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Abstract: In this paper, we test a Design Structure Matrix (DSM) based 
method for visualizing and measuring software portfolio architectures. 
Our data is drawn from a power utility company, comprising 192 
software applications with 614 dependencies between them.  We show 
that the architecture of this system can be classified as a “core-periphery” 
system, meaning it contains a single large dominant cluster of 
interconnected components (the “Core”) representing 40% of the system. 
The system has a propagation cost of 44% and architecture flow through 
of 93%. This case and these findings add another piece of the puzzle 
suggesting that the method could be effective in uncovering the hidden 
structure in software portfolio architectures. 
Keywords: Design structure matrices, Software architecture, and 
Software application portfolio 

1 Introduction 
Business environments are constantly evolving, requiring continual changes to 
the software applications that support a business. Moreover, during recent 
decades the sheer number of applications has grown significantly, and they have 
become increasingly interdependent. As a result, the management of software 
applications has become a complex task; many companies find that 
implementing changes to their application portfolio architecture is increasingly 
difficult and expensive.  To help manage this complexity, firms need a way to 
visualize and analyze the modularity of their software portfolio architectures as 
well as the degree of coupling between components. 
Baldwin et al. (2014) present a method to visualize the hidden structure of 
software architectures based on Design Structure Matrices (DSMs) and classic 
coupling measures. This method has been demonstrated on individual software 
systems (such as Linux, Mozilla and Apache) but not (to the same extent) on 
software portfolio architectures in which a large number of applications have 
dependencies to each other (Lagerström et al., 2013) and possibly relationships 
with other types of components such as business groups and/or infrastructure 
elements (Lagerström et al., 2014a). In this paper, we apply Baldwin et. al.’s 
architectural visualization and measurement methods to enterprise wide 
applications, using data collected by Cheraghi (2014) at a Nordic power utility 
company.  This data comprises 192 software applications and 614 dependencies 
between these applications. 
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We show that the Power Utility’s enterprise architecture can be classified as 
core-periphery.  This means that 1) there is one cyclic group (the “Core”) of 
components that is substantially larger than others, and 2) this group comprises a 
substantial portion of the entire architecture.  We find that the Core contains 76 
components, representing 40% of the architecture. 
The remainder of this paper is structured as follows: Section 2 presents related 
work; Section 3 describes the hidden structure method; Section 4 presents the 
power utility case used for the analysis; Section 5 discusses the approach and 
outlines future work; and Section 6 concludes the paper. 

2 Related Work 
Many software applications have grown into large systems containing thousands 
of interdependent components, making it difficult for a designer to understand 
the complexity of the design. As a result, much recent work on the visualization 
and measurement of complex software systems has focused on the use of 
network methods to characterize system structure (Barabási, 2009). Specifically, 
these methods emphasize identifying the linkages (dependencies) that exist 
between different elements (nodes) in the system (Simon, 1962). A key concept 
here is modularity, which refers to the way in which a system’s architecture can 
be decomposed into different parts. Although there are many definitions of 
modularity, authors tend to agree on the fundamental features: the 
interdependence of decisions within modules, the independence of decisions 
between modules, and the hierarchical dependence of modules on components 
that embody standards and design rules (Baldwin and Clark, 2000). 
Studies that use network methods to measure modularity typically focus on 
capturing the level of coupling that exists between different parts of a system.  
The use of graph theory and network measures to analyze software systems 
extends back to the 1980s (Hall and Preiser, 1984). More recently, a number of 
studies have used social network measures to analyze software systems and 
software development organizations (Dreyfus and Wyner, 2011).  Other studies 
make use of Design Structure Matrices (DSMs), which highlight the network 
structure of a complex system using a square matrix (Sosa et al., 2007). DSMs 
have been used widely to visualize the architecture of and measure the coupling 
between the components of individual software systems (MacCormack et al, 
2012). 

3 Method Description 
The method we use for network representation is based on and extends the 
classic notion of coupling. Specifically, after identifying the coupling 
(dependencies) between the elements in a complex architecture, we analyze the 
architecture in terms of hierarchical ordering and cyclic groups and classify 
elements in terms of their position in the resulting network (this method is 
described in Baldwin et al, 2014). 
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In a Design Structure Matrix (DSM), each diagonal cell represents an element 
(node), and the off-diagonal cells record the dependencies between the elements 
(links): If element i depends on element j, a mark is placed in the row of i and 
the column of j. The content of the matrix does not depend on the ordering of 
the rows and columns, but different orderings can reveal (or obscure) the 
underlying structure. Specifically, the elements in the DSM can be arranged in a 
way that reflects hierarchy, and, if this is done, dependencies that remain above 
the main diagonal will indicate the presence of cyclic interdependencies (A 
depends on B, and B depends on A). The rearranged DSM can thus reveal 
significant facts about the underlying structure of the architecture that cannot be 
inferred from standard measures of coupling. In the following subsections, a 
method that makes this “hidden structure” visible is presented. 

3.1 Identify the direct dependencies and compute the visibility matrix 
The architecture of a complex system can be represented as a directed network 
composed of N elements (nodes) and directed dependencies (links) between 
them. This DSM is called the “first-order” matrix.  If the first-order matrix is 
raised to successive powers, the result will show the direct and indirect 
dependencies that exist for successive path lengths. Summing these matrices 
yields the visibility matrix V (Figure 1), which denotes the dependencies that 
exist for all possible path lengths. The values in the visibility matrix are 
constrained to be binary, capturing only whether a dependency exists and not the 
number of possible paths that the dependency can take (MacCormack et al., 
2006). The matrix for n=0 (i.e., a path length of zero) is included when 
calculating the visibility matrix, implying that a change to an element will 
always affect itself. 

 

Figure 1. A directed graph with the corresponding DSM and visibility matrix. 

Several measures are constructed based on the visibility matrix V. First, for each 
element i in the architecture, the following are defined: 

- VFIi (Visibility Fan-In) is the number of elements that directly or 
indirectly depend on i. This is found by summing entries in the ith 
column of V. 
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- VFOi (Visibility Fan-Out) is the number of elements that i directly or 
indirectly depends on. This is found by summing entries in the ith row 
of V. 

In Figure 1, element A has VFI equal to 1, meaning that no other elements 
depend on it, and VFO equal to 6, meaning that it depends on all other elements 
in the architecture. 

3.2 Identify and rank cyclic groups 
The next step is to find the cyclic groups in the architecture. By definition, each 
element within a cyclic group depends directly or indirectly on every other 
member of the group. First, the elements are sorted, first by VFI descending then 
by VFO ascending. Next one proceeds through the sorted list, comparing the 
VFIs and VFOs of adjacent elements. If the VFI and VFO for two successive 
elements are the same, they might be members of the same cyclic group. 
Elements that have different VFIs or VFOs cannot be members of the same 
cyclic group, and elements for which ni=1 cannot be part of a cyclic group at all. 
However elements with the same VFI and VFO could be members of different 
cyclic groups. In other words, disjoint cyclic groups may, by coincidence, have 
the same visibility measures. To determine whether a group of elements with the 
same VFI and VFO is one cyclic group (and not several), we simply inspect the 
subset of the visibility matrix that includes the rows and columns of the group in 
question and no others. If this submatrix does not contain zeros, the group is one 
cyclic group.  Cyclic groups found via this algorithm are referred to as the 
“cores” of the system. The largest cyclic group is defined as the “Core”. Once 
the Core is identified, the other components in the architecture can be classified 
into groups, as follows: 

- “Core” elements are members of the largest cyclic group and have the 
same VFI and VFO, denoted by VFIC and VFOC, respectively. 

- “Control” elements have VFI < VFIC and VFO ≥ VFOC. 
- “Shared” elements have VFI ≥ VFIC and VFO < VFOC. 
- “Periphery” elements have VFI < VFIC and VFO < VFOC. 

Using the above classification scheme, a reorganized DSM can be constructed 
that reveals the “hidden structure” of the architecture by placing elements in the 
order Shared, Core, Periphery, and Control down the main diagonal of the DSM, 
and then sorting within each group by VFI descending then VFO ascending (cf. 
Figure 4). 
The method for classifying architectures into different types is discussed in 
empirical work by (Baldwin et al., 2014). Specifically, the authors find a large 
percentage of the architectures they analyzed contained a large cyclic group of 
components that was dominant in two senses: i) it was large relative to the 
number of elements in the system, and ii) it was substantially larger than any 
other cyclic group. This architectural type is classified as “core-periphery.”  
Where architectures have multiple cyclic groups of similar size, the architecture 
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is referred to as “Multi-Core”.  Finally, if the Core is small, relative to the 
system as a whole, the architecture is referred to as “Hierarchical.”  

 
Figure 2. The architecture classification scheme. 

4 Power Utility Case 
We apply the method to a real-world example of a software portfolio 
architecture from a Nordic power utility company investigated by (Cheraghi, 
2014). The data collected was stored in the company’s enterprise architecture 
tool/database. The subset we are investigating are applications related to what 
they refer to as their “smart grid” applications. These are thus mostly technical 
systems supporting the power distribution process, but also some administrative 
systems that have dependencies to and from the smart grid architecture.  

4.1 Identifying the direct dependencies between the architecture 
components 
The Power Utility dataset contains 192 software applications and 614 
dependencies. The components in the architecture are applications supporting; 
meter reading, meter data management, contact and phone information, 
enterprise resource planning, enterprise asset management, work clearance and 
shift communication, trading, network information system, mobile workforce 
management, billing and service invoicing, customer self service, customer 
information, call center, BI data warehouse, distribution management, corporate 
compliance, access control, SCADA, document management, energy data 
management, project portfolio, sales, time and attendance capturing, et cetera. 
The dependencies between these components are information flows, e.g. 
Application A depends on information being sent from Application B. 
We can represent this architecture as a directed network, with the architecture 
components as nodes and dependencies as links, and convert that network into a 
DSM.  
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Figure 3. Input Design Structure Matrix (DSM). 

From the DSM, we calculate the Direct Fan-In (DFI) and Direct Fan-Out (DFO) 
measures by summing the rows and columns for each element respectively.  The 
next step is to derive the visibility matrix by raising the first-order matrix to 
successive powers and summing the results. Then, Visibility Fan-In (VFI) and 
Visibility Fan-Out (VFO) measures were calculated by summing the rows and 
columns for each element. See Table 1 for a sample of the Fan-In and Fan-Outs. 

Table 1. A sample of Power Utility Fan-In and Fan-Outs. 

Software 
application DFI DFO VFI VFO Class. 

SA1 2 1 122 1 Shared 
SA2 2 1 8 1 Peripheral 
SA3 3 2 121 133 Core 
SA4 29 36 121 133 Core 
SA5 4 4 121 133 Core 
SA6 31 30 121 133 Core 
SA7 2 2 3 134 Control 
… … … … …  
SA103 1 2 1 2 Peripheral 

 

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

160

180

Original DSM



DSM 2014 

To identify cyclic groups, we order the list of architectural components based on 
VFI descending and VFO ascending. This revealed a number of possible cyclic 
groups (VFI=VFO).  By inspecting the visibility submatrices, we eliminated 
groups that had the same visibility measures by coincidence. After this 
procedure, we found the largest cyclic group (the “Core”) contained 76 
components, while the second largest cyclic group contained only three.  The 
architecture is thus defined as core-periphery (compare with the architecture 
classification scheme presented in Figure 2). The Core makes up 40% of the 
system, and is 25 times larger than the next largest cyclic group. 

4.2 Classifying the components and visualizing the architecture 
The next step was to classify the remainder of the components as Shared, 
Periphery, or Control using the definitions above. We found there were 57 
Shared (30%), 76 Core (40%), 14 Peripheral (7%), and 23 Control (23%) 
components. Figure 4 shows the rearranged DSM, with the blocks labeled 
according to our classification. 

5 Discussion and Research Outlook 
As presented in (Baldwin et al., 2014), the hidden structure method was 
designed based on empirical regularity from cases investigating large complex 
software systems. All those cases were focused on one software system at a 
time, independent of its surrounding environment, analyzing the dependencies 
between its source files. In other words, that work considered the internal 
coupling of a system. In this paper, the same method is tested on the 
dependencies between software applications; i.e., the current work considers the 
external coupling between applications. 
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Figure 4. Power Utility rearranged DSM showing „first-order“ dependencies. 

For the Power Utility case, the method revealed a hidden structure (thus 
presenting new facts) similar to those cases on software architecture investigated 
in previous studies. And the method also helped classify the architecture as core-
periphery using the same rules and boundaries as in the previous cases. We have 
now collected a number of cases testing the method and they all seem to point in 
the same direction. For further cases see Lagerström et al. (2013; 2014a). 
Compared to other complexity, coupling, and modularity measures, the hidden 
structure method considers not only the direct network structure of an 
architecture but also takes into consideration the indirect dependencies between 
applications. Both these features provide important input for management 
decisions. For instance, applications that are classified as Periphery or Control 
are probably easier (and less costly) to modify because of the lower probability 
of a change spreading and affecting other applications. In contrast, applications 
that are classified as Shared or Core are more difficult to modify because of the 
higher probability of changes spreading to other applications. A first study 
indicating this has been reported (see Lagerström et al., 2014b). This 
information can be used in change management, project planning, risk analysis, 
and so on. 
From Table 1, we see that software applications 1, 2, 3, 5, and 7 all have low 
Direct Fan-In (DFI) and Direct Fan-Out (DFO) numbers. As such, those 
applications might be considered as low risk when implementing changes 
(compared to application 4 and 6 which have high DFI and DFO values). But if 
we also look at the Visibility Fan-In (VFI) and Visibility Fan-Out (VFO) 
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numbers, which measure indirect dependencies, we see that applications 3 and 5 
both belong to the Core of the architecture. Thus any change to one of those 
might spread to many other applications (even though they have few direct 
dependencies). The same goes for application 1, which is classified as Shared. 
Therefore, we argue that the hidden structure method, which considers indirect 
dependencies, provides more valuable information for decision-making. 
In our experience, we have found that many companies working with enterprise 
modeling have architecture blueprints that describe their application portfolio. 
Often, these are described using entity-relationship diagrams with boxes and 
arrows. When the entire application architecture is visualized using this type of 
model, the result is often a chaotic, messy picture that is difficult to interpret. 
Typically these models depict somewhat of a “spaghetti” architecture, with 
many applications and dependencies. This representation can be directly 
translated to the architect’s view DSM (cf. Figure 3). But this visualization does 
not really provide that much information either, other than that applications are 
depending on each other in a complex network. With this representation (and the 
entity-relationship model), we can trace a dependency between two applications, 
which then can be used for decision-making (compare with the discussion above 
on DFI/DFO versus VFI/VFO measures). However, if we instead use the hidden 
structure method and rearrange the DSM, as in Figure 4, we can actually see 
what applications are considered to be Core, Shared, Control, and Periphery. 
This gives us more insight about the structure of the architecture. We found that 
in the Power Utility Case the Core applications are spread out across the 
business processes and they vary between small, very specific tools to large, 
central ERP systems and data warehouses. Without the hidden structure method, 
an architect would have difficulty uncovering this type of complex architecture. 
The feedback from the case company was that they were surprised when 
presented with the results, both in terms of the Core size and architecture 
classification, and in terms of what systems that were found in the Core.  
Measures such as the propagation cost, the architecture flow through, and the 
size of the core can be useful when trying to improve an architecture. Future 
scenarios can be compared in terms of these metrics. 
A first step in future research is to test the hidden structure method with more 
enterprise application architectures. This will provide valuable input either 
supporting the method as currently constructed or with improvement 
suggestions for future versions. Another step would be to extend the application 
area. Future research could involve tests with more “complete” enterprise 
architecture models, considering many different types of elements such as 
business processes and roles, software applications and services, and databases 
and servers. One hypothesis is that business layer elements typically are 
classified as Control, infrastructure elements as Shared, and software elements 
as Core. This, however, remains to be tested (a first indication of this is reported 
in Lagerström et al., 2013). If the hidden structure method does enable the useful 
visualization and classification of complete enterprise architecture descriptions 
(including layer between different object groups), then it could be deployed to 
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analyze the quality of a particular architecture and possibly help improve that 
quality in terms of the removal or addition of elements and dependencies. 
Both in the previous work by Baldwin et al. and in this case, it can be seen that 
many architectures have a single large Core. A limitation of the hidden structure 
method is that it only shows which elements (in this case, software applications) 
belong to the Core but does not help in describing the structure of that Core. 
Thus, future research might extend the hidden structure method with a sub-
method for that purpose. That sub-method could help identify the elements 
within the Core that are most important in terms of dependencies and cluster 
growth. The hypothesis is that there are some elements in a Core that bind the 
group together or that make the group grow faster. As such, removing these 
elements or reducing their dependencies (either to or from them) may decrease 
the size of the Core and thus the complexity of the architecture. Identifying these 
elements also helps pinpoint where the Core is most sensitive to change. 
We have also seen in previous work with enterprise application architectures 
that these often contain non-directed dependencies, thus forming symmetric 
matrices that have special properties and behave differently than those matrices 
containing directed dependencies. This could, for instance, be due to the nature 
of the link itself (as in social networks) or, as in most cases we have seen, due to 
imprecision in data (often because of the high costs of data collection). For 
companies, the primary concern is whether two applications are connected. The 
direction of the dependency is secondary. In one of our cases, the company had 
more than a thousand software applications but did not have an architecture 
model or application portfolio describing those applications. For that firm, 
collecting information about what applications it had and what those 
applications did was of primary importance. That process was costly enough, 
and consequently the directions of the dependencies between the applications 
were not a priority. 
A lack of tool support is one reason for the high costs associated with data 
collection. In prior the work of Baldwin et al. (2014), the analysis of internal 
coupling in a software system was supported by a tool that explored the source 
files and created a dependency graph automatically. In the enterprise 
architecture domain, however, such useful practical tools generally do not exist. 
Consequently, data collection requires considerable time. The most common 
methods are interviews and surveys of people (often managers) with already 
busy schedules. As such, future work needs to be directed towards data 
collection support in the enterprise architecture domain. 
For the hidden structure method to be useful in practice, it needs to be 
incorporated into existing or future enterprise architecture tools. Most 
companies today already use modeling tools like Rational System Architect, 
BiZZdesign Architect, TrouxView, ARIS 9, and MooD Business Architect to 
describe their enterprise architecture. Thus, having a stand-alone tool that 
supports the hidden structure method is not feasible or very cost efficient. 
Moreover, if the method is integrated with current tools, companies can then 
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perform a hidden structure analysis by re-using their existing architecture 
descriptions. 
Last, but not least, the most important future work is to test the VFI/VFO 
metrics and the element classification (Shared, Core, Periphery, and Core) with 
performance outcome metrics, such as change cost (Lagerström et al., 2014b) 
and incidents or defects. Doing so will help prove that the method is actually 
useful in architectural work. Currently, we can argue its benefits only with 
respect to other existing methods. 

6 Conclusions 
Although our method is used only in the one case presented in this paper and 
few other cases previously (Lagerström et al., 2013; Lagerström et al., 2014a), 
the results suggest that it can reveal new facts about the architecture structure on 
an enterprise application level, equal to past results in the initial cases of single 
software system (Baldwin et al., 2014). The analysis reveals that the hidden 
external structure of the software applications at the Power Utility can be 
classified as core-periphery with a propagation cost of 44%, architecture flow 
through of 93%, and core size of 40%. For the Power Utility, the architectural 
visualization and the computed coupling metrics provide valuable input when 
planning architectural change projects (in terms of, for example, risk analysis 
and resource planning). 
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