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AN ALGEBRAIC SURFACE WITH K AMPLE, (K2?) =9,
P:=q=0

By D. MUMFORD

Severi raised the question of whether there existed an algebraic
surface X homeomorphic to P2 but not isomorphic to it (as a variety),
and conjectured that such a surface did not exist. The essential problem
in proving this is to eliminate the possibility that the canonical class K,
as a member of the infinite cyclic group H*(X, Z) might be a positive
multiple (in fact, 3) of the ample generator of H%(X, Z) instead of a
negative multiple (in fact, —3) as it ought to be. That this is the prob-
lem is clear from Castelnuovo’s criterion for rationality, and was
analyzed and generalized to higher dimensions in the paper [3] of
Hirzebruch and Kodaira where it was shown that in odd dimensions,
P is the only variety in its homeomorphism class. Severi’s question was
finally answered by S. Yau [8] as a Corollary of his result that all vari-
ieties X on which K is ample carry a unique Kihler-Einstein metric.
In fact, this result shows that when X is a surface on which K is ample,
then the Chern numbers satisfy ¢:2 < 3c,, with equality if and only if
X is isomorphic to D»/T (D> = unit ball in C2, I' C SU(2, 1)/(center)
a discrete torsion-free co-compact subgroup; Hirzebruch in [2] had
much earlier shown that the surfaces D,/T" did satisfy ¢12 = 3c3). How-
ever, the question arises: how close can we come to a surface with K
ample which mimics the topology of P2? In particular, does there exist
such a surface with the same Betti numbers as P?? By the standard
results on algebraic surfaces, this means that we seek a surface X such
that:

pPe=q =0, hence x(Ox) =1
(c?) =(K*)=9
Bo=B2=B4=1, B1=B3=0, hencec;=3
I shall exhibit one such surface. My method is not by complex uni-

formization, as used by Shavel [6] and Jenkins (unpublished) in the
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234 DaviD MUMFORD

construction of a surface with K positive and the same Betti numbers
as P! X P!, but by the p-adic uniformization introduced recently
by Kurihara [1] and Mustafin [S]. After looking for such an example
at some length, I would hazard the guess that there are, in fact, very
few such surfaces (combining Yau’s results with Weil’s theorem [7] that
discrete co-compact groups I' C SU(2, 1) are rigid, it follows that
there are in any case only finitely many such surfaces). But it seems a
difficult matter to find some way of enumerating all such surfaces.

1. p-adic uniformizations in general. In this section we wish to
summarize and extend somewhat the results of Kurihara and Mustafin
cited above, restricting ourselves however to the 2-dimensional case. Let
R be a complete discrete valuation ring with fraction field K and residue
field k = R/7R. We assume k is finite. The basis of the construction
is a beautiful scheme X, locally of finite type over R, which may be
described by charts as follows:

x= U SpecR[l—o, l—l,wl—zJ—(CoU C: VU Cy)

A€GL(3,K) ILi I lo

where [; = EJZ:O Ajxj, A = (Ay)
Co = set of curves

_do _ JAWNE L,
T = I, 0, a<lz> <1r lo> +b<1r lo> +c=0
a, b, c€k, a-c # 0, plus the curves

lo P
=—=0, —_— =0
T I, 0 <1r lo>+c

l
and 7r=—°=0, £+c=0 (c € k*).
1 P

Ci, C, = similar sets of curves where the role of lo/ly, 1,/1,
w(l2/10) are permuted cyclically.

Here the glueing represented by the union sign is induced by the re-
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quirement that X is irreducible and separated with function field

X0’ Xo/’
which is the common fraction field of all affine rings.
The closed fibre o of I can be represented graphically by means
of the Bruhat-Tits building ¥ attached to PGL(3, K). In fact, the 3
sets:

Components E of X,

Free rank 3 R-submodules M C K-Xo @ K-X; @ K-X2, modulo
M~ gt M

Vertices v of L

are isomorphic. Moreover, the components of X, cross normally, and
ifE, M, vi, i =1, 2, 3, correspond as above, then:

a) EsNE;isacurve ® M, 2 7*M, 2 ©M,, some k € Z

& vy, vy are joined in I by a segment
b) E1 N E; N E;is a triple point & M; 2 7*M, 2 ©'M; 2 «M,,
some k, [ € Z (or same with
2, 3 interchanged)

& vi, vz, v3 are the vertices of
2-simplex in X.

To describe X in a Zariski-open neighborhood of some component E of Xy,
we can proceed geometrically as follows: let E correspond to M and let
Yo, Y1, Y2 be an R-basis of M. Start with Pz? based on homogeneous
coordinates Yo, Y1, Y (hence with function field K(X /X, X2/X ) still).
First, blow up all k-rational points of the closed fibre P2 of Pg? (if k
has g elements, there are g> + g + 1 of these). Second, blow up the
proper transforms on this scheme of all k-rational lines on the original
closed fibre P2 (again there are g2 + g + 1 of these). Call this 9, and
let Ex C X be the proper transform of P.2. Then a suitable Zariski-
neighborhood of £ in X is isomorphic to a neighborhood of E in .
In particular, all surfaces E are rational surfaces gotten by blowing up
Pi%(q? + g + 1) times and they meet the 2(g2 + g + 1) adjacent com-
ponents in rational curves. These rational curves are either exceptional
curves C of the first kind, in which case (C?) = —1, or proper trans-
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forms of lines along which ¢ + 1 points have been blown up, in which
case:

C€C)=+1—(g+1)=—q

Thus geometrically, if C = E; N E,, then (C?)g, = —1 and (C?)g,
= —gq or vice versa; this asymmefry corresponds in (a) above to whether

dim:(M/7¥M>) =1 or dimu(x*M>/7M;) =1

and in X to the orientation on the segment from v; to v,.

Now if I' C PGL(3, K) is a discrete torsion-free co-compact group,
we define first a formal scheme /T over R by dividing the formal com-
pletion of & along # = 0 by I' (this is possible because I acts freely and
discontinuously in the Zariski-topology on %,). Secondly, one verifies
that the dualizing sheaf wy is ample on each component of %o, hence
it descends to an invertible sheaf w /) on /T with the same property:
this allows one to conclude that X/T' can be algebraized to true pro-
jective scheme over R, which, for simplicity, we denote X/T. Since the
generic fibre X, of X is smooth over K, the generic fibre (X/T'), is also
smooth over K, hence

— 02
Wy, — Q(sr/r),,

hence (X/T), is a surface of general type without smooth rational curves
C with (C?) = —1 or —2. It is not hard to compute the invariants of
(X/T),: to do this, note that (X/T"), consists of finite set of rational
surfaces, crossing each other (possibly crossing themselves) transversally
in rational double curves and triple points. Let
E, = normalizations of the components of (/T")o, l<a=r
Cs = normalizations of the double curves of (9€/T)o, 1=B8=<v
P, = triple points of (/T")o, 1=y =<vwo

We get an exact sequence:

£ 41 Yo

A
0 = Owmo = @ Or. = @ Ocs i@l 0p, = 0
o L A



ALGEBRAIC SURFACE WITH K AMPLE, 237
hence

x(O@m),) = x(0 )

=X x(0g,) — % x(Ocg) + L x(Op,)
a Y

=y — v1 t+ vo.
Let N be the number of orbits when I' acts on the vertices of X. Clearly
N = »,. But each E, contains 2(qg> + g + 1) double curves, each on
two E,’s, so

vi =N(g*+q + 1).

And each double curve passes through (¢ + 1) triple points, each on
three double curves, so

N tegtDgt+D

Vo

3
Thus
2+g+1)g +1
X(O(sr/r),,) = N{l —(@*+q+ 1+ (g q 3 g )jl
— 2
N C il Vil C Bt
3
Next:

(c1m,?) = (cr(wemo)?)

= ¥ (resk, c1(we/mo)?)
o

=X ((ci(wg) + B§ E. N Es)?)

All E.’s are just B = (the blow-up of P:? at all (g2 + g + 1)-rational
points). Let m:B — P:? be the blow-up map, let # be the divisor class of
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a line on P2, let e; C B be the exceptional divisors and let /; C B be
the proper transforms of the lines. Then ¢ (we,) + Zpxa (Fa N Ep)
corresponds on B to:

Kp + Le; + LI; = (n7'(—3h) + Ze))
i J

+ (Ee,-) + L (m~!(h) — the e; meeting /;)

T '(q>tq—2h) — (g — 1)(?&)
with self-intersection 3(¢ — 1)?(q¢ + 1). Thus
(cr@m,?) = 3N(g — 1)*(g + 1).
By Riemann-Roch,
c2am, = Ng — 1)%(g + 1).

To determine the irregularity of (X/T"),, we can use the relative
Picard scheme Picy/r?: its closed fibre is Picx/r)®, and since (/T)o
has normal crossings and rational components, this is an algebraic
torus. In particular points of finite order /, p 4 I, are dense: these cor-
respond to /-cyclic coverings of (9€/T")o and such coverings lift to (%C/T),.
Therefore the points of finite order [, p 4 I, of (Pica/r®)o lift to points
of (Picx/r°), and hence Pic/r? is flat over R. On the other hand, a line
bundle on (/T is a line bundle on X, with I' action: if it is in Pic?,
it is the trivial line bundle on X, and a I'-action is just a homomorphism
from I' to G,.. Thus finally, using Kajdan’s theorem [4] that I'/[T", I'] is
finite, we deduce

irregularity of (/T"), = dim (Pica/r?),
= dim (Picar®)o
= dim Hom(T', G )
= rk.I/[T, T
=0.
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Thus the numbers ~79 of (X/T'), fit into the pattern:

q
M—10 1
0 M 0 — 1)2
v NE= D@+
1 oM-—1 3
P

In particular, if N = 1, ¢ = 2, then M = 1 and (X/T'), is a surface
of the desired type. In this case, in fact (/T is one rational surface,
P2 blown up 7 times, crossing itself in 7 rational double curves, them-
selves crossing in 7 triple points. The confusion arising from trying to
draw the result brings vividly to mind Lewis Carroll’s comment on the
sandy shore—“If seven maids with seven brooms were to sweep it for
half a year, do you suppose, the Walrus said, that they could get it
clear?”

2. The Example. The example is based on the 7th roots of unity:
fix the notation:

g- — eZm'/7
-1+ V=7
A=+ 4= <———2—>
N —1—v—=7
}\=§-3+§-5+§-6=<_1___2—>
We have the fields:
Q)
deg 3 Galois group Z/3Z, generator o, o({) = {2
QM)
deg 2 Galois group Z/2Z, generator z — z

Note Q(\) is a UFD, 2 = A\ -\ is the prime factorization of 2 and 7 =
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—(V—7)? is the prime factorization of 7. We set Q({) = V and think of
it only as a 3-dimensional vector space over Q(\). We put the Hermitian
form

h(x, y) = trooom(y) = [xy + o(xp) + o2(xy)]

on V. Taking 1, {, {? as a basis of V, we find that / has the matrix

3 A N
H= |\ 3 X\
A N3

so that £ is positive definite with determinant 7. Note that V contains
the lattice L = Z[{], with basis 1, {, {? over Z[\]. Define

I'1 = Q(\)-linear maps y:V — V which preserve the form &
and map L[1/2] to L[1/2]

Since 2 splits in Q(A), the A-adic completion of Q(\) is isomorphic to
the 2-adic completion Q; of Q (in fact, in Q., we may take A = (unit) - 2,
A = unit). So we have a canonical map V — (A-adic completion of V)
=Q::1® Q2 ® Q2 ¢? and a canonical homomorphism

' — GL(@3, Q2) — PGL(3, Q2).
From standard results on the theory of arithmetic groups*, the image
I'; of 'y is discrete and co-compact. We introduce 3 elements of I';:
the first is o itself; the second is

7(x) = {-x.

Note that 0® = e, 77 = e and o706 ™! = 72, so together o and 7 generate

*Consider U(V, h) as an algebraic group over Q. I'y is its Z[1/2]-rational points.
Since U is compact at the infinite place, Iy is discrete and co-compact in U(V, £)(Q2).
But over Q2, U(V, k) = GL(3), so mod scalars I'; defines a discrete co-compact sub-
group of PGL(3, K).
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a subgroup I'; C I'1 of order 21. The third is a map p given by

p(1) =1
p() =¢

A2 A
2) = — =+ =¢2
p(§2) =\ )\s“ )\f

It can be checked easily that p € I'y. It can also be checked that
(o-7)® = multiplication by M.
Note that the scalar matrices in I'; are exactly

= OVINLDY &

PROPOSITION. p, 0, 7 and —1I generate T'y. All torsion elements in
Iy are conjugate to either o' -7/ or to (p-7)' (some 0 =i = 2,0 =<j < 6).

Proof. Consider the action of I'y on o' = [the set of free rank
3Z;-submodules of Q.°]. Let M, be the submodule Z,-1 @ Z,-{ @
Z,-{? or Z3 for short. If an element o € I'; maps M, to itself, then
back in V, « is given by a 3 X 3 matrix with coefficients in Z[\][1/)].
Since « is H-unitary, its coefficients are also in Z[\][1/\], so « in fact has
coefficients in Z[\] and maps L to itself. But in L, it is easy to see that
{% ¢} are the only elements x € L with h(x, x) = 3. So a permutes
them. Then *7iox also carries the element 1 € L to itself. Now the
equations

h(x, x) = 3
r(1,x) =\

have only 3 solutions in L:x = ¢, {? or {*. So (£7¢-a) carries { to ¢,
¢2or {* Then (o’ ° 7/ o o) fixes 1 and ¢ and it is easy to check that
such a map must be the identity. Thus £TI'; is the stabilizer of M.

As in the Bruhat-Tits building, call M, M’ € E,' adjacent if M
D M’ and dimzzM/M' = 2 or vice versa. Then p(Mo) C M, and is
adjacent to M. Because M/2M = (Z/2Z)*, there are only 7 modules
M' C M, adjacent to M. One checks easily that these are the modules
7'p(Mo), 0 < i < 6. Thus (77p)*!(M,) is the set of all M € Lo’ adjacent
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to My. Since Zo' is connected under adjacency, this shows that all ele-
ments of Lo’ can be expressed as:

(rhp)a - ... - (vikp)<k(M,), 0=<i =<5, e ==*1.

Thus the subgroup of I'; generated by p, o, 7 and —I acts as transi-
tively as I'; on Lo’ and M, has the same stabilizer in both groups, so
they are equal.

Now let o € 'y be torsion in I'y. If « is torsion in I'y, then o fixes
e.g. the module

order(a)

M= Y oai(Mo)

i=

and, if M; = B(M,), then B 'afB fixes Mo. Thus 3 'aB8 € +TI', and
« is conjugate to o/ o7, some i, j. In general, we consider det o. Then
|det |2 = 1 and det o € Z[\][Y%], hence

det @ = =(\/N)-.
Replacing o by =(\/N)'a*!, we may assume det « = N/X. Then
VAN

has determinant 1 and is torsion in PGL(3), so it is torsion in GL(3).
Now consider @ and «®/\ acting on Q;°. Since Z,[a, a3/\] is a finite
ring over Z,, there is a free rank 3Z,-module M C &3 such that «(M)
C M, o3/NM) C M. Since a3/(\/)\) is torsion and X\ is a A-adic
unit, it follows that

M D o(M) D a*(M) D o3(M) = 2M.
As before, replacing o by a conjugate, we can assume M = M,. But
now it is easily checked that the 21 maps o‘e7/ act simply transitively
on the flags
Mo/2M D (2-dim’ subspace) D (1 dim’ subspace).

So conjugating o by -7/, we can assume

a(Mo) = (po7)(Mo)
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a?(Mo) = (p°7)*(Mo).

Then (po7) "loa carries Mo into itself and fixes a flag in Mo/2M,. The
former implies that (po7) 'ea = *o'er/, some i, j, and the latter im-
plies that i =j = 0. Thus in ', & = pe7. Q.E.D.

It remains to choose a suitable subgroup I' C T'; of finite index
such that:

a) I'/scalars is torsion-free
b) I' acts transitively on Lo, (hence I'/scalars acts transitively on
Lo, the vertices of the Bruhat-Tits building).

It will then follow from the results of Section 1 that the corresponding
surface (/T), is a surface of the desired type. To find T, it is con-
venient to use a congruence subgroup for the prime 7. In fact, consider
the maps:

ZIN, V2] — ZIN, o)/ (N=T) = Z/7Z
MA—3
L[¥] — L%/ (N=T7)L[Y:] = (Z/7Z)}

call this Lo

The induced form ko on Lo is of rank 1 and has null-space L1 C Lo
spanned by { — 1, {2 — 1. Taking 1, { — 1, ({ — 1) as a basis of Lo,
it is easy to check that mod 7:

(1 0 0) 1 0 0)
o0 2 0], 7= (110
0 1 4 0 1 1]
(1 0 0) 10 0)
p=10 1 4|, perm= |1 5 4
0 0 1] 0 1 1]

In particular, considering the action of I'; on L, we get a homomor-
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phism

'y — GLQ2, Z/7Z) N{X|det X = £1} = G.
The group G on the right has order 25-3-7. Let H be a 2-Sylow sub-
group and define I' = #~!(H). Since all 21 elements o7/ and all 3
elements (pe7)’ except e have non-zero images in G of orders 3 or 7, T

is torsion-free. As the full group I'; is set-theoretically I' X I';, I' acts
transitively on Xo'. This completes the construction.
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