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Amenability, Poincaré series and quasiconformal maps

Curt McMullen *
Department of Mathematics, Princeton University, Princeton NJ 08544, USA

Summary. Any covering Y— X of a hyperbolic Riemann surface X of finite
area determines an inclusion of Teichmiiller spaces Teich(X) < Teich(Y). We
show this map is an isometry for the Teichmiiller metric if the covering
is amenable, and contracting otherwise. In particular, we establish |@]| <1
for classical Poincaré series (Kra’s ‘Theta conjecture’).

The appendix develops the theory of geometric limits of quadratic differ-
entials, used in this paper and a sequel.

1. Introduction: The @ operator

Definitions. Let X be a Riemann surface. X is hyperbolic if it is covered by
the unit disk 4, and X is of finite type if it is obtained from a compact surface
by deleting a finite number of points.

Let Q(X) denote the space of holomorphic quadratic differentials ¢(z) dz>
on X, such that

loll= [ |$()1dz]* < oo.

With the above norm, Q(X) is a Banach space. Let By={¢: | ¢|| <1} denote
the open unit ball in Q(X).
Now suppose f: Y— X is a covering map. Then there is a natural operator

0: 9(Y)—Q(X)

(pull-back over branches of f~! and sum). This operator is similar to push-
forward of measures, except that variations in the phase of ¢ over different
sheets may cause cancellation. Thus |@[| < 1.

In Teichmiiller theory, Q(X) is the contangent space to the Teichmiiller
space of X, the norm introduced above is the infinitesimal form of the
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Teichmiiller cometric, and @ is the coderivative of the map Teich(X) — Teich(Y)
induced by the covering Y— X (see [Gar]).

@ was introduced by Poincaré in the case of the universal covering of a
hyperbolic Riemann surface of finite type [Poin].

We will show that | @] <1 for these classical Poincaré series; this is Kra’s
‘Theta conjecture’.

More generally, say a covering Y— X is amenable if there are large balls
with small boundary in a graphic caricature of the covering (see §§2 and 3.)
If X is of finite type, its universal cover is nonamenable.

Theorem 1.1. Let Y— X be a covering of a hyperbolic Riemann surface X. Either:
1. The covering is amenable, and @ (By)= By, or
2. The covering is nonamenable, and @ (By) is contained in the interior of
By.

Corollary 1.2. Suppose in addition X is of finite type. Either

1. The covering is amenable, | @ || =1 and the induced map
Teich(X) — Teich(Y) is a global isometry for the Teichmiiller metric, or

2. The covering is nonamenable, || @ || <1 and Teich(X) — Teich(Y) is contract-
ing.

The corollary is immediate from finite dimensionality of Q(X), and the neces-
sity and sufficiency of Hamilton’s condition for an extremal quasiconformal
map (see [Str2]).

Contraction of the inclusion of Teich(X) into universal Teichmiiller space
can be restated as follows:

Corollary 1.3. Let f: X, —» X, be a Teichmiiller mapping between hyperbolic Rie-
mann surfaces of finite type. Then the map f: A— A obtained by lifting f to
the universal covers of X, and X, is not extremal among quasiconformal maps
with the same boundary values (unless f is conformal ).

Dependence on moduli

It is useful to understand how the amount of contraction of the inclusion
Teich(X) < Teich(Y)

depends on the geometry of X. Using an Euler characteristic argument we
obtain:

Theorem 1.4 (Geometric Bound). Let X be a hyperbolic Riemann surface of finite
type, Y- X an infinite-sheeted covering space with finitely generated fundamental
group. Then || @y x| <c(n, L)<1, where c(n, L) is a continous function of n=the
number of generators of n,(Y) and L=the length of the shortest geodesic on
X.

Thus the amount of contraction is controlled by the location of X in moduli
space. (However there is no global bound — see § 10 below.)
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Application to 3-manifolds

A key tool in Thurston’s construction of hyperbolic structures on 3-manifolds
is the skinning map, an iteration on Teichmiiller space whose fixed point yields
a geometric structure [Th1].

The skinning map factors through canonical maps between Teichmiiller
spaces whose contraction is controlled by a refinement of the geometric bound
above (Theorem 11.1). In a sequel [Mc], this refinement is coupled with the
theory of geometric limits of quadratic differentials (developed in the Appendix
below) to give a new, analytic proof of the existence of a fixed point.

Outline of the paper

We begin with a sketch of the proof of Theorem 1.1 for a nonamenable covering.

Suppose @(¢)=y. To prevent loss of mass, the phase of ¢ must nearly
agree with that of the pull-back of y to Y, at least over a region Y, which
contains most of the mass of |¢|. But agreement of phase implies the mass
distribution of ¢ mimics that of i, which in the large is determined by the
combinatorics of the covering Y— X. For a nonamenable covering, most of
the mass of Y, will be near its boundary, where the pairing is inefficient by
a definite amount; this forces |@| < 1.

§§ 2 and 3 develop the combinatorial theory of amenable and nonamenable
graphs and coverings, and establish the global features of the argument above.
Explicit ‘rates of nonamenability’ are estimated in § 4; these estimates provide
many examples of nonamenable coverings and also play a role in the proof
of Theorem 1.4.

§ 5 is a study of the shape of the unit ball in Q(4), which justifies the local
part of the argument: quadratic differentials with nearly synchronized foliations
have similar mass distributions.

In § 6, we formulate a ‘fiberwise’ version of the statement | @| <1; this
is established in § 7, and we deduce the nonamenable half of Theorem 1.1 in
§ 8. § 9 treats the case of amenable coverings, completing the proof of Theo-
rem 1.1.

In §§ 10 and 11 we analyze the proof further to obtain the dependence
on moduli (Theorem 1.4 and its refinements). The discussion in § 10 draws on
classical results in Teichmiiller theory, while § 11 employs a geometric limit
argument.

Finally § 12 sketches a generalization to Poincaré series for higher order
differentials and quotients of bounded domains in C".

The Appendix develops the theory of geometric limits of quadratic differen-
tials, for use in § 11 and in a sequel on the skinning map [Mc].

Bibliographical remarks. Corollary 1.3 was checked for many examples by Strebel
[Str1]; see Strebel’s recent survey [Str4] for further background on extremal
quasiconformal maps. The relation between || O || and lifts of Teichmiiller map-
pings is mentioned in [Kra2]. Arithmetical aspects of ||@| were explored by
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Parson and Sheingorn [PS1], [PS2]. Interactions between function theory, cov-
ering spaces and amenability also appear in papers of Brooks [Br] and Lyons
and Sullivan [LS].

We have recently learned that Ohtake proved | @ | =1 for abelian coverings
[Oh].

2. Nonamenable graphs and slowly varying functions

In this section we will isolate some combinatorial properties of nonamenable
groups, and more generally nonamenable graphs. The added generality will allow
us to deal with irregular covers.

Definitions. Let G be a graph. For any set V of vertices of G, define b(V),
the border of V, to be the set of vertices at distance 1 from V. (A vertex at
distance 1 is connected to V by an edge but does not itself lie in V).

Define the expansion y of G as the infimum of |b(V)|/|V| as V ranges over
all finite sets of vertices. If the expansion is 0, G is amenable. Otherwise G
is nonamenable, and the size of the border of any set of vertices is a definite
fraction of the size of the set itself.

For example: an infinite tree in which every vertex has degree d is amenable
for d=2, but nonamenable, with expansion y=(d —2), when d is 3 or more.

Now let f: V- R be a positive integrable function on a subset V of the
vertices of G (i.e. ). f(x)<c0.) For x in the border b(V), define

xeV

F(x)=sup{f(y): yis adjacent to x.}

Theorem 2.1. Suppose that G is nonamenable with expansion vy, and f is slowly
varying in the sense that, for some A, 0<i<1,

fX)zZ4f)

whenever x and y are adjacent vertices of V. Then

Y FOz@y+21-1 } f(x).

xeb(V) xeV

Remarks.

1. Of course f(x)< A~ 1f(y) by symmetry.

2. If f varies sufficiently slowly, a definite fraction of its mass is picked
up by F. This mass will give a definite contribution to the contraction of @
in§7.

3. Setting f=1 on Vand A=1 gives |b(V)|=y|V]| as a special case.

Proof. For every integer n, let V, denote the subset of ¥V on which f(x)=A"

Then V, is an increasing sequence of finite sets and V, is empty for n sufficiently
negative.
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Let B,=b(V,)nb(V), and let v, and b, denote |V,| and |B,| respectively.
By the slow variation of f, b(V,) = B,Li(V, ,  — V,), so by nonamenability,

b,+Av,2yv,,

where Av,=v,,,—v, is the usual combinatorial derivative. Applying this in-
equality after integrating by parts (note that 41" <0), we find

YA A= =Y b, AA"2Y Av, AN —yv, A",

where we sum over all integers n. Integrating the second term on the right
by parts, this can be rewritten

YAt Ab, 2 (A—1+4y) Y A" Av,.

Now f(x) is bounded above by A" on V,,,—V,, so the sum appearing on the
right is an upper bound for ) f(x); similarly the left hand sum is a lower
bound for ) F(x), establishing the theorem. []

In geometric situations, we will deal exclusively with graphs of bounded
degree (there is a bound on the number of edges attached to each vertex).
A set of vertices I is independent if no two elements of I are joined by an
edge.

Proposition 2.2. Let G be a graph of degree at most d, f: V—-R a non-negative
integrable function on the vertices of G. Then there exists a set of independent
vertices I such that

S0z 1 I

Proof. Sort the vertices of G so f(x) is descending (f(xo)=f(x,)= ...), and con-
struct I by a greedy algorithm: recursively add to I the next vertex in sequence
which is not adjacent to those already chosen. Then every vertex y not in [
can be assigned to an adjacent vertex x in I so f(x)=f(y). This assignment
is at most d-to-1, and the proposition follows. []

3. From coverings to graphs

In this section we define (in several equivalent ways) the notion of an amenable,
but possibly irregular covering. ([Gre] is a concise reference for the theory
of amenable groups, of which this material is a generalization; see also [Pier].)
All manifolds considered are assumed smooth and connected. Let X be
a manifold, p: Y- X a covering, p,: n;(Y)cn,(X) the induced inclusion of
fundamental groups (for our considerations basepoints will be unimportant).
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Definitions. The covering Y— X is amenable if there is a linear functional
m: L (n, (X)/n, (V) > R,

invariant under the left-action of n,(X), such that inf(f)<m(f)<sup(f) for
all f.

Such a functional m is an invariant mean for the group action.

A group G is amenable if L* (G) admits a G-invariant mean. Thus, amenability
of a regular covering is equivalent to amenability of its group of deck transforma-
tions.

Examples.

1. Solvable groups are amenable, as are subgroups and quotient groups
of amenable groups.

2. The free group on 2 or more generators is nonamenable.

3. Any nonelementary Fuchsian group contains a free group on 2 generators,
and hence is nonamenable.

4. In particular, the fundamental group of hyperbolic Riemann surface of
finite type is nonamenable.

5. Subexponential growth implies amenability, but there are amenable
groups with exponential growth — such as the solvable group {x, y: xy=y%x).

Using graphs, one can give a more combinatorial characterization of an
amenable covering.

Assume for the moment that n,(X) has a finite generating set 4. From
this data, construct the coset graph as follows: take the cosets n,(X)/m,(Y)
as vertices, and connect x7,(Y) and yn,(Y) by an edge if there exists a g in
% such that gx=m,(Y)=yn,(Y). This graph is combinatorial model for the cover-
ing.

It will be useful to introduce finer models, as follows. A net & on X is
a collection of simply connected open sets, whose union U is connected, such
that En E' is either empty or connected for any two members of &.

To & we associate its Cech graph, whose vertices are the elements of &
and whose edges join E and E' iff ENE' +§. The Cech graph is the same as
the 1-skeleton of the nerve of &.

There is an induced net on Y, which we denote by p*(&), whose elements
are the components of p~(E) for each E in &.

Our second combinatorial model for the covering p: Y— X is the Cech graph
of p*é&.

Proposition 3.1. A covering p: Y— X is amenable iff one of the following equivalent
conditions is satisfied:

1. The coset graph of KK nn,(Y) is amenable for every finitely generated
subgroup K of n,(X).

2. The pullback of the covering to X, is amenable for every submanifold of
X, of X with finitely generated fundamental group.

3. The Cech graph of p* & is amenable for every finite net & on X.

Equivalence of the three conditions is easy to check. That the first condition
is equivalent to the existence of an invariant mean on the coset space is essentially
Rosenblatt’s generalization of Felner’s condition [Ros].

As we will never make use of the invariant mean, the reader may also take
these combinatorial conditions as the definition of amenability.
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4. Explicit expansion constants

Let Y- X be a covering of surfaces, H < G the corresponding inclusion of funda-
mental groups. Assume both H and G are finitely generated. We will give an
estimate for expansion constant y of the coset graph G/H which depends only
on Euler characteristics.

This estimate provides many examples of irregular nonamenable coverings,
and will also be used to obtain bounds on ||@| which depend only on the
location of X in moduli space (§ 10).

Of course the expansion constant depends on a choice of generating set
% for G. Any surface group may be presented as:

G=<a,,...,a,yor
G={<ay,by,...,a,,b,:[a;,b,]...[a;, b ]=1)

and we will use these generators for 4.
The Euler characteristics of G and H are the same as the topological Euler
characteristics of X and Y. Assume G is nontrivial; then x(G)<0.

Lemma 4.1. For any finite set of vertices V40 in the coset graph G/H,
Ib(MIZ22(x(H)— V] x(G)).

Proof. The presentation given for G corresponds to a cell complex C which
is either a bouquet of circles or a compact surface. There is a covering C corre-
sponding to H, whose 1-skeleton is the coset graph.

Let V= C be a finite set of vertices, and let D be the largest subcomplex
of C whose 0-skeleton is VUb(V). For the purposes of the estimate, we may
assume no component of C—D is a 2-disk, since otherwise we may include
its vertices in ¥ and increase |V| while decreasing b(V). With this assumption,
21(D) 2 (C)=x(H).

Let C;, D; denote the number of i-cells in C and D. Noting that the degree
of the coset graph (the number of edges incident to each vertex) is 2C,, we
find:

Do=|VI+1b(V)I=ColVI+[b(V)
D=4} deg(t)232C,|VI+b(V)))
Do

D,=|V|C,
from which the theorem follows. []

Corollary 4.2 (Uniform expansion). Assume [G: H]=co. Then the expansion of
the coset graph satisfies

S J2x (Gl if x(H)20,
={|X(G)/X(H)l otherwise.

In particular, if x(G)<O0 the coset graph is nonamenable with expansion bounded
below independent of the embedding of H into G.

Proof. Combine the preceding Theorem with the estimate b(V)21, which holds
so long as the coset graph is infinite. []
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Example. Let X be a hyperbolic Riemann surface of finite type, and let Sc X
be a proper incompressible subsurface. (Incompressible means n,(S) injects into
7,(X); proper means the image is a proper subgroup.) Corresponding to the
subgroup 7, (S) there is an infinite-sheeted covering Y— X, which is nonamenable

Fig. 1. The covering space of a subsurface

by the result above. Furthermore the expansion is bounded below independent
of the choice of S, since x(X)< x(S)<0.

Coverings induced by subsurfaces are said to be geometric. Any covering
Y— X with =, (Y) finitely generated is virtually geometric, i.e. it becomes geomet-
ric when pulled back to a finite covering of X [Scott].

5. Flex of the unit sphere in Q(4)

This section lays the analytic groundwork for the proof of Theorem 1.1.

Let Q(X) be the Banach space of quadratic differentials on a Riemann surface
X, introduced in the § 1. There is a natural pairing between Q(X) and M (X),
the space of measurable Beltrami differentials u(z) dz/dz with

[ ]l =sup|u(z) < oo,
X

namely

{$,n>=Re [ (2) u(2) |dz|*.
X

In fact the dual of Q(X) is the quotient of M(X) by the subspace annihilated
by Q.

Given any ¢ of norm 1, u=¢/|¢| is the unique element of norm 1 in M (X)
such that <{¢, u>=1. Geometrically, this means the unit sphere in Q(X) has
no sharp corners — at each point there is a unique supporting hyperplane.

On the unit disk 4, consider the quadratic differential (z)=dz?*/n. Then
¥ is a point on the unit sphere in Q(4).
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Theorem 5.1. Let ¢ be an element of the unit sphere in Q(4), such that

oY/ =1-e
Then ||y — ¢ || <O(¢*) for some fixed exponent a.

Remark. The pairing between ¢ and /|| gives the average, with respect to
|¢p|-measure, of the cosine of twice the angle between the foliations of ¢ and
Y. (The foliation of y is just the foliation of the disk by horizontal lines.) The
theorem says that if the foliations are nearly synchronized, then ¢ is close to

v.

Proof. Writing ||+| and {, ) in coordinates, our task is to show that

f1¢(21=1

and
jRe P(z)=1—¢

together imply
JI1—=o()=0(),
a4

all integrals being with respect to normalized area measure on the disk.
In any measure space, the first two equations imply

f1Im ¢ (2) =0(&""?).

Since Im ¢(z) is harmonic, it is controlled by its average over a ball and we
obtain

ITm ¢(z)| =0 (e'/d(2)*),

where d(z)=d(z, 0 4) denotes Euclidean distance from z to the boundary of the
disk. Thus ¢ maps B(0, 1 —d) into the strip {z: |Im z| <O (e'/*/d?)}.

Similarly Re ¢ is harmonic, so its average over the disk gives the value
at the origin: Re ¢(0)=1—¢. By the Schwarz lemma, most of B(0, 1 —d) maps
near ¢(0), since the image of B(0, 1 —d/2) is confined to a narrow strip. Making
this precise, one obtains

11— ¢(2)|=0(c+e'"? log(1/d(2))/d(2)?).

Finally we control |¢| near the boundary of the disk: since |¢| is subharmon-
ic,

1
1—e=|p0)S—0
sSIOIS—gz [ 10

and since the total integral of |¢| is 1, this implies

[ 161=0(-+0).

{1-d<|z|<1}
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Combining this with the uniform bound for |1 — ¢ (z)| on B(0, 1 —d), one obtains
[11—¢|=0(c+d+e"? log(1/d)/d*)=O0('/® log(1/e))
a4

if we set d=¢'/®. Thus the theorem is true for any exponent a <1/6. []

Remarks.

1. In terms of the geometry of Banach spaces, the theorem states that a
point of the unit sphere in Q(X) which is close to the supporting hyperplane
for ¥ is close to y itself; intuitively, the sphere is ‘flexed’ at y. If Q(X) were
a Hilpert space with its usual norm, the theorem would be true with a=1/2.

2. Conversely, say a point p of the unit sphere S of a Banach space is
flat if for any hyperplane H supporting S at p, there exist {p,> of norm 1
whose distance from H tends to O but ||[p—p,||>¢&>0. Then many points of
the unit sphere Q(X) are flat.

For example, let (z;> be a sequence of points in the disk such that the
hyperbolic balls B(z;,r;) are disjoint and r; >c0. Let M;: 4 - 4 be a sequence
of Mobius transformations such that M;(z;)=0, and consider the differential

a=c )y 27"M¥(dz)?,

i=1

where the constant ¢ is chosen to give this expression norm in 1 in Q(4). It
is not hard to check that {(M¥(dz?/n), @/|x|> — 1 but these differentials do not
approach « in the norm topology.

3. There is a close relationship between flexing of the unit sphere and reflexiv-
ity. For example, a theorem of Milman asserts that a uniformly convex Banach
space is reflexive [Mil]; see also [Pet]. Q(4) is not reflexive, but its unit ball
is uniformly convex at certain points, such as y.

6. The nonamenable case: selecting the net

Fix the following data:

® A Riemann surface X;

® A quadratic differential  in Q(X) with ||y ||=1; and

® A nonamenable covering p: Y— X, with induced relative Poincaré operator

O: Q(Y)-Q(X).

For this data, we will establish the following ‘fiberwise’ version of the Theta
Conjecture:

Theorem 6.1 (@ contracts fibers). Let Q,(Y) denote the closed subspace of Q(Y)
consisting of differentials ¢ such that © () is a multiple of Y. Then | @|Q,(Y)| <1.

To set up the proof, we first construct a net & on X such that p*& detects
the nonamenability of the covering.
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Recall that ¢ gives rises to a flat conformal metric on X with quadratic
form |y (z)||dz|? (see e.g. [Str3]). At the zeros of  the metric has cone-like
singularities; these will not concern us.

If Y (x)+0, there is a neighborhood V of x and a conformal isomorphism
g: (V,;0)—(4,,0) such that |V=g*(dz?) (here 4, denotes the disk of radius
r centered at the origin in C). The map g is an isometry from the y-metric
to the Euclidean metric, and V is an embedded r-ball in the y-metric.

Let r(x) denote the injectivity radius of Y at x, i.e. the radius of the largest
embedded r-ball centered at x.

Now choose a finite net & on X such that, for some fixed r>0,

(a) Each element of & is an embedded r-ball in the y-metric; and

(b) The Cech graph of p* & is nonamenable.

This is easily done, for example as follows. By nonamenability, there is a
finitely generated subgroup K of m,(X) whose coset graph is nonamenable.
Choose a basepoint at which y +0 and smooth loops generating this subgroup.
The loops may also be chosen to avoid the zeros of . By compactness, the
injectivity radius of ¥ on the loops is bounded below by some s>0. Let &
be a finite covering of the union of the loops by embedded r-balls, where r=s/2.
Any two balls which meet are contained in an embedded s-ball, so their intersec-
tion is connected, just as in Euclidean space; thus & is a net. Finally the subgroup
K is carried by &, so the Cech graph of p* & is nonamenable.

dg )
Wit

/Q QL

Fig. 2. A net for the punctured torus

For an example in the case of the universal covering of a punctured torus,
see Fig. 2. Our bound on || @ || will depend on the following quantities:

1. The expansion constant of the Cech graph of the induced net # =p*§&;

2. The degree of this graph (which is at most |£);

3. The y-area of | )&; and

4. The minimum overlap between elements of &. This is the minimum fraction
of the y-area of an element E which is shared with an overlapping element
E'.
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7. Capturing || @ | fiberwise

Let ¢ be an element of Q,(Y) such that |[¢||=1. To establish Theorem 6.1,
we will bound ||@(¢)| away from 1 by an amount which is independent of
¢. In this section, any bounds written using O(*) will involve constants which
are independent of ¢.

O(¢)=ty for some constant t. Replacing ¢ by t¢/|t| if necessary, we many
assume t =0.

Let u=1/|y| denote the unique element of norm 1 in M(X) such that
{Y,uy=1. For F a measurable subset of Y, define the mass and inefficiency
of F by:

m(F)= [ |4,

1

Since m(Y)=1,

1—i(Y) =<, p* 1> =<O(¢), u> =<1y, p> =t,

s0 i(Y)=1—|@(¢)|. Our goal is to bound the inefficiency of Y from below.
Mass and inefficiency are always non-negative, so

i(Y)=m(W)i(W)+m(Y—W)i(Y—W)=m(W)i(W),

and hence we need only find a set W< Y which has definite mass and inefficiency.

Lemma 7.1. For any F in &, there is a constant ¢ such that
[led—p*¥|<OG(FY)
F

for some fixed exponent o.

Proof. Choose a coordinate z so that F can be identified with the unit disk
A. After an appropriate rotation, p* =r?dz? so p*u=dz/dz. By Theorem 5.1
on the flex of the sphere in Q(4),

¢ dz?

m(F)

]

F

S OG(F)),

and multiplying through by nr? we obtain the Lemma. []

Corollary 7.2. For all intersecting F and F' in &, and for all iy sufficiently small
(independent of ¢ ),

1. If the inefficiency i(F) is less than iy, then m(F')= O (m(F));

2. If i(F) and i(F’) are both less than iy, then m(F')= Am(F), where
A=1-0(@}).

In other words, efficient neighbors have nearly the same mass, and a definite
amount of mass is inherited from an efficient neighbor.
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Proof. Assume both inefficiencies are near (0. By the Lemma above, there are
constants ¢ and ¢ such that c¢ and ¢'¢ are L'-close to p*y¥ on F and F’
respectively. Thus m(F) and m(F’) are given approximately by nr?/c and nr?/c’.

Now F and F’ overlap a definite amount with respect to p*-area, since
their overlap is bounded below by the minimum overlap in &. It follows that
the constants ¢ and ¢’ must be close, else there would be a definite deviation
from p*y on the overlap. Making this precise yields the bound given.

If only i(F) is near zero, it still follows that the ¢-mass of the overlap is
a definite fraction of m(F). The overlapping mass also contributes to m(F’),
som(F)z0(m(F). O

Lemma 7.3. For any subset #' of &,

a1
m(UF) 2 EmF)

and
inf{i(F): FeZ"'}

iUz

Proof. The degree of the Cech graph of % is at most |§]|—1, so Proposition 2.2
applies to give an independent subset "' <%’ which carries at least 1/|&] the
sum of m(+) over #'. Then | J#" is a disjoint union (this is what independence
means), so the mass is additive, establishing the first inequality.

By disjointness, i(| J#") is bounded below by the minimum inefficiency of
members of #'. Estimating i(| J#') by the weighted average of the inefficiency
of ( J#" and its complement gives the second inequality. []

Proof of Theorem 6.1 (O contracts fibers). Let y>0 denote the expansion of
the (nonamenable) Cech graph of %. Choose A<1 such that Ay+1—1>y/2.
Let

v ={FeZ i(F)<iy},

where i,>0 is chosen sufficiently small that we may apply Corollary 7.2 to
conclude:

(I) m(F')=O(m(F)) whenever F’ is adjacent to an element Fe¥"; and

(II) m(F")= Am(F) whenever F and F’ are adjacent elements of 7.

Let

W ={FeF :i(F)2i,)}.

Then (¥, #') forms a partition of #. Let W= J#", V={)7".
By Lemma 7.3, i(W)2i,/|8], so

1@ ()| =i(Y)z2m(W)i(W)2i, m(W)/|&]

and hence to bound ||@(¢)| away from 1, it suffices to bound m(W) from
below.
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Assume || @ (¢)|| = 1/2, since otherwise we are done. Then

mW)+m(V)= [ [91z10@)] | l¥|=0(),
p-1(Ue) Ue

so to complete the proof it suffices to show the mass of W is not too much
smaller than the mass of V.
For F in the border b(¥") =¥, define

M (F)=sup{m(F'): F'e¥ and F'is adjacent to F.}

By (I), m(F)= O(M(F)), so by Lemma 7.3 the mass of W is estimated from below
in terms of the sum of M(F) over the border of ¥". We will show this sum
is comparable to the mass of V.

By (II), m(+) is a slowly varying function on the vertices ¥~ of the Cech
graph; applying Theorem 2.1,

Y M(F)z(y+i-1) Y mngmm

Feb(¥) Fevy

establishing the theorem. []

8. Completion of the nonamenable case

It is known that the operator @ is always surjective; this fundamental property
is called completeness of Poincaré series. By the open mapping theorem, the
image of the unit ball in Q(Y) contains a neighborhood of the origin in Q(X).
This can be made effective:

Theorem 8.1. Let Y— X be a covering of a hyperbolic Riemann surface X. Then
©(By)>3 By,

i.e. the image of the unit ball in Q(Y) contains the ball of radius 1/3 in Q(X).
This result is due to Ahlfors and Bers; for a proof, see [Kra 1, Theorem 3.3],
or [Gar, § 4.3].

Proof of Theorem 1.1 (nonamenable case). Let Y— X be a nonamenable covering
of a hyperbolic Riemann surface X. Suppose ¥ is an element of norm 1 in
@ (By). Then there is a sequence ¢, in By such that ©(¢,) — . By the Theorem
above, there exist ¢,—0 with @(¢,)=y —O(¢,). Then O(¢p,+¢,)=y and
| dn+ ¢nll = 1, contradicting Theorem 6.1 (@ contracts fibers).

Therefore the closure of @(By) is contained in the interior of the unit ball

in Q(X). O
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9. The amenable case

Let p: Y— X be an amenable covering of a hyperbolic Riemann surface X.

Identifying the unit disk 4 with the universal cover of X, we may realize
the fundamental groups of X and Y as Fuchsian groups Iy < Iy acting on the
disk.

By amenability, there exist finite sets of cosets €,<=Iy/I; such that for any
finite set F = I,

HC:F-Ce%}l |,
1%l
as n—oo. Here F-% denotes the set of cosets obtained by translating C on
the left by elements of F.

It will be useful to consider the ® operator on the space of measurable
integrable quadratic differentials, which we denote by L'(+), and which contains
Q(*) as a closed subspace. Corresponding to the factorization of the universal
covering u: 4 —» X through Y, we have a factorization of

O yx: L'(4) - L' (X)
as 0 4x=0yx°0 .
For each €,, define an averaging operator 4,: L' (4) - L (Y) as follows:

1

A, (8= Z @A/Y(g* &).

|(€"| {gI'y}e€n

Since @,y (h*g*{)=0 4y(g*&) whenever h is in Iy, this expression does not
depend on what g we choose to represent a given coset.

The following properties are easily verified:

® 4,]s1.

® A, carries Q(4) into Q(Y).

® Oy x(A4,(8)=0 4x($).

Theorem 9.1. As n — o0,

[ An(Ol = 10 41x ().

Proof. Let Q< A denote a measurable fundamental domain for the action of
Iy on the disk. We may assume ¢ is an integrable function whose support
is contained in F*Q, the inverse images of Q under a finite set F<Ty, since
such ¢ are dense in L! (4).

The function y = @ 4 x(£) is obtained by collecting together the finitely many
tiles which support ¢, superimposing them and adding up the corresponding
values of €.

The tiling of the disk by translates of 2 descends to a tiling of Y, such
that the pre-image of a tile on Yis C*Q for some coset C of I;/I;, . If F~'-C<%,,
call the corresponding tile of Y a filled tile.
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On a filled tile,
A4,Q)=p*W)/|%.,

since the averaging operation moves every tile of the support of ¢ into C*Q.
The integral of |p*y| over a single tile of Y is the same as the integral of
|¥] over X, so as n— o0,

J 4, =HCH > Cebl
J

1%,

Il =,

where Y’ denotes the union of the filled tiles of Y.

A coset C corresponds to an unfilled tile in the support of A4,(¢) exactly
when F~!.C meets, but is not contained in, %,. Thus the number of such
tiles is at most

|F|x|[{C:F~'.C¢%,}|

which is small compared to |%,] as n—o0. Over an unfilled tile the integral
of |A,(&) is bounded by || £||/|%,l, so the contributions to || 4,(¢)| coming from
the unfilled tiles of Y tend to 0, establishing the theorem. [J

As a corollary, we may complete the:

Proof of Theorem 1.1 (amenable case). Let ¥ be an element of norm <1 in
Q(X). By completeness of Poincaré series, there exists a & in Q(4) such that
0 4x(&)=V. Setting ¢, = A,(), we have Oy x(¢,)=y and by the theorem above,
| @l is also eventually less than 1. Therefore the image of the open unit ball
By contains the open unit ball By (and equality holds because @y x[|<1). O

10. Dependence on moduli

In this section we use a result of Reich and Strebel, and the explicit expansion
constants obtained in § 4, to study the behavior of |@]| as a function of the
conformal structures on X and Y.

Fix a covering of Riemann surfaces Y, —» X,. For any XeTeich(X,), there
is a corresponding covering Y— X.

Theorem 10.1. | @y x| is uniformly continuous with respect to the Teichmiiller
metric on Teich(X ).

Assuming this for the moment, we specialize to the case where X is of
finite type. Fix a finite generating set % for m,(X). As remarked in § 6, the
covering Y enters only combinatorially into the estimate for | @ |:

Theorem 10.2 (Combinatorial bound). For any nonamenable covering Y— X,

lel<f<i,

where y is the expansion of the coset graph of m,(X)/mn,(Y) with respect to ¥4,
and f is a function which depends only on X.
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Proof. We simply analyze the dependence of the proof upon Y. Since 7, (X)
is finitely generated we may choose the net & so that Ué” carries the fundamental
group of X. The expansion of p*& is then bounded below in terms of the
expansion of the coset graph, and so the corollary is true fiberwise. Using Theo-
rem 8.1, one sees that a bound |@]Q,(Y)||<1—c<1 provides a bound of 1 —c¢/2
for all nearby ¥, and the corollary follows globally by compactness of By. []

Remark. A more careful analysis shows we may take f(y)=1—0(yf) for some
exponent f.

Now suppose 7, (Yp) is finitely generated, X, is a hyperbolic Riemann surface
of genus g with n punctures, and Y, — X, is an infinite-sheeted covering. Let
My, , denote the moduli space of X, and define

N: M, ,—[0,1]
by
N(Z)=sup{||@yll: Xe Teich(X),and [X]=Z},

where [ X] denotes the location of X in moduli space.

Theorem 10.3. N is a uniformly continuous proper map from moduli space to
the half-open interval [0, 1). Moreover, on any compact subset of M, ,, N is
bounded away from 1 by an amount which depends only on the number of genera-
tors of ny(Y).
Remarks.

1. Properness means ||@| — 1 as Z tends to infinity in moduli space. Thus
there is no uniform bound over all %, ,.

2. Theorem 1.4 is an immediate corollary.

Proof. By Theorem 10.1, N is uniformly continuous in the Teichmiiller metric
on moduli space. The combinatorial bound of Theorem 10.2, combined with
the lower bound for the expansion factor y obtained in Corollary 4.2, bounds
N away from 1 by an amount which depends only on the Euler characteristic
of Y, not its position over X. Thus N maps moduli space into [0, 1), and on
any compact set there is a bound which depends only on the topological com-
plexity of Y.

To see N is proper, we must show |@| —1 as [X] - oo in moduli space.
One knows in the end of moduli space the length L of some simple geodesic
o on X is near zero. We will show N ([X1]) is within O(L) of 1.

Let W— X be the covering space for a cyclic subgroup generated by o.
W may be identified with the annulus:

{z:1<|z|<exp(2n?/L)}.

Most of the mass of the quadratic differential ¢=dz?/z? is concentrated in
the thin part of W, which injects into the thin part of X. The remainder causes
only a small amount of cancellation; one may estimate || @y, x| >1—O(L). Since
A4 — W is an amenable covering, © (B,)= By, by Theorem 1.1 and so

10 4x | =11Ow;xl>1—0(L).

On the other hand @ % factors through @y, so the same lower bound holds
for N. [
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Proof of Theorem 10.1. It does not appear that continuity of the norm is a
formal consequence of its definition; to obtain continuity we appeal to a geomet-
ric interpretation.

Denote by p the induced map Teich(X ) — Teich(Y;). Letting Y and Y’ denote
p(X) and p(X') respectively, set

sup{d(Y, Y'):d(X, X")<r}
. .

N(X,r)=

N(X,r) is the factor by which p compresses the Teichmiiller radius of the ball
of radius r at X.

It is known that N(X,r) - || @y x| ; in fact, the rate of convergence is uniform
over all Teichmiiller spaces.

More precisely, let f: X — X' be a quasiconformal map, u the complex dilata-
tion of its lift f: Y- Y’, and v the dilatation of an extremal map g: Y— Y’
equivalent to f. By a result of Reich and Strebel ([RS, Theorem 9], cf. [Gar,
§ 6.4]):

pe | lell
=iz~ P R T S T i

vl

This implies
INX,r)—Oyxl|<Cr

for a universal constant C.
Since p is distance non-increasing,

IN(X,r)—N(X',r)| =2s/r

where s is the Teichmiiller distance from X to X'. Setting r=]ﬁ and combining
these inequalities, we find ||@y,x | and || @y x. || differ by at most C’ [/; O

Remark. The proof gives uniform Holder continuity of exponent 1/2.

11. Refinements

To get a more precise picture of the way in which the norm of @ can tend
to 1, in this section we study the fiberwise behavior.

Definitions. Let p: Y, - X, denote an infinite-sheeted covering with =, (Y,) finite-
ly generated and X, of finite type.

Assume Y, is a geometric covering; i.e. there is a proper incompressible
subsurface S, = X, such that Y, is the covering space for the subgroup =, (So).

Since surface groups are LERF [Scott], a general finitely generated covering
becomes geometric after passing to a finite covering of X . Finite coverings
induce isometries on Teichmiiller space, so the study of contraction properties
of Teich(X,) — Teich(Y,) can in principle be reduced to the case of geometric
coverings. We restrict attention to the geometric case to get a clearly formulated
result.
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Fix any small ¢>0. The thin part X, of X eTeich(X,) is the subset where
the injectivity radius in the Poincaré metric is less than & For ¢ sufficiently
small every component of X,;, has abelian (hence amenable) fundamental group.

For any X e Teich(X ), there is subsurface S corresponding to S,. The liftable
part Xy of X is the union of those components of X p;, and X — X ,;, which
are isotopic into S. Xy, U X i is the amenable part X ,,, of X.

By definition of a geometric cover, S lifts isomorphically to a unique subsur-
face of Y. Thus X, also has a unique isomorphic lift to Y. The amenable part
Y,.. of Y is the union of this lift and the total pre-image of X,;,.

Intuitively, Y,,, is the part of Y which is converging to an amenable cover.
Our next results asserts that the only way ||@] can tend to 1 is by taking
advantage of the part of Y which is becoming more amenable.

Theorem 11.1. Let ¢eQ(Y), [¢ll=1. If |@Oyx(P)|l is close to 1, then most of
the mass of |@| is in the amenable part of Y.
More precisely, if unit norm ¢, on Y, - X, satisfy || @y, x,(¢,)| = 1, then

[ ldul-1

(Yn)am
as n— oo.
For each X eTeich(X,) and nonzero yeQ(X), define

N(X, '//)= \|@Y/X|Q./;(X)||,

ie. N(X, ¢) is the fiberwise norm of @ over Y. The fiberwise norm only depends
on the location of i in the compact projective space PQ(X).

Corollary 11.2. If N(X, ¥) is near 1, then most of the mass of || is in the amenable
part of X.

Proof. The amenable part of Y lies over the amenable part of X. [

Corollary 11.3. If N(X, ) is near 1 for the universal covering, then most of the
mass of |Y| is in the thin part of X.

Proof. In this case X,,,=Xypin- 0

Proof of the Theorem 11.1. We will use the idea of geometric limits of quadratic
differentials and their underlying Riemann surfaces, developed in the Appendix
below.

Let Y, = Oy, x,(¢,) where || ¢, =1, and assume ||y, ] — 1.

The portion of |¢,| which lies over the thin part of X, is already carried
by the amenable part of Y,, by definition. Any other portion lies over a compo-
nent of the thick part of X,,.

Let Z, be any component of the thick part of X,, and fix §>0. We will
show that the limsup of the |¢,|-mass of p~(Z,)—(¥,).m is at most . Since
¢ is arbitrary and the number of thick components is bounded, this will complete
the proof: the amenable part carries most of the mass of |¢,| when n is large.
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Since ¢, is pushing down more and more efficiently,

= | 1oalls1=1l1y,] -0

P~ 1(E)
for any Ec X,. If
§ ¥l —0
Z,

then the |¢,|-mass of its entire pre-image tends to zero and there is nothing
to prove.

So assume the |,|-mass of Z, is bounded below by m. Choose a baseframe
v, over any point of Z,. By compactness of the space P2, , of projective classes
of quadratic differentials viewed at the scale of the injectivity radius (Theorem
A 3.1 below), we may pass to a subsequence such that (X,, v,, ¢, ¥,) converges
geometrically to (X, v, ). Here ¢, is a sequence of nonzero constants and y 0.
Since the |y,|-mass of Z, is between m and 1, we may assume c, = 1.

The limiting Riemann surface X is hyperbolic and of finite type, since the
baseframe was chosen in the thick part. Z, converges geometrically to a compo-
nent Z of the thick part of X.

Construct a finite net & on Z composed of embedded r-balls in the ||-metric,
as in § 6, such that & carries the fundamental group of Z and the |{|-mass
of ( )& is within § of that of Z. By taking r-balls in the |/,|-metric about points
converging geometrically to the centers of the balls in &, we can construct
nets &, converging geometrically to & for all n sufficiently large. Then the geomet-
ric data concerning &, (enumerated in § 6) on which the bound obtained in
Theorem 6.1 (@ contracts fibers) depends, converges to the data for &.

Thus, if lim ||y, || =1, the combinatorial input to the fiberwise bound — the
expansion 7, of the Cech graph of p* &, — must tend to zero.

Z, must belong to the liftable part of X for all large n; otherwise the Cech
graph corresponds to a covering by a proper incompressible subsurface of Z,,
whose expansion is bounded below by Corollary 4.2 (Uniform expansion).

So assume that Z, is isotopic into the subsurface of X, defining the covering
Y,. Then the Cech graph of p* &, consists of countably many components, one
of which is finite (and corresponds to the isomorphic lift of Z, to (Y,),m), and
the rest of which are infinite (and correspond to the universal cover of Z,).
The expansion 7 is uniformly bounded below on the infinite components; thus
the |$,|-mass of p~* (| J&,)— (¥,)am tends to zero. Since the |y,|-mass of Z,—| )&,
is at most &, the limsup of the |@,-mass of p~*(Z,)—(Y,)am is also at most
0, as claimed. [

12. Quotients of bounded domains

Poincaré series on the disk have a natural generalization in the setting of
automorphic forms of weight q=2 for the action of a discrete group I' on
a bounded domain Q< C" (see e.g. [Ba]). The quotient space X =Q/I' has the
structure of a normal complex analytic space, and automorphic forms of weight
d correspond to holomorphic sections of the gth power of the canonical bundle
of X; call such a section a g-canonical form.
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Let K(z,w)dzdw denote the Bergman kernel on Q, where dz=dz,...dz,
as usual. Then |K(z, z)||dz|?, the Bergman density is a natural volume form
on 2, invariant under any holomorphic automorphism. Using this volume ele-
ment, one may define Banach spaces HZ(€2) consisting of holomorphic g-canoni-
cal forms ¢ (z) dz? such that

Iol=J1¢@I K2~ |dz|* < oo.
Q

One may define Banach spaces H?(X) in a similar fashion, since the Bergman
density descends to quotients. These Banach spaces of automorphic forms have
been considered by Earle and others [Earle].

If Y is a quotient intervening between X and , there is a Poincaré series
operator

0, H:}(Y)_’H;(X),

which satisfies | @, 1.

In general, the Poincaré series is not defined for elements of H?(Y) with
p>1, just as the sequence a,=1/|n+1| in IP(Z) (for p>1) cannot be averaged
to become Z-invariant.

Theorem 1.1 may be partly generalized to this setting, as follows:

Theorem 12.1. Let By, By denote the unit balls in H}(Y) and H}(X) respectively.

1. If Y— X is nonamenable, then ©,(By) is contained in the interior of By.

2. If Y- X is amenable and Q is a bounded symmetric domain, then @,(By)=By.

Sketch of the Proof. The amenable case is a straightforward generalization of
the proof for quadratic differentials on the disk, once given surjectivity of ©,.
Surjectivity seems to be unknown in general, but it is established for quotients
of bounded symmetric domains by Earle and Resnikoff, see [Earle].

For the nonamenable case, the key points are the following.

First, the proof for quadratic differentials may be modified to avoid use
of completeness of Poincaré series; in fact, the demonstration that ® uniformly
contracts the space Q,(Y) works just as well so long as ©(¢) is close to a
multiple of .

Secondly, away from its zeros any g-canonical form ¢(z)dz? is equal to
dz? for appropriate choice of chart.

Finally, in such a chart the ratio of the Bergman density to the volume
element |dz|?" varies smoothly, so it is nearly constant on sufficiently small
neighborhoods. The local problem of generalizing Theorem 5.1 so it applies
in these neighborhoods is fairly straightforward. The global considerations are
only combinatorial and carry over immediately. []

Appendix. Geometric limits of quadratic differentials
A.l. Introduction

In this appendix, we consider geometric limits for Riemann surfaces and quadra-
tic differentials viewed at the scale of the injectivity radius. The central result
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is a compactification of the space P2, , of projective integrable quadratic differ-
entials on pointed Riemann surfaces of genus g with n punctures.

This compactification formalizes our intuition: the foliations of an integrable
quadratic differential cannot swirl too much on a Riemann surface of finite
volume and fixed topological type.

A.2. Riemann surfaces in the geometric topology

Definitions. For ke[ —1, 1], consider the metric

ds. — 4|dz|
" (4 +xzl?)

of constant curvature k on a domain U, which is the Riemann sphere if «
positive, the complex plane C if k=0 and the disk

U.={z:|z| <R},

where R=2/)/ —k if k<0. In this metric, U, is complete.

Let & denote the space of all pairs (U,,I') where I' is a discrete group
of Mobius transformations acting freely on U,. To this data we associate a
Riemann surface X = U,/I" with base-frame ve T} (X) by setting v to be the image
of a unit vector at the origin pointing along the positive real axis. We require
that the injectivity radius of X is =1 at v.

Conversely, a Riemann surface (X, v) with a complete metric of constant
curvature ke[ —1,1] and base-frame v over a point of injectivity radius =1
uniquely determines an element of %

Every Riemann surface X admits a complete metric of constant curvature,
and so has many representatives in &, corresponding to scaling the metric so
its injectivity radius at a basepoint becomes at least 1. If X is hyperbolic, we
will refer to its complete metric of constant curvature — 1 as the Poincaré metric
on X.

We give & the geometric topology: a sequence of pairs converges iff the
curvatures x converge and the groups I' converge in the Hausdorff topology
on closed subsets of PSL,C.

Proposition A.2.1. The space of Riemann surfaces ¥ is compact in the geometric
topology.

Proof. The space of closed subgroups of a Lie group such as PSL,C is compact
in the Hausdorff topology. The limiting groups are discrete by our condition
on the injectivity radius. [J

This proposition is well-known and goes back to Chabauty, who introduced
the geometric topology in the general setting of a locally compact topological
group [Cha]; see also [Har], [Th2].

Geometric limits of Riemannian manifolds with controlled curvature have
been considered much more generally; see [Grom]. The geometric topology
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coincides with the quasiisometric topology, in which a neighborhood of (X, v)
consists of those (Y, w) admitting a smooth near-isometry taking v to w defined
on a large compact subset of X. Nearby surfaces need not be homeomorphic.

Example. Let X be a hyperbolic Riemann surface with a puncture, v, a sequence
of base-frames tending to the omitted point. Rescale the Poincaré metric so
the injectivity radius at v, remains greater than one. The limiting Riemann
surface is an infinite cylinder — or a plane, if we rescale so the injectivity radius
tends to infinity.

Our main concern will be with holomorphic data on X, which is independent
of the metric. Rather, the metric provides a convenient way to pass smoothly
from hyperbolic to parabolic Riemann surfaces, as in the example.

A.2.1. Compact surfaces with punctures

A Riemann surface X is of finite type if it is obtained from a compact surface
by removing a finite set of points; these points are the punctures of X. Let
X, ,=% denote the space of finite type Riemann surfaces of genus g with n
punctures.

We can compactify &, , by forming its closure in Z.

Proposition A.2.2. For n>0,
Zgn={Znm 2h+m=2g+n,0=h=g 1<m}.

while for n=0,

gg.OZ%g,OU%.g—I,Za
if g>0; and

Zo,0=Z0,09%0,1-

In particular, the space of hyperbolic surfaces of genus g with n punctures is
compactified by the plane, the punctured plane and hyperbolic surfaces of smaller
complexity.

Sketch of the proof. Genus and volume can only decrease in the geometric
limit. When combined with Gauss-Bonnet and the fact that a limit of noncom-
pact surfaces is noncompact, this implies the closure of &, , is no larger than
stated. The reverse inclusion is established by surgery: joining surfaces at punc-
tures, or gluing pairs of punctures together; and by obvious scaling limits, such
as a sequence of larger and larger spheres converging to the plane. []

A.2.2. The universal curve

Over & one can construct the universal curve ¥, the space whose fiber over
(X, v)is X itself. To define %, start with the bundle of universal covers

{(z,(U, IN):ze U cCx X > &
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and form the quotient space € by collapsing the fiber over (U, I') by the action
of I'. We give ¥ the quotient topology; the quotient map is a local homeomorph-
ism.

This construction provides a way to formalize many notions whose intuitive
meaning is clear.

For example, we say a closed set Ec X is a geometric limit of E,= X, if
E,— E in the Hausdorff topology on closed subsets of the universal curve. The
convergence is faithful if any neighborhood of E contains E, for all n sufficiently
large; this means no points are lost in the limit by straying to infinity.

Similarly, say a sequence of continuous maps f,: X,—Z converges to
f: X > Z in the geometric topology if their graphs converge in the Hausdorff
topology on € x Z. This definition will be useful in describing the geometric
topology on quadratic differentials and rational maps.

A.2.3. Quadratic differentials

Let 2> % denote the space of triples (X, v, ¢) where ¢(z) dz* is a holomorphic
quadratic differential on X. The canonical bundles on each (X,v) in 2 piece
together to form a continuous complex line bundle K —% on the universal
curve, with holomorphic structure along each fiber. The topology on 2 is simply
the geometric topology on continuous maps whose target Z is total space of
the bundle K®K.

In down-to-earth terms, a sequence of quadratic differentials converges if
the underlying Riemann surfaces converge and lifts of the differentials to the
universal covers converge uniformly on compacta.

Note that we impose no growth constraints on ¢ and allow essential singular-
ities; however those ¢ arising in the compactification of P2, , will have only
finite order poles at punctures.

A.2.4. Covering spaces

Let # <% x & denote the ‘universal covering space’. An element of % is given
by a pair of pointed Riemann surfaces (Y, w), (X, v)) admitting a covering map
p: Y- X whose derivative sends w to v. The map p is redundant data; if it
exists, it is unique. The geometric topology on # is inherited from & x &'; it’s
easy to check that % is a closed subspace, establishing:

Proposition A.2.3. The space of coverings % is compact in the geometric topology.
One may also think of # as the space of triples (U, Iy, Iy) where Iy is
a subgroup of I.

A.2.5. Poincaré series

Let p: (Y, w) = (X, v) be a covering space, and let ¢ be a holomorphic quadratic
differential on Y. The push-forward p,(¢) is defined as follows: on a ball Bc X,
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P« (¢) is the sum of (p~!)*(¢) over all branches of p~': B— Y. On the universal
cover of X, p, can be expressed as a relative Poincaré series:

Dy ¢= z y*¢-

[V)elx/T'y

The push-forward is a well-defined holomorphic differential so long as
j |p| < oo for every compact set K. In this case we say ¢ is fiberwise inte-
p~1(K)
grable.

How continuous is the Poincaré series as a function of its input data? Consid-
er, for example, an integrable differential ¢ on the universal cover of a compact
hyperbolic surface X. For any nontrivial element y in the covering group, ¢,
=(y")*¢ >0 geometrically, while p,(¢,) remains constant, so limp,(¢,)
#%p,(lim ¢,) in general. To obtain continuous variation of the push-forward,
we must constrain the geometric topology on quadratic differentials so that
significant contributions cannot disappear in the limit by straying to infinity.

To make this precise, consider a sequence of coverings p,: (Y,, w,) = (X,, v,)
and quadratic differentials ¢, on Y,. Assume the coverings converge geometri-
cally to p: (,w)—>(X,v), ¢,— ¢ on Y, and ¢, and ¢ are integrable along the
fiber.

Think of |¢,| as a sequence of measures on the universal curve. We say
the convergence is faithful if for every ¢>0 there is a compact set K on the
universal curve whose complement has |¢,|-measure less than ¢ for all n suffi-
ciently large. Since there is uniform convergence on K and the total mass of
the remainder is small, it is easy to see:

Proposition A.2.4. The Poincaré series varies continuously under faithful conver-
gence.
Faithful convergence is equivalent to geometric convergence coupled with

the constraint that | |¢,|— [|¢|. Similarly, we may define fiberwise faithful
Y, Y

convergence by requiring

[ 1= [ 19l

pr Y(Ky) p~ 1K)

for any faithfully convergent sequence K, — K of compact subsets of X, —» X.
The same reasoning justifies:

Proposition A.2.5. If ¢, — ¢ faithfully fiberwise, then (p,), (¢,) converges geometri-
cally to p.(¢,).

A.2.6. Systems of disjoint simple loops

Let & denote the space of triples (X,v,S) where S0 is a finite system of
disjoint simple closed curves on X (up to isotopy), with no curve contractible
and no pair isotopic.
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To define the geometric topology, first assume X is hyperbolic; give X its
Poincaré metric. To S we associate a compact subset K(S)= X consisting of
a component of the thin part for each peripheral curve or short geodesic in
S, and a geodesic representative for the remaining elements of S. If X is not
hyperbolic, we think of all of X as thin and set K(S)=X. Then (X,,v,,S,)
converges geometrically to (X, v, S) iff K,(S,) converges faithfully to K(S). (We
do not allow curves to disappear in the limit by straying to infinity.)

Equivalently, S may be thought of as a subset of the fundamental group
I' of X consisting of a finite union of conjugacy classes; then the geometric
topology is the topology of faithful convergence of closed subsets of PSL,C.

Example. Let (X,,v,) be a sequence of punctured tori converging to a triply
punctured sphere (X,v) by pinching a simple geodesic S,. Then the limiting
thin part has a two components, and the limit of S, consists of two loops,
one around each of the two new punctures. This phenomenon occurs whenever
a nonseparating curve is pinched.

A.2.7. Maps to C of bounded degree

Let Rat, denote the space of rational maps f: C—C of degree <d. Let us
say f,—f iff there is a finite set EcC such that f, converges to f uniformly
on compact subsets of C—E. The degree of a map can decrease in the limit.
With this topology, Rat, is compact; the lower-degree maps provide a compacti-
fication for those of degree exactly d.

Let %, denote the space of triples [(X, v,f)], where f: X — C is a holomorphic
map which is at most d-to-1. Motivated by the example of rational maps on
the sphere, we define the geometric topology by:

(X Uns o) = (X, 0,f)

if the first two factors converge as before, and there exists a finite set Ec X
such that f, - f geometrically on compact subsets of X —E.

If f is not the constant map to oo, it is a meromorphic function; f is invertible
if it is also not identically 0.

Theorem A.2.6. &, is compact in the geometric topology. Moreover, for any
sequence f, of invertible meromorphic functions, there exist constants c, such that
¢, [, has a convergent subsequence whose limit is invertible.

Proof. Let (X,,v,,f,) be a sequence in #,;;, we may assume that the first two
factors converge to a pair (X,v), and each f, is nonconstant (otherwise the
theorem is obvious).

Let E,<c X, denote the pre-images of 0, 1 and oo under f,. Then |E,|<3d.
Passing to a subsequence, we may assume E, converges geometrically to a finite
set Ec X; some points of E, may be lost by straying far from the basepoint,
but this is irrelevant.
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By Montel’s theorem, {f,> has a subsequence converging uniformly to a
holomorphic map f outside of E. The limiting map is at most d-to-1, so any
singularity at E is removable, and we have obtained a limiting f: X — C.

The limiting map can be identically zero or infinity only if every point of
E is a limit of a zero or a pole of f,. Pick a sequence x,€X,—E, converging
to xeX—E, and set ¢,=1/f,(x,). For the new sequence c, f,(x), x will be a
limit of the pre-images of 1 but not a limit of zeros or poles, so f will be
invertible. [J

A.3. Compact spaces of quadratic differentials

A holomorphic quadratic differential ¢ on a Riemann surface X has a beautiful
concrete picture: it is the combination of a foliation and a flat metric, with
isolated singularities. One way to see the structure is to change coordinates
locally so that ¢ =dz?; in these coordinates the metric is the usual Euclidean
metric, and the foliation is by lines of constant imaginary part. Such a change
of coordinates is always possible away from the zeros of ¢, and is well-defined
up to post-multiplication by —1 (thus the foliation is unoriented.)

Any real multiple of ¢ has the same foliation. In this section we establish
compactness of a class of quadratic differentials determined only up to multiples.
One consequence is that the foliation of a quadratic differential on a surface
of type (g,n), with at most simple poles at the punctures, ranges through a
compact set of pictures when viewed at the scale of the injectivity radius.

Fig. 3. The geometric limit is a triple pole

An example appears in Fig. 3. The first picture is the foliation of a quadratic
differential in the plane with four simple poles (one prong singularities) and
one zero (three pronged). This can be thought of as a holomorphic differential
on the four-times punctured plane. Now imagine shrinking the picture towards
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the zero, while holding a basepoint a fixed distance away. The limiting Riemann
surface is the once-punctured plane, and the limiting differential has a triple
pole at the single puncture consolidating what was once four punctures.

Definitions. As before, 2 denotes the space of quadratic differentials with the
geometric topology. Let P2=2*/C* be the quotient of the set of nonzero qua-
dratic differentials by the multiplicative action of complex scalars, with the quo-
tient topology.

Now restrict attention to quadratic differentials ¢ on Riemann surfaces in
Z¢,n» 1.€. those with genus g and n punctures. Let 2, , denote those ¢ with
at most simple poles at the punctures of X. The fiber of 2, , over XeZ, ,
is canonically identified with the cotangent space to Teichmiiller space at X,
once a marking is chosen.

Theorem A.3.1. P2, , has compact closure in P2.

Remarks.

1. The quadratic differentials compactifying P2, , live on the Riemann sur-
faces compactifying %, ,, ic. the plane, the punctured plane and hyperbolic
surfaces of smaller complexity. The limiting differentials may have poles of high
order at the punctures (although they certainly have no essential singularities.)

2. The fibers of P2, ,— %, , are projective spaces; in general this is not
true for the closure

P2, ,— %,

as we will see in examples.

3. This compactification is related to, but quite distinct from, the compactifi-
cation of moduli space by Riemann surfaces with nodes and the extension of
the cotangent bundle to this completion, discussed in [DM], [Bers], [Masur],
[EM] and elsewhere. One might further investigate the analytic or algebraic
structure P2, ,,; however its topological structure will be sufficient for our appli-
cations.

4. P2 itself is certainly not compact; for example, in the unit disk with
basepoint at z=0, the sequence [z"dz?] has no limit in P2.

A.3.1. Quadratic differentials from simple closed curves

To begin the proof, we construct continuous families of quadratic differentials
using Poincaré series.

Let Y be a planar Riemann surface with fundamental group Z. Choose
an isomorphism

h: Y- A(r,R)={z:r<|z| <R} = C*,

for 0Sr<RZ o0, and set ¢(Y)=h*(dz?/z%). One may check that ¢(Y) is well-
defined and varies continuously in 2 as a function of (Y, w) in &. In the |¢|-metric,
Y is a flat cylinder of radius 1. Up to a constant multiple, ¢(Y) is the only
quadratic differential on Y invariant under the automorphisms of Y.
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Let (X, v, S)e¥ be a Riemann surface together with a finite system of free
homotopy classes

S={[}’1]’ ceey ['ys]}a

where [y;] are conjugacy classes in 7, (X). The cyclic subgroup generated by
y; determines a covering p;: Y;— X where Y is a planar surface with fundamental
group Z. Define an associated quadratic differential on X by

Proposition A.3.2. The differential 6(X, v, S) is holomorphic, with at most double
poles at the punctures of X. Moreover 0=+0.

Proof. If Y; is an annulus, |¢(Y))| is integrable and hence its push-forward is
holomorphic with at most simple poles. Otherwise Y; is a punctured plane or
punctured disk. Each puncture has a neighborhood mapping injectively to a
neighborhood of a puncture on X, creating a double pole for 0; |¢| is integrable
outside a neighborhood of the punctures, so its push-forward is holomorphic.

To check that 8+0, first suppose that X is a hyperbolic Riemann surface
and S is a system of disjoint simple geodesics. Then Wolpert has shown the
differentials p, (¢;) are linearly independent [Wol, Theorem 3.7]. In fact, there
is a perfect pairing between these differentials, though of as elements of the
cotangent space to Teichmiiller space at X, and the Fenchel-Nielsen twist-vector
fields for each curve [y;,]. (Wolpert’s proof is given for compact surfaces, but
easily extends to the general situation.)

Otherwise, some element of S represents a peripheral curve around a punc-
ture p of X. Then 60 because it has a double pole at p.

A.3.2. Variation of Poincaré series

Proposition A.3.3. The mapping 0: & — 2 associating a quadratic differential to
a system of simple closed curves is continuous.

Proof. Let (X,,v,,S,)—(X,0,85). It is easy to reduce to the case |S,|=1; then
S consists of one or two curves, depending on whether or not a nonseparating
curve is pinching off.

To start, assume |S|=1.

Choose basepoints lying over v, — v on the corresponding covering spaces,
such that (Y,, w,) = (Y, w); then the corresponding quadratic differentials ¢, con-
verge geometrically to ¢ on Y. To demonstrate that

G(Xn’ Un’ Sn) - G(X’ U, S))

it is enough to show that the convergence of ¢, to ¢ is fiberwise faithful (by
Proposition A.2.5).
We check this case by case.
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1. X=C*

(a) X, =C* for all n. This case is trivial.

(b) S, are geodesics on hyperbolic surfaces.
In the flat |¢,|-metric, each Y, is a finite cylinder of fixed circumference whose
height is tending to infinity. In the Poincaré metric, the thick part of Y, consists
of two annuli at the ends of Y, whose |¢,|-heights are uniformly bounded.

4
/ /
| |
| |
\ A \
\ NN \ N

,__\
——==<

Yo
Kn

Fig. 4. A short geodesic converging to a cylinder

Let K, — K be a faithfully convergence sequence of compact sets on X, —» X.
For n large, K, is entirely contained in the component of the thin part corre-
sponding to S,, and its pre-image on Y, consists of one component in the thin
part (which persists in the limit) and other components in the thick part (near
the ends of Y,); see Fig. 4. The boundary of the thin part on Y, lies over the
boundary of the thin part on X,, while the Poincaré distance from K, to the
boundary of the thin part tends to infinity; thus the lifts of K, in the thick
part of Y, are confined to a narrow neighborhood of the ends of Y, and their
|¢,|-area tends to zero. Thus ¢, — ¢ faithfully fiberwise.

(c) S, correspond to punctures on hyperbolic surfaces.

A similar argument applies, with half-infinite cylinders.

2. X is hyperbolic.

(a) S is a geodesic.

The Poincaré length [(S)=1im I(S,), and |¢,|-area of Y, is a continuous function
of I(S,), so no mass is lost in the limit and the convergence is faithful.

(b) S is a puncture which is a limit of punctures.

Each Y, is a half-infinite cylinder, such that the portion at fixed |¢,|-distance
from the finite end injects into a neighborhood of the puncture. It follows that
the convergence is fiberwise faithful.

(c) S is a puncture which is a limit of separating geodesics.

The thin part corresponding to S, is bounded by a ‘near end’ and a ‘far end’.
The distance of a faithfully convergent sequence of compact sets K, from the
far end tends to infinity. Each Y, is a finite cylinder, on which the lifts of K,
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to the near end persist in the limit, while those in the far end have small area
by the same Poincaré metric argument as in case 1b. Thus the convergence
is fiberwise faithful.

Finally, we treat the case |S|=2, which we record as:

(d) S is a pair of punctures which are the limit of nonseparating geodesics.
Now both ends of the thin part corresponding to S, remain a bounded distance
from the basepoint. Let (Y, w) and (Y, w') denote the two coverings of X corre-
sponding to the two limiting punctures. We may choose basepoints w, and
w, near each of the two ends of Y,, such that (Y,,w,)—(Y,w) and (Y,,w),)
—(Y’,w). Then the pre-images of K, near one end persists on (Y,w), while
those in the other end persists on (Y’,w’). Since 0(X,v,S) is defined as the
sum of these two Poincare¢ series, 8(X,, v,, S,) = 6(X, v, S) as claimed. []

A.3.3. The closure of P2, , is compact

Proof of Theorem A.3.1. Let (X, v,, [$,]) be a sequence in 2, ,. We may assume
(Xn, 0)) > (X, )X, .

Suppose X is a hyperbolic surface with a simple geodesic whose free homo-
topy class is S. Then we can find corresponding homotopy classes S, on X,
such that (X,, v,, S,) = (X, v, S), and hence

0,=0(X,,v,,5,)—0=0(X,v,S).

Each of these differentials is nonzero with at most double poles.

Set f,=¢,/0,. Since ¢, has at most simple poles, f is a meromorphic function
of degree at most 4g—4+ 3n. By Theorem A.2.6, there is a sequence of constants
¢, such that c, f, has a subsequence converging to an invertible function f uni-
formly on compact subsets of X —E, where E is a finite set. Since ¢, is holo-
morphic, ¢, ¢, converges geometrically even at E, to f0=¢. Thus [¢,] — [¢]
in P2.

Now suppose X is the punctured plane or the triply punctured sphere. The
same argument applies, with S a peripheral curve around each puncture. (It
is here we use continuity of 8(X, v, S) when two punctures are sewn together.)

Finally suppose X =(C, 0). Rescale X, so its injectivity radius at the basepoint
is 1; then a subsequence has a limit (X, v, ¢'), since X’ cannot be a plane.
It follows that the unrescaled differentials accumulate on points of the form
(C,0, [¢(z)dz?]), where ¢ +0 is a polynomial whose degree is bounded by the
order of zero of ¢ at the basepoint on X'. []

A.4. Low dimensional examples

We conclude with some examples of geometric limits.

1. Here is a complete description of the compactification of P2, ,, the qua-
dratic differentials on the four-times punctured sphere. First, % 4 is compactified
by spheres with 1, 2 or 3 punctures. There is a unique projective class of differen-
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tial with simple poles on a four-times punctured sphere; it has no zeros, so
the same is true of the limit. The limiting differentials on a triply-punctured
sphere have poles of orders (1, 1, 2); those on C* have poles of orders (1.
3) and (2, 2); and the only limit on C is [dz?], with a fourth order pole at
infinity. The orders of poles determine the projective class uniquely.

Since the poles can be distributed to various punctures, the fibers of the
compactification over C—{O, 1, oo} and C* consist of three points, hence are
not projective spaces. Certain linear combinations of limiting differentials have
zeros, hence do not occur.

2. Consider P2, ,, the quadratic differentials on twice-punctured tori. On
a compact torus two pairs of points Z and P are the zeros and poles of a
quadratic differential iff Z— P =0 in the group law (a torus is its own Jacobian).

The four times punctured sphere arises as a limit of twice punctured tori
by pinching a non-separating curve; normalize so the two new punctures are
at 0 and co. Then any limiting differential has the form ¢ = f(z) dz2/z2, where
the zeros and poles of f now satisfy Z/P=1 in the group law on C* (assuming
the divisor of f does not meet 0 or c0.)

The condition Z/P=1 is equivalent to the condition that the residues of
¢ at 0 and oo agree.

3. As a final example, we construct a family of differentials on compact
surfaces of genus 2. Fix a torus with a holomorphic differential dz2. Cut open
two segments of the horizontal foliation, each of length L, and paste in a cylinder
of height H and circumference 2L with its foliation by circles. The result is
a quadratic differential on a surface of genus two, with four zeros at the endpoints
of the slits.

Suppose the slits are the sides of a square and L —0 while H/L is fixed.
For a basepoint on the cylinder, the limit differential lives on a punctured torus
and has a fourth order pole. Further degenerations yield differentials with poles
of order (4, 2, 2) on C——{O, 1, 0}, of order (4,4) on C*, and of order 8 on
C.

Remark. It would be interesting to have an explicit description of the closure
of P2, ,in P2.

The local form of a quadratic differential at a point p is determined by
the order N of zero or pole at p, and a complex residue R if N is even and
< —2 (see [Str3]). An implicit description of the compactification can be given
by ‘regenerating’ an element of P2, ,. The regeneration is specified by a quadra-
tic differential ¢ on a possibly disconnected Riemann surface X, plus pairs
of punctures (to be glued together) where the orders and residues of ¢ are
compatible. It seems difficult, however, to describe which (X, ¢) and gluing dia-
grams actually exist.
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