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Hirzebruch’s Proportionality Theorem
in the Non-Compact Case

D. Mumford
Harvard University, Department of Mathematics Cambridge Massachusetts 02138, USA

Dedicated to Friedrich Hirzebruch

In the conference on Algebraic Topology [7] in 1956, F. Hirzebruch described a
remarkable theorem relating the topology of a compact locally symmetric
variety:

X=D/I,
D =bounded symmetric domain,
I' =discrete torsion-free co-compact group of automorphisms of D

with the topology of the extremely simply rational variety D, the “compact
dual” of D. (See §3 for full definitions.) His main result is that the Chern
numbers of X are proportional to the Chern numbers of D, the constant of
proportionality being the volume of X (in a natural metric). This is a very useful
tool for analyzing the structure of X. Many of the most interesting locally
symmetric varieties that arise however are not compact: they have “cusps”. It
seems a priori very plausible that Hirzebruch’s line of reasoning should give
some relation even in the non-compact case between the chern numbers of X
and of D, with some correction terms for the cusps. The purpose of this paper is
to show that this is indeed the case. We hope that the generalization that we find
will have applications.

The paper is organized as follows. In §1, we make a few general definitions
and observations concerning Hermitian metrics on bundles with poles and
describe an instance where such metrics still enable one to calculate the Chern
classes of the bundle. This section is parallel to work of Cornalba and Griffiths
[6]. In §2, which is the most technical, we prove a series of estimates for a class
of functions on a convex self-adjoint cone. In §3, the results of §1 and §2 are
brought together, and the Proportionality Theorem is proven. One consequence
is that D/I' has the property, defined by Iitaka [8], of being of logarithmic
general type. Finally, in §4, we analyze the step from logarithmic general type to
general type and reprove a Theorem of Tai that D/I" is of general type if I is
sufficiently small.
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§ 1. Singular Hermitian Metrics on Bundles

In this section we will not be concerned specifically with the locally symmetric
algebraic varieties D/I', but with general smooth quasi-projective algebraic
varieties X. When X is not compact, we want to study the order of poles of
differential forms on X at infinity, and when E is moreover a vector bundle on
X, we want to study Hermitian metrics on E which also “have poles at infinity”.
This situation has been studied by Cornalba-Griffiths [6]. The following idea of
bounding various forms by local Poincaré metrics on punctured polycylinders at
infinite is due to them. More precisely, we choose a smooth projective com-
pactification X :

XcX
where X — X is a divisor on X with normal crossings.
Then we look at polycylinders:

A ® (A =unit disc)
(any —
r=dim X

union of coordinate hyperplanes
2,=0,2,=0,..., z,=0

where A’m(X—X)={
hence:

A A X =(4*Fx Ak

In 4* we have the Poincaré metric:

|dz|?

ds?=—r ol
|z|*(log |z])?

and in A we have the simple metric |dz|?, giving us a product metric on (4*)*
x A"~* which we call 0.

Definition. A complex-valued C* p-form 5 on X is said to have Poincaré growth
on X —X if there is a set of polycylinders U, X covering X — X such that in
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each U, an estimate of the following type holds:
ln(tlv ceey tp)[2§ Caw([i),(tla t!) tre w(li)‘(tp, tp)

(all ty, ..., t, tangent vectors to X at some point of U,n X). _

It is not hard to see that this property is independent of the covering U, of X
— X (but unfortunately it does depend on the compactification X). Moreover, if
11, 1, both have Poincaré growth on X — X, then so does #; A#,. This leads to
the basic property:

Proposition 1.1. A p-form n with Poincaré growth on X — X has the property that
for every C®(r—p)-form { on X,

[ ImAall<+oo
fox

hence n defines a p-current [5] on X.

Proof. Since { has Poincaré growth, we are reduced to checking that if # is an r-
form with Poincaré growth, then

fInl<+co.
X

In a polycylinder U,, this amounts to the well-known fact that for all relatively
compact VccU,, the Poincaré metric volume of Vn(4**xA4™%) is
finite. QED

Definition. A complex-valued C® p-form # on X is good on X if both # and dy
have Poincaré growth.

The set of all good forms 7 is differential graded algebra for which we have
the next basic property:

Proposition 1.2. If  is a good p-form, then
d([n])=[dn].

I_’_roof.l By definition of d([#]), this means that for all C®(r—p—1)-forms { on
X,

[ dnnl=— [ nnadl
= x X x
This comes down to asserting that if U, is a tube of radius & around X — X. then

lim | (nA{)=0.

e—-0 U,

If we take, for instance, r =2 and set up this integral in local coordinates x, y on
X near a point where X —X has 2 branches x=0 and y=0, then this comes

! Compare Cornalba-Griffiths (6], p. 25
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down to the assertion

. dx? oyl
=0 (e KPR X7 ] (log )

which is easy to check. The general case is similar. QED

Next, let E be an analytic rank n vector bundle on X, let E be the restriction
of E to X and let h: E— € be a Hermitian metric on E. For such h we define
“good” as follows:

Definition. A Hermitian metric h on E is good on X if for all xeX —X and all

bases ey, ..., e, of E in a neighborhood 4" of x in which X — X is given as above
k

by []z:=0, if h;;=h(e,, ¢;), then

i=1

k 2n
i) |hyl, (deth)"'<C (Z log |zi|> , for some C>0,nx1,
i=1 _
ii) the 1-forms (0h - h~');; are good on X N U.
The first point about good Hermitian metrics is that given (E, h), there is at
most one extension E of E to X for which h is good. This follows from:

Proposition 1.3. If h is good, then for all polycylinders A" X in which X —X is
k
given by []z;=0,

i=1

(4", Ey={seI'(d"n X, E)| h(s,5)< C - (3 log|z;])*", for some C, n}.

Proof. The inclusion “c” is immediate. As for “>7, if s=) a(z)e; is a

i=1
holomorphic section of E on 4"n X, for which h(s, s) is bounded as above, then
it follows that

la;(2)| < C'(3 log|z;))*™,  for suitable C’,m.
k
Therefore (H z,.) - a;(z) is bounded on 4", hence is analytic, hence a;(z) is

j=1 _
meromorphic with simple poles on X —X. But as no inequality

1
< 2n
_—|z|2 < C(log |z])

holds, g;(z) is in fact analytic. QED
The main result of this section is the following:

Theorem 14. If E is a vector bundle on X and h is a good Hermitian metric on E
=E|y, then the Chern forms c,(E, h) are good on X and the current [c,(E, h)]
represents the cohomology class c,(E)e H**(X, C).
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Proof. Let h* be a C* Hermitian metric on E. Define

0=0h-h~', O*=0h* -h*"1,

K=06, K*=00*.
Intrinsically, K and K* are Hom (E, E)-valued (1, 1)-forms and 6—0* is a
Hom (E, E)-valued (1, 0)-form. According to results in Bott-Chern [5], for each k

there is a universal polynomial B, with rational coefficients in the forms K, K*
and 0 —0* such that on X:

¢ (E, h)— ¢, (E, h*)=d(Tr B (K, K*, 6 —6%)).

Now K, K* and 6 —6* are forms good on X, hence the (k, k)-form Tr RB(K, K*, 6
—0%) is good on X. It follows that ¢, (E, h) is good on X and that

Lek(E, W] =d[tr B+ [c,(E, h*)]. QED

represents cy(E)

§ 2. Estimates on Cones

The results of this section are purely preliminary. We have isolated all the
inequalities needed for the general proportionality theorem which involve only
the cone variables (cf. § 3, definition of Siegel Domain), and worked these out in
this section.

The object of study then is a real vector space V and

CcV,

C an open, convex, non-degenerate (C = (pos. dim. subspace of V), or equiva-
lently, 3leV, I>0 on C) cone. Most of our results relate only to those C which
are homogeneous and self-adjoint; for any C, we let G<= GL(V) be the group of
linear maps which preserve C, and say C is homogeneous if G acts transitively. If,
moreover, there is a positive-definite inner product ¢, ) on V for which

C={xeV|{x, y>=0, all yeC}

we say C is self-adjoint. The classification of these is well known (see [1], p. 63),
as in the fact that all such arise by considering formally real Jordan algebras V
and setting

C={x?|xeV, x invertible}.

All convex non-degenerate cones C carry several canonical metrics on them.
First of all, there is a canonical Finsler metric on C, which is analogous to the
Caratheodory metrics on complex manifolds ([10], p. 49):

VxeC, teT, =V, let:

o 0]
PR 10
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(Another canonical Finsler metric, analogous to Kobayashi’s metric in the

complex case, can also be defined. First introduce on the positive quadrant R,
. dx* dy? .
xR, the metric 7+yL2; then we have on any cone the definition:

()= canonical length in
P =1 the cone CA(Rx+R1)

/L1
Vet d

if a,>0 and a,<0 are determined by x+a, t, x+a,teC,¢C. We won't need
this second metric however.)

The advantage of the Finsler metric is that (as in the complex case) it
behaves in a monotone way when you replace C by a smaller (or bigger) cone:

Proposition 2.1. i) If C is an open convex non-degenerate cone in V, and aeC,
xeC, teV, then

px+a(t)C é px(t)C'

i) If C, <= C, are 2 open convex non-degenerate cones in V, then for all xeC,
tel,

px(t)Cl ;Px(t)cz-

(The proofs are easy.)

Now suppose C is homogeneous and self-adjoint. Then one can introduce a
Riemannian metric on C as follows. Chose a base point eeV which we take as
the identity for the Jordan algebra and let {, > be an inner product on V in
terms of which G='G. Then ([1], p.62), C is self-adjoint with respect to <, >.
Moreover, K =Stab(e) is a maximal compact subgroup of G and if g=f@p is a
Cartan decomposition with respect to K and *:G— G the Cartan involution,
then:

1) {gx,g*y>=<{x,y), hence K=exp(f) acts by orthogonal maps while P
=exp(p) acts by self-adjoint maps,

2) (gx)~'=g*(x~ ') (here x~! is the Jordan algebra inverse).

Now identifying T, . with V, we use {, ) to define a Riemannian metric on
C at e: since it is K-invariant, it globalizes to a unique G-invariant Riemannian
metric on C, which we write dsZ. For later use, we need the following formula:

Lemma. Take t,,t,€T, ¢, and let f(x)={t,,x~ ') where x~! is the Jordan algebra
inverse. Then

dsg(ty,ty)= -D,.f
where D, is the derivative of functions on V in the direction t,.

Proof. Let geexp(p) carry e to x. Then by G-invariance:

dsé,x(tl,t2)=dsé,e(g‘ltl,g"t2)=<g‘ Yt,87 )
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and

D, f(x)=D,-1,(f> g)(e).
But
foglx)=<ts,(gx)" ")
={tyg” (7))
=<g 7 x™ ).
If 5xeV is small, then (e+Jx)~ ' =e—&x +(terms of lower order), hence
D, (fog)le)=—<g 't5,g7't;). QED

On a homogeneous cone C, any 2G-invariant metrics are necessarily com-
parable, so we can deduce, from the monotone behavior of the Finsler metric p,
a weaker monotonicity for ds2:

Proposition 2.2. i) If C is a self-adjoint homogeneous cone in V and acC, then
there is a constant K >0 such that

ds¢ i ot, ) SK-dst (t,0) all teV, xeC.

i) If C,<C, are 2 self-adjoint homogeneous cones in V, then there is a
constant K >0 such that

dst, (t,y)SK-dsi ,(t,1), all teV, xeC,.

(The proofs are easy.)

The main estimates of this section deal with the following situation:

C a self-adjoint homogeneous cone,

G=Aut°(¥, C) (° means connected component),

C,=cone of positive definite n x n Hermitian matrices,
p:G— GL(n,C) a representation,

H:C— C, an equivariant, symmetric map with respect to p.

Here (p, H) equivariant means:

H(gx)=p()H(x)'p(g), all xeC, geG, 0]
while (p, H) symmetric means:

p(g¥)=H(e)-'p(g)~*-H(e)™", all geG. @)
Note that A+ H(e)-*A~'- H(e)~ ! is just the Cartan involution of GL(n, C) with
respect to the maximal compact subgroup given by the unitary group of H(e):

calling this b, we can rewrite the symmetry condition (2):

p(g*) =p(g)". )
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Condition (2) is actually independent of the choice of e: if e'eC is any other
point, and gr»g*' is the corresponding Cartan involution then one can check
that (1) +(2) imply:

p(g*)=H(e)'p(g) ' H(e) . 2")

We will also need for applications the slightly more general situation where p is
fixed but H depends on some extra parameters teT with T compact. In this
case, we ask that (1) and (2) hold for each H,. Note that we can change
coordinates in C", to get a new pair:

p'(g)=ap(g)a=’,
Hi(g)=aH,(g)'a,

satisfying the same identities. In this way, we can, for instance, normalize the
situation so that

H, (=1,
hence:

p(K)=U(n),

p(exp v)c{

self-adjoint matrices, commuting
with H,(e), all t '

This normalization will not affect our estimates. The first of these is:
Proposition 2.3. For all 1>0, there is a constant K >0 and an integer N such that
|H,(x)| and |detH/(x)"'<K-{x,x)", all xe(C+4i-e).

Proof. Let Acexp(p) be a maximal R-split torus. Then C=K -A-e and C+ e
=K -(Ae+ Ae). Write x=k(a(e)). Then

IH,(x)Il =l H,(ae)|
=llp(a)- Hile)- p(a)
<lp(a)l)*- IH,(e)ll.
We may change coordinates in C" by a unitary matrix so that all the matrices
p(a) are diagonalized. Write then p(a)=y;(a)-;; where y;: A—R* are charac-
ters. Now we may coordinatize 4 by

A—=5A4.-exR . cV, e—(1,...,1).

Let a,,...,a, be coordinates in R’,. Then

r
u@=[[a¥, s;eR.
j=1
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Note that if aee C + Ae, then aecR”, +(4, ..., 1), i.e, a;= 4, all i. Hence

lp(a)]* < max (x(a)*

1<izn

<K, (Z lazlz)(

<K, -K,(Kae,ae))maxsi)r

max s;j)r

hence

IHkae)| <K, K, K;(Ckae, kaey) ™=,

The same proof works for |det|]~*. QED

Next, let £V and let D, be the derivative on V in the direction {. We wish
to estimate the matrix-valued functions

(D:H)-H;': C—M,(C).
To do this, we prove first:

Proposition 2.4. For all 1<a, B<n, let (D H,-H;"),; be the (o, B)"™ entry in this
matrix. There is a linear map

Caﬂ, s V=V
depending continuously on t such that

(DeH, - H 1)yp(x) =< Cpp, (&), x™ ).
Moreover C,; , has the property:

&neC

<& =0} = (Cap,d 1> =0.

For some reason, I can’t prove this by a direct calculation, but must resort to
the following trick:

Lemma. Let CcV be a convex open cone, let eeC, and let f: C—C be a

differentiable function. Suppose that for all W <V, dim W =2, and ecW, f is linear
on CnW. Then f is linear.

Proof. The hypothesis means that
flax+be)=af(x)+bf(e), all xeC, a,beR,.
So we may extend f to all of V by the formula

f(x)=f(x+ae)—af(e), provided x+aeeC.
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Note that
ftx)=f(tx+tae)—atf(e)
=t(f(x+ae)—af(e)
=tf(x).

Thus for all xeV, n>1:

1) _f (X/nl—f(o)

- f(x)=D,f(0)
and the right hand side is linear in x. QED

We prove (DéH,-H,‘l)a,,(x“) is bilinear in ¢, x. Since it is linear in &, it
suffices to find a basis {£,} of V such that (D, H,- H;'),,(x~ ") is linear in x. In
fact, we will show that for every ¢eC, (D H,-H; '),5(x™") is linear in x. To do
this, by the lemma, it suffices to show that for every W<V with dim W =2, (e W,
(DeH,-H; Y),p(x~ 1) is linear on CnW. We will do this for all «, § at once, so in
verifying this we can change coordinates in C".

What we do is this: we let £ be a new base point of C and we change
coordinates so that H, (£)=1,. This reduces us to verifying (D, H,- H; !),5(x~ ") is
linear on Cn W when dim W =2, ee W. Now any such W is part of a subspace of
V of the form A - e, where A cexp(p) is a maximal IR-split torus (of course, this p
corresponds to the new choice of ¢). Moreover, as above, we can diagonalize p
on A:

play, ... a) = (@) 3),  7(a)= n @,
Then =
H(ae)=p(a)*H(e), p(a)H,(e)=H,e)p(a).

Since e=(1,..., 1), it follows:

r

d
D (H,(ae)= ._Zl 7. Hilae).

Using this, one calculates:

r

(D.H,-H ) p(a0)= X 22“") -

=1 j

and since on Ae, x~! is given by (a,,...,a)—(a7’,...,a "), this proves that
(D H,-H '), is linear in x~' on every W< Ae.
Nﬂv_ say &,neC, (&, n)=0. For a suitable coice of maximal torus 4, we have

¢,neA-e. In the coordinates (a,,...,a,) on 4-e, let

£=(€1s“‘aér)a
n=My,....n,)
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Since {, ) on Ae makes A self-adjoint, it is a quadratic form of the type {ae,be)
=Y Aa;b;, so (& n) =0 means that for every i, ¢,=0 or ,=0. A calculation like

i~

that just made shows:

r 2s .E.
DeH, H: )ga0= (3 225 5,

X =1 J
Le.,

(Dg‘HfH:l)a,,(x-l)lA.f( 2sa,~5,~a,~-aa,,).
j=1

This is clearly zero if x=7%. QED

For the next result, suppose J is any vector field in the manifold of values of
t. Then

Proposition 2.5. For all vector fields 6 on T,
(6H,-HS 1)(x)
is independent of x, i.e., depends on t alone.

Proof. By equivariance:

SH,(gx)=p(g)- SH,(x)-'p(g)
hence
(6H,-H; ")(g-e)=p(g)-(6H,-H; ")(e)- p(g)~".

By symmetry:

p(g*)-3H(&)=3H,(0)-'p(g) ~*
hence

p(g*)-(3H, H ")(e)-p(g*)~ ' =(0H, H ") (e).
Together, these imply the Proposition. QED

Proposition 2.4 gives us estimates on ||D.H, - H, 1)|. To work these out, we fix
a maximal flag of boundary components of C. In the notation of [1], p.109,
choosing this flag and the base point eeC is equivalent to choosing in the
Jordan algebra V, a maximal set of orthogonal idempotents:

e=¢g; 4+ +¢,.

Let

C,=boundary component containing ¢, , + - +&,.
Then

€2C,2C,2-2C,
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is the flag. Also let
C=CuC,uC,yu---uUC,u(0)

and let
A=Y R-g,.
i=1

Let P be the parabolic group which stabilizes the flag {C,}. Our estimates are
based on:

Proposition 2.6. (1) Let ¢,eC and let &€V satisfy

&pm>=0

neC }=~<€’1,11>=0.

Then for every compact set w < P, there is a K >0 such that:

[KELxDISKVdsE (E1,E), all xew-A-e.

(2) Let ¢,€C, & eV be as above. Let ¢,€e C. Then for every compact set w< P,
there is a K >0 such that:

|58, (&5, EN S KV dsE (E1,E1) Vs (&3, ).

Proof. We will use the Peirce decomposition of V defined by the idempotents ¢;:

V=@V,
isj
where
a,+a;
xeV;=) a-x= '2 Ix.

This decomposition is orthogonal with respect to { , > and C, is an open cone

in the subspace @ V;;. If £, eC,, then note that
k<isj

&l @V
iSjsk
and

@ V,;>(the boundary component of C corresponding to &, +--- +¢).
isjsk

This boundary component is open in  (® V;. Thus

isjsk
GL @V
iSjsk
or
i€ @ Vij-

G2
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To prove (1), let x=gae, gew, ae=)  a;¢;. Then
CLx~ =g ¢, (ae) ")
r 1 L
=3 <@ ¢8>
i=14

where (g~ 1&});; is the component of (g~*¢&)) in V. But w preserves the flag, so

g-lé’le@.Vij
k<3
too. Thus
- SN
&, x 1>= Z —<(g 151)ii’8i>-
i—k+14;

As g varies in w, {(g7'¢&});;, &> is bounded, hence

i’

U |
IKELx~DISK, Y —.
i—k+14;

Let e¥ =g, , +---+¢, be the base point in C, and note that, again by compact-
ness of w, there is a K, >0 such that

g 1¢,eC+K,e®,  all gew,
hence
ds¢ (K, K eV)sdst (g7 181,87 "¢y),  all xeC.
Thus
dSE gae(C1, 1) =dst (871 €1, 871 E))
2 K3ds? ,.(e", e®)
=K3ds¢ (a 'e®,a"'e)
=K3 i ‘15<3is3i>

i=k+14i

r 1 2
;K§K3(Z —).

i=k+1 @

The same procedure proves (2). If £,€C,, &£,€C,, the argument goes like this:
ds(zf,gae(é’l’ é2)= <a_ 1(g_ ! 6,1)9 a- l(g_ ! fz))
1
= Z E((g_léll)ij,(g_léz)ij>
()"
k<j

LA | LA |
<K |/ X T'l/ ) prs
J

i=1+14; j=k+1

<K K Vdst, (1,8 Vdst.(¢,,¢,). QED
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We can put everything we have said together as follows: Suppose N =dim V
and ¢, ...,Eye Cspan V. Define a simplicial cone o< C by

N
o= R, -¢&.
i=1

Let [;: V>R be a dual basis: [(£;)=0,;. Then for all p,H, as above, we have the
estimates:

Proposition 2.7. For all vector fields 6,8 to the T-space, and aeC there is a
constant K >0 such that for all xelnt(o + a):

IDg H, H ()] g,—(x)KT(a—)
|oH, - Hy (9 <K,
()< R

=10 - @) G- @)
1D (6H, - Hy ()] =0,

”Dgi(ngHr'Ht_ 1)

< K
10D H,- BN =750

166" H, - H” )(x)| < K.
Proof. Combine (2.4), (2.5) and (2.6) and the formula ds¢(t,,t,)= —D, ({t5,x™ D)
to get estimates in terms of ds(&;,&;) on sets - A -e. Then apply (2.2)(i) and (ii)

to the inclusion Int(c +a)— C, plus Ash’s theorem that Int(c+a)cw-4-e if w
is large enough ([1], Ch.II, §4), plus the formula

" dI?
asi=y %
i=1 Y4

for the canonical metric on the homogeneous convex cone 6. QED

There is one final estimate that we need. For this, we first make a definition:

Definition. A linear map T:C"— €C" is called p-upper triangular if the following
holds: For all maximal IR-split tori A=G, let X(A)=Hom(4,@G,,) be the
character group of A. As is well known, there is a basis y,,...,7, of X(A) such
that the weights of 4 acting on V are contained in y,+y;, i<j (and contain 2y,,
1 <i<r). Partially order the characters by defining

Yoy 2Y my, if n,zm, all i
Diagonalize p(A):

=@ V.
AeX(A)

Then T is p-upper triangular if for all 4, all 1,e X(A),
T(@® V)= @ Vi

AZ Ao AZ Ao
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The estimate we need is:

Proposition 2.8. If T is p-upper triangular, then for all ae C(F), there is a constant
K >0 such that :

|H,(x)-‘T-H(x)""| <K, all xeC(F)+a.

Proof. Take a as a base point of C(F) and pick any maximal torus A so that Ae
=R", a=(1,...,1), C(F)=K-a-e. Therefore

C(F)+a={kaelkeK,a=(a, ...,a,), a;=1, all i}.
Change coordinates in C" so that

Al@ 0
pla)= .
0 Aifa)
Now
H,(x)-'T-H(x)~ ' =p(k)H,(e) p(a)*-To(k) -'T-*p(k) ~* p(a)~ 2H,(e)* p(k)~*

so it suffices to bound | p(a)?-(po(k)~*- T- p(k)) - p(@)~ ?||. This means we wish to
bound:

14(@)? (@)~ 2(p(k)~ - T- p(k));
when k ranges over K, and a=(a,, ...,a,) satisfies a;> 1, all i. This is equivalent

to:
(p(k)~ - T p(k));; 0= 4,2 4; (%)

(weights of A being partially ordered as in the definition). But for all i define
Wi=pk)( ® C-e)

AjZAi
(where e;eC" is the i™™ unit vector). Note that k Ak~ ' maps W, into itself and that

W, is one of the sums of weight spaces referred to in the definition. Therefore
T(W,)< W, hence

(p(k)~! Tp(k))eiel@ C-¢

JZAi

which is precisely (x). QED

§ 3. The Proportionality Principle

Let D be an r-dimensional bounded symmetric domain and let I' be a neat?

arithmetic group acting on D. Then X=D/I' is a smooth quasi-projective
2 Recall that following a definition of Borel, a “neat” arithmetic subgroup I' of an algebraic
group ¥< GL(n,C) is one such that for every xel’, x+e, the group generated by the eigenvalues of
x is torsion-free. Every arithmetic group I'" has neat arithmetic subgroups of finite index
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variety, called a locally symmetric variety, or an arithmetic variety. In [1], Ash,
Rapoport, Tai and I have introduced a family of smooth compactifications X of
X such that X —X has normal crossings. We must first recall how X is
described locally. At the same time, we will need various details from the whole
cumbersome appartus used to manipulate D so we will rapidly sketch these too.
All results stated without proof can be found in [1].

By definition, D=~ K \ G, where G is a semi-simple adjoint group and K is a
maximal compact subgroup. Inside the complexification G¢ of G, there is a
parabolic subgroup of the form P, - K¢ (P, its unipotent radical which is, in fact,
abelian and K the complexification of K) such that K=Gn(P, -K¢) and
G- (P, -K¢) open in G¢. This induces an open G-equivariant immersion

De———D

KNG P, -K¢\Gg.

Here D is a rational projective variety known as a flag space and Gg is an
algebraic group acting algebraically on D. Let D be the closure of D in D. The
maximal analytic submanifolds F<D—D are called the boundary components
of D. For each F, we set
N(F)={geG|gF=F},
W (F)=unipotent radical of N(F),
U(F)=center of W(F), a real vector space of dimension k, say,
V(F)=W(F)/U(F): known to be abelian, centralizing U(F). Via “exp”, we
get a section and write W(F) set-theoretically as V(F)- U(F). Also
dim V' is even —let it be 21

Next splitting N(F) into a semi-direct product of a reductive part and its
unipotent radical, we decompose N (F) further:

N(F)=(Gy(F) - G,(F) - M(F)) - V(F) - U(F),

direct product mod finite
central group

where

a) G,- M. V.U acts trivially on F, G, mod a finite center being Aut°(F),

b) G,- M -V-U commutes with U(F), G, mod a finite central group acts
faithfully on U(F) by inner automorphisms

c) M is compact.

Here F is said to be rational if I' ~ N(F) is an arithmetic subgroup of N(F). Mod I’
there are only finitely many such F, and if Fi, ..., F, are representatives:

X0 ) (F/r N,
i=1

3
with suitable analytic structure is Satake-Baily-Borel’s compactification of X.

.
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Next, for each F, we define an open subset D, D by
Dy= |J) g-D.

geU(F)¢

The embedding of D in D is Pjatetski-Shapiro’s realization of D as “Siegel
Domain of 3rd kind”. In fact, there is an isomorphism:

Dp=U(F)¢xC'xF

such that not only N(F) but even the bigger group G, - (M - G )¢ V¢ - Ug acts by
“semi-linear transformations”:

(x, y, h—>(Ax+a(y, ), B, y+b(t), g(t)
(4, B, matrices, a, b vectors) and

D={(x,y, )| Imx+1,(y, y)e C(F)}
where C(F)c U(F) is a self-adjoint convex cone homogeneous under the G-
action on U(F) and [,: €' x C'— U(F) is a symmetric R-bilinear form.
Moreover
U (F)=group of automorphisms of D: (x, y, t)—(x+a, y, t), acU(F),
U (F)¢=group of automorphisms of D(F): (x, y, t)—(x+a, y, t), ac U (F)¢,
W(F)=~group of automorphisms of D:(x, y, t)—(x+a(y, t), y+b(t), t) and
the group V(F) acts, for each t, simply transitively on the space C' of
possible y-values.
There is a technical lemma which we will need about this action:

Lemma. Let t eF, eqe C(F), and let uyeU(F)¢ be the map (x, y, t)—(x+ieq, y,t).
Let e=(iey, 0, ty) be a base point of D, so that Stabg(e)= K, a maximal compact of
G and Stabg(e)=K¢ - P, . Moreover, Stabg, (eo)=K, is a maximal compact in G,.
Since G,=Stab(0, 0, t,), uy(G,) uy ' = Stab(e) and we may look at

o G, =% Stab (€)™, Ko
If * is the Cartan involution of G, with respect to K,, then:
a(g*)=a(g).

Proof. This is a straightforward calculation, for instance, using the fundamental
decomposition of g=Lie G viasl(2)'=g (cf. [1], p. 182) and the description of
Lie(M - G)) in this decomposition for the standard boundary components Fg
given in [1], p. 226.

We now describe local coordinates on X. Recall that X is not unique but
depends on the choice of certain auxiliary simplicial decompositions. We need
not recall these in detail. The chief thing is that each X is covered by a finite set
of coordinate charts constructed as follows:

1) take a rational boundary component F of D,
2) take {¢,, ..., &} a basis of 'm U(F) such that £,e C(F)< U(F) and in fact,
¢&eC(F)uC,uC,u--uC,=C, where C(F)2C,=2C,2--2C, is a flag of
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boundary components (cf. §2) and at least one ¢; is in C(F): say

Epyooes En€C(F),  Epmyrs o r EEC(F)—C(P),

3) let I;: U(F)¢— € be dual to {¢;}, ie., Li(¢)=4,;,
4) consider the exponential:

D c(U(F)exC'x F)
(eZﬁlh(x), . erllk(xY, ¥ [)

D/I"NU(F)c(C**xC'xF)

X

5) Define (D/I"U(F))~ to be the set of PeC*xC'xF which have a
neighborhood U such that

Un(C** xC! x F)c(D/T nU(F)).
Note that

(D/IF N U(F))~ D,-Q {5, 0z=(zy, ..., 2), =0} =S(F, {&}).

6) The basic property of X is that for suitable F, {&;}, the covering map p
extends to a local homeomorphism

p: (D/TAU(F)~— X

and that every point of X is equal to p((z, y, t)), where z,=0, some 1<i<m, for
some such F, {£}.

We now come to the main results of this paper. Let E, be a G-equivariant
analytic vector bundle of rank n on D. E, is defined by the representation

o: K— GL(n, C)

of the stabilizer K of the base point e €D in the fibre C" of E, over e, . We
complexify ¢ and extend it to P, - K¢ by letting it kill P, . Then o defines a G¢-
equivariant analytic vector bundle E, on D also. In the other direction, we can
divide E, by I' obtaining a vector bundle E on X. Since K is compact, E, carries
a G-invariant Hermitian metric h,, which induces a Hermitian metric h on E.
We claim:

Main Theorem 3.1. E admits a unique extension E to X such that h is a singular
Hermitian metric good on X.
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These various bundles are all linked as in this diagram:

E,--orcion g deent | p o extemsion _, [
D D > X X

Proof. We saw in §1 that E, if it existed, has as its sections the sections of E with
m 2N
growth O ((Z loglzJ) ) along X —X. To see that the set of these sections
i=1

defines an analytic vector bundle on X, it suffices to check this locally, e.g., on
(D/TAU(F))~. But now the bundle E, restricts to a bundle E; on D, with
N(F)- U(F)¢ acting equivariantly. Now note that the subgroup U(F)¢ acts
simply transitively and holomorphically on the first factor U(F) of Dy in its
Siegel Domain presentation. Since €' x F is contractible and Stein (F is another
bounded symmetric domain), it follows that E, has a set of n holomorphic
sections ey, ..., e, such that

i) e; is U(F)¢-invariant,
ii) e,(x), ..., e,(x) are a basis of Eg(x), all xeDy.

Dividing by I'n U(F), E descends to a vector bundle Er on €** x C' x F, which
is also globally trivial via the same basic sections e, ..., ¢,. We can then extend
Ej to C*xC'xF so as to be trivial with these basic sections. We must show
that along S(F, {&;}) the sheaf of sections of this extension is exactly the sheaf of

k 2N
sections of Ej on (D/I' U (F)) with growth O ((Z log |zi|) ) on the coordinate
k i=1
hyperplanes | ) (z;=0). Equivalently, this means that h(e;, e;) and (det h(e;, e)!
i=1

have this grO\—avth. To do this, it is convenient to use a 2nd basis of Ef, which is
C* but not analytic. Note that V(F) - U(F)¢ acts simply transitively on the 1st 2
factors of Dy. So we can find ¢, ..., e,e'(Dg, E) such that

1) e, is V(F)- U(F)¢-invariant,
it") ej(x), ..., e,(x) are a basis of Ep(x), all xeDy.
iii’) On (0, 0) x F, e;=e¢;, hence are holomorphic sections.

13

{e;} and {e;} are related by an invertible U(F)¢-invariant matrix S; so that |S;|
and |det S|~! are uniformly bounded on subsets

compact subset

*\k k i
(a:)x(ofc,xF )c:((E)x(E x F.
Therefore it is enough to check that h(e;, ¢€)), (det h(e;, ej’-))‘1 have the required
growth.

Now if geG,(F), note that because g normalizes V- Ug, ge; is another V- Ug-

invariant section of E’z. Therefore

g ()= r;j(t)- €;  (here t is the coordinate on F).
j=1
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Since g(U(F)¢ x €' x {t})=U(F)¢ x C' x {t}, it follows that for each ¢,

g p,(g)=(r;(1)

is an n-dimensional representation of G ,(F). In fact, as g(0, 0, )=(0, O, ¢), this is
just the representation of the stabilizer of (0, 0, ) restricted to G ,(F). This shows
that p, is a holomorphic family of algebraic representations of G, (this is not
trivial because G, has a positive dimensional center). Since G, is reductive, we
may change our basis {e}} so that p, is in fact independent of ¢.

Now consider the functions h;;=h(e], €)) on D. Since h, ¢; and ¢} are U - V-

i
invariant, so is h;;, hence in Siegel domain notation, it is a function of u=Imx

+1,(y, y) and ¢, ie, is a function on C(F)x F. For each fixed teF, and variable
ue C(F),

H,(u) =(hij(u5 1)
is a map

C(F)— C, = (cone of pos. def. n x n)

Hermitian matrices

I claim that (p, H,) satisfy the hypothesis of §2. In fact,

H,(gu);=h(ge}, g¢)
= Yrulg) hieis €) ;i(8)
=(p(8) - H,(@)-*p(8));;
Let e=(iey, 0, t,) be a base point of D. Since h is a K-invariant metric on E,,
h(ke;, kej)(e)=h(e;, e)(e), all keK.
Complexifying, we get too:
hike], Ke)(e)=h(e}, ¢)(e), all keKe.

Let uyeUg be given by (x, y, )—(x+iey, y, t). Then for all geG ,(F), u, gug '(e)
=e, 50 uoguy ' =k-p, where keK¢, peP,. By the lemma above, u,g* uy!
=k - p' for some other element p’eP, . Therefore:
h(e;, €)(e)=h(pe;, p' €)(e) (since P, acts trivially on E(e))
=h(kpe;, kp' €)(e)
=h(ug gug ' (€)), uo g* ug ' (¢))(e)
=2 7u(8) hley, €)(e) 7,(g*)  (since uq e} =e;, all i)
or
H,,(e0)=p(g) H,,(e0) 'p(8*).

In fact, the same holds if ¢t is replaced by any teF as follows easily using the
G,(F)-invariance of h and the fact that G,(F) and U(F), commute with G,(F).
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Thus we have the full situation of §2. In particular, we have available all the
bounds of §2.

As above, to describe local coordinates near boundary points of X, choose a
simplicial cone:

k
o=y R, -§cC(F); &eC(F)e1Zism
i=1

and let /; be dual linear functionals on U(F)¢. Then if (x, y, t) are Siegel domain
coordinates on D(F), and z;=?™ 1), then (z, y, t) at points where at least one z
is 0(1 <i<m) are local coordinates on X. Moreover each point PeS(F, {¢,})c X
has an open neighborhood whose intersection with X is contained in the image
of

{, y, ) lu=Im x+1,(y, y)eo+a, yeY', teF'}

for some o as above, ae C(F), Y’ (resp. F') a relatively compact subset of Y (resp.
F). Note that log|z;|=—2nl,(Imx). At all points PeS(F, {¢;}), we have to
estimate h(s}, s)*! in terms of

(Z log )ZN

(choose C large enough so that

Z
C
% <1 in a neighborhood of P). This is the

same as estimating h(s;, s)* ' in terms of
(Z li(w)+ )N

(choose C large enough so that /(u)+ C >0 in a neighborhood of P). But if [;(u)
+ C>0, ) I{u)+ C)*N is comparable with () [(u)*)", hence with {u, u)". This is
exactly the estimate that Proposition 2.3 gives us. Next we have to estimate the
connection and the curvature. Now in terms of a holomorphic trivialization of
E,, the connection is given by dh-h~'. What we have is good control of
d,h-h=' and 6,(8, h-h~") for all vector fields §,, 4, in terms of the real
analytic trivialization given by {e}}. Write

&= a;¢,
j=1
A =matrix (a;,),
H“"=matrix h(e;, e)).
Then
H"=A-H-'A.
From this you calculate:

Connexion in
trivialization

{e}

=8Han.(Han)—l
=0A-A"'+A-0H-H ' A"'+A4-H-(0'A-'A"" YH '47",
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connexion in
d (trivialization) =d(OH* - (H*")™ 1)
{e:} =d(@A-A~Y)+d(A-0H-H ' - A~Y)
+d(A-H-(0A-'"A"Y)-H ' A"
=d(@A-A"")+dA-(0H -H')- A~}
+A-d@H-HY)-A"'+A4-0H-H ' - A='-dA-A~!
+dA-[H-(0'4A-'"A"YH1].- 4!
+AdH-H YWH-(04-'A~Y)-H']-4~*
+A-[H-d@@A-'A"Y-H '] - 4!
+A-[H-(0'A-'A~Y)-H ']-(dH-H™1)- 4!
+A-[H-(Q4-'A7Y)-H']-A7"dA- A",

Therefore, since A is a C* metric on X, to show that the connexion and its
differential have Poincaré growth on X it suffices to prove that the 4 forms:

OH-H™ !,

d(0H-H™Y),

H-(04-'A~Y)-H™,

H-d0A-'A~")-H!
have Poincaré growth on X. To check this for the first two, note that H is a
function on C(F) x F, hence it suffices to bound 6, H-H™ !, §,(6, H- H™!) for

all vector fields J,, 6, on C(F)x F. But the Poincaré metric is given in Siegel
coordinates by:

ds*=Y +Y ldy P+ 1de)?

i

|dzi|2

2
12 (1og |2 )
hJ(ogC

_ ldL(x)?
_Zﬂﬂmﬂ+CY

+21dy 2+ 3 lde)?

(choose C large enough so that [(Im x)+ C>0 near the boundary point in
question). Therefore the bounds of Proposition 2.7 imply that dH - H~! and
d(6H - H~') have Poincaré growth.

To check the result for the last two, we need to know what sort of a function
A is. Firstly, since e; and e; are both Ug-invariant, A4 is Ug-invariant, ie., is a
function of y and t alone. Therefore it has derivatives only in the y and ¢
directions, so to say these have Poincaré growth is just to say they are bounded
along X. Next, for all ¢ty eF, the action of V on vector space of points (y, t,) puts
a complex structure on V. Thus it defines a splitting Vo=V,> @ V,;, where V,*
are complex subspaces and V,~ acts trivially on the points (y, t,), while V" acts
simply transitively. If we fix one t,, then V' still acts simply transitively and
holomorphically on the vector spaces of points (y, t) for ¢ near t,. Thus it is
natural to choose our holomorphic basis e; to be in fact V' - Ug-invariant.
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Moreover, it is easy to see that G,- V normalizes V, - Ug for all t,, hence that
the action of G, - V in terms of the holomorphic basis is given by

n

gle)= ) 7;(t) - ¢;

i=1
where

g py(g) =(matrix 7;;(t))
is a representation of G, - V. Comparing p and j, we get:
p(g)=g*A""-p,(g) A
Since ¢;=¢} on (0,0)x F, p(g)=p,(g) for all geG, and A(0, t)=1,. Thus if v(0, )
= 1),
L=p(0)=Ay, )" p,) I,
or
A(y, )=p,(v).
Now we use the simple:

Lemma. Let o be an algebraic representation of G, - V, and let 6, be the restriction
of g to G,. Then for all veV, o(v) is o,-upper triangular.

Proof. Let A<= G, be a maximal R-split torus. As in §2, there is a basis y,, ..., 7,
of the character group of A such that A4 acts on the vector space U(F) containing
the cone C(F) through the weights y;+7;. Then its action on V(F) is through the
weights y; (cf. [1], p. 224). Now if V,(F)< V(F) is the root space corresponding to
7:» and if we diagonalize g(A):

C'= P W,
AeX(A)
then
V(F)Y W)= W, 4y,

hence V(F) acts in a g,-upper triangular fashion. QED
Thus A(y, t) is p-upper triangular for all y, ¢, hence so are

A~'.9A4 and d(A~'-0A).
Applying Proposition 2.8, it follows that
H-(A-'.-64)-H~' and H-'d(4~'-04))-H™!

are bounded in a neighborhood of every point of X, as required. This completes
the proof of the Main Theorem.

A natural question is whether these vector bundles E are in fact pull-backs of
vector bundles on less blown up compactifications of D/I". Thus Baily and Borel
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defined in [2] a “minimal” but usually highly singular compactification (D/I')*
of D/I'. Unfortunately E is only rarely a vector bundle on (D/I')* (we will see
below one case where it is however). However, in [1], Ash, Rapoport, Tai and I
defined not only smooth compactifications of D/I' but also a bigger class of
compactifications with toroidal singularities (cf. [9]). These are important
because when you try to resolve (D/I')*, often there is a D/I' with relatively
simple structure on the boundary but still with some toroidal singularities. It is
easy to see that the construction above of E goes through equally well on all of
these compactifications: it gives vector bundles on all of them such that
whenever compactification a dominates compactification b, then extension a is
the pull-back of extension b.

The Main Theorem, plus Hirzebruch’s original proof of his proportionality
theorem for compact locally symmetric varieties X, gives us easily the pro-
portionality theorem in the general case:

Proportionality Theorem 3.2. As above, fix:
X =an arithmetic variety D/I', D=K \G,
X =a smooth compactification as in [1],
D = compact dual of D.

Then there is a constant K, which in terms of a natural choice of metric on D is the
volume of X, such that for all:

E, = Gg-equivariant analytic rank n vector bundle on D
defined by a representation of Stabg(e) trivial on P,

E = corresponding vector bundle on X,

the following formula holds:
HE)=(—1)¥mX.K.c*Ey), all a=(y,...,,), Y o;=dim X.

Proof. As above, choose a G-invariant Hermitian metric h, on E,. By the Main
Theorem, h, defined a “good” Hermitian metric h on E, hence its Chern forms
c,(E, h) represent the Chern classes of E. But on D, c,(E, h) are G-invariant
forms, so:

*(E)= [ c*(E, h)
X

= j c*(Eg, ho)
F’ al Domain
FcD

=VOI(F) - ¢*(Ey, ho)(e).
Now if G is a compact form of G:

LieG=t®p,
Lie G‘'=t®ip




Hirzebruch’s Proportionality Theorem in the Non-Compact Case 263

then E, has a unique G‘-invariant Hermitian metric / equal to h, at e. So

Ca(Eo)= éca(Evo, H)
=vol (D) - ¢*(E,, h)(e).

Then —and this is the essence of Hirzebruch’s remarkable proof —a simple local
calculation shows (cf. [7]):

¢, (E, h)(e)=(— l)k Ck(EO’ H)

This proves the result.

To apply this result, it is important to describe the bundles E as closely as
possible. Firstly, we can characterize their sections, precisely as a special case of
the general definition of automorphic forms given by Borel [3]. Let
p: K— GL(n, C) be a representation of K, and let

E,=GxXC"

be the associated G-equivariant vector bundle over D=K\G (i.e., E,=set of
pairs (g,a), mod(g,a)~(kg,p(k)a)). E, has a complex structure as follows:
complexify p and extend it to K¢-P, to be trivial on P,. Then E, is the
restriction to D to the bundle

E0=GCX (KC'P+)CH

on D, and in the definition of E,, everything is analytic. Borel introduces a
measure of size on G by:

lglg=tr(Adg*~'-g)
*=Cartan involution on G w.r.t. K,

and defines holomorphic p-automorphic form f to be a function
[ G-C"
such that

(1) f(kgy)=p(k)f(g), all keK, yerl,
(2) finduces a holomorphic section of E,,

(B) If@I=C- gl some nz1, C>0.

Then one can show:

Proposition 3.3. In the above notation:
I'(X, E)={vector space of holomorphic p-automorphic forms}.

Sketch of Proof. The problem is to check that the bound (3) is equivalent to
requiring that the corresponding section of E over X has growth O((}_ log|z;])*")
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along X. But | g||; defines a measure of size on D and on X by:

VxeD: ||x|p=]gll¢ if x corresponds to the coset K - g,

VxeX, image of x: ||55”x=mi1{1 Ily(x)“D:mip lgvllg-
V€ V€

Then holomorphic p-automorphic forms are clearly holomorphic sections s of E
over X, such that

h(s,s)(x)= Cy||x|x, some nz1, C;>0.

But if d;, is a G-invariant distance function on D, then it is easy to see (using G
=K - A-K) that dj(x,e) and log ||x| are bounded with respect to each other. In
another paper [4], Borel has proven that if x is restricted to a Siegel set S
=w-A,-ecD, then

min dp(xy, e)xdp(x, e)~d (a(x),e)
yel :

(here x=w(x)a(x)-e and ~ means the differences are bounded). Applying this
to a subset of a Siegel Domain of 3rd kind of the type {(x,y,t)|yeV’ teF’,
RexeU’, Imx—1,(y,y)es+a} where U'c U, V'cV, F'cF are compact subsets

and o< C(F) is a simplicial cone and ae C(F), we see that
min dD((x’ Vs t) Vs e)
yell

can be bounded above and below by expressions
C,logImx—1(y,y),e)), eeC(F), C,>0

hence ||x||; can be bounded above and below by expressions
dmx—I(y,y),e)", eeC(F), n=1.

Describing ¢ as [;=0 as above (I; linear functionals on U), this is of the same
size as

O (Imx)+ C,)
and as z;=e?>™ ! this is equal to
(=Y log(lz)/C,)". QED’

Next, there are 2 particular equivariant bundles where we can describe E
more completely:

Proposition 3.4. a) If E0=Q,_1,, the cotangent bundle, with canonical G-action, then
E=Q}(log), the bundle on X whose sections in a polycylinder A"< X such that

_ k rcoordinate hyperplanes
Anm(X._X)=‘U (Z.=0 yperp )

i=1
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are given by

k dZ‘ n
Y a(z)—+ )Y by2)dz,.
i=1 Zi  i=k+1

b) If E, is the canonical line bundle Q%, then E is the pull-back of an ample
line bundle O(1) on the Baily-Borel compactification X* of X. The sections of O(n)
are the modular forms with respect to the nth power of the canonical automorphy
factor given by the jacobian, hence O(n), n>0, is the very ample bundle used by
Baily and Borel to embed in X* in IP".

Proof. Using Siegel Domain coordinates (x, y, t) on D(F), a U(F)¢-invariant basis
of Qpr, is given by {dx, dy;,dt,}. Therefore these span the corresponding bundle
on X near the boundary F. But here

{z;=e"11O), Vi i}

. . . dz; .
are coordinates and these differentials are {—Zz—', dyj, dtk}. This proves (a).

To prove (b), recall that X* is set-theoretically the union of X and of
F/TAN(F) for all rational boundary components F. Moreover, if
PeF/T' nN(F)< X*, then there exists a neighborhood U< X* and an open set
V<D such that V maps to UnX and V is a (G/(F)- V(F)- U(F))nI-bundle
over UnX. Now say {s;} is the U(F)¢-invariant holomorphic basis of E, on
D(F) used to extend E over the F-boundary points of X. If we verify that each s,
is (G,(F)-V(F)-U(F))nrI-invariant it follows that E is trivial on UnX and
moreover, if m: X — X* is the canonical birational map, then {s;} are a basis of
n,E over U. Thus nE is a vector bundle which pulls-back to E on X. Now in
the case in question, E is a line bundle. s; can be identified with the differential
form

(/,\ dxi)A(/j\ dyj)/\(/k\ dt)
on D(F), and G,- V- U acts on it by multiplication by the Jacobian determinant
in the Siegel Domain coordinates. But Baily-Borel ([2], Prop. 3.14) showed that
the Jacobian on (G- V- U)nI" was a root of unity. Since I is neat, it is one and
(G,-V-U)n T indeed fixes s,. The last assertion is just a restatement of Pro-
position 3.3 for this special case. QED

The following consequence of the proportionality principle seems to be more
or less well known to experts, but does not seem to be contained in any
published articles:

Corollary 3.5. Let L=()~ ! be the ample line bundle on D, and let
P(l)=x(L®")

be the Hilbert polynomial of D. Let n: X— X* map a smooth compactification of
X onto Baily-Borel’s compactification. Let n, =dim(X* — X). Then there exists a
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polynomial P,(l) of degree at most n, such that for all 1=2:

di [cusp forms on D

w.r.t. I' of weight 1] =vol(X)- P(I—-1)+ F()).

Proof. The Riemann-Roch theorem gives us a “universal polynomial” Q such
that if L is any line bundle on a smooth projective variety W, then

2(L)=Q(c,(L); ¢ (), ..., culQi)).
Therefore if n=dim D,
(= 1)"vol(X)- P(=1) =(—=1)"vol(X)- x((27%)®")
=(= 17" vol(X)- Qlc,(2}): ¢,(2) .. c,(2})
=Q(lc,(2%(log)); ¢,(2(l0g)), ..., ¢,(Qx(log))

by Proportionality Theorem 3.2.
Consider a typical term

Ue, (Qx(log)]* - c*(Qx(log)), |l +k=n.

Now by Proposition 3.4b:
¢,(Qx(log)=n*H,

H an ample divisor on X*. Let n; =dim(X* — X). If k>n,, the cycle class H* on
X* is represented by a cycle supported on X alone, hence sois n*H,. Thus if
k>n,

(- m* H)- c*(Qx(log)=(I- m* H)*- c*(Q3).

Therefore
Q(lc (23 (log)); ¢, (Qx(log)), ..., ¢,(Qk(log))
=Q(lc,(R%(0g)); ¢,(25%), ..., ,(2%)) +(polyn. of degree<n,)
= x(Q%(log)®") + (polyn. of degree<n,)
=(—1)" x(Q%(10g)®~" ® Q%) + (polyn. of degree <n,)

by Serre duality.
Thus for suitable P, of degree at most n,:

vol(X)- P(I—1)= (2 (log)*"' "V @ @}) — A (D).

But since (2%(log))®" is generated by its sections and maps X to X *of the same
dimension for N >0, Kodaira Vanishing (cf. [13]) applies if /=2 and we have

h(2% (log)'~ ' ® Q) =vol(X)- P(I~ 1)+ A ().
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The left-hand side is exactly the space of sections of 2%(log)’ which vanish on
the boundary. By Proposition 3.3, these are exactly the cusp forms of weight
I. QED

§ 4. Applications: General Type and Log General Type

The purpose of this section is to consider the application of the preceding theory
to the question of when D/I" is of general type, and to reprove as a consequence
of our theory the following theorem of Y.-S.Tai ([1], Ch.IV, §1).

Tai’s Theorem 4.1. If I' is any arithmetic variety acting on a bounded symmetric
domain D, then there is a subgroup Iy I of finite index such that for all I} < I, of
finite index, the variety D/I; is of general type.

We recall that if X is any variety of dimension n, we say that X is of general
type, if for one (and hence all) smooth complete varieties X birational to X, the
transcendence degree of the ring

@ I'(X, (@)
N=0

is (n+1). More generally, the transcendence degree of this ring minus one is
called the Kodaira dimension of X.

Recall that litaka [8] has recently introduced a complementary theory of
“logarithmic Kodaira dimension” for arbitrary varieties Y. In fact, he first
chooses a smooth blow-up Y’ of Y and then a smooth compactification Y of Y’
such that Y— Y’ has normal crossings and defines Q}(log) as the complex of 1-
forms

k dZ- n
Y a(a)—+ ) a(2)dz
i=1 Zi  i=k+1
k
if, locally, Y—Y’ is given by []z;=0. By definition Q%(log)=A*(Q%(log)). He
i=1

then looks at the “logarithmic canonical ring”:
R= @ I(Y,2}(log®").
N=0

He shows that this ring, as well as all other vector spaces of global forms with
logarithmic poles (obtained from decomposing Q}(log) ® --- ® Q#(log) under
the symmetric group and taking global sections) are independent of the choice
of Y’ and Y. He then defines the logarithmic Kodaira dimension of Y to be the
transcendence degree of R minus 1. We may restate Proposition 3.4(b) in this
language as follows:

Proposition 4.2. If I' is a neat® arithmetic group, then D/I' is a variety of
logarithmic general type, ie., its logarithmic Kodaira dimension equals its
dimension.

3 Some hypothesis on elements of finite order is needed because H/SL,(Z)=A" which is not of

log general type!
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Proof. In fact, by Proposition 3.4, R is just the homogeneous coordinate ring of
the Baily-Borel compactification of D/TI.

Note that D/I' of logarithmic general type is weaker than saying D/I" is
general type.

I would like to add one comment to his theory which, in some cases, makes
it easier to apply: one does not need smooth compactifications, but merely a
toroidal compactification Y of Y’ (cf. [9], p. 54). This means that locally Y'c Y is
isomorphic to (C*)"< X ,, where X, is an affine torus embedding (i.e., (C*)" is
Zariski-open in X,, X, is normal affine and translations by C*" extend to an
action of (C*)" on X,). On X, define Q}_(log) to be the sheaf generated by the
(C*)"-invariant 1-forms. Carrying these over, we define Q}(log) to be the
coherent sheaf of 1-forms on Y, regular on Y’, isomorphic locally to Q%_(log). If
Y'— Y is an “allowable” modification of toroidal embedding of Y ([9], p.87),
then p*(Qi(log))= QL. (log). In particular, there is always a smooth allowable
modification Y’ ([9], p.94). So litaka’s spaces of forms with log poles can be
calculated equally well on a smooth Y or a toroidal Y.

This extension is helpful in checking the analog of the above Proposition for
the moduli space of curves:

Proposition 4.3. Let M be the moduli space of smooth curves of genus g with level
n structure. If n2 3, then MY is of log general type.

Sketch of Proof. The proof follows the ideas of [12], § 5 very closely. Let H, be
the Hilbert scheme of e-canonically embedded smooth curves of genus g. Let
H;"’-» H, be the covering defined by the set of level n structures on these curves.
Let H,, M, be the compactified spaces allowmg stable smgular curves as well.
Let H%") M be the normalization of H, SIR in the coverings H{", M. The
group G PGL (v) (v=(2e—1)(g—1)) acts on H and on HY, freely on the latter,
so that M, =~ H,/G, M= HP/G. We have the dlagram

-~

g

ﬁ‘;’\
H(n)

where D and € are the universal curves. Recall from [12] the notation:
whenever p: C— S is a flat family of stable curves,

=1

2 (n)
(gg

A= Atp, (wC/s),
w¢ s =relative dualizing sheaf

and if p is smooth over all points of S of depth zero, then 4<S is the divisor of
singular curves and

5=04(4).




Hirzebruch’s Proportionality Theorem in the Non-Compact Case 269

Now on all 3 families above, we wish to show A}*® 3! and the sheaf of top
logarithmic forms Q"(log) are isomorphic line bundles. Firstly, for p: Ijg——> ﬁg,
we proceed like this: a) a simple modification of the proof of Theorem 5.10 [12]
shows:

AP RO A*3(p, (Qhs @ W)

b) Since Hg represents the functor of e-canonical stable curves, Ty () is
canonically isomorphic to the vector space of deformations of C. This has a
subspace consisting of deformations of the e-canonical embedding where C
doesn’t change, and a quotient space of the deformations of C alone:

0— Lie G— Ty, o)~ Ext!(Q¢,0)—0
or dually:

0— H(Q¢ ® o) — 5, ®IK(C)—(Lie GY — 0.
Therefore globally, we get

0—p,(Q5; ® wp,5)— L, — (Lie GY ® Uy, —0
hence if m=dim H,,

Qp =A% 3p (Qf s Q) =4 @672
C.Qf (log)= A @671

Secondly, for p: D®— HY, '*® 6" pulls back to the analogous sheaf on H.
Moreover, because H;"’——»H is ramified only along A which has normal
crossings, H("’ has toroidal singularities and Qf (log) pulls back to Qg (log).
Finally both bundles descend to ‘J.R"') and by Proposmon14 [11], are still
isomorphic. Finally, it is proven in [12] (Th.5.18 and 5.20: cf. diagram in §5)
that A'*®é6~" is sample on M. QED

In certain cases, there is a way of deducing that coverings of a variety of log
general type are actually of general type. To explain this, suppose we are given a
smooth quasi-projective variety Y, and a tower of connected étale Galois
coverings:

n,. Y,— Y, group I,

We assume that any 2 covers =,,n; are dominated by a third one n,:

/Y;N‘*\ /'1; \
Y,< o Y, I (e).
R

Yy




270 D. Mumford

Let Y be a smooth compactification of Y with normal crossings at infinity.
Extend the covering Y, to a finite covering

n: Y, —>Y

be defining Y, to be the normalizations of Y in the function field of Y,. We now
make the definition:

Definition. The tower {n,} is locally universally ramified over Y —Y if for all xeY
—Y, we take a nice neighborhood of x:
A" Y,
A (T —Y)= (union of coordinate hyperplanes)
z,=0,...,2,=0

then for all m, there is an « and a commutative diagram:

;' (4"

res m,

\\An
i/(ZT",,,ka,2k+1,..-,zn).
A" /

z,)

(z4s- s

In other words, n; (A"~ (Y —Y)) is cofinal in the set of all unramified coverings
of A"n(Y-Y).
Then we assert:

Proposition 4.4. Let Y Y be as above and let n,: Y,— Y be a tower of coverings
unramified over Y and locally universally ramified over Y—Y. Then if Y is
logarithmically of general type, there is an a, such that for all a, such that the
covering m,, dominates m,, Y, is of general type.

Proof. Let A=Y —Y, n=dim Y and let o =Q%(log). Then we know that

a) for some N, there are differentials #,,...,n,el(Y,w®") such that
N1/Mos ---»NMu/No are a transcendence base of the function field C(Y),

b) K°(Y,w®¥)=C,N"*1 if N2 N,.
From (b) it follows that

MY,o®M)—T4,0°"®0,)

has a non-zero kernel for some N: let { be in the kernel. Replacing #; by n,®¢,
we may assume that all 5, are zero on 4. Now let’s examine locally what

happens to n; when lifted to a covering of Y: let 4"c Y be a polycylinder such
k

that A"~ (Y — Y)=V(H zi). Write out 7;:

i=1

dzl/\u-/\dz,,)"’

Zy .2y

’“=“"‘Z",-lj 2
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a; holomorphic. Let w,=z!"" 1<i<k, w,=z, k+1<i<n and let

M,y A" A"

be the covering of the z-polycylinder by the W—polycylinder. Then

dw;, 1dz; .

=, 1§l§k’

w, m z

dWi=dZia k+1§l§n
hence

k d N

WA Adw

* — kN 1 n

mhn)=mNa;- [T wi- (—————) .
i1 Wi Wy

So if m2 N, n}(n;) is a holomorphic differential form on 4" Now for each xeY
—Y, fix a neighborhood U,< Y of this type and a covering

Ta(x) Ya(x)_’ Y
which, over U,, dominates my. Y —Y is covered by a finite number {U,,} of Us,
so we can find one cover n,, which dominates all the covers 7, ). I claim that if
n,, dominates ,,, hence 7, then ©¥ (1;) has no poles on a desingularization Y,
over Y, . This is clear because it has an open covering by open sets V; sitting in a
diagram

V<Y,

Ux, Yal L

Tn Mgy

U, c Y

so mh(n;) regular = 7, (n,) regular on V,. But now =, *(,/n,) are a transcendence

1

base of the function field of Y, so ¥, is of general type. QED

Let’s consider the case Y=D/I' again. If I" is an arithmetic group, then for
every positive integer n, we have its level n subgroup I'(n), i.e., if

I'=%(Z), ¥ algebraic group over Spec Z
then

I'(n)=Ker[9(Z)—%(Z/nZ)].
It’s easy to see that

n,:D/I'(n)— D/T’
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is locally universally ramified over D/I —D/I'. In fact, let F be a rational
boundary component. Then near boundary points associated to F, the pair

D/T = D—/F is isomorphic to
D(F)/U(F)n T =(D(F)/U(F)nZ),

C¥xC"xF C€C"xC"xF.

Thus if U< D/T is a small neighborhood of a point corresponding in the above
chart to (0, y,t), n,(Un(D/I')) is isomorphic to U(F)nI. Thus we must check
that for all n, there is an m such that

U(F)nT'(m)cn-U(F)AT.

But if F is rational, U(F) is an algebraic subgroup of the full group % which is
defined over C, so this is clear. So now Proposition 4.2, Proposition 4.4 and this
remark altogether imply Tai’s theorem.

It is now known that this same method will show that at least some high-
non-abelian levels of M, are varieties of general type too. It is not simple
however to check that the Teichmuller tower is locally universally ramified at
infinite. This has recently been proven by a ingenious use of dihedral level by
T.-L. Brylinski.
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