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Prior Learning and Gibbs Reaction-Diffusion
Song Chun Zhu and David Mumford

Abstract—This article addresses two important themes in early visual computation: First, it presents a novel theory for learning the
universal statistics of natural images—a prior model for typical cluttered scenes of the world—from a set of natural images, and,
second, it proposes a general framework of designing reaction-diffusion equations for image processing. We start by studying the
statistics of natural images including the scale invariant properties, then generic prior models were learned to duplicate the observed
statistics, based on the minimax entropy theory studied in two previous papers. The resulting Gibbs distributions have potentials of

the form U S F x, y
x,y

K
I I; ,Lb g e ja fe ja f

a f
a f= ÂÂ =

*l a

a

a

1
 with S = {F

(1)
, F

(2)
, ..., F

(K)
} being a set of filters and L = {l(1)

(), l(2)
(), ...,

l(K)
()} the potential functions. The learned Gibbs distributions confirm and improve the form of existing prior models such as line-

process, but, in contrast to all previous models, inverted potentials (i.e., l(x) decreasing as a function of |x|) were found to be

necessary. We find that the partial differential equations given by gradient descent on U(I; L, S) are essentially reaction-diffusion
equations, where the usual energy terms produce anisotropic diffusion, while the inverted energy terms produce reaction associated
with pattern formation, enhancing preferred image features. We illustrate how these models can be used for texture pattern
rendering, denoising, image enhancement, and clutter removal by careful choice of both prior and data models of this type,
incorporating the appropriate features.

Index Terms—Visual learning, Gibbs distribution, reaction-diffusion, anisotropic diffusion, texture synthesis, clutter modeling, image
restoration.

——————————   ✦   ——————————

1 INTRODUCTION

N computer vision, many generic prior models have
been proposed to capture the universal low level sta-

tistics of natural images. These models presume that
surfaces of objects be smooth, and adjacent pixels in
images have similar intensity values unless separated
by edges, and they are applied in vision algorithms
ranging from image restoration, motion analysis, to 3D
surface reconstruction.

For example, in image restoration, general smoothness
models are expressed as probability distributions [9], [4],
[20], [11]:

p Z e
x yx y

x y x y
I

I Ia f b gd i b ge jb g=
- — + —Â1 y y, ,

,                      (1)

where I is the image, Z is a normalization factor, and
—xI(x, y) = I(x + 1, y) - I(x, y), —yI(x, y) = I(x, y + 1) - I(x, y)
are differential operators. Three typical forms of the poten-
tial function y() are displayed in Fig. 1. The functions in
Fig. 1b and Fig. 1c have flat tails to preserve edges and ob-
ject boundaries, and thus they are said to have advantages
over the quadratic function in Fig. 1a.

These prior models have been motivated by regulariza-
tion theory [26], [18],1 physical modeling [31], [4],2 Bayesian
theory [9], [20], and robust statistics [19], [13], [3]. Some
connections between these interpretations are also observed
in [12], [13] based on effective energy in statistics mechan-
ics. Prior models of this kind are either generalized from
traditional physical models [37] or chosen for mathematical
convenience. There is, however, little rigorous theoretical or
empirical justification for applying these prior models to
generic images, and there is little theory to guide the con-
struction and selection of prior models. One may ask the
following questions:

1) Why are the differential operators good choices in
capturing image features?

2) What is the best form for p(I) and y()?
3) A relevant fact is that real world scenes are observed

at more or less arbitrary scales, thus a good prior
model should remain the same for image features at
multiple scales. However none of the existing prior
models has the scale-invariance property on the 2D
image lattice, i.e., is renormalizable in terms of
renormalization group theory [36].

In previous work on modeling textures, we proposed a
new class of Gibbs distributions of the following form
[40], [41],

p S Z e U SI I; , ; ,L Lc h b g= -1
                               (2)

1. Where the smoothness term is explained as a stabilizer for solving “ill-
posed” problems [32].

2. If y() is quadratic, then variational solutions minimizing the potential
are splines, such as flexible membrane or thin plate models.
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Fig. 1. Three existing forms for y(). (a) Quadratic: y(x) = ax2
. (b) Line process: y(x) = a min(q2

, x2
). (c) T-function: y x

x
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In the above equation, S = {F(1), F(2), ..., F(K)} is a set of linear

filters, and L = {l(1)(), l(2)(), ..., l(K)()} is a set of potential
functions on the features extracted by S. The central prop-
erty of this class of models is that they can reproduce the

marginal distributions of F(a)
* I estimated over a set of the

training images I—while having the maximum entropy—
and the best set of features {F(1), F(2), ..., F(K)} is selected by
minimizing the entropy of p(I) [41]. The conclusion of our
earlier papers is that, for an appropriate choice of a small
set of filters S, random samples from these models can du-
plicate very general classes of textures—as far as normal
human perception is concerned. Recently, we found that
similar ideas of model inference using maximum entropy
have also been used in natural language modeling [1].

In this paper, we want to study to what extent probabil-
ity distributions of this type can be used to model generic
natural images, and we try to answer the three questions
raised above.

We start by studying the statistics of a database of 44 real
world images, and then we describe experiments in which
Gibbs distributions in the form of (2) were constructed to
duplicate the observed statistics. The learned potential
functions l(a)(), a = 1, 2, ..., K can be classified into two cate-
gories: diffusion terms which are similar to Fig. 1c, and reac-
tion terms which, in contrast to all previous models, have
inverted potentials (i.e., l(x) decreasing as a function of
|x|).

We find that the partial differential equations given by
gradient descent on U(I; L, S) are essentially reaction-
diffusion equations, which we call the Gibbs Reaction and
Diffusion Equations (Grade). In Grade, the diffusion compo-
nents produce denoising effects which are similar to the
anisotropic diffusion [25], while reaction components form
patterns and enhance preferred image features.

The learned prior models are applied to the following
applications.

First, we run the Grade starting with white noise images
and demonstrate how Grade can easily generate canonical
texture patterns, such as leopard blobs and zebra stripe, as
the Turing reaction-diffusion equations do [34], [38]. Thus

our theory provides a new method for designing PDEs for
pattern synthesis.

Second, we illustrate how the learned models can be
used for denoising, image enhancement, and clutter re-
moval by careful choice of both prior and noise models of
this type, incorporating the appropriate features extracted
at various scales and orientations. The computation simu-
lates a stochastic process—the Langevin equations—for
sampling the posterior distribution.

This paper is arranged as follows: Section 2 presents a
general theory for prior learning. Section 3 demonstrates
some experiments on the statistics of natural images and
prior learning. Section 4 studies the reaction-diffusion
equations. Section 5 demonstrates experiments on denois-
ing, image enhancement and clutter removal. Finally, Sec-
tion 6 concludes with a discussion.

2 THEORY OF PRIOR LEARNING

2.1 Goal of Prior Learning and Two Extreme Cases

We define an image I on an N ¥ N lattice L to be a function
such that for any pixel (x, y), I(x, y) Œ /, and / is either an

interval of R or / Ã Z. We assume that there is an underly-

ing probability distribution f(I) on the image space /N 2

 for
general natural images—arbitrary views of the world. Let

NI n Mobs
n
obs= =I , , , . . . ,1 2o t be a set of observed images

which are independent samples from f(I). The objective of
learning a generic prior model is to look for common features and
their statistics from the observed natural images. Such features
and their statistics are then incorporated into a probability distri-
bution p(I) as an estimation of f(I), so that p(I), as a prior
model, will bias vision algorithms against image features which
are not typical in natural images, such as noise distortion and
blurring. For this objective, it is reasonable to assume that
any image features have an equal chance to occur at any
location, so f(I) is translation invariant with respect to (x, y).
We will discuss the limits of this assumption in Section 6.

To study the properties of images In
obs n M, , , . . . ,= 1 2o t,

we start from exploring a set of linear filters S = {F(a), a = 1,
2, ..., K} which are characteristic of the observed images.
The statistics extracted by S are the empirical marginal dis-
tributions (or histograms) of the filter responses.
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DEFINITION 1. Given a probability distribution f(I), the marginal
distribution of f(I) with respect to F(a) is:

f z f d E z F x y

x y L

f

F x y z

a ad
a

a f a f

b g
a f a f c he j

c h
a f

= ◊ = - *L
NM

O
QP

" Œ

* =
zz I I I

I

,

,

,

where "z Œ R and d() is a Dirac function with point mass
concentrated at zero.

DEFINITION 2. Given a linear filter F(a) and an image I, the em-
pirical marginal distribution (or histogram) of the filtered
image F(a) 

* I(x, y) is:

H z
L

z F x y
x y L

a ada f a f

b g
c h b ge j; ,

,

I I= - *
Œ

Â1
.

We compute the histogram averaged over all images in
NIobs as the observed statistics,

m aa a
obs

n

M

n
obsz M H z Ka f a fa f e j= =

=
Â1

1 2
1

; , , , . . . ,I .

If we make a good choice of our database, then we may

assume that m a
obs za f a f is an unbiased estimate for f(a)(z), and as

M Æ • , m a
obs za f a f converges to f(a)(z) = Ef[H

(a)(z; I)].
Now, to learn a prior model from the observed images

I n Mn
obs , , , . . . ,= 1 2o t , immediately we have two simple

solutions. The first one is:

p x yobs
o

x y L

I Ia f c hd ia f

b g
=

Œ
’ m ,
,

,                               (4)

where m obs
oa f  is the observed average histogram of the image

intensities, i.e., the filter F(o) = d is used. Taking

y m1 z zobs
oa f a fa f= - log , we rewrite (4) as

p Z e
x y

x yI
I

a f
b gd i

b g=
- Â1 1y ,

, .                              (5)

The second solution is:

p M n
obs

n

M

I I Ia f e j= -
=

Â1

1

d .                            (6)

Let In
obs

nc
2

=  for n = 1, 2, ..., M, (6) becomes

p M e
n
obs

n
n

M

c

I
I I

a f e j
=

- < >-
=

Â1 2
1

y ,

,                              (7)

where <, > is inner product, y2(0) = 0, and y2(x) = • if x π 0,

i.e., y2() is similar to the Potts model [37].
These two solutions stand for two typical mechanisms

for constructing probability models in the literature. The
first is often used for image coding [35], and the second is a
special case of the learning scheme using radial basis func-
tions (RBF) [27].3 Although the philosophies for learning
these two prior models are very different, we observe that
they share two common properties.

3. In RBF, the basis functions are presumed to be smooth, such as a Gaus-
sian function. Here, using d() is more loyal to the observed data.

1) The potentials y1(), y2() are built on the responses of linear

filters. In (7), In
obs n M, , , . . .= 1 2  are used as linear fil-

ters of size N ¥ N pixels, which we denote by

F obsn
n
obsb f = I .

2) For each filter F(a) chosen, p(I) in both cases duplicates
the observed marginal distributions. It is trivial to

prove that in both cases E H z zp obs
a ama f a fc h a f; I = , thus as

M increases, E H z E H zp f
a aa f a fc h c h; ;I IÆ .

This second property is in general not satisfied by exist-
ing prior models in (1). p(I) in both cases meets our objec-
tive for prior learning, but intuitively they are not good
choices. In (5), the d() filter does not capture spatial struc-
tures of larger than one pixel, and in (7), filters F(obsn) are too
specific to predict features in unobserved images.

In fact, the filters used above lie in the two extremes of the
spectrum of all linear filters. As discussed by Gabor [7], the d
filter is localized in space but is extended uniformly in fre-
quency. In contrast, some other filters, like the sine waves, are
well localized in frequency but are extended in space. Filter
F(obsn) includes a specific combination of all the components in
both space and frequency. A quantitative analysis of the
goodness of these filters is given in Table 1 in Section 3.2.

2.2 Learning Prior Models by Minimax Entropy
To generalize the two extreme examples, it is desirable to
compute a probability distribution which duplicates the
observed marginal distributions for an arbitrary set of fil-
ters, linear or nonlinear. This goal is achieved by a minimax
entropy theory studied for modeling textures in our previ-
ous papers [40], [41].

Given a set of filters {F(a), a = 1, 2, ..., K}, and observed

statistics m aa
obs z Ka fa f{ }, , , . . . ,= 1 2 , a maximum entropy

distribution is derived which has the following Gibbs form:

p S Z e U SI I; , ; ,L Lc h b g= -1
                         (8)

U S F x y
x y

K

I I; , ,
,

Lc h e jc ha f a f

b g
= *FH IKÂÂ

=

l a a

a 1

             (9)

In the above equation, we consider linear filters only, and
L = {l(1)(), l(2)(), ..., l(K)()} is a set of potential functions on
the features extracted by S. In practice, image intensities are
discretized into a finite gray levels, and the filter responses

are divided into a finite number of bins, therefore l(a)() is
approximated by a piecewisely constant functions, i.e., a

vector, which we denote by l(a), a = 1, 2, ..., K.
The l(a)s are computed in a nonparametric way so that

the learned p(I; L, S) reproduces the observed statistics:

E H z z K zp S obsI I; , ; , , . . . , ,La f
a f a fc h a fa am a= = "1 2 .

Therefore as far as the selected features and their statistics
are concerned, we cannot distinguish between p(I; L, S) and
the “true” distribution f(I).
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Unfortunately, there is no simple way to express the l(a)s

in terms of the m a
obs
a fs  as in the two extreme examples. To

compute l(a)s, we adopted the Gibbs sampler [9], which
simulates an inhomogeneous Markov chain in image space

/
N 2

. This Monte Carlo method iteratively samples from the
distribution p(I; L, S), followed by computing the histo-
gram of the filter responses for this sample and updating

the l(a) to bring the histograms closer to the observed ones.

For a detailed account of the computation of l(a)s, the read-
ers are referred to [40], [41].

In our previous papers, the following two propositions
are observed.

PROPOSITION 1. Given a filter set S, and observed statistics

m aa
obs Ka f{ }, , , . . . ,= 1 2 , there is an unique solution for

l aaa f{ }, , , . . . ,= 1 2 K .

PROPOSITION 2. f(I) is determined by its marginal distributions,
thus p(I) = f(I) if it reproduces all the marginal distribu-
tions of linear filters.

But for computational reasons, it is often desirable to
choose a small set of filters which most efficiently capture
the image structures. Given a set of filters S, and an ME
distribution p(I; L, S), the goodness of p(I; L, S) is often
measured by the Kullback-Leibler information distance
between p(I; L, S) and the ideal distribution f(I) [17],

KL f p S

f
f

p S
d E f E p Sf f

I I

I
I

I
I I I

a f c hd i

a f a f
c h a f c h

, ; ,

log
; ,

log log ; ,

L

L
L

=

◊ = -zz
Then for a fixed model complexity K, the best feature set S*

is selected by the following criterion:

S KL f p S
S K

* arg min , ; ,=
=

I Ia f c hd iL ,

where S is chosen from a general filter bank B such as Ga-
bor filters at multiple scales and orientations.

Enumerating all possible sets of features S in the filter
bank and comparing their entropies is computationally too
expensive. Instead, in [41] we propose a stepwise greedy
procedure for minimizing the KL-distance. We start from
S = ∆ and p(I; L, S) a uniform distribution, and introduce
one filter at a time. Each added filter is chosen to maximally
decrease the KL-distance, and we keep doing this until the
decrease is smaller than a certain value.

In the experiments of this paper, we have used a simpler
measure of the “information gain” achieved by adding one
new filter to our feature set S. This is roughly an L1-distance
(vs. the L2-measure implicit in the Kullback-Leibler distance),
the readers are referred to [42] for a detailed account.

DEFINITION 3. Given S = {F(1), F(2), ..., F(K)} and p(I; L, S) defined
above, the information criterion (IC) for each filter F(b) Œ

B/S at step K + 1 is:

IC M H z E H z

M H z z

n
obs

p S
n

M

n
obs

obs
n

M

= - -

-

=

=

Â

Â

1
2

1
2

1

1

b b

b am

b g
a f

b g

b g a f

e j c h

e j a f

; ;

;

; ,I I

I

I L

We call the first term “average information gain” (AIG) by
choosing F(b), and the second term “average information
fluctuation” (AIF).

Intuitively, AIG measures the average error between the
filter responses in the database and the marginal distribution
of the current model p(I; L, S). In practice, we need to sample

p(I; L, S), thus synthesize images In
syn n M, , , . . . ,= ¢1 2o t , and

estimate Ep(I;L,S)[H
(b)(z; I)] by m b b

syn M n
syn

n

M
H zb g b ge j= ¢ =

¢Â1
1

; I .

For a filter F(b), the bigger AIG is, the more information F(b)

captures as it reports the error between the current model
and the observations. AIF is a measure of disagreement
between the observed images. The bigger AIF is, the less

their responses to F(a) have in common.

3 EXPERIMENTS ON NATURAL IMAGES

This section presents experiments on learning prior models,
and we start from exploring the statistical properties of
natural images.

3.1 Statistic of Natural Images
It is well known that natural images have statistical prop-
erties distinguishing them from random noise images [28],
[6], [24]. In our experiments, we collected a set of 44 natural
images, six of which are shown in Fig. 2. These images are
from various sources, some digitized from books and post-
cards, and some from a Corel image database. Our database
includes both indoor and outdoor pictures, country and
urban scenes, and all images are normalized to have inten-
sity between zero and 31.

Fig. 2. Six out of the 44 collected natural images.
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(a) (b) (c)

Fig. 3. The intensity histograms in domain [0, 31]. (a) Averaged over 44 natural images. (b) An individual natural image. (c) A uniform noise image.

(a) (b) (c)

Fig. 4. The histograms of —x I  plotted in domain [-30, 30]. (a) Averaged over 44 natural images. (b) An individual natural image. (c) A uniform

noise image.

(a) (b)

Fig. 5. (a) The histogram of —x I  plotted against Gaussian curve (dashed) of same mean and variance in domain [-15, 15]. (b) The logarithm of

the two curves in (a).

As stated in Proposition 2, marginal distributions of lin-
ear filters alone are capable of characterizing f(I). In the rest
of this paper, we shall only study the following bank B of
linear filters.

1) An intensity filter d().
2) Isotropic center-surround filters, i.e., the Laplacian of

Gaussian filters.

LG x y s const x y s e
x y

s, ,c h e j= ◊ + -
-

+
2 2 2

2 2

2
,             (10)

where s = 2s  stands for the scale of the filter. We de-

note these filters by LG(s). A special filter is LG 2
2e j,

which has a 3 ¥ 3 window 0 0 1 0 01
4

1
4

1
4

1
4, , ; , , ; , ,- , and

we denote it by D.

3) Gabor filters with both sine and cosine components,
which are models for the frequency and orientation
sensitive simple cells.

G x y s const Rot e es s
x y i x, , ,q q

pc h a f e j
=

- + -
o o

1

2 2
2 2

24
     (11)

It is a sine wave at frequency 
2p
s  modulated by an
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elongated Gaussian function, and rotated at angle q.
We denote the real and image parts of G(x, y, s, q) by
Gcos(s, q) and Gsin(s, q). Two special Gsin(s, q) filters
are the gradients —x, —y.

4) We will approximate large scale filters by filters of
small window sizes on the high level of the image
pyramid, where the image in one level is a “blown-
down” version (i.e., averaged in 2 ¥ 2 blocks) of the
image below.

We observed three important aspects of the statistics of
natural images.

First, for some features, the statistics of natural images
vary widely from image to image. We look at the d() filter as
in Section 2.1. The average intensity histogram of the 44

images m obs
oa f  is plotted in Fig. 3a, and Fig. 3b is the intensity

histogram of an individual image (the temple image in

Fig. 2). It appears that m obs
o za f a f  is close to a uniform distri-

bution (Fig. 3c), while the difference between Fig. 3a and
Fig. 3b is very big. Thus IC for filter d() should be small (see
Table 1).

Second, for many other filters, the histograms of their re-
sponses are amazingly consistent across all 44 natural im-
ages, and they are very different from the histograms of
noise images. For example, we look at filter —x. Fig. 4a is the
average histogram of 44 filtered natural images, Fig. 4b is
the histogram of an individual filtered image (the same im-
age as in Fig. 3b), and Fig. 4c is the histogram of a filtered
uniform noise image.

The average histogram in Fig. 4a is very different from a
Gaussian distribution. To see this, Fig. 5a plots it against a
Gaussian curve (dashed) of the same mean and same vari-
ance. The histogram of natural images has higher kurtosis
and heavier tails. Similar results are reported in [6]. To see
the difference of the tails, Fig. 5b plots the logarithm of the
two curves.

Third, the statistics of natural images are essentially scale
invariant with respect to some features. As an example, we
look at filters —x and —y. For each image In

obs obsNIŒ , we

build a pyramid with In
s  being the image at the sth layer.

We set I In n
obs0 =  and let

I I I

I I

n
s

n
s

n
s

n
s

n
s

x y x y x y

x y x y

+ = + + +

+ + + +

1 2 2 2 2 1

2 1 2 2 1 2 1

, , ,

, ,

b g c h c h
c h c h

The size of In
s  is N/2s ¥ N/2s.

For the filter —x, let mx,s(z) be the average histogram of

—x n
sI , over n = 1, 2, ..., 44. Fig. 6a plots mx,s(z), for s = 0, 1, 2,

and they are almost identical. To see the tails more clearly,
we display log mx,s(z), s = 0, 1, 2 in Fig. 6c. The differences
between them are still small. Similar results are observed
for my,s(z), s = 0, 1, 2, the average histograms of —y n

obsI . In

contrast, Fig. 6b plots the histograms of —x
sI  with I s  be-

ing a uniform noise image at scales s = 0, 1, 2.
Combining the second and the third aspects above, we

conclude that the histograms of —x n
sI , —y n

sI  are very con-

sistent across all observed natural images and across scales
s = 0, 1, 2. The scale invariant property of natural images is
largely caused by the following facts:

1) natural images contains objects of all sizes and
2) natural scenes are viewed and made into images at

arbitrary distances.

3.2 Empirical Prior Models
In this section, we learn the prior models according to the
theory proposed in Section 2 and analyze the efficiency of
the filters quantitatively.

3.2.1 Experiment I

We start from S = ∆ and p0(I) a uniform distribution. We
compute the AIF, AIG, and IC for all filters in our filter
bank. We list the results for a small number of filters in
Table 1. The filter D has the biggest IC (= 0.642), thus is
chosen as F(1). An ME distribution p1(I; L, S) is learned,
and the information criterion for each filter is shown in
the column headed p1(I) in Table 1. We notice that the IC

for the filter D drops to near zero, and IC also drops for
other filters because these filters are in general not inde-
pendent of D. Some small filters like LG(1) have smaller
ICs than others, due to higher correlations between them
and D.

The big filters with larger IC are investigated in Experi-
ment II. In this experiment, we choose both —x and —y to be
F(2), F(3) as in other prior models. Therefore, a prior model
p3(I) is learned with potential:

U S

x y x y x y
x y

x y

3

1 2 3

I

I I I

; ,

, , ,
,

L

D

c h
c hd i c hd i c he ja f

b g

a f a f
=

+ — + —Â l l l .

l(a)(z), a = 1, 2, 3 are plotted in Fig. 7. Since

m obs z z1 0 9a f a f = ≥if .5 ,4 and m a
obs z za f a f = ≥0 22if  for a = 2, 3,

we only plot l(1)(z) for z Œ [-9.5, 9.5] and l(2)(z), l(3)(z) for z Œ
[-22, 22]. These three curves are fitted with the functions y1(z)

= 2.1(1 - 1/(1 + (|z|/4.8)1.32), y2(z) = 1.25(1 - 1/(1 + (|z|/2.8)1.5),

y3(z) = 1.95(1 - 1/(1 + (|z|/2.8)1.5), respectively. A synthesized
image sampled from p3 Ia f is displayed in Fig. 8.

So far, we have used three filters to characterize the sta-
tistics of natural images, and the synthesized image in Fig. 8
is still far from natural ones. Especially, even though the
learned potential functions l(a)(z), a = 1, 2, 3 all have flat
tails to preserve intensity breaks, they only generate small
speckles instead of big regions and long edges as one may
expect. Based on this synthesized image, we compute the
AIG and IC for all filters, and the results are listed in Table 1
in column p3(I).

4. In fact, m m
obs obs N

1 1 10
2

( ) ( )( ) ( )= <D DI Iif , with N ¥ N being the size of

synthesized image.
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(a) (b) (c)

Fig. 6. (a) mx,s(z), s = 0, 1, 2. (b) logmx,s(z), s = 0 (solid), s = 1 (dash-dotted), and s = 2 (dashed). (c) Histograms of a filtered uniform noise image at
scales: s = 0 (solid curve), s = 1 (dash-dotted curve), and s = 2 (dashed curve).

(a) (b) (c)

Fig. 7. The three learned potential functions for filters. (a) D. (b) —x . (c) —y . Dashed curves are the fitting functions:

(a) y 1

1.32
2.1 1 1 1 4.8x xa f a f b ge j= - +/ / . (b) y 2

1.5
1.25 1 1 1 2.8x xa f a f b ge j= - +/ / . (c) y 3

1.5
1.95 1 1 1 / 2.8x xa f a f b ge j= - +/ .

Fig. 8. A typical sample of p3(I) (256 ¥ 256 pixels).

3.2.2 Experiment II
It is clear that we need large-scale filters to do better. Rather
than using the large scale Gabor filters, we chose to use —x

and —y on four different scales and impose explicitly the
scale invariant property that we find in natural images.
Given an image I defined on an N ¥ N lattice L, we build a
pyramid in the same way as before. Let I[s], s = 0, 1, 2, 3 be
four layers of the pyramid. Let Hx,s(z, x, y) denote the histo-

gram of —xI
[s](x, y) and Hy,s(z, x, y) the histogram of —yI

[s](x, y).
We ask for a probability model p(I) which satisfies

E H z x y z z x y L sp x s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

E H z x y z z x y L sp y s sIa f c h a f c h, , , , , , , , ,= " " Œ =m 0 1 2 3

where Ls is the image lattice at level s, and m za f  is the aver-

age of the observed histograms of —xI
[s] and —yI

[s] on all 44
natural images at all scales. This results in a maximum en-
tropy distribution ps(I) with energy of the following form,

U x y x ys x s x
s

y s y
s

x y Ls s

I I Ia f c he j c he j
b g

= — + —
Œ=

ÂÂ l l, ,
,

, ,
0

3

.    (12)
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TABLE 1
THE INFORMATION CRITERION FOR FILTER SELECTION

Fig. 9 displays lx,s(), s = 0, 1, 2, 3. At the beginning of the

learning process, all lx,s(), s = 0, 1, 2, 3 are of the form dis-
played in Fig. 7 with low values around zero to encourage
smoothness. As the learning proceeds, gradually lx,3() turns
“upside down” with smaller values at the two tails. Then
lx,2() and lx,1() turn upside down one by one. Similar results

are observed for ly,s(), s = 0, 1, 2, 3. Fig. 11 is a typical sam-
ple image from ps(I). To demonstrate it has scale invariant
properties, in Fig. 10 we show the histograms Hx,s and log
Hx,s of this synthesized image for s = 0, 1, 2, 3.

The learning process iterates for more than 10,000
sweeps. To verify the learned l()s, we restarted a homoge-
neous Markov chain from a noise image using the learned
model, and found that the Markov chain goes to a percep-
tually similar image after 6,000 sweeps.

3.2.2.1 Remark 1

In Fig. 9, we notice that lx,s() are inverted, i.e., decreasing

functions of |z| for s = 1, 2, 3, distinguishing this model
from other prior models in computer vision. First of all, as
the image intensity has finite range [0, 31], —xI

[s] is defined

in [-31, 31]. Therefore we may define lx,s(z) = 0 for |z| > 31,
so ps(I) is still well-defined. Second, such inverted poten-
tials have significant meaning in visual computation. In
image restoration, when a high intensity difference
—xI

[s](x, y) is present, it is very likely to be noise if s = 0.
However this is not true for s = 1, 2, 3. Additive noise can
hardly pass to the high layers of the pyramid because at
each layer the 2 ¥ 2 averaging operator reduces the vari-
ance of the noise by four times. When —xI

[s](x, y) is large
for s = 1, 2, 3, it is more likely to be a true edge and object
boundary. So in ps(I), lx,0() suppresses noise at the first

layer, while lx,s(), s = 1, 2, 3 encourages sharp edges to

form, and thus enhances blurred boundaries. We notice
that regions of various scales emerge in Fig. 11, and the
intensity contrasts are also higher at the boundary. These
appearances are missing in Fig. 8.

3.2.2.2 Remark 2
Based on the image in Fig. 11, we computed IC and AIG for
all filters and list them under column ps(I) in Table 1. We
also compare the two extreme cases discussed in Section
2.1. For the d() filter, AIF is very big, and AIG is only slightly
bigger than AIF. Since all the prior models that we learned
have no preference about the image intensity domain, the
image intensity has uniform distribution, but we limit it
inside [0, 31], thus the first row of Table 1 has the same
value for IC and AIG. For filter I(obsi), AIF M

M= -1 , i.e., the

biggest among all filters, and AIG Æ 1. In both cases, ICs
are the two smallest.

4 GIBBS REACTION-DIFFUSION EQUATIONS

4.1 From Gibbs Distribution to Reaction-Diffusion
Equations

The empirical results in the previous section suggest that
the forms of the potentials l(a)(z) learned from images of
real world scenes can be divided into two classes: upright
curves l(z) for which l() is an even function increasing as
|z| increases and inverted curves for which the opposite
happens. A similar phenomenon was observed in our
learned texture models [40].

In Fig. 9, lx,s(z) are fit to the family of functions (see the
dashed curves),

f x
x x

gb g
d i

= -
+ -
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JJ >a

b
a1

1

1
0

0 /

y x
x x
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b
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x0, b are, respectively, the translation and scaling constants,
and iai weights the contribution of the filter.

In general, the Gibbs distribution learned from images in a
given application has potential function of the following form,

U S F x y

F x y

x y

n

x yn

K

d

d

I I

I

; , ,

,

,

,

Lc h c he j
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a f a f
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a f a f

b g

= * +

*
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ÂÂ
=

= +
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y

a a

a

a a

a

1

1
(13)

Note that the filter set is now divided into two parts S

= Sd < Sr, with Sd = {F(a), a = 1, 2, .., nd} and Sr = {F(a), a = nd

+ 1, ..., K}. In most cases Sd consists of filters such as —x,

—y, D which capture the general smoothness of images,
and Sr contains filters which characterize the prominent
features of a class of images, e.g., Gabor filters at various
orientations and scales which respond to the larger edges
and bars.
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(a) (b)

(c) (d)

Fig. 9. Learned potential functions lx,s(), s = 0, 1, 2, 3. The dashed curves are fitting functions: f(x) = a(1 - 1/(1 + (|x|/b)
g
). (a) (a = 5, b = 10,

xo = 0, g = 0.7). (b) (a = -2.0, b = 10, xo = 0, g = 1.6). (c) (a = -4.8, b = 15, xo = 0, g = 2.0). (d) (a = -10.0, b = 22, xo = 0, g = 5.0).

(a) (b)

Fig. 10. (a) The histograms of the synthesized image at four scales—almost indistinguishable. (b) The logarithm of histograms in Fig. 10a.

Instead of defining a whole distribution with U, one can
use U to set up a variational problem. In particular, one can
attempt to minimize U by gradient descent. This leads to a
non-linear parabolic partial differential equation:

I I It

n

n

K

F F F F
d

d

= * * + * *-
¢

=
-

¢

= +
Â Âa a a

a

a a a

a

f ya f a f a f a f a f a fe j e j
1 1

(14)

with F x y F x y- -= - - -a aa f a fc h c h, , . Thus starting from an input

image I(x, y, 0) = Iin, the first term diffuses the image by
reducing the gradients, while the second term forms pat-
terns as the reaction term. We call (14) the Grade.

Since the computation of (14) involves convolving
twice for each of the selected filters, a conventional way
for efficient computation is to build an image pyramid so

that filters with large scales and low frequencies can be
scaled down into small ones in the higher level of the im-
age pyramid. This is appropriate especially when the fil-
ters are selected from a bank of multiple scales, such as
the Gabor filters and the wavelet transforms. We adopt
this representation in our experiments.

For an image I, let I[s] be an image at level s = 0, 1, 2, ... of
a pyramid, and I[0] = I, the potential function becomes

U S F x y

F x y
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We can derive the Grade equations similarly for this py-
ramidal representation.
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Fig. 11. A typical sample of ps(I) (384 ¥ 384 pixels).

4.2 Anisotropic Diffusion and Gibbs
Reaction-Diffusion

This section compares Grades with previous diffusion
equations in vision.

In [25], [23], anisotropic diffusion equations for generat-
ing image scale spaces are introduced in the following
form,

It = div(c(x, y, t)—I),      I(x, y, 0) = Iin,                  (15)

where div is the divergence operator, i.e.,

div
r

V P Qx yd i = — + —

for 
r

V P Q= ,c h . Perona and Malik defined the heat conduc-
tivity c(x, y, t) as functions of local gradients, for example:

I
I
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I
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1

1
2 2

/ /c h e j
        (16)

Equation (16) minimizes the energy function in a continu-
ous form,

U x y x y dxdyx yI I Ia f c hd i c he j= — + —zz l l, ,

where l(x) = alog(1 + (x/b)2) and ¢ =
+

l x x
x

b g b ga
b1 2/

 are plot-

ted in Fig. 12. Similar forms of the energy functions are
widely used as prior distributions [9], [4], [20], [11], and
they can also be equivalently interpreted in the sense of
robust statistics [13], [3].

In the following, we address three important properties
of the Gibbs reaction-diffusion equations.

First, we note that (14) is an extension to (15) on a dis-
crete lattice by defining a vector field,

r
V x y n n Kd d, , . . . , , , . . . ,b g c h c h c h c ha f c h c h a f=

F
HG

I
KJ

¢ ¢ + ¢ ¢
f f y y1 1

and a divergence operator,

div = * + * + + *- - -F F F K1 2a f a f a fL .

Thus (14) can be written as,

It V= div
r

d i.                                     (17)

Compared to (15), which transfers the “heat” among adja-
cent pixels, (17) transfers the “heat” in many directions in a
graph, and the conductivities are defined as functions of the
local patterns not just the local gradients.

Second, in Fig. 13, f(x) has round tip for g  ≥ 1, and a
cusp occurs at x = 0 for 0 < g < 1 which leaves ¢f xb g  unde-

fined, i.e., ¢f xb g  can be any value in (-•, •) as shown by the
dotted curves in Fig. 13d. An interesting fact is that the po-
tential function learned from real world images does have a
cusp as shown in Fig. 9a, where the best fit is g = 0.7. This
cusp forms because a large part of objects in real world im-
ages have flat intensity appearances, and f(x) with g < 1 will
produce piecewise constant regions with much stronger
forces than g  ≥ 1.

By continuity, ¢f xb g  can be assigned any value in the

range [-w, w] for x Œ [-e, e] and w
g

g

=
+

-

( )
c

b

e

e

1

2

1 /e j
. In nu-

merical simulations, for x Œ [-w, w], we take

¢ =
+ < -
- Œ -
- >

R
S|
T|

f x
w s w
s s w w
w s w

b g
if
if
if

,

where s is the summation of the other terms in the differ-
ential equation whose values are well defined. Intuitively

when g < 1 and x = (F(a) * I)(x, y) = 0, f(a)¢(0) forms an at-

tractive basin in its neighborhood 1(a)(x, y) specified by

the filter window of F(a). For a pixel (u, v) Œ 1(a)(x, y), the

depth of the attractive basin is w aF u x v y- - -a fc h, . If a

pixel is involved in multiple zero filter responses, it will
accumulate the depth of the attractive basin generated by
each filter. Thus unless the absolute value of the driving
force from other well-defined terms is larger than the total
depth of the attractive basin at (u, v), I(u, v) will stay un-
changed. In the image restoration experiments in later
sections, g < 1 shows better performance in forming
piecewise constant regions.

Third, the learned potential functions confirmed and
improved the existing prior models and diffusion equa-
tions, but, more interestingly, reaction terms are first dis-
covered, and they can produce patterns and enhance pre-
ferred features. We will demonstrate this property in the
experiments below.
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(a) (b)

Fig. 12. (a) l(x) = alog(1 + (x/b)
2
). (b) ¢ =

+( )
l x x

x
a f a

b1 2/
.

(a) (b)

(c) (d)

Fig. 13. The potential function f x f x
x g( ) ( )= - + ¢

+
a a

b

1

1 /
,a f . (a) and (c) g = 2.0. (b) and (d) g = 0.8. (a) f x ga f, ≥ 1. (b) f x ga f, < 1. (c) ¢ ≥f x ga f, 1.

(d). ¢ <f x ga f, 1

4.3 Gibbs Reaction-Diffusion for Pattern Formation
In the literature, there are many nonlinear PDEs for pat-
tern formation, of which the following two examples are
interesting:

1) The Turing reaction-diffusion equation which models
the chemical mechanism of animal coats [33], [21].
Two canonical patterns that the Turing equations can
synthesize are leopard blobs and zebra stripes [34],
[38]. These equations are also applied to image proc-
essing such as image halftoning [29], and a theoretical
analysis can be found in [15].

2) The Swindale equation which simulates the develop-
ment of the ocular dominance stripes in the visual

cortex of cats and monkey [30]. The simulated pat-
terns are very similar to the zebra stripes.

In this section, we show that these patterns can be easily
generated with only two or three filters using the Grade.
We run (14) starting with I(x, y, 0) as a uniform noise image,
and Grade converges to a local minimum. Some synthe-
sized texture patterns are displayed in Fig. 14.

For all six patterns in Fig. 14, we choose F0
1a f = D  the

Laplacian of Gaussian filter at level zero of the image
pyramid as the only diffusion filter, and we fix a = 5, b = 10,

xo = 0, g = 1.2 for f x0
1a f b g . For the three patterns in Fig. 14a,

Fig. 14b, and Fig. 14c, we choose isotropic center-surround
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filter LG 2d i  of widow size 7 ¥ 7 pixels as the reaction filter

F1
2a f at level one of the image pyramid, and we set (a = -6.0,

b = 10, g = 2.0) for y x1
2a f b g . The differences between these

three patterns are caused by xo in y x1
2a f b g . xo = 0 forms the

patterns with symmetric appearances for both black and
white parts as shown in Fig. 14a. As xo becomes negative,

black blobs begin to form as shown in Fig. 14b, where xo = -6,

and positive xo generates white blobs in the black back-

ground as shown in Fig. 14c, where xo = 6. The general
smoothness appearance of the images is attributed to the
diffusion filter. Fig. 14d is generated with two reaction fil-
ters: LG 2d i  at level one and level two, respectively, there-

fore the Grade creates blobs of mixed sizes. Similarly we
selected one cosine Gabor filter Gcos(4, 30o) (size 7 ¥ 7 pixels

oriented at 30o) at level one as the reaction filter F1
2a f for

Fig. 14e where (a = -3.5, b = 10, g = 2.0, xo = 0) for y x1
2a f b g .

Fig. 14f is generated with two reaction filters Gcos(4, 30o),

Gcos(4, 60o) at level one, where (a = -3.5, b = 10, g = 2.0, xo = -3)

for y x1
2a f b g  and y x1

3a fb g .

It seems that the leopard blobs and zebra stripes are
among the most canonical patterns which can be gener-
ated with easy choices of filters and parameters. As
shown in [40], the Gibbs distribution are capable of mod-
eling a large variety of texture patterns, but filters and
different forms for y(x) have to be learned for a given
texture pattern.

5 IMAGE ENHANCEMENT AND CLUTTER REMOVAL

So far we have studied the use of a single energy function
U(I) either as the log likelihood of a probability distribution
at I or as a function of I to be minimized by gradient de-
scent. In image processing, we often need to model both the
underlying images and some distortions, and to maximize a
posterior distribution. Suppose the distortions are additive,

i.e., an input image is,

Iin = I + C.

In many applications, the distortion images C are often not
i.i.d. Gaussian noise, but clutter with structures such as
trees in front of a building or a military target. Such clutter
will be very hard to handle by edge detection and image
segmentation algorithms.

We propose to model clutter by an extra Gibbs distribu-
tion, which can be learned from some training images by
the minimax entropy theory as we did for the underlying
image I. Thus an extra pyramidal representation for Iin - I is
needed in a Gibbs distribution form as shown in Fig. 15.
The resulting posterior distributions are still of the Gibbs
form with potential function,

U*(I) = UC(Iin - I; LC, SC) + U(I; L, S),                 (18)

where UC() is the potential of the clutter distribution.

Fig. 15. The computational scheme for removing noise and clutter.

Thus the MAP estimate of I is the minimum of U*. In the
experiments which follow, we use the Langevin equation
for minimization, a variant of simulated annealing:

d U dt T t dwt tI I= -— +* a f a f2                      (19)

where w(x, y, t) is the standard Brownian motion process, i.e.,

w x y t N x y t dw dtNt, , ~ , , , ,c h b gd i c hm = 0 1 .

T(t) is the “temperature” which controls the magnitude of
the random fluctuation. Under mild conditions on U * , (19)
approaches a global minimum of U *  at a low temperature.
The analyses of convergence of the equations can be found
in [14], [10], [8]. The computational load for the annealing
process is notorious, but, for applications like denoising, a
fast decrease of temperature may not affect the final result
very much.

5.1 Experiment I

In the first experiment, we take UC to be quadratic, i.e., C to
be an i.i.d. Gaussian noise image. We first compare the
performance of the three prior models pl(I), pt(I), and ps(I)
whose potential functions are, respectively:

Fig. 14. Leopard blobs and zebra stripes synthesized by Grades.
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Ul(I) = yl(—xI) + yl(—yI),    yl(x) = amin(q2, x2)    (20)

Ut(I) = yt(—xI) + yt(—yI),   yt(x) = ax2/(1 + cx2)   (21)

Us(I) = the four-scale energy in (12)                   (22)

yl() and yt() are the line-process and T-function displayed
in Fig. 1b and Fig. 1c, respectively.

Fig. 16 demonstrates the results: The original image is
the lobster boat displayed in Fig. 2. It is normalized to have
intensity in [0, 31] and Gaussian noise from N(0, 25) are
added. The distorted image is displayed in Fig. 16a, where
we keep the image boundary noise-free for the convenience
of boundary condition. The restored images using pl(I),
pt(I), and ps(I) are shown in Fig. 16b, Fig. 16c, and Fig. 16d,
respectively. ps(I), which is the only model with a reaction
term, appears to have the best effect in recovering the boat,
especially the top of the boat, but it also enhances the water.

Fig. 16. (a) The noise distorted image. (b)-(d) Restored images by prior
models p Il a f , p It a f , and p Is a f , respectively.

5.2 Experiment II
In many applications, i.i.d. Gaussian models for distortions
are not sufficient. For example, in Fig. 17a, the tree branches
in the foreground will make image segmentation and object
recognition extremely difficult, because they cause strong
edges across the image. Modeling such clutter is a chal-
lenging problem in many applications. In this paper, we
only consider clutter as two-dimensional pattern, despite its
geometry and 3D structure.

We collected a set of images of buildings and a set of im-
ages of trees all against clean background—the sky. For the
tree images, we translate the image intensities to [-31, 0],
i.e., zero for sky. In this case, since the trees are always

darker than the building, thus the negative intensity will
approximately take care of the occlusion effects. We learn
the Gibbs distributions for each set respectively in the
pyramid, then such models are respectively adopted as the
prior distribution and the likelihood as in (18). We recov-
ered the underlying images by maximizing a posteriori
distribution using the stochastic process.

(a)                                                       (b)
Fig. 17. (a) The observed image. (b) The restored image using six filters.

For example, Fig. 17b is computed using six filters with
two filters for I: {—x,0, —y,0}, and four filters for IC: {d, —x, —y,

Gcos(2, 30o)}, i.e., the potential for IC is:

U x y x y x y G x yx
x y

yC I I I I Ia f b gd i b ge j b gd i b gd i
b g

= — + — + + *Âf f f y, , , cos ,
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In the above equation, f*(x) and y*(x) are fit to the potential
functions learned from the set of tree images:
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So, the energy term f*(I(x, y)) forces zero intensity for the
clutter image while allowing for large negative intensities
for the dark tree branches.
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Fig. 18b is computed using eight filters with four filters
for I and four filters for IC. Thirteen filters are used for
Fig. 19 where the clutter is much heavier.

As a comparison, we run the anisotropic diffusion proc-
ess [25] on Fig. 19a, and images at iterations t = 50, 100, 300
are displayed in Fig. 20. As we can see that as t Æ •, I(t)
becomes a flat image. A robust anisotropic diffusion equa-
tion is recently reported in [2].
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(a)                                                       (b)

Fig. 18. (a) An observed image. (b) The restored image using eight
filters.

(a)                                                       (b)

Fig. 19. (a) The observed image. (b) The restored image using 13
filters.

                (a)                                 (b)                                  (c)

Fig. 20. Images by anisotropic diffusion at iteration (a) t = 50, (b) t = 100,
and (c) t = 300 for comparison.

6 CONCLUSION

In this paper, we studied the statistics of natural images,
based on which a novel theory is proposed for learning
the generic prior model—the universal statistics of real
world scenes. We argue that the same strategy developed
in this paper can be used in other applications. For exam-
ple, learning probability models for MRI images and 3D
depth maps.

The learned prior models demonstrate some important
properties such as the “inverted” potentials terms for pat-
terns formation and image enhancement. The expressive
power of the learned Gibbs distributions allow us to model
structured noise–clutter in natural scenes. Furthermore, our
prior learning method provides a novel framework for de-
signing reaction-diffusion equations based on the observed
images in a given application, without modeling the physi-
cal or chemical processes as people did before [33].

Although the synthesized images bear important fea-
tures of natural images, they are still far from realistic ones.
In other words, these generic prior models can do very little
beyond image restoration. This is mainly due to the fact
that all generic prior models are assumed to be translation
invariant, and this homogeneity assumption is unrealistic.
We call the generic prior models studied in this paper the
first-level prior. A more sophisticated prior model should
incorporate concepts like object geometry, and we call such
prior models second-level priors. Diffusion equations derived
from this second-level prior are studied in image segmen-
tation [39], and in scale space of shapes [16]. A discussion of
some typical diffusion equations is given in [22]. It is our
hope that this article will stimulate further investigations on
building more realistic prior models as well as sophisticated
PDEs for visual computation.
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