
Visualizing and Measuring Software Portfolio
Architecture: A Power Utility Case

Citation
Lagerström, Robert, Carliss Y. Baldwin, and Alan MacCormack. "Visualizing and Measuring
Software Portfolio Architecture: A Power Utility Case." Special Issue on DSM Conference 2014.
Journal of Modern Project Management 3, no. 2 (September–December 2015): 114–121.

Published Version
http://www.journalmodernpm.com/index.php/jmpm/article/view/146

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34403524

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:34403524
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Visualizing%20and%20Measuring%20Software%20Portfolio%20Architecture:%20A%20Power%20Utility%20Case&community=1/3345929&collection=1/3345930&owningCollection1/3345930&harvardAuthors=e3e7812b1f4eb964d04a03796b91dfff&department
https://dash.harvard.edu/pages/accessibility

Visualizing and Measuring Software Portfolio
Architecture: A Power Utility Case

Robert Lagerström1, Carliss Baldwin2, and Alan MacCormack2

1KTH Royal Institute of Technology
2Harvard Business School

Abstract: In this paper, we test a Design Structure Matrix (DSM) based
method for visualizing and measuring software portfolio architectures.
Our data is drawn from a power utility company, comprising 192
software applications with 614 dependencies between them. We show
that the architecture of this system can be classified as a “core-periphery”
system, meaning it contains a single large dominant cluster of
interconnected components (the “Core”) representing 40% of the system.
The system has a propagation cost of 44% and architecture flow through
of 93%. This case and these findings add another piece of the puzzle
suggesting that the method could be effective in uncovering the hidden
structure in software portfolio architectures.
Keywords: Design structure matrices, Software architecture, and
Software application portfolio

1 Introduction
Business environments are constantly evolving, requiring continual changes to
the software applications that support a business. Moreover, during recent
decades the sheer number of applications has grown significantly, and they have
become increasingly interdependent. As a result, the management of software
applications has become a complex task; many companies find that
implementing changes to their application portfolio architecture is increasingly
difficult and expensive. To help manage this complexity, firms need a way to
visualize and analyze the modularity of their software portfolio architectures as
well as the degree of coupling between components.
Baldwin et al. (2014) present a method to visualize the hidden structure of
software architectures based on Design Structure Matrices (DSMs) and classic
coupling measures. This method has been demonstrated on individual software
systems (such as Linux, Mozilla and Apache) but not (to the same extent) on
software portfolio architectures in which a large number of applications have
dependencies to each other (Lagerström et al., 2013) and possibly relationships
with other types of components such as business groups and/or infrastructure
elements (Lagerström et al., 2014a). In this paper, we apply Baldwin et. al.’s
architectural visualization and measurement methods to enterprise wide
applications, using data collected by Cheraghi (2014) at a Nordic power utility
company. This data comprises 192 software applications and 614 dependencies
between these applications.

DSM 2014

We show that the Power Utility’s enterprise architecture can be classified as
core-periphery. This means that 1) there is one cyclic group (the “Core”) of
components that is substantially larger than others, and 2) this group comprises a
substantial portion of the entire architecture. We find that the Core contains 76
components, representing 40% of the architecture.
The remainder of this paper is structured as follows: Section 2 presents related
work; Section 3 describes the hidden structure method; Section 4 presents the
power utility case used for the analysis; Section 5 discusses the approach and
outlines future work; and Section 6 concludes the paper.

2 Related Work
Many software applications have grown into large systems containing thousands
of interdependent components, making it difficult for a designer to understand
the complexity of the design. As a result, much recent work on the visualization
and measurement of complex software systems has focused on the use of
network methods to characterize system structure (Barabási, 2009). Specifically,
these methods emphasize identifying the linkages (dependencies) that exist
between different elements (nodes) in the system (Simon, 1962). A key concept
here is modularity, which refers to the way in which a system’s architecture can
be decomposed into different parts. Although there are many definitions of
modularity, authors tend to agree on the fundamental features: the
interdependence of decisions within modules, the independence of decisions
between modules, and the hierarchical dependence of modules on components
that embody standards and design rules (Baldwin and Clark, 2000).
Studies that use network methods to measure modularity typically focus on
capturing the level of coupling that exists between different parts of a system.
The use of graph theory and network measures to analyze software systems
extends back to the 1980s (Hall and Preiser, 1984). More recently, a number of
studies have used social network measures to analyze software systems and
software development organizations (Dreyfus and Wyner, 2011). Other studies
make use of Design Structure Matrices (DSMs), which highlight the network
structure of a complex system using a square matrix (Sosa et al., 2007). DSMs
have been used widely to visualize the architecture of and measure the coupling
between the components of individual software systems (MacCormack et al,
2012).

3 Method Description
The method we use for network representation is based on and extends the
classic notion of coupling. Specifically, after identifying the coupling
(dependencies) between the elements in a complex architecture, we analyze the
architecture in terms of hierarchical ordering and cyclic groups and classify
elements in terms of their position in the resulting network (this method is
described in Baldwin et al, 2014).

DSM 2014

In a Design Structure Matrix (DSM), each diagonal cell represents an element
(node), and the off-diagonal cells record the dependencies between the elements
(links): If element i depends on element j, a mark is placed in the row of i and
the column of j. The content of the matrix does not depend on the ordering of
the rows and columns, but different orderings can reveal (or obscure) the
underlying structure. Specifically, the elements in the DSM can be arranged in a
way that reflects hierarchy, and, if this is done, dependencies that remain above
the main diagonal will indicate the presence of cyclic interdependencies (A
depends on B, and B depends on A). The rearranged DSM can thus reveal
significant facts about the underlying structure of the architecture that cannot be
inferred from standard measures of coupling. In the following subsections, a
method that makes this “hidden structure” visible is presented.

3.1 Identify the direct dependencies and compute the visibility matrix
The architecture of a complex system can be represented as a directed network
composed of N elements (nodes) and directed dependencies (links) between
them. This DSM is called the “first-order” matrix. If the first-order matrix is
raised to successive powers, the result will show the direct and indirect
dependencies that exist for successive path lengths. Summing these matrices
yields the visibility matrix V (Figure 1), which denotes the dependencies that
exist for all possible path lengths. The values in the visibility matrix are
constrained to be binary, capturing only whether a dependency exists and not the
number of possible paths that the dependency can take (MacCormack et al.,
2006). The matrix for n=0 (i.e., a path length of zero) is included when
calculating the visibility matrix, implying that a change to an element will
always affect itself.

Figure 1. A directed graph with the corresponding DSM and visibility matrix.

Several measures are constructed based on the visibility matrix V. First, for each
element i in the architecture, the following are defined:

- VFIi (Visibility Fan-In) is the number of elements that directly or
indirectly depend on i. This is found by summing entries in the ith
column of V.

DSM 2014

- VFOi (Visibility Fan-Out) is the number of elements that i directly or
indirectly depends on. This is found by summing entries in the ith row
of V.

In Figure 1, element A has VFI equal to 1, meaning that no other elements
depend on it, and VFO equal to 6, meaning that it depends on all other elements
in the architecture.

3.2 Identify and rank cyclic groups
The next step is to find the cyclic groups in the architecture. By definition, each
element within a cyclic group depends directly or indirectly on every other
member of the group. First, the elements are sorted, first by VFI descending then
by VFO ascending. Next one proceeds through the sorted list, comparing the
VFIs and VFOs of adjacent elements. If the VFI and VFO for two successive
elements are the same, they might be members of the same cyclic group.
Elements that have different VFIs or VFOs cannot be members of the same
cyclic group, and elements for which ni=1 cannot be part of a cyclic group at all.
However elements with the same VFI and VFO could be members of different
cyclic groups. In other words, disjoint cyclic groups may, by coincidence, have
the same visibility measures. To determine whether a group of elements with the
same VFI and VFO is one cyclic group (and not several), we simply inspect the
subset of the visibility matrix that includes the rows and columns of the group in
question and no others. If this submatrix does not contain zeros, the group is one
cyclic group. Cyclic groups found via this algorithm are referred to as the
“cores” of the system. The largest cyclic group is defined as the “Core”. Once
the Core is identified, the other components in the architecture can be classified
into groups, as follows:

- “Core” elements are members of the largest cyclic group and have the
same VFI and VFO, denoted by VFIC and VFOC, respectively.

- “Control” elements have VFI < VFIC and VFO ≥ VFOC.
- “Shared” elements have VFI ≥ VFIC and VFO < VFOC.
- “Periphery” elements have VFI < VFIC and VFO < VFOC.

Using the above classification scheme, a reorganized DSM can be constructed
that reveals the “hidden structure” of the architecture by placing elements in the
order Shared, Core, Periphery, and Control down the main diagonal of the DSM,
and then sorting within each group by VFI descending then VFO ascending (cf.
Figure 4).
The method for classifying architectures into different types is discussed in
empirical work by (Baldwin et al., 2014). Specifically, the authors find a large
percentage of the architectures they analyzed contained a large cyclic group of
components that was dominant in two senses: i) it was large relative to the
number of elements in the system, and ii) it was substantially larger than any
other cyclic group. This architectural type is classified as “core-periphery.”
Where architectures have multiple cyclic groups of similar size, the architecture

DSM 2014

is referred to as “Multi-Core”. Finally, if the Core is small, relative to the
system as a whole, the architecture is referred to as “Hierarchical.”

Figure 2. The architecture classification scheme.

4 Power Utility Case
We apply the method to a real-world example of a software portfolio
architecture from a Nordic power utility company investigated by (Cheraghi,
2014). The data collected was stored in the company’s enterprise architecture
tool/database. The subset we are investigating are applications related to what
they refer to as their “smart grid” applications. These are thus mostly technical
systems supporting the power distribution process, but also some administrative
systems that have dependencies to and from the smart grid architecture.

4.1 Identifying the direct dependencies between the architecture
components
The Power Utility dataset contains 192 software applications and 614
dependencies. The components in the architecture are applications supporting;
meter reading, meter data management, contact and phone information,
enterprise resource planning, enterprise asset management, work clearance and
shift communication, trading, network information system, mobile workforce
management, billing and service invoicing, customer self service, customer
information, call center, BI data warehouse, distribution management, corporate
compliance, access control, SCADA, document management, energy data
management, project portfolio, sales, time and attendance capturing, et cetera.
The dependencies between these components are information flows, e.g.
Application A depends on information being sent from Application B.
We can represent this architecture as a directed network, with the architecture
components as nodes and dependencies as links, and convert that network into a
DSM.

DSM 2014

Figure 3. Input Design Structure Matrix (DSM).

From the DSM, we calculate the Direct Fan-In (DFI) and Direct Fan-Out (DFO)
measures by summing the rows and columns for each element respectively. The
next step is to derive the visibility matrix by raising the first-order matrix to
successive powers and summing the results. Then, Visibility Fan-In (VFI) and
Visibility Fan-Out (VFO) measures were calculated by summing the rows and
columns for each element. See Table 1 for a sample of the Fan-In and Fan-Outs.

Table 1. A sample of Power Utility Fan-In and Fan-Outs.

Software
application DFI DFO VFI VFO Class.

SA1 2 1 122 1 Shared
SA2 2 1 8 1 Peripheral
SA3 3 2 121 133 Core
SA4 29 36 121 133 Core
SA5 4 4 121 133 Core
SA6 31 30 121 133 Core
SA7 2 2 3 134 Control
… … … … …
SA103 1 2 1 2 Peripheral

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

160

180

Original DSM

DSM 2014

To identify cyclic groups, we order the list of architectural components based on
VFI descending and VFO ascending. This revealed a number of possible cyclic
groups (VFI=VFO). By inspecting the visibility submatrices, we eliminated
groups that had the same visibility measures by coincidence. After this
procedure, we found the largest cyclic group (the “Core”) contained 76
components, while the second largest cyclic group contained only three. The
architecture is thus defined as core-periphery (compare with the architecture
classification scheme presented in Figure 2). The Core makes up 40% of the
system, and is 25 times larger than the next largest cyclic group.

4.2 Classifying the components and visualizing the architecture
The next step was to classify the remainder of the components as Shared,
Periphery, or Control using the definitions above. We found there were 57
Shared (30%), 76 Core (40%), 14 Peripheral (7%), and 23 Control (23%)
components. Figure 4 shows the rearranged DSM, with the blocks labeled
according to our classification.

5 Discussion and Research Outlook
As presented in (Baldwin et al., 2014), the hidden structure method was
designed based on empirical regularity from cases investigating large complex
software systems. All those cases were focused on one software system at a
time, independent of its surrounding environment, analyzing the dependencies
between its source files. In other words, that work considered the internal
coupling of a system. In this paper, the same method is tested on the
dependencies between software applications; i.e., the current work considers the
external coupling between applications.

DSM 2014

Figure 4. Power Utility rearranged DSM showing „first-order“ dependencies.

For the Power Utility case, the method revealed a hidden structure (thus
presenting new facts) similar to those cases on software architecture investigated
in previous studies. And the method also helped classify the architecture as core-
periphery using the same rules and boundaries as in the previous cases. We have
now collected a number of cases testing the method and they all seem to point in
the same direction. For further cases see Lagerström et al. (2013; 2014a).
Compared to other complexity, coupling, and modularity measures, the hidden
structure method considers not only the direct network structure of an
architecture but also takes into consideration the indirect dependencies between
applications. Both these features provide important input for management
decisions. For instance, applications that are classified as Periphery or Control
are probably easier (and less costly) to modify because of the lower probability
of a change spreading and affecting other applications. In contrast, applications
that are classified as Shared or Core are more difficult to modify because of the
higher probability of changes spreading to other applications. A first study
indicating this has been reported (see Lagerström et al., 2014b). This
information can be used in change management, project planning, risk analysis,
and so on.
From Table 1, we see that software applications 1, 2, 3, 5, and 7 all have low
Direct Fan-In (DFI) and Direct Fan-Out (DFO) numbers. As such, those
applications might be considered as low risk when implementing changes
(compared to application 4 and 6 which have high DFI and DFO values). But if
we also look at the Visibility Fan-In (VFI) and Visibility Fan-Out (VFO)

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

160

180

Rearranged DSM

Shared

Core

Periphery

Control

DSM 2014

numbers, which measure indirect dependencies, we see that applications 3 and 5
both belong to the Core of the architecture. Thus any change to one of those
might spread to many other applications (even though they have few direct
dependencies). The same goes for application 1, which is classified as Shared.
Therefore, we argue that the hidden structure method, which considers indirect
dependencies, provides more valuable information for decision-making.
In our experience, we have found that many companies working with enterprise
modeling have architecture blueprints that describe their application portfolio.
Often, these are described using entity-relationship diagrams with boxes and
arrows. When the entire application architecture is visualized using this type of
model, the result is often a chaotic, messy picture that is difficult to interpret.
Typically these models depict somewhat of a “spaghetti” architecture, with
many applications and dependencies. This representation can be directly
translated to the architect’s view DSM (cf. Figure 3). But this visualization does
not really provide that much information either, other than that applications are
depending on each other in a complex network. With this representation (and the
entity-relationship model), we can trace a dependency between two applications,
which then can be used for decision-making (compare with the discussion above
on DFI/DFO versus VFI/VFO measures). However, if we instead use the hidden
structure method and rearrange the DSM, as in Figure 4, we can actually see
what applications are considered to be Core, Shared, Control, and Periphery.
This gives us more insight about the structure of the architecture. We found that
in the Power Utility Case the Core applications are spread out across the
business processes and they vary between small, very specific tools to large,
central ERP systems and data warehouses. Without the hidden structure method,
an architect would have difficulty uncovering this type of complex architecture.
The feedback from the case company was that they were surprised when
presented with the results, both in terms of the Core size and architecture
classification, and in terms of what systems that were found in the Core.
Measures such as the propagation cost, the architecture flow through, and the
size of the core can be useful when trying to improve an architecture. Future
scenarios can be compared in terms of these metrics.
A first step in future research is to test the hidden structure method with more
enterprise application architectures. This will provide valuable input either
supporting the method as currently constructed or with improvement
suggestions for future versions. Another step would be to extend the application
area. Future research could involve tests with more “complete” enterprise
architecture models, considering many different types of elements such as
business processes and roles, software applications and services, and databases
and servers. One hypothesis is that business layer elements typically are
classified as Control, infrastructure elements as Shared, and software elements
as Core. This, however, remains to be tested (a first indication of this is reported
in Lagerström et al., 2013). If the hidden structure method does enable the useful
visualization and classification of complete enterprise architecture descriptions
(including layer between different object groups), then it could be deployed to

DSM 2014

analyze the quality of a particular architecture and possibly help improve that
quality in terms of the removal or addition of elements and dependencies.
Both in the previous work by Baldwin et al. and in this case, it can be seen that
many architectures have a single large Core. A limitation of the hidden structure
method is that it only shows which elements (in this case, software applications)
belong to the Core but does not help in describing the structure of that Core.
Thus, future research might extend the hidden structure method with a sub-
method for that purpose. That sub-method could help identify the elements
within the Core that are most important in terms of dependencies and cluster
growth. The hypothesis is that there are some elements in a Core that bind the
group together or that make the group grow faster. As such, removing these
elements or reducing their dependencies (either to or from them) may decrease
the size of the Core and thus the complexity of the architecture. Identifying these
elements also helps pinpoint where the Core is most sensitive to change.
We have also seen in previous work with enterprise application architectures
that these often contain non-directed dependencies, thus forming symmetric
matrices that have special properties and behave differently than those matrices
containing directed dependencies. This could, for instance, be due to the nature
of the link itself (as in social networks) or, as in most cases we have seen, due to
imprecision in data (often because of the high costs of data collection). For
companies, the primary concern is whether two applications are connected. The
direction of the dependency is secondary. In one of our cases, the company had
more than a thousand software applications but did not have an architecture
model or application portfolio describing those applications. For that firm,
collecting information about what applications it had and what those
applications did was of primary importance. That process was costly enough,
and consequently the directions of the dependencies between the applications
were not a priority.
A lack of tool support is one reason for the high costs associated with data
collection. In prior the work of Baldwin et al. (2014), the analysis of internal
coupling in a software system was supported by a tool that explored the source
files and created a dependency graph automatically. In the enterprise
architecture domain, however, such useful practical tools generally do not exist.
Consequently, data collection requires considerable time. The most common
methods are interviews and surveys of people (often managers) with already
busy schedules. As such, future work needs to be directed towards data
collection support in the enterprise architecture domain.
For the hidden structure method to be useful in practice, it needs to be
incorporated into existing or future enterprise architecture tools. Most
companies today already use modeling tools like Rational System Architect,
BiZZdesign Architect, TrouxView, ARIS 9, and MooD Business Architect to
describe their enterprise architecture. Thus, having a stand-alone tool that
supports the hidden structure method is not feasible or very cost efficient.
Moreover, if the method is integrated with current tools, companies can then

DSM 2014

perform a hidden structure analysis by re-using their existing architecture
descriptions.
Last, but not least, the most important future work is to test the VFI/VFO
metrics and the element classification (Shared, Core, Periphery, and Core) with
performance outcome metrics, such as change cost (Lagerström et al., 2014b)
and incidents or defects. Doing so will help prove that the method is actually
useful in architectural work. Currently, we can argue its benefits only with
respect to other existing methods.

6 Conclusions
Although our method is used only in the one case presented in this paper and
few other cases previously (Lagerström et al., 2013; Lagerström et al., 2014a),
the results suggest that it can reveal new facts about the architecture structure on
an enterprise application level, equal to past results in the initial cases of single
software system (Baldwin et al., 2014). The analysis reveals that the hidden
external structure of the software applications at the Power Utility can be
classified as core-periphery with a propagation cost of 44%, architecture flow
through of 93%, and core size of 40%. For the Power Utility, the architectural
visualization and the computed coupling metrics provide valuable input when
planning architectural change projects (in terms of, for example, risk analysis
and resource planning).

References
Baldwin, C. and Clark, K. 2000. Design Rules, Volume 1: The Power of Modularity. MIT

Press.
Baldwin, C., MacCormack, A., and Rusnack, J. 2014. Hidden structure: Using network

methods to map system architecture. Research Policy, Article in Press. Accepted
May 19 2014.

Barabási, A. 2009. Scale-free networks: A decade and beyond. Science 325, 5939, 412-
413.

Brown, N., et al. 2010. Managing technical debt in software-reliant systems. In
Proceedings of the FSE/SDP Workshop on the Future of Software Engineering
Research (FoSeR'10), 47-52.

Cheraghi, D. 2014. Enterprise Application Architecture: How companies can benefit
from using the Enterprise Architecture Analysis Tool. Bachelor thesis, Degree
Project in Computer Science, Communication and Industrial Management, KTH
Royal Institute of Technology.

Chidamber, S. R., and Kemerer, C. F. 1994. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering 20, 6, 476-493.

Dreyfus D. and Wyner, G. 2011. Digital cement: Software portfolio architecture,
complexity, and flexibility. In Proceedings of the Americas Conference on
Information Systems (AMCIS), Association for Information Systems.

Hall, N. R., and Preiser, S. 1984. Combined network complexity measures. IBM journal
of research and development 28, 1, 15-27.

DSM 2014

Lagerström, R., Baldwin, C., MacCormack, A., and Dreyfus, D. 2013. Visualizing and
Measuring Enterprise Architecture: An Exploratory BioPharma Case. In Proc. of
the 6th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modeling
(PoEM). Springer.

Lagerström, R., Baldwin, C., MacCormack, A., and Aier, S. 2014a. Visualizing and
Measuring Enterprise Application Architecture: An Exploratory Telecom Case.
In Proc. of the Hawaii International Conference on System Sciences (HICSS-47),
IEEE.

Lagerström, R., Baldwin, C., MacCormack, A., & Dreyfus, D. 2014b. Visualizing and
Measuring Software Portfolio Architecture: A Flexibility Analysis. Risk and
change management in complex systems: Proceedings of the 16th International
DSM Conference.

MacCormack, A., Baldwin, C., and Rusnak, J. 2012. Exploring the duality between
product and organizational architectures: A test of the "mirroring" hypothesis.
Research Policy 41, 8, 1309-1324.

Opsahl, T., Agneessens, F., and Skvoretz, J. 2010. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks 32, 3, 245-251.

Simon, H. A. 1962. The architecture of complexity. American Philosophical Society 106,
6, 467-482.

Sosa, M., Eppinger, S., and Rowles, C. 2007. A network approach to define modularity
of components in complex products. Transactions of the ASME 129, 1118-1129.

