balance would then indicate that δ34S and Δ33S values must fall within the range 

prescribed by the two end-members. For example, mixing between seawater sulfate sharing the 

composition of modern sulfate δ34S = 21.15‰ and Δ33S = 0.047‰ and an evaporite source with δ34S  = 

15‰ and Δ33S = 0.02‰, gives the mixing relationship seen in Fig. 4.6. Simply, the mixture between 

seawater sulfate and an evaporitic source sharing isotopically similar Δ33S values falls within the range 

of Δ33S barite values measured here. Resolving a contribution from an evaporitic source using Δ33S 
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requires values statistically distinct from those inferred to exist from the composition of sulfate, at 

least through the latter half of the Phanerozoic. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: A simple one box sulfate model whereby the sensitivity of Δ33S can be 
demonstrated, here as a function of changing pyrite burial over a 1 Myr period (top left). 
We model the change in pyrite burial as it propogates through (top right) the mass of 
seawater sulfate, (bottom left) the δ34S composition of sulfate, and (bottom right) the 
Δ33S composition of sulfate. Fractionation factors were derived from Farquhar et al. 
(2003). 

Figure 4.5 

Figure 4.6:  A simple mixing relationship demonstrating the consequences 
of reintroducing evaporitic sulfate back into the ocean. 

Figure 4.6 
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4.5  CONCLUSIONS 

The development of new isotopic systems and proxies is frequently followed by the critical generation 

of time series for those metrics. This study serves the role of providing a robust quantification of the 

minor sulfur isotope records of seawater sulfate of the late Cretaceous and Cenozoic. Pre-existing δ34S 

records stand as one of the more under constrained of the major oceanographic chemical records. The 

new minor sulfur isotope data presented in this study record invariant Δ33S and Δ36S values associated 

with the swings of up to 5‰ in the δ34S record. Models built to include the minor S isotopes can 

accommodate major changes in pyrite burial and sulfate inputs/outputs within the range of 

compositions measured. During intervals of Earth history with larger δ34S perturbations in sulfate, 

Δ33S and Δ36S values should be more easily interpretable metrics (e.g., Wu et al., 2015). In looking 

forward, perhaps improved minor isotope precisions, along with a closer association with δ18O records 

(Turchyn and Schrag, 2004; Turchyn and Schrag, 2006), global models of sulfur cycling and sulfate 

reduction (e.g., Bowles et al., 2014), and diagenetic modeling studies will further constrain the 

information held within sulfate records. 
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CHAPTER 5 
 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

The emerging field of multiple S isotope geochemistry has aimed to understand several questions in 

Earth history by providing a high precision analytical technique that (i) distinguishes between 

different sulfur metabolisms and (ii) provides a conservative tracer (Δ33S and Δ36S values) for tracking 

fluxes in the sulfur cycle at a variety of physical scales. To date, those results have corroborated those 

derived from δ34S systematics, but they also provided additional analytical degrees of freedom that 

allow for finer scale resolution. This thesis originally aimed to place our newfound understanding of 

microbial physiology and metabolism into an environmental, specifically an early diagenetic context. 

The vast majority of sulfur cycling in the modern oxygenated oceans is confined to the organic-rich 

sediments of the continental margin. Though the nature of the in situ biogeochemical S cycle is 

complex, simplifying assumptions can be made, and those sediments can be treated as semi-enclosed 

diffusively supplied batch reactors. As such, the multiple S stable isotope signatures produced 

microbially can be quantitatively better understood when placed in a diagenetic reactive-transport 

context. The first two body chapters of this thesis (Chapters 2 and 3) explored the S cycle of modern 

sediments by building quantitative diagenetic models that reflect a more accurate C/S cycle, and 

reconcile the S isotope signatures observed in pore waters with those produced in laboratory 

calibrations. Chapter 4 revisits a historical seawater sulfate proxy record and places new constraints on 

the Cenozoic and Cretaceous S cycle within the limits allowed by Δ33SSO4 and Δ36SSO4 values. Finally, 

much of the work underpinning these calibrations was the development of methods for high precision 

minor S isotopes. Two key calibrations—the determination of the composition of international 
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standards and the characterization of modern seawater sulfate—are included in Appendix 1.Below I 

review the body chapters of this thesis and highlight the future directions that researchers in multiple S 

isotope geochemistry might endeavor to take. 

 In Chapter 2, we detailed the construction of a diagenetic model for the sediments of Alfonso 

Basin- an anoxic-silled basin of the California-Mexico margin. The model aimed to reproduce the 

pore water profiles of the major species [SO4
2-], [CH4], DIC, and [Ca2+] with the expressed purpose of 

determining downcore changes in rates of both organoclastic sulfate reduction and anaerobic methane 

oxidation. Those bulk rates of sulfate consumption were then used as the backbone for constructing an 

isotope selective ([32SO4
2-], [33SO4

2-], and [34SO4
2-]) reactive transport model to which fractionation 

factors (34αSR and 33λSR) could be prescribed. As a first-order test of the rate-dependence of sulfate 

reduction (e.g., Leavitt et al., 2013), we parameterized 34αSR and 33λSR directly as functions of rate—

with a linear dependence and exponential dependence, in parallel to rate-independent values. Within 

the concentration ([SO4
2-]) and isotope compositional (δ34SSO4 and Δ33SSO4) ranges, we found that no 

direct dependence of fractionation magnitude on rate is required to explain the values observed in pore 

water sulfate. Furthermore, a simple calculation demonstrated that, with the likely values expected for 

in situ specific rates of sulfate reduction, that the large, constant fractionation magnitude (34εSR ~70‰) 

required is within that expected from laboratory calculations. Put another way—the range in bulk rates 

of sulfate reduction observed in the model sediment profile are lower than the slowest rates observed 

for laboratory calibrations. Similarly, the 33λSR that best describes the pore water profiles is near the 

thermodynamically predicted value for sulfate reduction, consistent with predictions from 34εSR.  It is 

possible that the in situ fractionation magnitudes observed in most natural settings are larger than 

those observed experimentally because rates of sulfate reduction are substantially lower. 

 In Chapter 3, we extend our diagenetic model framework to include other S species important 

in S cycling of sedimentary systems, including SO4
2-, H2S, S0, FeS, and FeS2 for a model sediment 

system located in Aarhus Bay, Denmark. Similar to the model constructed for use in Chapter 2, this 

model expands the scope of the species considered to include active iron and sulfur oxidation 
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chemistry with the following reactions considered: sulfate reduction, anaerobic methane oxidation, 

chemical sulfide oxidation, sulfur disproportionation, iron sulfide precipitation, and pyrite formation. 

Though the reaction network is still far from complete, it describes a far more in-depth picture of 

Fe/S/C cycling as it appears in typical modern continental margin sediments. Analogous to chapter 2 

as well, rates from the baseline geochemical model are also used to feed an isotope-specific (32S, 33S, 

and 34S) RTM that aims to describe the pore water isotope signatures (δ34S and Δ33S) observed. Given 

that a substantial portion of our understanding of the sulfur cycle is quantified using the pyrite δ34S 

and Δ33S proxy records (Canfield and Farquhar, 2009; Canfield et al., 2004; Strauss et al., 1999), 

understanding the linkage between microbially-produced multiple S isotope biosignatures and paired 

sulfate-pyrite values, reactive transport models that include such chemistry are critical to further 

disentangling the surface S cycle through such records. Consistent with the results of Chapter 2, the 

net fractionation factors extracted from this analysis suggest that sulfate reduction is characterized by 

very large 34εSR, again approaching the thermodynamic limit, and is apparently insensitive to rate at 

the SRR required to satisfy the Aarhus Bay pore water profiles, results that are also corroborated by 

33λ values, and their relationship to rate. 

 With a slightly different angle, Chapter 4 expands the scope of multiple S isotope studies 

from modern systems to a classic δ34S marine barite record extracted from time-calibrated ocean 

drilling project (ODP) cores (cf. Paytan et al., 2004, Paytan et al., 1998). Marine barite, a proxy for 

seawater sulfate, is considered the most isotopically faithful representation of the composition of 

seawater sulfate, as it is precipitated directly from seawater. Other proxies, such as carbonate 

associated sulfate (CAS), rely on the structural incorporation of sulfate into another primary mineral 

(calcite and aragonite in that case) and are more susceptible to diagenetic alteration. The ~120 Ma δ34S 

record from the two companion Paytan (1998 & 2004) studies has been used to reconstruct the 

Cretaceous and Cenozoic sulfur cycles using box modeling (Wortmann and Paytan, 2012; Halevy et 

al., 2012; Kurtz et al., 2003) and is key to quantifying the fluxes associated with major isotopic 

excursions in the composition of seawater sulfate. It is also the case that this δ34S record reflects a 



 
 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

129 

perplexing mass-balance problem for marine chemistry and alkalinity over the last 120 million years.  

Chapter 4 revisits this issue to provide Δ33S and Δ36S measurements from the same proxy record. 

Although the δ34S values displays large excursions in the δ34S values of seawater sulfate—ranging 

from 16-22‰ (δ34SVCT), the Δ33S and Δ36S values over the same time frame exhibit a narrow 

distribution (Δ33S = 0.043±0.016‰ and Δ36S = -0.39±0.15‰). There is weak correlation with the δ34S 

values throughout that interval, but a simple box model allows us to predict and place limits on the 

excursions allowed in Δ33S and Δ36S values from major perturbations to the sulfur cycle attributable to 

pyrite burial and evaporitic sulfate weathering.  In essence, the minor sulfur isotope data do not 

uniquely diagnose the mechanism(s) underpinning the δ34S change, however they do place limits on 

the mass fluxes that are allowable to explain the δ34S excursions. 

 It is worth also elaborating upon the contributions within the appendices. These supplements 

reflect a substantial body of work, both in the development of multiple S isotope methods at Harvard 

University, and in their application to S cycling within the modern ocean. Appendix 1 catalogues the 

measurements of the isotope standards (IAEA-S-1, S-2, and S-3 and CDT), measured over two and a 

half years in the Laboratory for Stable Isotope Geobiology. The long term averages of those values 

(δ34S, Δ33S, and Δ36S) are shown alongside those generated in other labs actively measuring and 

reporting multiple S isotope data. This will serve as the calibration for all such measurements made in 

the Stable Isotope Geobiology Lab. Appendix 1 also demonstrates the characterization of the isotopic 

composition of seawater sulfate, an important value particularly for the diagenetic studies in this 

thesis. Those values for seawater sulfate were also corroborated by the measurements appearing in 

Appendix 3—a study aimed at quantifying the magnitude of the putative  ‘cryptic’ sulfur cycling in 

oxygen minimum zones (cf. Canfield et al., 2010) through a careful isotopic evaluation of the δ18O, 

δ34S, and Δ33S systematics of seawater extracted from ocean basin profiles from around the world.  

These sites include the Chilean margin, and the Namibian upwelling zone. This study was published 

as Johnston et al., (2014), and provides the most robust isotopic characterization of seawater sulfate to 

date. 
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 In looking toward the future, we suggest several research directions that may benefit from the 

application of multiple S isotope techniques that range from studies in modern systems to those in 

deep time. Recent developments have pointed to the potential important of ‘cryptic’ sulfur cycling, 

both in oxygen minimum zones (OMZs)  (Canfield et al., 2010) and in situ in sediments below the 

nominal sulfate depletion depth (Holmkvist et al., 2011). The latter carries important implications for 

our understanding of deep methane cycling, and the reactivity of deep buried ferric iron minerals. 

Although the concentrations of sulfate measured in this study, and purportedly that actively cycled, 

are low (~100 µmol/L), but new techniques using inductively coupled plasma mass spectrometry 

(ICP-MS) are being used to study S cycling down to such low concentrations (Crowe et al., 2014).  

Here, researchers are actively working to include 33S measurements. Given the value that multiple S 

isotope measurements have in disentangling oxidative and reductive cycling, applying these new 

techniques to deep sedimentary systems seems a worthwhile enterprise. 

 A major research push in the S-isotope scientific community over the past twenty years has 

been to understand the contributions of oxidative sulfur cycling to the isotope records throughout 

geologic time. The temporal shift in the isotopic composition of preserved biogenic sulfides in the late 

Proterozoic was initially attributed to shifts in Earth’s surface oxygenation, and requires the 

contributions of S metabolisms that oxidize and disproportionate sulfur and S intermediates (Canfield 

and Teske, 1996). The isotopic shifts in the sedimentary sulfide record (Canfield and Farquhar, 2009; 

Canfield, 2004) have continued to be interpreted in this light. More recent research highlights 

confounding interpretations that allow for the expression of large magnitude (>50‰) isotope 

fractionations that are possible from single step sulfate reduction demonstrated in laboratory and 

theoretical studies (Wing and Halevy, 2014; Leavitt et al., 2013; Sim et al., 2011) and environmentally 

(Crowe et al., 2014; Gomes and Hurtgen, 2013; Canfield et al., 2010). These studies do not require the 

presence of oxidative sulfur cycling to understand the magnitude of S isotope fractionations archived 

in biogenic sulfide records. They do not preclude the presence of disproportionation, but do not 

require it.  The two diagenetic modeling studies in this thesis demonstrate that intrinsically large 
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(=70‰) S isotope fractionations associated with sulfate reduction are required to explain the pore 

water sulfate isotope values—both in δ34S and Δ33S, without the need for oxidative sulfur cycling.   

This further complicates the necessity of oxidative cycling to amend geological δ34S records.  Mass-

balance considerations certainly demonstrate that the large majority of biogenic sulfide produced in 

sediments escapes terminal burial as pyrite (Jørgensen, 1982), but it is not clear that that oxidative 

sulfur cycling leaves behind a substantial isotopic imprint. Further, the central conclusion from this 

thesis is that sulfate reduction generates an isotope effect in marine sediments that is near 

thermodynamic equilibrium at the derived sulfate reduction rates. This is corroborated via two 

environmentally distinct marine sediments.  More quantitative diagenetic studies, like those performed 

in Chapters 2 and 3, will hopefully provide additional insights into the role of oxidative S cycling as it 

relates to S isotope proxy (barite and pyrite) records, and lay the groundwork for more quantitative 

approaches to studying the surface sulfur cycle in deep time. 
 
 
REFERENCES 
 
Canfield, D.E. (2004) The evolution of the Earth surface sulfur reservoir. American Journal of Science 
 304, 839–861. 
 
Canfield, D.E., and Teske, A. (1996) Late Proterozoic rise in atmospheric oxygen concentration 
 inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132. 
 
Canfield, D.E., and Farquhar, J. (2009) Animal evolution, bioturbation, and the sulfate concentration 
 of the oceans. Proceedings of the National Academy of Sciences 106, 8123–8127. 
 
Canfield, D.E., Farquhar, J., and Zerkle, A.L. (2010) High isotope fractionations during sulfate 
 reduction in a low-sulfate euxinic ocean analog. Geology 38, 415–418. 
 
Crowe, S.A., Paris, G., Katsev, S., Jones, C., Kim, S.T., Zerkle, A.L., Nomosatryo, S., Fowle, D.A., 
 Adkins, J.F., Sessions, A.L., Farquhar, J., and Canfield, D.E. (2014) Sulfate was a trace 
 constituent of Archean seawater. Science 346, 735–739. 
 
Gomes, M.L., and Hurtgen, M.T. (2013) Sulfur isotope systematics of a euxinic, low-sulfate lake: 
 Evaluating the importance of the reservoir effect in modern and ancient oceans. Geology 41, 
 663–666. 
 
Halevy, I., Peters, S.E., and Fischer, W.W. (2012) Sulfate burial constraints on the Phanerozoic sulfur 
 cycle. Science 337, 331–334. 
 
Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011) A cryptic sulfur cycle driven by iron in 
 the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica 



 
 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

132 
 Acta 75, 3581–3599. 
 
Johnston, D.T., Gill, B.C., Masterson, A., Beirne, E., Casciotti, K.L., Knapp, A.N., and Berelson, W. 
 (2014) Placing an upper limit on cryptic marine sulphur cycling. Nature 513, 530–533. 
 
Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed—the role of sulphate 
 reduction. Nature. 
 
Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., and Paytan, A. (2003) Early Cenozoic 
 decoupling of the global carbon and sulfur cycles: Paleogene C and S cycles. 
 Paleoceanography 18. 
 
Leavitt, W.D., Halevy, I., Bradley, A.S., and Johnston, D.T. (2013) Influence of sulfate reduction rates 
 on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci USA 110, 11244–11249. 
 
Paytan, A., Kastner, M., Campbell D., Thiemens, MH (1998) Sulfur Isotopic Composition of 
 Cenozoic Seawater Sulfate. Science 282, 1459–1462. 
 
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.H. (2004) Seawater sulfur isotope 
 fluctuations in the Cretaceous. Science 304, 1663–1665. 
 
Sim, M.S., Bosak, T., and Ono, S. (2011) Large sulfur isotope fractionation does not require 
 disproportionation. Science 333, 74–77. 
 
Strauss, H. (1999) Geological evolution from isotope proxy signals—sulfur. Chemical Geology 161, 
 89–101. 
 
Wing, B.A., and Halevy, I. (2014) Intracellular metabolite levels shape sulfur isotope fractionation 
 during microbial sulfate respiration. Proc Natl Acad Sci U S A 111, 18116–18125. 
 
Wortmann, U.G., and Paytan, A. (2012) Rapid variability of seawater chemistry over the past 130 
 million years. Science 337, 334–336. 



 
 
APPENDIX A1 

 

133 

 
APPENDIX A1  
 
CALIBRATION OF MULTIPLE SULFUR ISOTOPE STANDARDS AT HARVARD 
UNIVERSITY  
  

Several research labs regularly employ multiple sulfur isotope methodologies (University of 

Maryland, College Park, (UMd), the Geophysical Labs at the Carnegie Institute of Washington, (GL), 

University of California, San Diego, (UCSD), the Massachusetts Institute of Technology (MIT) and 

Harvard University (HU). To facilitate the inter-laboratory comparison of these measurements, the 

standard data, by analysts ALM and ECB, extracted over approximately three years, are included here. 

The IAEA international standards measured by fluorination (S-1, S-2, S-3), Cañon Diablo Troilite 

(CDT), and seawater sulfate samples, reductively converted (cf. Forrest and Newman, 1977) to Ag2S 

are tabulated below. The latter samples, abbreviated SW-SO4, have been published as a part of a 

broader study (Johnston et al., 2014), but are not ‘true’ standards. Due to the isotopic homogeneity of 

seawater sulfate (Rees et al., 1978), however, we assume that the sulfate in these samples is 

isotopically analogous to that extracted to form the ‘true’ seawater sulfate standard, NBS-127 (cf. 

Halas and Szaran, 2001). 

 For simplicity, the data are tabulated separately below, including IAEA-S-1 (Table A1.1), S-2 

(Table A1.2), S-3 (Table A1.3), CDT measurements made at Harvard (Table A1.4), and 

measurements of SW-SO4
 (Table A1.5). Subsequent tables demonstrate the inter-laboratory 

comparison of IAEA measurements on the S-1 reference frame (Table A1.6), the calibration of V-

CDT at Harvard University (Table A1.7) and the comparison of that calibration to other labs that 

employ SF6 measurements (Table A1.8). Lastly, the multiple S isotopic composition of SW-SO4 on 

the V-CDT reference frame is determined using the long-term measurements of IAEA-S-1 at Harvard, 

in concert with the Δ33S and Δ36S values derived from CDT measurements (Table A1.9).  The values 

derived for SW-SO4 of δ34S  = 21.34±0.30‰, Δ33S = 0.049±0.006‰, and Δ36S = -0.42±0.15‰ agree 

well with recent reports (Tostevin et al., 2014).  
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Table A1.1:  Standard measurements of IAEA-S-1 at Harvard University versus ‘HAR-1’ SF6 
Analysis # Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-484 IAEA-S-1 -8.309 -16.232 -31.72 0.083 -1.11 
SF-545 IAEA-S-1 -8.239 -16.116 -31.70 0.093 -1.30 
SF-577 IAEA-S-1 -8.090 -15.824 -31.29 0.091 -1.44 
SF-615 IAEA-S-1 -8.247 -16.123 -31.73 0.089 -1.32 
SF-657 IAEA-S-1 -8.219 -16.068 -31.65 0.089 -1.34 
SF-658 IAEA-S-1 -8.186 -16.000 -31.28 0.087 -1.10 
SF-659 IAEA-S-1 -8.204 -16.028 -31.52 0.083 -1.28 
SF-660 IAEA-S-1 -8.240 -16.100 -31.49 0.085 -1.12 
SF-859 IAEA-S-1 -8.155 -15.944 -31.83 0.088 -1.75 
SF-863 IAEA-S-1 -8.103 -15.849 -31.72 0.091 -1.82 
SF-882 IAEA-S-1 -8.271 -16.176 -32.33 0.093 -1.82 
SF-893 IAEA-S-1 -8.074 -15.786 -31.57 0.087 -1.79 
SF-943 IAEA-S-1 -8.188 -16.011 -32.08 0.090 -1.88 
SF-948 IAEA-S-1 -8.222 -16.090 -31.92 0.097 -1.57 
SF-956 IAEA-S-1 -8.155 -15.948 -31.95 0.090 -1.87 
SF-980 IAEA-S-1 -8.213 -16.055 -31.92 0.088 -1.64 
SF-996 IAEA-S-1 -8.159 -15.943 -31.91 0.083 -1.83 
SF-1005 IAEA-S-1 -8.099 -15.838 -31.71 0.090 -1.83 
SF-1023 IAEA-S-1 -8.006 -15.659 -31.29 0.090 -1.75 
SF-1029 IAEA-S-1 -8.235 -16.099 -32.23 0.089 -1.86 
SF-1053 IAEA-S-1 -8.159 -15.956 -31.86 0.090 -1.77 
SF-1058 IAEA-S-1 -8.150 -15.943 -31.75 0.093 -1.68 
SF-1068 IAEA-S-1 -8.232 -16.095 -31.92 0.089 -1.56 
SF-1079 IAEA-S-1 -8.213 -16.077 -32.08 0.100 -1.75 
SF-1080 IAEA-S-1 -8.319 -16.290 -32.53 0.104 -1.80 
SF-1083 IAEA-S-1 -8.174 -15.999 -31.84 0.098 -1.66 
SF-1084 IAEA-S-1 -8.317 -16.267 -32.07 0.094 -1.39 
SF-1088 IAEA-S-1 -8.288 -16.216 -32.36 0.097 -1.77 
SF-1089 IAEA-S-1 -8.260 -16.164 -32.32 0.098 -1.84 
SF-1140 IAEA-S-1 -8.113 -15.846 -31.64 0.079 -1.75 
SF-1144 IAEA-S-1 -8.299 -16.218 -32.37 0.086 -1.78 
SF-1156 IAEA-S-1 -8.259 -16.139 -32.31 0.086 -1.87 
SF-1183 IAEA-S-1 -8.339 -16.299 -32.54 0.089 -1.80 
SF-1253 IAEA-S-1 -8.333 -16.297 -32.59 0.094 -1.86 
SF-1297 IAEA-S-1 -8.134 -15.914 -31.90 0.093 -1.88 
SF-1334 IAEA-S-1 -8.143 -15.928 -31.81 0.092 -1.77 
SF-1358 IAEA-S-1 -8.172 -15.972 -32.00 0.086 -1.87 
SF-1491 IAEA-S-1 -8.223 -16.077 -31.68 0.090 -1.35 
SF-1501 IAEA-S-1 -8.171 -15.982 -31.77 0.092 -1.62 
SF-1518 IAEA-S-1 -8.161 -15.943 -31.85 0.081 -1.78 
SF-1561 IAEA-S-1 -8.489 -16.584 -32.53 0.086 -1.25 
SF-1587 IAEA-S-1 -8.201 -16.014 -31.68 0.078 -1.48 
SF-1596 IAEA-S-1 -8.170 -15.974 -32.02 0.089 -1.89 
SF-1653 IAEA-S-1 -8.184 -16.009 -32.07 0.093 -1.87 
SF-1660 IAEA-S-1 -8.154 -15.945 -31.90 0.090 -1.83 
SF-1665 IAEA-S-1 -8.014 -15.673 -31.03 0.089 -1.46 
SF-1687 IAEA-S-1 -7.941 -15.544 -30.57 0.095 -1.24 
SF-1692 IAEA-S-1 -8.029 -15.712 -31.06 0.094 -1.42 
SF-1692 IAEA-S-1 -8.029 -15.712 -31.06 0.094 -1.42 
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Table A1.1 (continued) 
Analysis # Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-1701 IAEA-S-1 -8.018 -15.683 -30.96 0.090 -1.37 
SF-1702 IAEA-S-1 -7.968 -15.591 -30.80 0.092 -1.39 
SF-1704 IAEA-S-1 -7.954 -15.560 -30.88 0.090 -1.52 
SF-1706 IAEA-S-1 -7.929 -15.526 -30.72 0.098 -1.43 
SF-1764 IAEA-S-1 -7.955 -15.563 -30.91 0.090 -1.54 
SF-1766 IAEA-S-1 -8.063 -15.776 -31.16 0.093 -1.40 
SF-1782 IAEA-S-1 -8.091 -15.838 -31.34 0.097 -1.46 
SF-1802 IAEA-S-1 -8.068 -15.758 -31.28 0.079 -1.55 
SF-1822 IAEA-S-1 -7.994 -15.645 -31.03 0.094 -1.51 
SF-1840 IAEA-S-1 -8.042 -15.732 -31.24 0.091 -1.56 
SF-1844 IAEA-S-1 -7.984 -15.617 -31.07 0.090 -1.61 
SF-1846 IAEA-S-1 -7.983 -15.610 -31.05 0.087 -1.60 
SF-2064 IAEA-S-1 -8.014 -15.682 -31.39 0.093 -1.81 
SF-2069 IAEA-S-1 -8.036 -15.710 -30.88 0.079 -1.28 
SF-2105 IAEA-S-1 -8.050 -15.745 -31.56 0.090 -1.85 
SF-2114 IAEA-S-1 -8.019 -15.688 -31.06 0.092 -1.46 
SF-2126 IAEA-S-1 -7.996 -15.641 -31.32 0.089 -1.81 
SF-2144 IAEA-S-1 -8.053 -15.753 -31.41 0.091 -1.69 
SF-2150 IAEA-S-1 -8.018 -15.688 -31.40 0.093 -1.80 
SF-2166 IAEA-S-1 -7.994 -15.627 -31.33 0.085 -1.85 
SF-2168 IAEA-S-1 -7.996 -15.635 -31.32 0.087 -1.82 
       
Average (σ) IAEA-S-1 -8.14 (0.12) -15.91 (0.23) -31.6 (0.5) 0.090(0.005) -1.62 (0.23) 
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Table A1.2: Standard measurements of IAEA-S-2 at Harvard University versus ‘HAR-1’ SF6 
Analysis # Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-493 IAEA-S-2 3.046 5.853 9.50 0.036 -1.65 
SF-500 IAEA-S-2 3.196 6.160 10.17 0.028 -1.57 
SF-524 IAEA-S-2 3.171 6.098 9.99 0.035 -1.63 
SF-563 IAEA-S-2 3.325 6.401 11.66 0.033 -0.53 
SF-625 IAEA-S-2 3.159 6.077 10.23 0.034 -1.35 
SF-691 IAEA-S-2 3.054 5.876 10.88 0.032 -0.32 
SF-778 IAEA-S-2 3.204 6.171 10.84 0.031 -0.92 
SF-873 IAEA-S-2 3.240 6.240 10.46 0.031 -1.43 
SF-950 IAEA-S-2 3.203 6.166 10.40 0.033 -1.35 
SF-961 IAEA-S-2 3.170 6.094 9.99 0.036 -1.62 
SF-973 IAEA-S-2 3.221 6.207 10.66 0.029 -1.17 
SF-993 IAEA-S-2 3.254 6.254 10.26 0.038 -1.65 
SF-1001 IAEA-S-2 3.270 6.289 10.36 0.036 -1.62 
SF-1021 IAEA-S-2 3.284 6.334 10.68 0.027 -1.39 
SF-1038 IAEA-S-2 3.321 6.398 10.59 0.031 -1.60 
SF-1044 IAEA-S-2 3.263 6.289 10.42 0.029 -1.56 
SF-1061 IAEA-S-2 2.978 5.734 9.43 0.030 -1.49 
SF-1072 IAEA-S-2 3.254 6.267 10.33 0.032 -1.61 
SF-1086 IAEA-S-2 3.104 5.961 9.81 0.039 -1.55 
SF-1091 IAEA-S-2 3.057 5.861 9.52 0.043 -1.65 
SF-1096 IAEA-S-2 2.926 5.596 8.95 0.048 -1.71 
SF-1133 IAEA-S-2 3.213 6.178 10.33 0.036 -1.44 
SF-1142 IAEA-S-2 3.156 6.082 10.16 0.028 -1.43 
SF-1187 IAEA-S-2 3.140 6.049 10.08 0.030 -1.44 
SF-1230 IAEA-S-2 3.039 5.852 9.56 0.029 -1.59 
SF-1295 IAEA-S-2 3.227 6.228 11.19 0.024 -0.68 
SF-1300 IAEA-S-2 3.300 6.356 10.40 0.032 -1.71 
SF-1503 IAEA-S-2 3.105 5.997 10.01 0.021 -1.41 
SF-1513 IAEA-S-2 3.208 6.181 10.18 0.029 -1.60 
SF-1576 IAEA-S-2 3.166 6.099 10.14 0.030 -1.48 
SF-1588 IAEA-S-2 3.458 6.651 10.94 0.038 -1.74 
SF-1606 IAEA-S-2 3.235 6.228 10.29 0.032 -1.58 
SF-1639 IAEA-S-2 3.411 6.574 11.31 0.031 -1.22 
SF-1662 IAEA-S-2 3.207 6.164 10.13 0.037 -1.61 
SF-1665 IAEA-S-2 3.290 6.335 11.48 0.033 -0.59 
SF-1666 IAEA-S-2 3.277 6.301 11.49 0.037 -0.52 
SF-1703 IAEA-S-2 3.414 6.564 11.25 0.039 -1.25 
SF-1705 IAEA-S-2 3.458 6.644 11.32 0.042 -1.34 
SF-1765 IAEA-S-2 3.398 6.537 11.27 0.037 -1.19 
SF-1767 IAEA-S-2 3.354 6.470 10.95 0.027 -1.38 
SF-1792 IAEA-S-2 3.223 6.204 10.46 0.033 -1.36 
SF-1826 IAEA-S-2 3.380 6.507 11.27 0.034 -1.13 
SF-1845 IAEA-S-2 3.511 6.734 11.40 0.049 -1.43 
SF-1847 IAEA-S-2 3.255 6.233 10.54 0.050 -1.33 

       
Average (σ) IAEA-S-2 3.23 (0.13) 6.22 (0.25) 10.5 (0.6) 0.034 (0.006) -1.34 (0.36) 
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Table A1.3: Standard measurements of IAEA-S-3 at Harvard University versus ‘HAR-1’ SF6 
Analysis # Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-951 IAEA-S-3 -24.782 -47.692 -90.11 0.070 -1.44 
SF-1082 IAEA-S-3 -24.847 -47.843 -90.25 0.085 -1.31 
SF-1087 IAEA-S-3 -24.914 -47.947 -90.62 0.073 -1.49 
SF-1092 IAEA-S-3 -24.846 -47.824 -90.47 0.076 -1.56 
SF-1141 IAEA-S-3 -24.459 -47.089 -88.97 0.076 -1.40 
SF-1504 IAEA-S-3 -24.827 -47.780 -90.09 0.072 -1.26 
SF-1565 IAEA-S-3 -24.737 -47.605 -89.84 0.069 -1.33 
SF-1649 IAEA-S-3 -24.391 -46.932 -88.70 0.060 -1.42 
SF-1661 IAEA-S-3 -24.291 -46.743 -88.38 0.061 -1.44 
SF-1664 IAEA-S-3 -24.599 -47.365 -88.87 0.081 -0.79 
SF-1768 IAEA-S-3 -24.589 -47.327 -89.03 0.071 -1.02 
SF-1770 IAEA-S-3 -24.589 -47.340 -89.08 0.078 -1.06 
SF-2048 IAEA-S-3 -24.606 -47.350 -89.34 0.066 -1.30 
SF-2058 IAEA-S-3 -24.652 -47.448 -89.58 0.072 -1.36 
SF-2167 IAEA-S-3 -24.600 -47.347 -89.92 0.070 -1.88 
SF-2169 IAEA-S-3 -24.573 -47.307 -89.71 0.077 -1.74 
SF-2170 IAEA-S-3 -24.610 -47.358 -89.93 0.067 -1.87 
SF-2181 IAEA-S-3 -24.589 -47.310 -89.66 0.062 -1.68 
SF-2188 IAEA-S-3 -24.534 -47.239 -89.59 0.079 -1.75 
       
Average (σ) IAEA-S-3 -24.63(0.16) -47.41(0.31) -89.6 (0.6) 0.072 (0.007) -1.43 (0.29) 
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Table A1.4: Standard measurements of CDTa, versus ‘HAR-1’ SF6 at Harvard University 
Analysis #b Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-1090 CDT (07) -7.918 -15.265 -29.679 -0.027 -0.875 
SF-1090 CDT (07) -7.908 -15.262 -29.765 -0.019 -0.966 
SF-1090 CDT (07) -7.906 -15.268 -29.723 -0.014 -0.913 
SF-1090 CDT (07) -7.928 -15.280 -29.768 -0.029 -0.936 
SF-1090 CDT (07) -7.907 -15.278 -29.712 -0.009 -0.883 
SF-1090 CDT (07) -7.921 -15.277 -29.743 -0.024 -0.916 
SF-1090 CDT (07) -7.911 -15.279 -29.753 -0.013 -0.923 
SF-1090 CDT (07) -7.918 -15.265 -29.679 -0.027 -0.875 
SF-1090 CDT (07) -7.908 -15.262 -29.765 -0.019 -0.966 
SF-1090 CDT (07) -7.906 -15.268 -29.723 -0.014 -0.913 
SF-1090 CDT (07) -7.928 -15.280 -29.768 -0.029 -0.936 
SF-1090 CDT (07) -7.907 -15.278 -29.712 -0.009 -0.883 
SF-1090 CDT (07) -7.921 -15.277 -29.743 -0.024 -0.916 
SF-1090 CDT (07) -7.911 -15.279 -29.753 -0.013 -0.923 
       

Average 
(s) 

CDT (07) -7.914 
(0.008) 

-15.273 
(0.007) 

-29.735 
(0.032) 

-0.019 
(0.008) 

-0.916 
(0.031) 

       
SF-1094 CDT (07) -8.155 -15.757 -30.820 -0.009 -1.094 
SF-1094 CDT (07) -8.145 -15.753 -30.743 -0.001 -1.025 
SF-1094 CDT (07) -8.156 -15.746 -30.648 -0.016 -0.943 
SF-1094 CDT (07) -8.155 -15.742 -30.766 -0.017 -1.068 
SF-1094 CDT (07) -8.149 -15.739 -30.764 -0.012 -1.072 
SF-1094 CDT (07) -8.147 -15.737 -30.720 -0.011 -1.032 
SF-1094 CDT (07) -8.148 -15.740 -30.711 -0.011 -1.017 
       

Average 
(s) 

CDT (07) -8.151 
(0.004) 

-15.745 
(0.008) 

-30.739 
(0.054) 

-0.011 
(0.005) 

-1.036 
(0.050) 

       
a CDT is shorthand for Cañon Diablo Troilite, an iron sulfide phase, extracted from Canyon Diablo 
Meteorite. It is a mineral that approximately shares the same S isotopic composition as the bulk Earth 
(e.g., Hulston and Thode, 1965). Subsequent studies demonstrated the isotopic heterogeneity in CDT 
sample splits, both in 34S-abundance (Beaudoin et al. 1994) and that in minor isotope values Δ33S and 
Δ36S (Ono et al., 2006; Wing et al., 2015). By declaration, Vienna-CDT (V-CDT) is defined by the 
‘homogenous’ Ag2S standard IAEA-S-1, with a value defined as δ34S = -0.3‰ exactly (Coplen et al., 
2002). Since CDT is heterogeneous in its isotope composition, this table serves only as reference 
frame to calibrate CDT measurements versus those made in, and reported by, other labs making SF6 
measurements (UMD, UCSD, GL, MIT). See Table A1.6. 

 
b Contrasting with other tables in Appendix A1, this table reports individual measurement acquisitions 
of CDT (07), due to the importance of the measurement, and rarity of the remaining CDT standard. 
Averages are those of individual samples, and σ refers to the instrument error rather than total 
measurement (including preparation and extraction) error as in the other tables. The label (07) refers 
to the year the sample was converted from FeS to Ag2S (2007), by Sang-Tae Kim, and packaged and 
distributed to other labs for analysis. 
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Table A1.5: Measurements of seawater sulfate (SW-SO4)a versus ‘HAR-1’ at Harvard University 
Analysis #b Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 

SF-459 B1-11 2.694 5.163 8.781 0.038 -1.052 
SF-465 P1-01 2.712 5.214 8.768 0.031 -1.162 
SF-466 P1-03 2.675 5.126 8.065 0.038 -1.697 
SF-468 P1-06 2.738 5.256 8.691 0.035 -1.319 
SF-470 P1-07 2.555 4.900 8.051 0.034 -1.279 
SF-475 P1-11 2.819 5.421 9.179 0.031 -1.146 
SF-476 P1-13 2.839 5.463 9.178 0.029 -1.226 
SF-477 P1-12 2.748 5.283 8.919 0.031 -1.143 
SF-479 G1-04 2.536 4.855 8.260 0.038 -0.985 
SF-481 G1-03 2.652 5.079 8.515 0.039 -1.158 
SF-482 G1-06 2.649 5.068 8.079 0.042 -1.572 
SF-483 G1-05 2.658 5.100 8.222 0.035 -1.491 
SF-485 G1-07 2.919 5.626 9.179 0.025 -1.538 
SF-486 G1-09 2.689 5.137 8.278 0.046 -1.505 
SF-488 G1-10 2.857 5.493 9.079 0.032 -1.383 
SF-489 G1-14 2.899 5.560 9.099 0.039 -1.491 
SF-491 G1-12 2.900 5.540 9.602 0.051 -0.951 
SF-492 G1-13 2.914 5.589 9.233 0.039 -1.412 
SF-920 B1-01 2.786 5.347 8.671 0.036 -1.512 
SF-921 B1-18 2.805 5.380 8.771 0.038 -1.476 
SF-922 B1-02 2.751 5.274 8.578 0.038 -1.467 
SF-923 B1-08 2.536 4.864 7.776 0.034 -1.486 
SF-924 B1-07 3.104 5.991 10.007 0.023 -1.407 
SF-927 B1-20 2.745 5.289 8.753 0.025 -1.320 
SF-929 B1-22 2.826 5.436 9.214 0.030 -1.140 
SF-1039 G2-11 2.798 5.371 8.623 0.035 -1.606 
SF-1040 G2-01 2.918 5.617 9.202 0.029 -1.498 
SF-1041 G2-08 2.549 4.890 7.870 0.034 -1.442 
SF-1042 G2-04 2.576 4.942 7.943 0.034 -1.467 
SF-1043 G2-12 2.897 5.577 9.083 0.029 -1.541 
SF-1045 G2-16 2.646 5.077 8.182 0.035 -1.486 
SF-1046 G2-23 2.950 5.671 9.315 0.033 -1.487 
SF-1056 P1-15 3.017 5.801 9.431 0.033 -1.620 
SF-1057 P1-17 2.927 5.632 9.086 0.031 -1.641 
SF-1060 P1-18 2.902 5.578 9.136 0.033 -1.490 
SF-1064 G2-02 2.877 5.527 8.963 0.034 -1.565 
SF-1065 G2-06 3.168 6.104 10.140 0.029 -1.490 
SF-1066 G2-03 3.063 5.902 9.804 0.028 -1.440 
SF-1067 G2-05 2.972 5.727 9.549 0.027 -1.359 
SF-1071 G2-09 3.031 5.830 9.545 0.033 -1.562 
SF-1073 G2-10 2.791 5.395 8.997 0.016 -1.279 
       
Average (σ) SW-SO4 2.81 (0.16) 5.39 (0.32) 8.87 (0.60) 0.033 (0.006) -1.39 (0.18) 
       
a Seawater sulfate (~28 mM) is the largest S reservoir on Earth. The long residence time of SO4

 (>10 
Myr) compared with the circulation time of the oceans (~103 yrs) indicates that SW-SO4 is isotopically 
homogeneous (Rees et al., 1978). b The samples reported here were sampled on (Cruise, Name, Number), stored as BaSO4 and were 
measured and reported in Johnston et al. (2014), with the analytical aid of Erin Beirne. BaSO4 samples were subjected to reduction chemistry prior to analysis, contributing to total error. 
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Table A1.6: Inter-laboratory comparison of IAEA std measurements, on IAEA-S-1 reference framea,b 

Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
UMd      
IAEA-S-1 0.00 (0.03) 0.00 (0.05) 0.0 (0.1) 0.000 (0.006) 0.0 (0.1) 
IAEA-S-2 11.56 (0.04) 22.67 (0.08) 44.4 (0.2) -0.054 (0.006) 0.9 (0.2) 
IAEA-S-3 -16.74 (0.03) -32.30 (0.07) -60.7 (0.3) -0.020 (0.007) -0.4 (0.3) 
      
GL      
IAEA-S-1 0.00 (0.25) 0.00 (0.49) 0.0 (0.9) 0.000 (0.003) 0.0 (0.1) 
IAEA-S-2 11.66 (0.19) 22.86 (0.29) 44.4 (0.2) -0.054 (0.006) 0.9 (0.2) 
IAEA-S-3 -16.35 (0.25) -31.47 (0.47) -59.4 (0.7) -0.015 (0.004) -0.5 (0.3) 
      
MIT      
IAEA-S-1 - 0.00 (0.26) - 0.000 (0.007) 0.0 (0.1) 
IAEA-S-2 - 22.54 (0.26) - -0.058 (0.005) 0.43 (0.05) 
IAEA-S-3 - -32.29 (0.26) - -0.017 (0.005) -0.06 (0.05) 
      
Harvard       
IAEA-S-1 0.00 (0.12) 0.00 (0.23) 0.0 (0.5) 0.000 (0.005) 0.0 (0.2) 
IAEA-S-2 11.46 (0.13) 22.48 (0.25)     43.5 (0.6) -0.056 (0.006) 0.3 (0.4) 
IAEA-S-3 -16.63 (0.16) -32.01 (0.31) -59.9 (0.6) -0.018 (0.007) 0.1 (0.3) 
      
a Given the heterogeneity of CDT, we adopt the convention of Wing et al. (2015), and report the 
measurements of S-2 and S-3 on the S-1 reference frame to facilitate comparison. By definition, the 
values for IAEA-S-1 are δ33S = δ34S = δ36S = 0.000‰, as well as Δ33S = Δ36S = 0.0‰, and S-2 and S-3 
are placed upon that reference frame. 
 
b These data (UMd, GL, and MIT) were compiled and tabulated elsewhere in Wing et al. (2015), see 
Table 1. The analytical error in parentheses (σ) refers to the long-term measurement error of that 
standard in the individual lab. 
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Table A1.7: Sulfur isotopic composition of CDT and concurrent IAEA-S-1 measurements, measured 
versus ‘HAR-1’ at Harvard Universitya 
Analysis # Standard δ33S (‰) δ34S (‰) δ36S (‰) Δ33S (‰) Δ36S (‰) 
SF-1079 IAEA-S-1 -8.213 -16.077 -32.079 0.0998 -1.75 
SF-1080 IAEA-S-1 -8.319 -16.290 -32.528 0.1041 -1.80 
SF-1083 IAEA-S-1 -8.174 -15.999 -31.839 0.0981 -1.66 
SF-1084 IAEA-S-1 -8.317 -16.267 -32.074 0.0945 -1.39 
SF-1088 IAEA-S-1 -8.288 -16.216 -32.355 0.0968 -1.77 
SF-1089 IAEA-S-1 -8.260 -16.164 -32.325 0.0978 -1.84 
SF-1093 IAEA-S-1 -8.282 -16.212 -32.379 0.1006 -1.80 
SF-1095 IAEA-S-1 -8.206 -16.054 -32.188 0.0942 -1.91 
       

Average 
(σ) 

IAEA-S-1 -8.257 
(0.054) 

-16.160 
(0.106) 

-32.221 
(0.219) 

0.0982  
(0.0033) 

-1.74 
(0.16) 

       
SF-1090 CDT (07) -7.914 -15.273 -29.735 -0.0193 -0.92 
SF-1094 CDT (07) -8.151 -15.745 -30.739 -0.0109 -1.04 
       

Average 
(σ) 

CDT (07) -8.032 
(0.167) 

-15.509 
(0.334) 

-30.237 
(0.710) 

-0.0151 
(0.0060) 

-0.98  
(0.08) 

       
aTo avoid long-term analytical artifacts, these samples were all measured concurrently, over the course 
of four days. The average composition of the IAEA-S-1 standards measured here deviates from the 
long-term averages by (δ34S = -0.254‰, Δ33S = 0.0082‰, and Δ36S = -0.12‰), which are within the 
range of long-term reproducibility (1σ = 0.23‰, 0.005‰, and 0.23‰, respectively). 
 
 
 
Table A1.8: Sulfur isotopic compositions (Δ33S and Δ36S values) of IAEA-S-1a 

Laboratory Δ33S (‰) σ-Δ33S (‰) Δ36S (‰) σ-Δ36S (‰) 
UCSD 0.0991 0.0085 -0.49 0.13 
GL 0.1039 0.0087 -0.79 0.14 
UMd 0.0858 0.0063 -0.85 0.20 
HU 0.1133 0.0060 -0.76 0.16 

 Weighted mean SE on mean Weighted mean SE on mean 
 0.1005 0.0074 -0.7225 0.16 
     

a This table is extracted and modified from Wing et al. (2015), Table 3, with sources cited therein. 
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Table A1.9: Derivation of the sulfur isotopic composition of SW-SO4 
 

Standard δ34S (‰) σ−δ34S (‰) Δ33S (‰) σ−Δ33S (‰) Δ36S (‰) σ−Δ36S (‰) 
Average versus HAR-1     

SW-SO4 5.393 0.315 0.0335 0.006 -1.40 0.18 
       

Average versus HAR-1     
IAEA-S-1 -15.911 0.229 0.0900 0.0047 -1.62 0.23 

       
HAR-1 versus V-CDTa     

HAR-01 -15.615 - -0.0151 0.0074 -0.98 0.16 
       

SW-SO4 versus V-CDT      
SW-SO4 21.34 - 0.0486 - -0.42 - 
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APPENDIX A2 
 
MINOR S ISOTOPE SIGNATURES OF PORE WATER SULFATE WITHIN AMAZON 
DELTA SEDIMENTS 

 

 

The Amazon Delta is characterized by rapid deposition of terrigenous, iron-rich sediments (cf. Aller et 

al., 2010). The rate of deposition is so rapid, and the physical environment so dynamic that deltaic 

‘topset’ of 2 meters is rapidly and frequently (<2 yrs) remobilized, transported, and deposited. The 

physical resuspension of that topset resets the local diagenetic regime, and results in the rapid re-

oxidation of sulfur species in a non-steady manner. This oxidative sulfur chemistry is also coupled to 

the rapid oxidation of entrained organic matter. To explore the consequences of this sulfur chemistry 

on the minor isotope signatures of pore water SO4, we analyzed archived samples taken during the 

sampling cruise in Aller et al. (1996), which were ultimately analyzed for δ34S and δ18O values, and 

reported in Aller et al. (2010). The sampling sites in ‘Off-Shelf-Transect 2’ (OST-2) are shown in Fig. 

A2.1 below. 

 

 

 

 

 

 

Figure A2.1: Location of coring site OST-2 within 
the Amazon Delta. OST-2 refers to ‘Off-Shelf 
Transect-2’ The details of sampling were first 
reported in Aller et al. (1996) and the initial isotope 
measurements were reported in Aller et al. (2010). 
 

Figure A2.1 
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Two stations were sampled 2227 and 4121 on 2/23/1990 and 10/19/1991 during the rising and low 

stages of the Amazon River, respectively. The flow rate influences both the salinity of the overlying 

waters, as well as the general recycling of the delta topset. We analyzed archived BaSO4 samples 

produced during both sampling cruises. They were prepared and analyzed as with the established 

methods of the other BaSO4 samples in this thesis. The Δ33S data, along with some of the other 

sampling metadata are shown below in Table A2.1: 

Table A2.1 
Station Date Depth 

Interval 
(cm) 

 

Mid-depth 
(cm) 

Pore water 
SO4

2- 
(mM) 

δ34S –SO4
2 

(‰) 

Δ 33S-SO4
2- 

 

(‰) 

OST-2 2/23/1990 0-10 5 27.3 21.3 0.035 
KC2227  10-20 15 28.7 21.3 0.044 
Rising  20-30 25 28.9 21.3 0.039 

  30-40 35 28.5 21.3 0.038 
  50-60 55 27.9 21.4 0.024 
  70-80 75 28.2 23.0 0.064 
  100-110 105 27.1 25.5 0.061 
  130-140 135 24.8 29.7 0.063 
  160-170 165 21.6 36.1 0.090 
  190-200 195 17.4 44.9 0.121 
  220-230 225 12.6 61.4 0.170 
  250-260 255 9.5 77.0 0.220 

       
OST-2 10/19/1991 0-10 5 29.8 21.1 0.041 
KC4121  10-20 15 29.9 21.9 0.044 
Low  20-30 25 27.5 23.0 0.040 
  30-40 35 27.9 24.2 0.051 
  40-50 45 26.7 26.1 0.062 
  60-70 65 26.1 28.9 0.064 
  80-90 85 24.3 31.5 0.072 
  100-110 105 23.2 35.2 0.088 
  120-130 125 20.2 40.7 0.104 
  140-150 145 17.7 47.9 0.115 
  160-170 165 14.3 57.8 0.154 
  180-190 185 11.3 67.0 0.206 
       
Table A2.1: Sampling, concentration, and S isotope data (δ34S and Δ33S values) for archived pore 
water samples from the Amazon Delta, Station OST-2. Two sampling trips were conducted at the 
rising and low flow rates of the Amazon River. Sulfur isotope values are reported on the V-CDT 
reference frame. For reference, SW-SO4

 replicates yield δ34S = 21.35±0.3‰ and Δ33S = 
0.048±0.006‰ (Johnston et al., 2014). 
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In both cases, pore water [SO4
2-] decreases with depth, as sulfate is drawn down in the underlying 

methanic zone (Aller et al. 2010), but the concentration profiles are typical of a non-steady state 

system where sulfate concentration is changing at any given depth (d{[SO4
2-](z)}/dt > 0). Fig A2.2 

below exhibits the concentration profiles of sulfate versus depth for the two sampled cores. 

 

 

 

 

 

 

 

 

 

 

The consumption of pore water sulfate due to sulfate reduction (and anaerobic methane oxidation), 

carries a strong isotope effect 34εMSR > 30‰, and results in the preferential loss of 32SO4
2-, producing a 

strongly 34S-enrichment in the residual sulfate.  In both cores, there is a parallel increase in the δ34S 

values with depth, rising to >60‰ with ~2/3 total sulfate loss, plotted below in Fig. A2.3. 
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Figure A2.2: Pore water SO4
2- concentrations from sampled 

cores 2227 and 4121. Core 2227 was sampled during the 
rising flow of of the Amazon River, and 4121 was sampled 
during low flow. 

Figure A2.2 
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The consumption of pore water SO4
2- is also associated with a dramatic increase in the Δ33S-SO4

2- 

values as well. The coupled nature of the fractionation parameters (34α and 33λ), discussed elsewhere 

in this thesis form the basis for inferring microbial processes from δ34S and Δ33S values. The non-

steady state nature of the diagenetic regimes make constructing reactive transport models more 

challenging. For the sake of completeness, however, the triple isotope plot (δ34S/Δ33S) is shown below. 

 

 

 

 

Figure A2.3: Plot of δ34S-SO4
2- values versus depth of the 

cores 2227 (red) and 4121 (blue). For reference, SW-SO4
2- is 

21.15±0.3‰, and is the ‘boundary condition’ at 0 cm, the 
sediment water interface. 
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Figure A3.3: Triple isotope plot (Δ33S vs. δ34S) of pore water sulfate in 
cores 2227 and 4121. The error associated with individual Δ33S 
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reference, the composition of SW-SO4

2- is δ34S  = 21.15‰ and Δ33S = 
0.047‰ (Johnston et al., 2014). 
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APPENDIX A3  
 
PLACING AN UPPER LIMIT ON CRYPTIC MARINE SULPHUR CYCLING* 

 
 
 
 

A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required 

to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of 

the global ocean. Apparent imbalances in geochemical nitrogen budgets (Codispoti, 1995) have 

spurred numerous studies to measure the contributions of hetero- trophic and autotrophic N2- 

producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively) (Lam et al., 

2009; Ward et al., 2009) Recently, ‘cryptic’ sulphur cycling was proposed as a partial solution to the 

fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-

deficient region (Canfield et al., 2010). The degree to which the cryptic sulphur cycle can fuel a loss 

of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ 

settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of 

oxygen (18O/16O) and sulphur (33S/32S, 34S/32S) in seawater sulphate through oxygenated open-ocean 

and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope 

dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that 

previous estimates for sulphur- driven remineralization and loss of fixed nitrogen from the oceans are 

near the upper limit for what is possible given in situ sulphate isotope data. 

 

 *A version of this appendix was published as Johnston, D.T., Gill, B.C., Masterson, A., Beirne, E., 
Casciotti, K.L., Knapp, A.N., and Berelson, W. (2014) Placing an upper limit on cryptic marine 
sulphur cycling. Nature 513, 530–533. 
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 The ocean’s budget of fixed nitrogen (primarily nitrate [NO3
-], nitrite [NO2

-] and ammonium 

[NH4
=]) is predominantly controlled by the rates of biological dinitrogen (N2) fixation and N2 

production by denitrification and anaerobic ammonia oxidation (anammox). Rates of anammox 

(converting NH4
+ and NO2

- to N2) arguably compete with denitrification (reducing NO3
- to N2) for the 

NO2
- used in N2 production (Lam et al., 2009; Ward et al., 2009) although the flux of NH4

= supplied 

from the remineralization of organic matter by denitrification is in areas insufficient to fuel anammox. 

The role of the sulphur cycle was championed as a partial solution to the fundamental biogeochemical 

problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions, such as the 

Chilean OMZ (Canfield et al., 2010). The proposed involvement of sulphur cycling was aptly termed 

‘cryptic’ for two reasons: first, the oxygen-deficient waters off the Chilean coast are devoid of free 

sulphide, H2S—the terminal metabolic product of sulphate reduction—and, second, thermodynamic 

calculations favour respiration with oxidants such as NO3
- over that of sulphate reduction. Evidence 

for cryptic sulphur cycling has come from microbial community analyses and shipboard incubations. 

Community-level pyrosequencing of DNA from waters within the Chilean OMZ indicated the 

presence of core sulphate reduction and sulphide oxidation genes. In addition, an array of sulphide-

amended shipboard incubations demonstrated active sulphate reduction and sulphide oxidation in 

waters retrieved from the OMZ. Shipboard incubation experiments are a classic method of evaluating 

metabolic rates, and they underpin constraints on the nitrogen cycle as well (Lam et al., 2009; Ward et 

al., 2009). However, in nitrogen cycling, the rates measured by shipboard incubations have been 

substantiated by geochemical measurements and modeling (DeVries et al., 2013). The corrected 

sulphate reduction rates derived from ex situ incubation experiments (after accounting for sulphide 

oxidation) suggested that the cryptic sulphur cycle is responsible for up to 30% of the carbon 

remineralization within the Chilean OMZ and is therefore a substantial new source of NH4
+ for 

anammox. If correct, these rates would be globally significant for marine elemental budgets. 
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Figure A3.1: Establishing the isotopic composition of seawater sulphate (a) Water-column profiles of 
δ18Osulphate through two OMZ settings (ETSP stations 11 and 25) as a function of oxygen concentrations. 
Samples for this study are from the Bermuda Atlantic Time-series Study site, the Sampling and Analysis of 
Fe (SAFE) site, Eastern Tropical South Pacific stations 5, 6, 11 and 25, GEOTRACES stations 3-SS and 11, 
Angola upwelling station 18, and tropical South Atlantic station 1. Results are shown as means  ±1σ �b, c, 
Histograms of new (black) and published (white) δ18Osulphate data. (b, c) and Δ33S values (c) for a larger suite 
of water-column profiles; this study further serves to establish the isotopic composition of seawater sulphate. 
Colours in c are same as in a (with grey samples from oxygenated water columns), all included with 1s errors. 
Note that published data sets did not sample OMZ environments. The histogram in c is from SO–SO2-based 
analyses, whereas data points plotted are from SF6-based analyses (this study amends between SO2 and SF6 
scales). 
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 The impact of sulphur cycling can be directly tested through evaluating the stable isotope 

systematics of seawater sulphate. The O and S isotopic compositions of SO4
2- are time-integrated 

recorders of biogeochemical processing. These isotope records preserve complementary, yet unique, 

information. Sulphate S isotopes primarily preserve the metabolic fingerprint of dissimilatory sulphate 

reduction, which commonly occurs in marine sediments and where the metabolite sulphide is depleted 

in heavy isotopes, leaving the residual sulphate enriched (Jørgensen, 1979). Further, the examination of 

33S provides additional leverage on biogeochemical activity, permitting differentiation between 

contributions from oxidative and reductive metabolisms (Johnston, 2011). Conversely, sulphate O 

isotopes are primarily controlled by equilibration between water and a redox intermediate, sulphite 

(Wankel et al., 2014). Sulphite has a central role in oxidation reactions but is also a requisite 

intermediate in reductive reactions. Microbial cycling there- fore results in the enrichment of 18O in 

Figure A3.2: Pore-water δ18O profiles. Two models were developed to quantify the isotopic 
response of sulphate reduction. They are derived from the compilation of 199 measurements of 
pore-water sulphate concentration and δ18Osulphate profiles (small white circles in a). To normalize 
the data to various bottom-water sulphate concentrations, we first plot them as a relative fraction 
of sulphate reduced (f). At the individual pore-water profile level, two types of down-core 
behaviour are present. A majority of the data show a strong nonlinearity (low relative rates of 
sulphate reduction), whereas a minority approach a more linear trend (very high rates of sulphate 
reduction) The red and blue data sets serve as an example of each. b, Model fits (and 95% 
confidence intervals) to these data. Our δ18Os.c. represents the isotopic composition at any given 
degree of sulphate consumed, so is analogous to that which is directly measurable in marine pore 
waters. 
 

Figure A3.2 
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residual sulphate (that is, seawater sulphate). This O-isotope enrichment accompanies cycling even in 

the absence of net sulphate reduction (that is, intracellular recycling). Thus, the potential exists for a 

cryptic sulphur cycle to be recorded in the oxy- gen isotopic composition of sulphate within OMZs. 

 To investigate the significance of sulphur cycling in OMZs, we provide an isotopic 

characterization of modern seawater sulphate An accumulation of work dating back half a century 

(standardized herein) provides a context for evaluating these signals. Here we conducted a new, 

comprehensive characterization of S and O isotopes, including 33S, in seawater sulphate from nearly 

200 samples collected from ten different water-column profiles in the modern ocean. Taken together, 

we establish a strongly constrained average composition for seawater sulphate: δ18Osulphate = 8.67% (N 

= 60 0.21‰, 1σ), δ34Ssulphate = 21.15% (N = 60, 0.15‰, 1σ), and Δ33Ssulphate = 0.048‰ (N = 60, 

0.006‰, 1σ). These samples range in dissolved oxygen and oxidized nitrogen concentrations ([NO3
-] 

[NO2
-]) from essentially zero up to 250 and 45 mM, respectively. Two of these water columns 

(Eastern Tropical South Pacific (ETSP) stations 11 and 25) intersect regions experiencing significant 

oxygen depletion (as evident through the accumulation of nitrite, expression of an N deficit, and 

elevated δ15NNO3 values. 
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 Studies of the marine sulphur cycle illustrate the long residence time and slow turnover of S 

and O in sulphate (107 and 106 years, respectively)(Turchyn and Schrag, 2004; Paytan et al., 2004), 

especially when placed in the context of much shorter oceanic mixing times (~1,000 years). It is 

therefore expected that both the S and O compositions of marine sulphate will be well mixed except in 

regions where biological cycling overcomes water mass circulation and mixing. Statistical analyses of 

our data show that OMZ samples are isotopically indistinguishable in δ18Osulphate, δ34Ssulphate and 

Δ33Ssulphate from the global mean composition (95% confidence level; Fig A3.1. This homogeneity 

remains true whether comparing different depths and water masses within a single water-column 

Figure A3.3: Model predictions for the maximum allowable rate of 
sulphate reduction. Predicted SRRs as a function of water mass residence time 
based on δ18Osulphate constraints. The line represents the minimum detectable 
SRR for a given t (using the low-SRR model), or a maximum possible rate that 
would not carry a resolvable δ18O effect. Also included are the sulphate rate 
estimates from shipboard experiments at the Chilean upwelling, stations 3 and 
5, without a prescribed residence time. 
 

Figure A3.3 
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profile or comparing similar water depths from multiple profiles including OMZ-bearing and well-

ventilated water masses. 

 The lack of a clear δ18Osulphate signal places direct constraints on the significance of a water-

column sulphur cycle. A quantitative context derived from microbial (pure and mixed) culture 

experiments (Mizutani and Rafter, 1969; Fritz et al., 1989) and marine sediments (Aharon and Fu, 

2000; Aharon and Fu, 2003; Turchyn et al., 2006; Wortmann et al., 2001; Wortmann et al., 2007) 

defines the expected isotopic change in δ18Osulphate as sulphate is cycled. Of the two, marine 

sedimentary pore waters may provide the most closely analogous system to an open-ocean water 

column and define a range of responses in δ18Osulphate as sulphate is consumed. However, both 

approaches (culture experiments and pore waters) yield essentially the same result. The reduction and 

cycling of sulphate always results in an enrichment in δ18Osulphate, most often approaching ~25% (water 

= 0% versus Vienna Standard Mean Ocean Water (VSMOW); (Fig. A3.2) This holds true in the 

presence and absence of sulphide oxidation reactions (Farquhar et al., 2008; Mangalo et al. 2007). 

Thus, even in the absence of net sulphate reduction (that is, when reduction equals oxidation—the 

postulated cryptic sulphur cycle), sulphur cycling by sulphate-reducing bacteria in the water column 

should drive an increase in δ18Osulphate. This characteristic δ18Osulphate response has been documented in 

nearly 200 pore water measurements in which both O isotopes and sulphate concentrations are 

available. In environments where sulphate reduction rates are low, such as those expected in the water 

column of an OMZ and commonly pre- served in sediment pore waters, a strong nonlinear increase in 

δ18Osulphate accompanies sulphate consumption (Antler et al, 2013). The best example of this behaviour 

is from diatomaceous sediments underlying the Angola–Benguela current (Fig A3.2)(Turchyn et al. 

2006) Conversely, an almost linear increase in δ18Osulphate is associated with relatively high sulphate 

reduction rates, such as those captured in organic-rich sediments from the Gulf of Mexico (Fig A3.2) 

(Aharon and Fu, 2000). In this study we present these data as end-member responses and explore a 

variety of different forms of the fit (such as exponential, power and Michaelis–Menten) between 

δ18Osulphate and sulphate concentrations for the different sulphate reduction rates. We conservatively 
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choose a simple one-phase decay model (least-squares ordinary fit) to describe the data (Farquhar et 

al., 2008). We posit that quantifying the δ18Osulphate response to sulphate reduction permits the 

development of an in situ prediction for the integrated consequences of cryptic sulphur cycling. This 

prediction is a function of the vigour with which sulphate is processed, and if one considers that any 

parcel of water has a finite residence time within the OMZ (t, in days), this ‘vigour’ can be translated 

to a rate of sulphate reduction. Here we perform a set of simple calculations based on two features: 

first, the expected δ18Osulphate response (in per mille) to sulphate consumption (in millimolar), and 

second, the published residence times of water in the ETSP OMZ relative to mixing and advection (1–

10 years)(DeVries et al., 2012; Kalvelage et al., 2013). The sharpness of this approach is primarily 

then limited by the precision of the isotopic measurement and estimates of t. Because no significant 

change in δ18Osulphate was observed in the OMZ relative to well-ventilated water masses, we ask the 

question: how large an isotopic excursion in δ18Osulphate could have been produced while remaining 

statistically unresolvable, and what rate of sulphate reduction does that correspond to? The capacity to 

identify a δ18Osulphate anomaly will be related to the average analytical uncertainty for any single 

measurement (better than 0.2‰) and the sample density (n) through the interval of interest. Further, 

each water column carries a unique mean, a normally distributed variance (of 0.13‰ (1σ)), and a 

standard error of (0.03‰) Because we are interested in an intra-water-column δ18Osulphate signal, we 

assign a value of 0.13‰ to the resolvable δ18Osulphate threshold signal, but note that our conclusions do 

not qualitatively change with the choice of a slightly larger or smaller value. Given the expected low 

overall rates of sulphate reduction in a water column and the rarity with which even marine-sediment 

pore-water δ18Osulphate data follow the ‘high sulphate reduction rates (SRR)’ trajectory, we take the 

‘low SRR’ model from Fig. A3.2 as a guide (note that using the ‘high SRR’ model increases 

predictions of sulphate reduction rates about fivefold). Thus our prediction for the maximum sulphate 

reduction rates possible in the ETSP OMZs is between 6.4x10-2 and 6.4x10-3 mmol m-2 d at water 

mass residence times of 1 and 10 years, respectively (Fig. A3.3). These limits on in situ sulphate 

reduction rates overlap those experimentally extracted from the Chilean upwelling. 
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  The cryptic nature of the sulphur cycle—that is, the absence of detectable water-column 

sulphide—requires that rates of chemoautotrophic sulphide oxidation match those of sulphate 

reduction in space and time. The putative rates of sulphate reduction in OMZ settings therefore carry 

important implications for our understanding of OMZ biogeochemistry. For example, the amount of 

nitrate consumption required to balance a sulphide oxidation rate of 1 mmol S m-2 d-1 could account 

for a large fraction of the estimated N loss from the ETSP5. If sulphide oxidation were coupled to 

complete denitrification (NO3
-1 to N2), the oxidation of 1 mmol S m-2 d-1 would produce a flux of 0.8 

mmol N2 m-2 d-1, or up to ~30% of estimates of total nitrate loss. In parallel, chemoautotrophic 

sulphide oxidation is indeed prevalent where free sulphide (from sedimentary sources) accumulates 

within coastal ETSP waters; however, in these settings sulphate reduction is spatially decoupled from 

the point of subsequent sulphur oxidation. Unlike conditions found in the ETSP: OMZ, the location of 

chemoautotrophic sulphide oxidation in coastal waters generally occurs at the interface between 

nitrate-reducing and sulphate-reducing waters (Lavik et al., 2009; Schunck et al., 2013). The 

occurrence of active sulphate reduction in the presence of nitrate and nitrite thus remains an intriguing 

puzzle. This puzzle may be in fact rectified through further work targeting the role of 

microenvironments within sinking particulate matter. 

 Although the predicted δ18Osulphate signal in the ETSP OMZ was at or just below detection 

with our current approach, the δ18O effect predicted here is captured in other saline environments (for 

instance, Framvaren Fjord (Mandernack et al., 2003) and Blood Falls, Antarctica (Mukucki et al., 

2009) and serves as an independent geochemical tool with which to track key biogeochemical 

processes in OMZ settings. Other direct tests, such as those for the N and O isotopes of nitrate and 

nitrite, provide independent estimates of the relative rates of nitrate and nitrite reduction (Casciotti et 

al., 2013) and detail the capacity of the nitrogen cycle to accommodate an oxidative sulphur cycle. If 

nitrate reduction is largely coupled to sulphide oxidation, then the isotope effect of nitrate reductase in 

those organisms (note that periplasmic nitrate reductase and respiratory nitrate reductase are present in 

many sulphur oxidizers and SUP05 (Walsh et al., 2009) will dictate the expressed slope of the δ15NNO3 
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versus δ18ONO3 signal that defines OMZ environments (Sigman et al., 2005). Finally, sulphide 

production in the ETSP OMZ, even if transient, might also be expected to serve as a sink for 

chalcophile trace elements; however, studies on elements such as cobalt and nickel show nutrient-like 

behaviour rather than inorganic scavenging (Saito et al., 2004). OMZ environments thus remain a 

biogeochemical conundrum in terms of closing mass-balance on key nutrient and major element 

cycles, especially fixed nitrogen. Solving this conundrum remains a critical challenge, given the 

importance of these settings in the overall chemical budget of the ocean; this is a role that only stands 

to increase as the climate of our planet warms. 
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