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Elder siblings and the taming of hyperbolic

3-manifolds

Michael H. Freedman and Curtis T. McMullen∗
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Abstract

A 3-manifold is tame if it is homeomorphic to the interior of a
compact manifold with boundary. Marden’s conjecture asserts that
any hyperbolic 3-manifold M = H3/Γ with π1(M) finitely-generated
is tame.

This paper presents a criterion for tameness. We show that wildness
of M is detected by large-scale knotting of orbits of Γ. The elder sibling
property prevents knotting and implies tameness by a Morse theory
argument. We also show the elder sibling property holds for all convex
cocompact groups and a strict form of it characterizes such groups.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Seeing wildness in an orbit of Γ . . . . . . . . . . . . . . . . 2
3 Elder siblings . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Horoballs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Tameness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6 Convex cocompact groups . . . . . . . . . . . . . . . . . . . . 13

∗Research of both authors partially supported by the NSF. 1991 Mathematics Subject

Classification: Primary 57N10, Secondary 30F40.



1 Introduction

Let M = H3/Γ be a complete hyperbolic 3-manifold, presented as a quotient
of hyperbolic 3-space by the action of a Kleinian group Γ. We say M is tame

if it is homeomorphic to the interior of a compact manifold with boundary.
Clearly π1(M) is finitely generated if M is a tame manifold. Marden’s

conjecture asserts the converse: any hyperbolic 3-manifold with finitely gen-
erated fundamental group is tame.

In this paper we discuss a geometric criterion for tameness. To give
some feel for Marden’s conjecture, we begin in §2 by describing what a wild
Kleinian group, if it exists, would look like. It turns out any orbit of Γ would
be knotted at arbitrarily large scales. We then introduce the elder sibling

property for a configuration of balls in hyperbolic space. This condition
prevents knotting by a Morse theory argument (§3).

Our main result states that if the Γ-orbit of a ball satisfies the elder
sibling property, then M is tame (§5).

We do not expect the elder sibling property to hold for all hyperbolic
3-manifolds; rather, we hope it identifies a class of well-behaved manifolds
that will serve as a point of departure for a deeper study of tameness. In
§6, we show a strict form of the elder sibling property holds for all convex
cocompact Kleinian groups, and in fact characterizes such groups.

A brief history. In the early 1960s, Ahlfors and Bers showed finitely gen-
erated Kleinian groups are analytically agreeable; for example, the quotient
Riemann surface Ω/Γ always has finite hyperbolic area (where Ω ⊂ Ĉ is the
domain of discontinuity) [Ah], [Bers]. Ahlfors proposed that the limit set of
a finitely generated Kleinian group should be either the whole sphere, or of
measure zero.

In his work on the 3-dimensional topology of Kleinian groups, Marden
showed that geometrically finite manifolds are tame [Mrd], and raised the
question of tameness in general.

Through work of Thurston and Bonahon, the Marden and Ahlfors conjec-
tures were both established for 3-manifolds with incompressible ends [Bon],
[Th]. (These are manifolds admitting a Scott core with incompressible
boundary). The proofs use pleated surfaces sweeping out the geometrically
infinite ends.

Canary showed, using branched coverings, that tame manifolds with
compressible ends can also be equipped with sufficiently many pleated sur-
faces. Thus Marden’s conjecture implies Ahlfors’ conjecture [Can].

At present, both conjectures remain open in the compressible case, even
for the simplest case of manifolds with π1(M) ∼= Z ∗ Z.
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The yet stronger ending lamination conjecture of Thurston proposes a
complete isometric classification of hyperbolic 3-manifolds with finitely gen-
erated fundamental group, in terms of topology, a combinatorial lamination
and the Riemann surface at infinity.

For a more detailed account of work towards this classification, see [Mc].

2 Seeing wildness in an orbit of Γ

Let M = H3/Γ be a hyperbolic 3-manifold with π1(M) finitely generated.
The manifold M is determined by the finitely generated Kleinian group

Γ ∼= π1(M) ⊂ Isom(H3).
We say M is tame if it is homeomorphic to the interior of a compact

3-manifold with boundary; otherwise it is wild. The issue of tameness of M
was raised in [Mrd], so we refer to the following as the Marden conjecture.

Conjecture 2.1 Any hyperbolic 3-manifold with finitely generated funda-

mental group is tame.

In this section we point out that wildness of M , if it occurs, is reflected
in large-scale knotting behavior of an orbit Γx ⊂ H3.

For any set X ⊂ H3, let

Nr(X) = {y ∈ H
3 : d(x, y) < r for some x ∈ X}

denote an r-neighborhood of X. In the case X = Γx we will be interested
in the following:

Engulfing condition. For every r > 0 there exists an R ≥ r such that

every homotopy class of map

f : (I, ∂I) → (H3 − Nr(X), ∂Nr(X))

has a representative with f(I) contained in NR(X).

Here I = [0, 1]. The engulfing condition says that the inclusion of pairs

(NR(X) − Nr(X), ∂Nr(X)) ↪→ (H3 − Nr(X), ∂Nr(X))

induces an epimorphism on relative π1, provided we adopt the conven-
tion that no basepoints are marked in the (possibly disconnected) subspace
∂Nr(X).
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Theorem 2.2 The manifold M is tame if and only if some orbit X = Γx
satisfies the engulfing condition.

The main tool in the proof is [Tu]:

Theorem 2.3 (Tucker) A 3-manifold M is tame iff for every compact

submanifold K ⊂ M , every component of M − K has finitely generated

fundamental group.

Proof of Theorem 2.2. Let x be the image of x in M = H3/Γ. By
Tucker’s theorem, π1(M − Nr(ux), uy) is finitely generated for all r and all
uy ∈ ∂Nr(ux) if and only if M is tame.

Let y ∈ H3 be a lift of uy. Then π1(M −Nr(ux), uy) may be interpreted
as the group of arcs in H3 − Nr(Γx) starting at y and ending on Γy. These
arcs should be taken up to deformation in H3 −Nr(Γx), and composition of
arcs is defined with the help of the covering translation group π1(M).

The condition that π1(M − Nr(ux), uy) is finitely generated for all r is
equivalent to: for all r > 0, there exists R > r such that

π1(NR(ux) − Nr(ux), uy) → π1(M − Nr(ux), uy)

is surjective. Using the above interpretation of π1, we see this surjectivity
is equivalent to the engulfing condition for Γx.

Recalling that knotting of a solid torus K ⊂ S3 results when π1(∂K) →
π1(S3−K) is not onto, it may be appreciated that the failure of the engulfing
condition means an orbit of Γ is “coarsely knotted at arbitrarily large scales”.
This is an elementary but graphic way to understand what a wild Kleinian
group would have to look like.

It is fascinating that, as far as one knows, the orbit of x ∈ H3 under two
generators α, β ∈ Isom(H3) might be a discrete set exhibiting such large-
scale knotting. A computer search for such knotting in the 3-dimensional
parameter space of such groups might be complicated by the fact that the
set of wild 〈α, β〉 has no interior. Indeed, any open set of discrete groups
consists of geometrically finite groups [Sul].

3 Elder siblings

Motivated by the preceding section, we now consider an arbitrary discrete
set X = 〈xi〉 in H3 and the collection of open balls Br = 〈B(xi, r)〉 = 〈Bi〉 .
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We denote the complement of these balls by

Cr = H
3 −

⋃
Br

and say Br is unknotted if

π1(∂Cr, ∗) → π1(Cr, ∗)

is surjective for every choice of basepoint. Unknotting is a strong form of
the engulfing condition (with r = R), at least when

⋃
Br is connected.

The elder sibling property. We say Br has the elder sibling property if
there is some ball, say B1 ∈ Br, such that any Bi disjoint from B1 meets
another ball Bj with d(Bj , B1) < d(Bi, B1).

Equivalently, any Bi can be joined to B1 by a finite chain of balls moving
monotonically closer to B1. Thus:

The elder sibling property implies
⋃

Br is connected.

To explain the terminology, consider the Poincaré ball model, where H3

is realized as the unit ball in R3 with the metric 2 |dx|/(1− |x|2). Normalize
coordinates so that B1 = B(x1, r) is centered at x1 = 0. Then the elder
sibling property says any ball Bi *= B1 meets another ball Bj, its elder

sibling, with diamBj > diamBi in the Euclidean metric.
In our applications we will have X = Γx so any ball can equally well

play the role of B1. Note also:

Once Br has the elder sibling property, so does Bs for any s > r.

Our goal is to show that configurations of balls with the elder sibling
property are unknotted. For the proof, which is based on Morse theory,
it is convenient to arrange that Cr is a piecewise smooth manifold with
boundary. Thus we will exclude from consideration countably many values
of r to achieve the following generic conditions on the spheres ∂Bi:

• any two spheres meet transversally in a 1-manifold (∼= ∅ or S1);

• any three spheres meet transversally in a finite set (∼= ∅ or S0); and

• any four spheres have empty intersection.

In the statement below, “almost every s ≥ r” means at most countably
many values are excluded.
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Theorem 3.1 Suppose Br has the elder sibling property. Then for almost

every s ≥ r, Bs is unknotted; that is,

π1(∂Cs, ∗) → π1(Cs, ∗)

is surjective for every choice of basepoint.

Proof. Let h(x) = |x|2 denote the radial coordinate in the ball model for
H3 ∼= B3 ⊂ R3. For simplicity of notation, set C = Cs. We will describe
(C, ∂C) using ambient Morse theory for the (height) function h.

Let
Bs = {B1, B2, . . .}

and let a be the height of ∂B1. For b ≥ a consider the pair

(Cb, (∂C)b) = (C ∩ h−1[a, b], (∂C) ∩ h−1[a, b]).

Whenever b > a is not a critical value of h, Cb is a piecewise smooth 3-
manifold and (∂C)b is a submanifold of ∂(Cb). For b > a small enough, the
pair (Cb, (∂C)b) is homeomorphic to a product (D × [a, b],D × {a}), where
D = (∂C) ∩ (∂B1).

As b increases towards 1, critical points of h on ∂C are encountered. For
almost every s the balls Bs are in general position, and therefore the critical
points of h are topologically nondegenerate. We classify the critical points
into six types, labeled by (±, i), where i = 0, 1 or 2 indicates the index of
the critical point, (+, i) indicates the critical point lies above the interior of
C (with respect to h), and (−, i) indicates it lies below.

A complete table of critical point transitions appears in Figure 1. As the
height increases past a critical point of type (+, i), a 2-dimensional i-handle
is attached to ∂C. At a critical point of type (−, i), an i-handle pair is
attached to (C, ∂C); that is, a 3-dimensional i-handle is attached to C and
a 2-dimensional i-handle is attached to ∂C.

The configurations of balls associated with these critical point types are
sketched in Figure 2. At a critical point of type (±, i), (i + 1) spheres come
together on ∂C.

Before studying the Morse theory of C, we make a simplification to re-
move all critical points of the type (+, 0). This simplification is possible
because of the elder sibling assumption, and it is the key to proving unknot-
tedness.

Let us index the balls Bi for i > 1 in order of increasing maximum height,
so Bi moves away from B1 as i increases. Define %Bi ⊆ Bi inductively by
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Figure 1. Classification of critical points and handles.
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Figure 2. Critical point configurations
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%B1 = B1 and

%Bi = {x ∈ Bi : h(x) ≥ infimum of h on Qi},

where

Qi = Bi ∩
i−1⋃

j=1

%Bj.

We call %Bi the truncation of Bi; note that we may have %Bi = Bi.
Now thinking of Bi as a planet orbiting B1, cut along the hyperbolic

sphere S(x1, si) whose radius is tangent to Bi, to partition Bi into a light

side Li and a dark side Di. The light side

Li = {x ∈ Bi : d(x, x1) ≤ si}

has the property that ∂Li ∩ ∂Bi consists of those points on ∂Bi that can be
illuminated by a light source at the center x1 of B1. The dark side is the
complement Di = Bi − Li.

Lemma 3.2 If j < i and Bj meets Bi, then the dark side of Bj meets the

light side of Bi.

Proof. Direct; see Figure 3.

Figure 3. The light and dark sides.

Corollary 3.3 The dark side is always preserved in the truncated ball; that

is, Di ⊂ %Bi ⊂ Bi.

Proof. By induction on i. By the elder sibling property, every Bi, i > 1
meets a Bj with j < i. By induction, Dj ⊂ %Bj, and by the Lemma above,
Dj meets Li. Thus the infimum of h on Qi is obtained on the light side of
Bi, so Di is preserved in the truncation %Bi.
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Lemma 3.4 A pair of truncated balls %Bi and %Bj meet iff the original

balls Bi and Bj meet.

Proof. We may assume j < i. Then Dj meets Bi by the Lemma, so %Bj

meets Bi; since truncation preserves the intersection with balls of smaller
index, %Bi meets %Bj.

After completing the truncation procedure, the complement C becomes
%C = H3 −

⋃
%Bi.

Lemma 3.5 The pair (%C, ∂(%C)) is homeomorphic to (C, ∂C).

Proof. We will construct an ambient isotopy φ : [0, 1]×H3 → H3 moving C
to %C. This isotopy will be a concatenation of isotopies φi : [0, 1]×H3 → H3

such that φi has the effect of replacing Bi by %Bi. That is, φi will move Ci

to Ci+1, where

Ci = H
3 −

(
i−1⋃

1

%Bi ∪
∞⋃

i

Bi

)

.

To construct φi, consider a geodesic ray γ based at x1 and passing
through Ci+1 − Ci. We claim δ = γ ∩ (Ci+1 − Ci) is convex.

Indeed, if γ meets no Bj between Bi and %Bi, then δ is convex because
Bi −%Bi is convex. Otherwise, let Bj be the first ball γ meets. Then j > i
by the definition of %Bi. Since Bj is farther from x1 than Bi, as the ray γ
continues through Bj it meets the dark side of Bi before exiting Bj . But
the dark side of Bi is contained in %Bi by Corollary 3.3, so δ is a segment
running between ∂Bi and ∂Bj .

It is now evident that we may construct φi by pushing radially from x1

to move from Ci to Ci+1. The isotopy can be supported arbitrarily close to
Bi, and within the cone of rays from x1 to Bi. A given point in H3 is moved
by only finitely many of the φi, so the concatenation of these isotopies gives
the desired motion φ.

Now on %C the height function h has no critical points of type (+, 0) but
instead h has nongeneric flat spots on ∂(%C). Each such flat spot consists
of material belonging to (possibly) several truncated balls %Bi1, . . . ,%Bin ,
with i1 < i2 < . . . < in. By the elder sibling property and Lemma 3.4, %Bi1

meets a ball %Bj , j < i1, along a sheet of ∂(%C) where ∇h *= 0. This
allows the height function to be perturbed to remove the flat spots, at the
cost of possibly introducing new critical points of types other than (+, 0)
(see Figure 4).
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Figure 4. Removal of flat spots.

Combining Lemma 3.5 and the preceding paragraph, we obtain a Morse
function on (C, ∂C) relative to (Ca, (∂C)a) with no (+, 0) critical points.
The 3-manifold (Cb, (∂C)b) satisfies the conclusion of Theorem 3.1 for b > a
small enough. It remains to consider the effect of passing critical points of
types (−, 0), (+, 1), (−, 1), (−, 2) and (+, 2).

By a perturbation of h we may assume distinct critical points have dis-
tinct critical values. For a given critical value c let

(M,B) = (Cb, (∂C)b),

(M ′, B′) = (Cd, (∂C)d),

where b < c < d and [b, d] is disjoint from other critical values. We will
show that in passing from (M,B) to (M ′, B′), the surjectivity of π1(B, ∗) →
π1(M, ∗) is preserved.

A (−, 0) critical point adds a new simply-connected component to each
of M and B, so surjectivity is preserved.

A (+, 1) critical point enlarges B by a 1-handle without changing M , so
we have a surjection

π1(B
′, ∗) ! π1(M

′, ∗) ∼= π1(M, ∗)

as before.
A (−, 1) critical point adds a (1, 1)-handle pair which either joins two

components of M or joins the same component to itself. In the case of two
components,

π1(B, pi) ! π1(M,pi), i = 1, 2

10



becomes

π1(B, p1) ∗ π1(B, p2) ∼= π1(B
′, ∗) ! π1(M

′, ∗) ∼= π1(M,p1) ∗ π1(M,p2).

In the case of one component,

π1(B, ∗) ! π1(M, ∗)

becomes

π1(B, ∗) ∗ Z ∼= π1(B
′, ∗) ! π1(M

′, ∗) ∼= π1(M, ∗) ∗ Z.

In either case, surjectivity is preserved.
Finally a critical point of type (+, 2) adds a relation to π1(B) which

already represents a relation in π1(M); and a (−, 2) critical point adds a
pair of compatible relations to π1(B) and π1(M). In either case surjectivity
is preserved. This completes the proof of Theorem 3.1.

Sources of knotting. It is a general principle that knotting and linking
in the classical dimension can be traced back to the presence of extra (+, 0)
handles or local maxima in the Morse theory of the closed complement. For
example, the same principle shows a one-bridge knot K ⊂ R3 is unknotted.

4 Horoballs

The elder sibling property has a natural generalization to horoballs, which
can be thought of as the limiting case where the centers of the balls move
off to infinity.

To state this generalization, letH = 〈Hi〉 be a collection of open horoballs
in H3. We say H has the elder sibling property if there is a horoball in H,
say H1, such that any Hi disjoint from H1 meets another horoball Hj with
d(Hj ,H1) < d(Hi,H1).

For horoballs, the elder sibling property is conveniently visualized in the
upper half-space model H3 = C × R+, normalized so H1 = {(z, t) : t > 1}.
Then the horoballs Hi, i > 1 are finite Euclidean balls resting on C, and any
ball disjoint from H1 meets another ball (its elder sibling) of greater height
in the t-coordinate.

We also need an assumption on H to replace the discreteness of the
centers of balls in Br from the previous section. To state this assumption,
for r ≥ 0 let Hi(r) = Nr(Hi) ⊃ Hi denote the expanded horoball formed by
an r-neighborhood of Hi.
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We say H is locally finite if for any i, r > 0, Hi(r) meets only finitely
many Hj. For example, in the ball model for H3, suppose the bases of the
horoballs form a discrete subset of S2

∞
, and the Euclidean diameter of Hi

tends to zero as i → ∞; then H is locally finite.
Let Hr = {Hi(r)}, and denote the complement by

Cr = H
3 −

⋃
Hr.

Theorem 4.1 Suppose H is a locally finite collection of horoballs with the

elder sibling property. Then for almost every r > 0, Hr is unknotted; that

is,

π1(∂Cr, ∗) → π1(Cr, ∗)

is surjective for every choice of basepoint.

Sketch of the proof. The proof follows the same lines as that of Theorem
3.1. Countably many values of r must be excluded to obtain generic inter-
sections between the horospheres ∂Hi. Normalizing so H1 = {(z, t) : t > 1}
in H3 = C × R, we can use h(z, t) = 1 − t as a Morse function on Cr. Then
(+, 0) handles can be removed by truncation as before. The remainder of
the analysis is the same, with the added simplification that (−, 2) handles
do not occur.

5 Tameness

Let M = H3/Γ be a hyperbolic 3-manifold with π1(M) finitely generated.
In this section we apply the elder sibling property to deduce tameness.

Theorem 5.1 Suppose there is a ball B(x, r) ⊂ H3 such that

B = Γ · B(x, r) = {B(γx, r) : γ ∈ Γ}

has the elder sibling property. Then M = H3/Γ is tame.

Proof. Let X = Γx; we will verify the engulfing condition. For s ≥ r let

f : (I, ∂I) → (H3 − Ns(X), ∂Ns(X))

be an arc. Since Ns(X) is connected for all s ≥ r, this arc can be deformed
to start and end at a single basepoint ∗ ∈ ∂Ns(X). By Theorem 3.1 the
map

π1(∂Ns(X), ∗) → π1(H
3 − Ns(X), ∗)
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is surjective for almost every s ≥ r; so f can be deformed into ∂Ns(X).
Thus the engulfing condition is verified and M is tame by Theorem 2.2.

Theorem 5.2 Suppose there is a horoball H ⊂ H3 tangent to the domain

of discontinuity Ω of Γ, such that H = Γ · H has the elder sibling property.

Then M is tame.

Proof. Let H(r) = Nr(H) and let H ′(r) be the image of H(r) in M . Since
H rests on the domain of discontinuity, Hr = Γ · H(r) is a locally finite
collection of horoballs. Since H has the elder sibling property, so does Hr.
By Theorem 4.1 and the interpretation of π1 as in the proof of Theorem 2.2,
for almost every r > 0, each component of M −H ′(r) has finitely generated
fundamental group.

Let K ⊂ M be a compact submanifold; then K ⊂ H ′(r) for all r suffi-
ciently large, so we have almost verified Tucker’s criterion for tameness. The
only problem is that H ′(r) is not compact, since it touches the Riemann sur-
face at infinity Ω/Γ of M . To fix this, consider a small 3-disk neighborhood
D of the base of H in H3∪S2

∞
. Choose D small enough that D∩H3 embeds

in M disjointly from K. Then subtracting the image of D from H ′(r) ren-
ders it compact, while topologically adding a 2-handle to M − H ′(r). Thus
π1 remains finitely generated and Tucker’s criterion is verified.

Horoballs on the limit set. The same argument shows M is tame if
there is an H such that H = Γ · H is locally finite and has the elder sibling
property. But it is hard to guarantee local finiteness when the base z of H
is in the limit set; for example, local finiteness fails if z is in the horocyclic
limit set of Γ.

6 Convex cocompact groups

In this section we show the elder sibling property is achieved for a large class
of Kleinian groups, namely those which are convex cocompact (geometrically
finite without cusps). In fact, a strict form of the elder sibling property
characterizes these groups.

Definitions. A Kleinian group Γ is cocompact if M = H3/Γ is compact. It
is convex cocompact if the convex core of M ,

K(M) = hull(Λ)/Γ,
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is compact. Here hull(Λ) ⊂ H3 is the smallest convex set containing all
geodesics with both endpoints in the limit set. We modify this definition
slightly if Γ is elementary: then Γ is convex cocompact if |Λ| *= 1, or equiv-
alently if Γ contains no parabolic elements.

A collection of balls B = 〈Bi〉 has the strict elder sibling property if there
is a B1 ∈ B and an r > 0 such that every Bi meets a Bj with Bj ∩ B1 *= ∅
or with

d(Bj , B1) ≤ d(Bi, B1) − r.

A similar definition applies to horoballs H = 〈Hi〉. In the upper half-
space model H3 = C×R+ with H1 = {(z, t) : t > 1}, the strict elder sibling
property means the elder sibling Hj is at least exp(r)-times taller than Hi.
Thus Hi can be connected to H1 by a chain of horoballs whose heights grow
at least as fast as a geometric series.

Theorem 6.1 Let Γ be a finitely generated Kleinian group. Then the fol-

lowing are equivalent:

1. Γ is convex cocompact.

2. Γ · B has the strict elder sibling property for some ball B ⊂ H3.

3. Γ is cocompact, or Γ · H has the strict elder sibling property for some

horoball H tangent to its domain of discontinuity.

Proof. We will assume the convex core K(M) is nonempty; otherwise Γ is
elementary and the equivalence is easily checked.

(2) =⇒ (1). This is the most interesting implication. Suppose Γ · B =
〈B(xi, R)〉 has the strict elder sibling property. Pick y ∈ hull(Λ). Since the
limit set, as seen from y, does not lie in a visual half-space, there are two
points in Λ separated by visual angle at least π/4. The geodesic α joining
them passes within distance O(1) of y.

Since Γ · B accumulates on Λ, we can approximate α by a geodesic
segment β joining a pair of balls B′, B′′ ∈ Γ ·B, and still passing close to y.

Now recall that any ball in Γ · B can play the role of B1 for the elder
sibling property. Letting B′ = B1, the strict elder sibling property implies
there is a chain of balls connecting B′′ to B′ and moving towards B′ at a
linear rate (Figure 5).

In other words, we have a finite sequence

〈B1 = B′, B2, . . . , BN = B′′〉

14



Figure 5. A quasigeodesic chain.

such that Bi meets Bi+1 and

d(B1, Bi+1) ≥ d(B1, Bi) + r.

This implies

r|i − j| − 2R ≤ d(Bi, Bj) ≤ 2R|i − j|.

The chain of balls 〈Bi〉N1 therefore forms a quasigeodesic. By a well-know
principle (cf. [Th, §5.9], [BP, §C.1]), a quasigeodesic is contained within
a bounded neighborhood of a geodesic. Thus the Bi are contained in a
bounded tube around β, so some ball passes close to y.

This shows d(y,Γ · B) ≤ D where D does not depend on y. It follows
that K(M) = hull(Λ)/Γ is contained within a D-neighborhood of the image
of B in M , so K(M) is compact and Γ is convex cocompact.

(1) =⇒ (2). Let D denote the diameter of the convex core K(M),
let x ∈ hull(Λ) be any point in the universal cover of K(M), and let B =
B(x,R) where R 4 D. We claim Γ · B = 〈B(xi, R)〉 has the strict elder
sibling property.

To check this, consider any Bi disjoint from B1, and let α be the geodesic
segment joining xi to x1. Construct the ball B(y,D) ⊂ Bi tangent to ∂Bi

at the point where α exits Bi (see Figure 6). Then y is in the convex hull of
the limit set (since x1 and xi are), and therefore B(y,D) contains a point
xj in the orbit Γx. Then Bj = B(xj, R) either meets B1 or is strictly closer
to B1 than Bi was. In fact if Bj and B1 are disjoint, then

d(Bj , B1) ≤ d(xj , B1) − R

≤ d(xj , y) + d(y,B1) − R

≤ D + (D + d(Bi, B1)) − R

≤ d(Bi, B1) − (R − 2D).
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So the strict elder sibling property holds so long as we choose R > 2D.

Figure 6. Verifying the strict elder sibling property.

(1) =⇒ (3). If the domain of discontinuity Ω is nonempty, we can
enclose the ball B(x,R) just constructed in a large horoball H tangent to
Ω. It is easy to see that H also satisfies the strict elder sibling property.

(3) =⇒ (2). Suppose Γ ·H are horoballs tangent to Ω satisfying the strict
elder sibling property. Since H meets only finitely many of its translates, we
can push it slightly into H3 to obtain a configuration of balls Γ ·B with the
same incidence pattern. The distances between balls are nearly the same
as the distances between the corresponding horoballs, so the strict eldering
sibling property continues to hold.

Remark. The proof shows that for a convex cocompact group, the ball
B in (2) can be chosen with any desired center, and the horoball H in (3)
tangent to any given point in Ω.
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