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Abstract
We demonstrate an EM-based algorithm that jointly registers and clusters a group of images using
an affine transformation model. The output is a small number of prototype images that represent the
different modes of the population. The proposed algorithm can be viewed as a generalization of other
well-known atlas construction algorithms, where the collection of prototypes represent multiple
atlases for that population. Our experiments indicate that the employment of multiple atlases
improves the localization of the underlying structure in a new subject.

Keywords
Image Registration; Image Clustering; Multiple Atlases

1 Introduction
This paper introduces a general probabilistic framework to jointly co-register and cluster a
group of images. This method is applicable in a wide range of applications, where a database
of images needs to be summarized concisely, e.g. with a small number of prototypes. In medical
imaging, atlases are used for various purposes, including structure/function localization,
morphometry, segmentation, and parcellation. Unlike the traditional approach that uses one
atlas (i.e., one mean image or one probabilistic image) to represent the whole population, we
employ the proposed algorithm to compute multiple atlases to capture the different modes in
a population. The same framework then can be used to register a new image and determine its
cluster membership. We demonstrate the utility of having multiple atlases for the application
of localizing medial temporal brain structures in a pool of subjects that consists of healthy
controls and schizophrenics. Our experiments indicate that the best results are achieved if the
actual group memberships (schizophrenic vs. healthy) are used and two different atlases are
computed. Our clustering algorithm, on the other hand, achieves comparably good results
without the ground truth membership information. The alignment quality of the underlying
structures, as measured by the Dice measure [4], is around 5% better than the results obtained
with a single atlas.

1.1 Prior Work
An important problem in medical imaging is the construction of an atlas from a group of
subjects. The term atlas usually refers to a probabilistic model, of which the parameters are
learned from a training data set [14]. In its simplest form, an atlas is a mean intensity image.
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Yet, richer statistics, e.g. intensity variance, segmentation label counts, etc., can also be
included in the atlas model [5].

Atlas construction requires a dense correspondence across subjects. Earlier techniques used a
template image (either a universal template, such as the MNI template brain [3], or an arbitrary
subject from the training data set [6]) to initially align the training subjects using a pairwise
registration algorithm. Other techniques have focused on determining the least biased template
from the training set [11,9,10]. The drawback of such algorithms is that they represent the
whole population using a single template. This can be sub-optimal in situations where there
are more than one “mode” in the population. To circumvent this, more recent approaches have
proposed to co-register the group of images simultaneously without computing a group
template [12,16]. These algorithms, however, don’t yield the multiple modes of the population.
In [2], Blezek and Miller have examined a method to automatically identify the modes of a
population using a mean-shift algorithm. Rather than integrating image registration into their
framework, the authors treat the transformation as a degree of freedom over which the
algorithm optimizes when computing pairwise image distances. This resulted in an explosion
of pairwise image registration instances, each of which can be computationally expensive. An
alternative strategy, employed in [7], is to use all training images as the atlas. A new subject
is registered with each training image and segmentation label inference, for example, will be
based on a fusion of the manual labels in the training data. This approach is not suitable for
anatomical variability studies, where the subjects should be in a common coordinate frame.

In this paper, we investigate a probabilistic framework for joint registration of a set of images
into a common coordinate frame, while clustering them into a small number of groups, each
represented by a prototype image. We employ a simple mixture of Gaussians model and a
maximum likelihood framework which we solve using Expectation Maximization (EM). Our
implementation can be viewed as an extension of the approach of [13], which solves the
registration problem as an initial, seperate step. We demonstrate the algorithm using 3D MR
data and an affine transformation model. A recent study [1], provides a statistical analysis of
a MAP formulation based on a similar model and proves asymptotic consistency of the final
algorithm1.

2 Theory

Let  be a small number of prototype images that summarize the group of images
. Our model is, for all n ∈ {1,…, N}, there exists a k ∈ {1,…, K} such that:

(1)

where Φn : Ω ↦ ℝ3 is an admissible spatial warp, e.g., an affine transformation, ε(x) is an
independent, non-stationary Gaussian random variable with zero mean and a variance of .
Our goal is to find all prototypes Pk and variance estimates , while simultaneously solving
for the Φn ’s.

We can view the observed images as a group of spatially transformed samples from a mixture
of Gaussians. Cluster k has the mean image Pk(x). The generative process begins with a random
choice for the cluster k. Each cluster may have a different prior probability πk. Next, a zero
mean non-stationary independent Gaussian noise is added to the mean image of the cluster.

1Thanks to the anonymous reviewer who pointed us to this excellent paper.
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This image is then transformed by applying a randomly selected spatial transformation Φ−1 to
generate the observed image I. Thus, given the prototype images {Pk}, variance image

, spatial transformation Φ, and prototype priors {πk} (∑k πk = 1), the probability of
observing the image I is2:

(2)

where C denotes the cluster that generates I. Using Eq. (1), we obtain:

(3)

where (x; μ, σ) is the Gaussian density with mean μ and standard deviation σ. We formulate
the problem of atlas construction as a maximum likelihood estimation:

(4)

where θ = {{Pk}, {πk}, Σ, {Φn}} are the parameters and p(In|θ) is defined in Eq. (2). In this
paper, we use the Expectation Maximization (EM) algorithm to solve Eq. (4). In this context
(and with some abuse of notation), the EM algorithm can be derived in the following manner:

(5)

where qn (k) is any probability distribution, c is a constant that doesn’t depend on θ and q
denotes expectation with respect to q. The lower bound is a direct consequence of Jensen’s
inequality. For a fixed θ0 value, the equality holds if and only if qn (k) = p(Cn = k|Ii, θ0). Let’s
define a function Q by inserting this qn (k) into Eq (5). Then, we have: L(θ) ≥ Q(θ; θ0), and L
(θ0) = Q(θ0; θ0). The EM algorithm can be viewed as iteratively maximizing this lower bound.
Let θ(i) be the guess of θ at the (i)th iteration. Computing Q(θ; θ(i)) is the E-step of the (i + 1)
th iteration. The M-step updates θ to maximize Q(θ; θ(i)).

2.1 E-step
In the E-step, the algorithm computes the posterior cluster membership probabilities

 for each image given the model parameters from the previous
iteration:

(6)

2An extension of our model would be to compute a separate variance image for each cluster. In our experiments, the effect of this on the
final result was minimal. So, to save computational resources, we opted to have a common variance image, ∑.
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and  for all i. These membership probabilities can be seen as “fuzzy membership”,
where p̃n(k) = 1 for some k would indicate a “hard membership” in cluster k.

2.2 M-step
In the M-step, the algorithm updates the model parameters, θ = {{Pk}, {πk}, Σ, {Φn}}, to
maximize the expected log-likelihood as defined in Eq. (5). This entails updating all prototype
images Pk, the prior probabilities πk, the variance image Σ and all image transformations Φn.
For a fixed set of , there are closed form expressions for the first three parameters that
maximize the objective. These can be derived by taking the derivative of the expected log-
likelihood (with the Lagrange multiplier for ∑k πk = 1) and equating it to zero:

(7)

(8)

(9)

Given these updated model parameters, the new transformations can be computed by
optimizing:

(10)

where  is the “effective prototype” (i.e., target image in registration) for
image In at iteration i. This is simply a weighted average of the current prototypes and the
weights are membership probabilities.

(Equations 7,8,9), and Equation (10) implement a generalized EM, where the optimization is
done with coordinate-ascent and the convergence of the log-likelihood to a local optimum is
guaranteed. We solve (10) using an iterative gradient-descent type optimizer, an affine
transformation model and a multi-resolution pyramid strategy. In contrast to traditional
approaches, each image is registered to a different target image: a unique average of the current
prototype images, where the averaging is done in a weighted fashion and the weights are
corresponding membership probabilities. Note that the registration of each image can be done
in parallel. As discussed in other group-wise registration papers, e.g. [12, 16], we need to anchor
the registration parameters to avoid global drifts across subjects. A suitable constraint is that
each point in the atlas coordinate frame lies at the average location of corresponding points in
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the subjects, i.e.,  at each iteration i. With the affine
transformation, this constraint can be satisfied by applying the inverse of the average affine
transformation to all subject transformations after the M-step.

3 Empirical Results
3.1 2D Simulations

As a proof of concept, we implemented and tested our algorithm on a group of synthetic 2D
images of size 256 × 256 and a 9-parameter affine transformation model. Three original images
were used to generate a group of 34 images simulating the process described in Section 2. The
number of images from each prototype, the affine transformation parameters3 and the added
Gaussian noise4 were randomly generated. Figure 1 shows the prototype images for three
values of k: 1, 2, and the correct choice of 3. For the last choice, the algorithm could separate
out the three original images used to generate the whole group.

3.2 3D MR data
We used MR brain images of 16 patients with first episode schizophrenia and 17 healthy
subjects to compute atlases. Because first episode patients are relatively free of confounds such
as the long-term effects of medication, there are only subtle structural differences between the
two groups, which are difficult to identify by looking at individual scans. A detailed description
of the data and related findings are reported in [8]. The images also contained manual labels
of medial temporal lobe structures: the Superior Temporal Gyrus, Hippocampus, Amygdala
and Parahippocampal Gyrus. We used these segmentation labels and the group membership
information to explore the proposed clustering approach. As input, we provided our algorithm
with the 33 MR volumes (with no membership or label information). To normalize for global
differences in scale and orientation, we ran the algorithm with k = 1 and the registration
parameters from this step was used to initialize the algorithm with k = 2. Figure 2 shows slices
from the two output prototype volumes. The first prototype is formed by 17 brains, 11 of which
are healthy controls. The second prototype is an average of 16 subjects, 10 of which are
schizophrenics. We call these atlases C1 and C2, respectively. As benchmarks we computed
two types of atlases: we employed the same algorithm with k = 1 on healthy-controls (CON)
and schizophrenic patients (SZ) separately to compute two atlases (CON and SZ), and all
subjects together to compute one atlas (POOL) for the whole population.

Next, we used the manual labels to explore the alignment of the ROI’s across the subjects. To
quantify this, we used a label entropy measure, defined as: E = −∑x ∑l f (x; l) log f (x; l), where
f (x; l) denotes the frequency (or, prior probability) of structure l at location x in the common
atlas space. A small entropy is an indication of overall good label alignment and a sharper
label frequency image. If we have two atlases for a population, the combined label entropy for
that population can be computed as a weighted sum: π1E1 + π2E2, where πi and Ei are the prior
probability and marginal entropy of atlas i. For CON and SZ, the prior probabilities were
computed as: 17/33 and 16/33. Table 1 lists the label entropy measures. Based on these results
we conclude that, in the individual CON and SZ atlases, the label maps are aligned much better
than in the POOL atlas space. The proposed clustering algorithm also yields two atlases where
label maps are significantly better aligned than POOL.

A sharper label frequency image suggests a better localization of the underlying structure for
a new subject [15]. To test the predictive power of the atlases, we computed a pairwise Dice

3All zero mean, standard dev: translations 10 pixels, rotation 0.3 radian, log scale 0.1
4zero mean, 0.1*(max intensity value) standard dev.
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measure [4] between each subject and the corresponding 50% probability volume5 for the three
different approaches. For POOL, we registered all subjects to an atlas computed with all other
subjects. For CON/SZ, the ground truth membership was used to determine the atlas the new
subject was registered with. A schizophrenic, for example, was registered into SZ space. The
Dice overlap was computed with the 50% probability volume of all other schizophrenics in SZ
space. For C1 and C2, we employed Equations (6) and (10) to iteratively compute the cluster
membership and register with the effective prototype. The final membership probability was
used to assign the new subject to a cluster. All other subjects assigned to that cluster were used
to compute the 50% probability volume. Label-specific dice values were averaged over all
labels to get one measurement per subject. Figure 3 shows a box-plot of these values for the
three atlas spaces. CON/SZ and C1/C2 achieve significantly better predictive power than
POOL (one-sided t-test, p < 0.05).

These results suggest that the schizophrenics vs. controls partitioning of the data set captures
the dominant anatomical variability in structures we have manual labels for. This is not
surprising, given the involvement of these ROI’s in schizophrenia development. Note that the
sharper frequency images obtained using a multiple atlas strategy can be a consequence of
having a smaller number of subjects in each atlas. However, the improved overlap for the new
subjects, which were excluded in the atlas, is encouraging and supports the usefulness of the
proposed approach for segmentation.

4 Discussion
The proposed algorithm is a generalization of well-known unbiased atlas registration
algorithms: k = 1 is equivalent to the implementations that repeatedly register to a dynamic
mean image, e.g. [9]; k = N corresponds to keeping all subjects as atlases, similar to [7]; and
the entropy-based group-wise registration approach of [16] can be viewed as a non-parametric
version of the proposed algorithm. A novelty of our framework is that for a new subject it
computes membership probabilities, which, for example, can be used as weights for a decision
fusion-type analysis where inferences from each atlas are combined, e.g. [7].

The proposed framework can be extended in various ways. The EM method yields an algorithm
where the cluster assignments are “soft”. An alternative approach can be to perform “hard
clustering” at each iteration. Additionally, one can employ a richer, nonlinear transformation
model, with a prior on the transformations. Also, more liberal image-to-image distance metrics,
such as Mutual Information, can be motivated using more flexible models than a simple
additive Gaussian. This should produce better results in cases where inter-image intensity
variations are significant.
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Fig. 1.
Synthetic 2D results. Prototype images for three different numbers of clusters: 1 (a), 2 (b,c),
and 3 (d,e,f).
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Fig. 2.
Axial slices of two prototypes (healthy-dominant, left, and schizophrenic dominant, right) and
the absolute difference image (middle).
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Fig. 3.
Predictive power of the three atlases: For each subject, the average dice with the 50-percent
atlas volume was computed. Blue boxes indicate the lower and upper quartiles, red lines are
the medians. The lines extend to 1.5 times the inter-quartile spacing. Data points outside of the
lines are outliers.
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