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Abstract

Cut the unit circle S1 = R/Z at the points {
√

1}, {
√

2}, . . . , {
√
N },

where {x} = x mod 1, and let J1, . . . , JN denote the complementary
intervals, or gaps, that remain. We show that, in contrast to the case of
random points (whose gaps are exponentially distributed), the lengths
|Ji|/N are governed by an explicit piecewise real-analytic distribution
F (t) dt with phase transitions at t = 1/2 and t = 2.

The gap distribution is related to the probability p(t) that a random
unimodular lattice translate Λ ⊂ R2 meets a fixed triangle St of area t;
in fact p′′(t) = −F (t). The proof uses ergodic theory on the universal
elliptic curve

E = (SL2(R) ⋉ R2)/(SL2(Z) ⋉ Z2)

and Ratner’s theorem on unipotent invariant measures.



1 Introduction

For any real number x, let

{x} = x mod 1 ∈ S1 = R/Z

denote the fractional part of x. In this paper we determine the distribution
of gaps in {√n}, the sequence of fractional parts of square-roots of whole
numbers n > 0.

The theory of distribution mod 1 has a long history. Kronecker proved
that for any irrational number θ, the fractional parts {nθ} are dense in S1.
Weyl proved the same sequence is uniformly distributed, meaning

#{0 < n ≤ N : {nθ} ∈ I}
N

→ |I|
|S1|

as N → ∞, for any interval I ⊂ S1. Many other sequences have been
studied; for example, {θn} is known to be uniformly distributed on S1 for
almost every θ > 1, while the distribution of specific sequences such as
{(3/2)n} is an open problem.

Now consider the sequence {nα} for 0 < α < 1. It is easy to see {nα} is
uniformly distributed on S1, using the fact that (n+ 1)α − nα → 0.

To explore the distribution of {nα} in more detail, we study the lengths
of the complementary intervals or gaps J (N) = {J1, . . . , JN} left over when
the circle is cut at the points {1α}, {2α}, . . . , {Nα}. The average gap length,
(1/N)

∑ |Ji|, is clearly 1/N , so it is natural to study the ratio of the gap
lengths to 1/N .

The gap distribution provides a test of the ‘randomness’ of the points
{nα}. When the circle is cut at a sequence of random points, the resulting
gaps are exponentially distributed: that is, we have

#{J ∈ J (N) : |J | ∈ [a/N, b/N ]}
N

→
∫ b

a
e−t dt (1.1)

almost surely as N → ∞ (compare [Fe, p. 158]). Experiments suggest that
for most values of α, the gaps for {nα} are also exponentially distributed;
in fact, (1.1) appears to hold for all values of α 6= 1/2.

The gap distribution for {√n} is radically different. Our main result is
the following.
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Theorem 1.1 The gap distribution for the sequence {√n} is given by a
continuous function

F (t) =





6/π2 t ∈ [0, 1/2],

F2(t) t ∈ [1/2, 2], and

F3(t) t ∈ [2,∞),

where F2(t) and F3(t) are explicit real-analytic functions. That is, for any
interval [a, b] ⊂ [0,∞) we have

#{J ∈ J (N) : |J | ∈ [a/N, b/N ]}
N

→
∫ b

a
F (t) dt

as N → ∞.

Explicit formulas for F2 and F3 are given in equations (3.54) and (3.56)
below. Figure 1 compares the experimental gap distribution at a finite value
of N with the limiting distribution F (t).

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

6/π2

Figure 1. Gaps in {√n}N
1 , N = 2.5 × 107, together with the graph of the

limiting gap distribution y = F (t).
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We emphasize that the function F (t) is not analytic or even C3 at the
points t = 1/2 and t = 2. The gap distribution has genuine phase transitions
at these two critical points. Moreover, the tail of the distribution is not
exponential; instead, we have F (t) ∼ (3/π2)t−3 as t → ∞. Thus large gaps
are much more likely for {√n}N

1 than for N random points (although both
are rare events).

From gaps to lattices. The distribution of gaps in {√n} is related, via
ergodic theory, to the probability p(t) that a random lattice translate Λ ⊂ R2

meets a given triangle St of area t.
To explain this relation, we first discuss spaces of lattices, their natural

measures and the dynamical systems they support. Recall that a lattice
Λ0 ⊂ R2 is a discrete subgroup isomorphic to Z2; it is unimodular if the
quotient torus R2/Λ0 has area one. A lattice translate is simply a coset
Λ = v + Λ0 ⊂ R2.

The space of all translates of unimodular lattices in R2 can be naturally
identified with the homogeneous space

E = ASL2(R)/ASL2(Z). (1.2)

Here ASL2(R) is the group of area-preserving affine maps g : R2 → R2 of the
form g(v) = Av + b with detA = 1, and ASL2(Z) is the discrete subgroup
with A ∈ SL2(Z) and b ∈ Z2. (To see the identification, just note that
ASL2(R) acts transitively on the set of lattice translates, and ASL2(Z) is
the stabilizer of Λ = Z2.)

The space E carries a unique probability measure µE invariant under
the left action of ASL2(R). Using this measure, it makes sense to talk about
a ‘random lattice translate’ Λ ⊂ R2.

Now fix t > 0, and for N ≫ 0 consider an interval I = [x, x+t/N ] ⊂ R/Z
with x ∈ [0, 1] chosen at random (with respect to uniform measure). To
determine the gap distribution for

√
n mod 1, it suffices to estimate the

probability PN (t) that I contains {√n} for some integer n ∈ [0, N ]. On the
other hand, we have

{√n} ∈ I ⇐⇒ √
n ∈ I + a, some a ∈ Z,

⇐⇒ n ∈ (I + a)2.

In §3 we will show that (I+a)2 can be replaced by the linear approximation

(I + a)2 ≈ (a+ x)2 + 2(a+ x)(I − x)

= a2 − x2 + 2(a+ x)I
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without changing the asymptotics of the gap distribution. We can also
assume that N is a square. Once this is done, we observe that the condition

n ∈ a2 − x2 + 2(a+ x)I

holds for integers a, n, n ∈ [0, N ], if and only if

(Z + x2) ∩ 2(a+ x)I 6= ∅

for some a with a+ x ∈ [0,
√
N ]; equivalently, if and only if

T ∩ Z2 6= ∅,

where T ⊂ R2 is the triangle of area t given by

T = {(a, b) : b+ x2 ∈ 2(a+ x)I and a+ x ∈ [0,
√
N ]}. (1.3)

See Figure 2.

T

2t/
√
N

2x
√
N

b

√
N

a
(−x,−x2)

Figure 2. The triangle determined by I = [x, x+ t/N ].

Let St be a standard triangle of area t with vertices (0, 0), (1, 0) and
(0, 2t). Let g ∈ ASL2(R) be the unique affine map such that g(T ) = St and
g(−x,−x2) = (0, 0). Summing up the preceding discussion, we find that the
probability PN (t) that

• I = [x, x+ t/N ] contains
√
n mod 1 for some n ≤ N

is essentially the same as the probability that

• the lattice translate ΛN (x) = g(Z2) meets the standard triangle St.
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On the other hand, for N ≫ 0 one might expect that ΛN (x) ∈ E behaves
like a random lattice translate. In fact, in §2 we will use ergodic theory to
show:

Theorem 1.2 The lattice translates ΛN (x) are uniformly distributed on E
as N → ∞. That is, for any f ∈ C0(E) we have

∫ 1

0
f(ΛN (x)) dx →

∫

E
f(Λ) dµE(Λ).

Here C0(E) denotes the space of compactly-supported continuous functions
on E.

Because of this uniform distribution, we find that PN (t) converges to
p(t), the probability that a random Λ ∈ E meets St. Converting back to the
gap distribution, we have:

Corollary 1.3 The probability p(t) that a random unimodular lattice trans-
late Λ meets a given triangle St of area t satisfies

p′′(t) = −F (t),

where F (t) is the gap distribution for {√n}.

The proof of Theorem 1.1 is completed by computing p′′(t), using ex-
plicit formulas for the natural invariant measure µE . Since p(t) = t −∫ t
0

∫ s
0 F (u) du ds, our explicit formula for F (t) also leads to one for p(t).
In summary, we find that the uniform distribution of lattices explains

the exotic distribution of gaps.

Hyperbolic geometry. We now turn to the ergodic theory side of the
argument, to indicate the proof of the uniform distribution of 〈ΛN (x)〉 on
E.

We begin with dynamics on the simpler space

B = SL2(R)/SL2(Z).

The space B classifies unimodular lattices Λ0 ⊂ R2 and carries a natural
invariant probability measure µB .

Geometrically, SL2(R)/(±I) can be identified with the unit tangent bun-
dle T1(H) of the hyperbolic plane H. Similarly, B can be identified with
T1(M1), the unit tangent bundle to the moduli space

M1 = H/SL2(Z)
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of Riemann surfaces of genus 1.
The space M1 is a hyperbolic orbifold of finite volume with a unique

cusp. Under the identification B = T1(M1), the measure µB agrees with Li-
ouville measure for the hyperbolic metric, which is preserved by the geodesic
and horocycle flows

gs, hs : T1(M1) → T1(M1).

Since M1 has finite volume, these flows are ergodic and mixing.
Of special importance for us are the closed horocycles Hy ⊂ T1(M1),

i.e. the closed orbits for the horocycle flow. When projected to M1, these
horocycles are loops of length 1/y around the cusp; they are the images of
the lines Im z = y in H. The geodesic flow expands the closed horocycles,
pushing them away from the cusp; indeed, we have

gs(Hy) = He−sy.

yH
y

Figure 3. A long closed horocycle Hy passes randomly through many

fundamental domains for SL2(Z).

Random elliptic curves. Using mixing of the geodesic flow, it is not hard
to show that Hy is uniformly distributed on B = T1(M1) as y → 0 (see e.g.
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[EsM, §7]). That is, uniform measure along Hy converges to the invariant
measure µB on B as the length of Hy tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a ‘nearly random’
Riemann surface X of genus one as follows: pick y > 0 very small, pick
x ∈ [0, 1] at random, let τ = x+ iy and set X = C/Z ⊕ Zτ . As y → 0, the
distribution of X on M1 converges to hyperbolic area measure.

E as a torus bundle. We now return to the space of lattice translates

E = ASL2(R)/ASL2(Z).

The projection ASL2(R) → SL2(R) (sending Ax+ b to A) makes the space
of lattice translates into a torus bundle

E
D−→ B.

The fiber over Λ0 is the torus R2/Λ0. Moreover E carries a canonical connec-
tion, sending fibers to fibers by group isomorphism. Using this connection,
the geodesic flow gs : B → B lifts to the fiber-preserving Teichmüller flow

As : E → E.

(The terminology is suggested by the fact that the induced maps between
fibers, regarded as Riemann surfaces, are Teichmüller mappings.)

A horocycle section is a smooth loop

σ : S1 → E

such thatD◦σ : S1 → B travels with constant speed along a closed horocycle
Hy ⊂ B. It is not hard to see that σN (x) = ΛN (x) is a horocycle section,
because the triangle T shears as x increases. Moreover, the loops σN are
simply translates of a single loop under the Teichmüller flow; that is, we
have

σN = As(N) · σ1

where s(N) tends to infinity as N does. Finally, the section σ1 turns out to
be nonlinear (see §2.3 for a precise definition). Thus the uniform distribution
of 〈ΛN (x)〉 on E follows from:

Theorem 1.4 For any nonlinear horocycle section σ : S1 → E, the loops
σs = As · σ are uniformly distributed on E as s→ ∞.
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Here is a sketch of the proof (§2). Let µ be any measure on E that arises
as a limit of the uniform measures m(σs) as s→ ∞. By assumption, D ◦σs

covers a horocycle He−sy whose length is tending to infinity. Since these
horocycles are uniformly distributed, we have D∗(µ) = µB .

In addition, µ is invariant under a certain unipotent subgroup N(R) ⊂
ASL2(R). Using a powerful result of Ratner (1991), we can classify the
possible ergodic components ν of µ: either

• ν = µE , or

• ν is supported on E[n] ⊂ E,

where E[n] is the bundle of points of order n on the torus fibers of E.
The condition that σ is nonlinear rules out the second possibility. Thus
ν = µ = µE , and therefore the loops σs are uniformly distributed on E.

In the case at hand, the nonlinearity of the horocycle section ΛN (x)
comes from the fact that the triangle T has one vertex at (0, x2) — and
x2 is a nonlinear function of x. Thus ΛN (x) is uniformly distributed on E,
validating our calculation of the gap distribution F (t).

Remarks and references. The unusual gap distribution for
√
n mod 1 was

observed experimentally by M. Boshernitzan in 1993 and communicated to
us by Z. Rudnick. See [Sw], [Sos], [RS] and [Bo] for related work on gaps
and uniform distribution.

The idea of relating gaps to lattices, as above, is a variation on the
method used in [El] to find small nonzero values of |x3 − y2| (x, y ∈ Z) via
lattice reduction.

It is not hard to evaluate the error term in the uniform distribution of
{nα}, 0 < α < 1: we have

#{0 < n ≤ N : {nθ} ∈ I}
N

=
|I|
|S1| +O(N−α),

and this estimate is sharp (errors of size comparable to N−α actually occur,
when 0 < |I| < 1.)

For more on distribution of sequences modulo 1, see, for example, [We],
[HW, Ch. XXIII], [Sa] and [KN].

2 Ergodic theory

In this section we prove a general form of Theorem 1.4 on the uniform
distribution of horocycle sections σ : S1 → E. This ergodic-theoretic result
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will allow us to relate the gap distribution for {√n} to random lattices, as
sketched in the Introduction.

2.1 The affine group of the plane

All the Lie groups we will consider reside inside the special affine group
G(R) = ASL2(R) of the plane, defined by

G(R) =








a b x

c d y

0 0 1


 : ad− bc = 1





⊂ SL3(R).

This group acts on R2 by the area-preserving affine transformations

(
X

Y

)
7→
(
a b

c d

)(
X

Y

)
+

(
x

y

)
.

The affine group is a semidirect product G(R) = SL2(R) ⋉ V2(R), where

SL2(R) =








a b 0

c d 0

0 0 1








and V2(R) =








1 0 x

0 1 y

0 0 1








∼= R2.

There is a natural exact sequence

0 → V2(R) → G(R)
D→ SL2(R) → 0,

where D(g) records the linear part of g.
Within SL2(R) we have the 1-parameter subgroups

A(R) =








s 0 0

0 1/s 0

0 0 1








and N(R) =








1 t 0

0 1 0

0 0 1








; (2.1)

we denote their typical elements by As(s ∈ R∗) and Nt(t ∈ R).

Lattice translates. Let G(Z) ⊂ G(R) denote the arithmetic subgroup of
matrices with integral entries. As we remarked in the Introduction, the coset
space G(R)/G(Z) can be identified with the moduli space of translates of
unimodular lattices in R2. This identification can be made explicit by taking
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the lattice Z2 ⊂ R2 as our basepoint: then we may associate to any g ∈ G(R)
the lattice translate

Λ(g) =





(w1, w2) ∈ R2 :




w1

w2

1


 ∈ g




Z

Z

1







. (2.2)

Every unimodular lattice translate can be obtained in this way, and Λ(g) =
Λ(h) if and only if we have g ∈ h ·G(Z).

2.2 Mixing of the Teichmüller flow

Let Γ ⊂ G(Z) be a subgroup of finite index in the integral points of G(R).
From D we obtain a fibration

F = R2/(Γ ∩ V2(Z)) −−−−→ E = G(R)/Γ
yD

B = SL2(R)/D(Γ).

In the special case Γ = G(Z) = SL2(Z) ⋉ Z2, we can regard:

• B = SL2(R)/SL2(Z) as the unit tangent bundle T1(M1) to the moduli
space of curves of genus 1,

• E = G(R)/G(Z) as the pullback to T1(M1) of the universal elliptic
curve E → M1; and

• F = R2/Z2, the fiber over the identity, as the square torus.

For a general subgroup Γ, we obtain a finite cover of the case above.
The general case can also be interpreted as a bundle of elliptic curves with
basepoints, as follows.

First, note there is an action of G(R) on E by left multiplication, and the
fibers of E → B are just the orbits of V2(R). Fixing the usual identification
V2(R) = C with complex coordinate z = x+ iy, each fiber obtains a natural
complex structure and a natural Euclidean metric (coming from |z|). Each
fiber meets the submanifold SL2(R)/D(Γ) ⊂ E in a single point, providing
a natural basepoint and making the fibers into groups. Explicitly, for g ∈
SL2(R) the fiber Fg = D−1(g) is isomorphic to C/Λg where

Λg = g(Γ ∩ V2(R)) ⊂ V2(R) = C.
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There is a natural flat Teichmüller connection on the fibration E → B
that locally identifies fibers via group isomorphisms. (These group isomor-
phisms are also extremal quasiconformal maps, hence the terminology.) The
orbits of SL2(R) on E are the horizontal submanifolds for this connection.

The Teichmüller flow. The group SL2(R) also has a left action on the base

B, compatible with its action on E. Under the identification B = T1(M̃1)

where M̃1 = H/D(Γ), the action of the diagonal subgroup A ⊂ SL2(R) on
B is identified with the geodesic flow for the hyperbolic metric. The action
of A on E → B is just the lift of the geodesic flow via the Teichmüller
connection. Since it sends fibers to fibers by Teichmüller maps, we refer to
the action of A on E as the Teichmüller flow.

Theorem 2.1 The Teichmüller flow on the bundle of elliptic curves E is
ergodic and mixing.

Proof. First we observe that the action of SL2(R) on E is ergodic. Since
SL2(R) acts transitively on B, its ergodicity on E is equivalent to the ergod-
icity of D(Γ) on the fiber F . In the case Γ = G(Z), we need to show SL2(Z)
acts ergodically on R2/Z2, and this is easily established using Fourier series.
The general case is similar.

Since SL2(R) acts ergodically, the trivial representation is absent from
its unitary action on L2

0(E), the square-integrable functions of mean zero.
By a general result of Howe and Moore, the matrix coefficients of such a
representation vanish at infinity [Zim, Theorem 2.2.20]; that is, for any
sequence gn tending to infinity in SL2(R) and any f1, f2 ∈ L2

0(E), we have
〈gn · f1, f2〉 → 0. Restricting to the 1-parameter group A, we conclude that
the Teichmüller flow is mixing (and hence ergodic).

Let µE denote unique G(R)-invariant probability measure on E. Mixing
of the Teichmüller flow means that for any set X ⊂ E of positive measure
and f ∈ C0(E), we have

lim
s→∞

1

µE(X)

∫

X
f(As · x) dµE =

∫

E
f(x) dµE .

In other words, As ·X is uniformly distributed in E as s→ ∞.

2.3 Uniform distribution of horocycle sections

Our main result shows certain loops in E are also uniformly distributed
under the Teichmüller flow.

11



Horocycle sections. We define a horocycle section σ : R → G(R) to be a
smooth map of the form

σ(t) =








1 t x(t)

0 1 y(t)

0 0 1








(2.3)

satisfying, for some integer p0 > 0 and γ0 ∈ G(Z),

σ(t+ p0) = σ(t)γ0.

Note that D ◦ σ(t) = Nt ∈ SL2(R).
Since Γ has finite index in G(Z), there is also a minimal p > 0 and γ ∈ Γ

such that σ(t+ p) = σ(t)γ. We refer to p as the period of σ on E = G(R)/Γ.
Passing to the quotient space, a horocycle section gives a loop σ :

R/pZ → E. In the case where N(pZ) = N(R) ∩ Γ (which can always
be arranged by passing to a subgroup of finite index), we obtain a bijection

D ◦ σ : R/pZ → N(R)/N(pZ)

between the domain of σ and a standard closed horocycle H = N(R)/N(pZ)
around a cusp of B. Then σ can be regarded as a section of the universal
elliptic curve E → B over H ⊂ B — hence the terminology.

Nonlinearity. We say a horocycle section σ as in (2.3) is (rationally) linear
if for some α, β ∈ Q, we have:

m{t ∈ [0, p] : x(t) = αt+ β} > 0;

in other words, if the graph of x(t) meets a rational line in a set of positive
measure. Otherwise σ is nonlinear. (The behavior of y(t) plays no role in
this definition.) A real-analytic section is linear iff x(t) is identically of the
form αt+ β, α, β ∈ Q.

Smoothness. The assumption that σ(t) is smooth (C∞) is only for con-
venience; in fact the proof of uniform distribution works so long as y(t) is
continuous and x(t) is Lipschitz on [0, p].

With these definitions in place, we can now state our main result, which
generalizes Theorem 1.4.

Theorem 2.2 (Uniform distribution) Let σ : R → G(R) be a nonlinear
horocycle section of period p. Then as s → ∞, the loops σs = As · σ are
uniformly distributed in E = G(R)/Γ. That is, for any f ∈ C0(E) we have

lim
s→∞

1

p

∫ p

0
f(As · σ(t)) dt =

∫

E
f(x) dµE .

12



As a special case, let Γ = G(Z) and consider the unipotent subgroup

U(R) =








1 −t −t2/4
0 1 t/2

0 0 1


 : t ∈ R





⊂ G(R). (2.4)

Then U(R) ∩ Γ = U(2Z), so we can regard S = U(R)/U(2Z) ⊂ E as the
image of a nonlinear horocycle section with x(t) = t2/4 and with period
p = 2. Let µS denote the U -invariant probability measure on S. Then we
have:

Corollary 2.3 The loops As ·S are uniformly distributed in G(R)/G(Z) as
s→ ∞. That is, for all f ∈ C0(E) we have

lim
s→∞

∫

S
f(As · x) dµS =

∫

E
f(x) dµE .

2.4 Limits of measures

Given a loop σ : R/pZ → E, letm(σ) denote the natural probability measure
supported along the image of σ, satisfying

∫

E
f(x) dm(σ) =

1

p

∫ p

0
f(σ(t)) dt

for all f ∈ C0(E).
Now let σ : R/pZ → E be a nonlinear horocycle section of period p, and

let σs = As ·σ. To prove Theorem 2.2 (Uniform distribution), we must show
that

m(σs) = (As)∗m(σ) → µE

as s→ ∞. Here convergence takes place in the weak* topology on the space
of measures M(E) = C0(E)∗, the dual to the space of compactly-supported
continuous functions.

By compactness of the unit ball in the weak* topology (Alaoglu’s the-
orem), we can pass to a subsequence such that m(σs) → µ ∈ M(E). Our
task is to show that for any such subsequence, µ = µE.

We begin by observing that the projection of µ to B is correct. Let

µB = D∗µE

be the unique SL2(R)-invariant probability measure on B.
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Theorem 2.4 We have D∗µ = µB.

Proof. As a loop in B = T1(M̃1), the image H of D ◦ σ represents the

outward-pointing normals to a closed horocycle around a cusp of M̃1. Under
the geodesic flow, H is pushed away from the cusp and becomes uniformly
distributed in T1(M̃1). (This uniform distribution follows easily from mix-
ing of the geodesic flow by slightly thickening H; see [EsM, §7].) Since D
transports the Teichmüller flow on E to the geodesic flow on B, and trans-
ports m(σ) to the N(R)-invariant probability measure µH along H, we have
D∗µ = lim(As)∗µH = µB.

Conservation of mass. Note that the preceding result implies µ(E) = 1;
the mass of the probability measures m(σs) is conserved under passage to
the limit. (In principle mass could be lost because E is noncompact.)

Program for the proof. To show As · σ is uniformly distributed in E, we
must prove µ = µE. Here are the main steps in the argument.

1. We first show µ is invariant under the unipotent subgroup N(R) ⊂
SL2(R).

2. Let ν be an ergodic component of µ, and let J ⊂ G(R) be the largest
subgroup leaving ν invariant. By Ratner’s theorem on unipotent or-
bits, ν is supported on a single orbit of J .

3. From the fact that D∗µ = µB, we conclude that J = G(R) or J =
SL2(R). Then ν = µE or suppν ⊂ E[n], the bundle of points of order
n on each elliptic curve.

4. Using nonlinearity of σ, we show µ(E[n]) = 0, and thus µ = µE.

2.5 Unipotent invariance

In this section we establish:

Theorem 2.5 The measure µ is N(R)-invariant.

Recall that each fiber of the bundle E → B carries a natural Euclidean
metric, making it into a flat torus of area one. Suppose σi : R/pZ → E,
i = 1, 2 are a pair of loops satisfying D ◦ σ1 = D ◦ σ2. Then the points
σ1(t) and σ2(t) reside in the same fiber for every t, and we can measure the
distance between these loops by the quantity

d(σ1, σ2) = sup d(σ1(t), σ2(t)).
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More precisely, suppose the loops are specified upstairs by paths σi :
R → G(R) of the form

σi(t) =




a(t) b(t) xi(t)

c(t) d(t) yi(t)

0 0 1


 ;

then we define
d(σ1, σ2) = sup

t∈[0,p]
|z1(t) − z2(t)| (2.5)

where zi(t) = xi(t) + iyi(t). (The lifts of σi to maps R → G determine a
homotopy from σ1 to σ2, and d(σ1(t), σ2(t)) is measured using the geodesic
on the torus in the given homotopy class.)

Now suppose we have two sequences of loops σk
1 , σk

2 , with d(σk
1 , σ

k
2 ) → 0

and m(σk
1 ) → ν. Then m(σk

2 ) → ν as well. Indeed, any f ∈ C0(E) is
uniformly continuous in the fiber direction, so |

∫
f dm(σk

1 )−
∫
f dm(σk

2 )| →
0.

Proof of Theorem 2.5. Suppose σ(t) is given by (2.3). Then we have

σs(t) = As · σ(t) =




s st sx(t)

0 s−1 s−1y(t)

0 0 1


 .

To test N(R)-invariance, fix τ ∈ R and consider the section

ηs(t) = Nτ · σs(t) =




s st+ s−1τ sx(t) + s−1τy(t)

0 s−1 s−1y(t)

0 0 1


 .

Let u = s−2τ . Changing variables, we obtain the section

ρs(t) = ηs(t− u) =




s st sx(t− u) + s−1τy(t− u)

0 s−1 s−1y(t− u)

0 0 1


 .

Restricting to the subsequence of s→ ∞ along which m(σs) → µ, we have

m(ρs) = m(ηs) = (Nτ )∗m(σs) → (Nτ )∗µ. (2.6)
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Since the upper-left 2 × 2 submatrices of ρs(t) and σs(t) agree, we have
D ◦ ρs = D ◦ σs, so we can measure their distance:

d(ρs, σs) ≤ supt∈[0,p] |sx(t) − sx(t− u)| +
|s−1τy(t− u)| + |s−1y(t)| + |s−1y(t− u)|.

As s→ ∞, the term involving x satisfies

|sx(t) − sx(t− u)| = O(su) = O(s−1) → 0

since x(t) is smooth. The terms involving y go to zero because y(t) is
bounded on [0, p], Thus d(ρs, σs) → 0, and therefore m(ρs) and m(σs) have
the same limit, namely µ, by the observations preceding the proof. From
(2.6) we obtain (Nτ )∗µ = µ.

Geometrically, the N(R)-invariance of µ comes from the fact that As

stretches more horizontally than along the fibers, and hence the loop As · σ,
s≫ 1 is nearly horizontal (flat for the Teichmüller connection) when s≫ 1.

2.6 Ratner’s theorem

The main tool in our proof of equidistribution is the following theorem [Rat]:

Theorem 2.6 (Ratner) Let Γ ⊂ G be a discrete subgroup of a connected
Lie group G, and let N ⊂ G be a unipotent subgroup. Let ν be an ergodic N -
invariant probability measure on G/Γ, and let J ⊂ G be the largest subgroup
leaving ν invariant. Then there is an x ∈ G/Γ such that ν(J · x) = 1.

Here the group N is unipotent if for any g ∈ N , the eigenvalues of the
adjoint action of g on the Lie algebra of G are all 1. The measure ν is
ergodic if any N -invariant measurable set X ⊂ G/Γ satisfies ν(X) = 0 or
ν(X) = 1. The support of ν, denoted supp ν, is the smallest closed set with
ν(supp ν) = 1.

The Theorem implies that:

• J/(J ∩ xΓx−1) has finite volume,

• ν coincides with normalized Haar measure on J · x ⊂ G/Γ, and

• J · x is closed in G/Γ (cf. [Rat, Prop. 1.4]), so

• J · x = supp(ν).
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Concentration on torsion points. Each fiber F of the bundle E → B
has the structure of a complex torus C/Λ. For any integer n ≥ 1, we let
F [n] = (n−1Λ)/Λ ⊂ F denote the points of order n with respect to the
group law on F , and let E[n] ⊂ E be the bundle whose fibers are F [n].
Then

⋃
E[n] is the set of torsion points in E.

The projection E[n] → B is a covering map of degree n2, and E[n] is the
union of a finite number of SL2(R)-orbits on E. Every closed SL2(R) orbit
is contained in E[n] for some n.

Let us denote the group horizontal translations of R2 by:

H(R) =








1 0 x

0 1 0

0 0 1


 : x ∈ R





⊂ G(R).

This group commutes with N(R). Applying Ratner’s theorem, we will show
that the sections σs are either uniformly distributed, or they concentrate on
horizontal translates of the torsion points in E.

Theorem 2.7 (Torsion alternative) Either µ = µE or µ(H(R) ·E[n]) >
0 for some n ≥ 1.

To apply Theorem 2.6 to the case at hand, we first note that G =
ASL2(R) is connected and N = N(R) is unipotent. However, we do not yet
know if µ is ergodic.

Nevertheless, a basic result of ergodic theory furnishes a canonical de-
composition

µ =

∫
ν dP (ν)

of µ into a convex combination of ergodic, N(R)-invariant probability mea-
sures ν [Wa, p. 153], [Ph, §10]. Here dP is itself a probability measure
on the set of ergodic ν, which form the extreme points of the unit ball in
M(E)N(R). (The traditional setting for the ergodic decomposition is dy-
namics on a compact metric space, which can be obtained by replacing E
with its one-point compactification.)

Given an ergodic, N(R)-invariant probability measure ν on E, let

J(ν) = {g ∈ G(R) : g∗ν = ν}

be the largest subgroup of G(R) leaving ν invariant. Then J(ν) is closed
and we have N(R) ⊂ J(ν).
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Theorem 2.8 Almost every ν occurring in the ergodic decomposition of µ
satisfies D∗ν = µB and D(J(ν)) = SL2(R).

Proof. The action of N(R) on (B,µB) is ergodic, since it coincides with

the horocycle flow on T1(M̃1). Thus in the decomposition µB = D∗µ =∫
D∗ν dP (ν) we must have D∗ν = µB for almost every ν.

By Ratner’s theorem, ν is supported on the single orbit J(ν) · x ⊂ E.
Since E → B has compact fibers, we have

D(J(ν)) ·D(x) = D(supp ν) = suppD∗ν = B = SL2(R)/D(Γ).

Thus D(J(ν)) = SL2(R).

Fixed points. To determine the possibilities for J(ν), we will use:

Lemma 2.9 Any affine action of SL2(R) on Rk has a fixed point.

Proof. Weyl’s unitary trick [Kn, Prop. 2.1] allows one to extend the
affine action of SL2(R) on Rk to an affine action of SL2(C) on Ck. Then a
fixed point p ∈ Ck for the compact group SU(2,C) can be constructed by
averaging. Since C · su2 = sl2(C), the point p is also fixed by SL2(C), and
hence by SL2(R). The real part of p then gives a fixed point in Rk.

Corollary 2.10 Let H ⊂ G(R) be a subgroup with D(H) = SL2(R). Then
either H = G(R) or H is a conjugate of SL2(R) ⊂ G(R).

Proof. Since D(H) = SL2(R), the kernel K = Ker(D : H → SL2(R)) is an
SL2(R)-invariant subgroup of V2(R) ∼= R2, so K = V2(R) or K = {e}. In
the former case H = G(R), while in the latter case

D−1 : SL2(R) → H ⊂ G(R) = ASL2(R)

gives an affine action of SL2(R) on R2. By the preceding Lemma, this action
has a fixed point. After conjugating by an element of V2(R), we can assume
the fixed point is the origin, and then H = SL2(R).
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Since D(J(ν)) = SL2(R) and N(R) ⊂ J(ν), we have:

Corollary 2.11 Either J(ν) = G(R) or J(ν) = g SL2(R)g−1 for some g ∈
H(R).

Corollary 2.12 Either ν = µE or supp(ν) ⊂ g · E[n] for some n > 0 and
g ∈ H(R).

Proof. If J(ν) = G(R) then ν = µE by J(ν)-invariance. Otherwise, there
exists a g ∈ H(R) such that g−1 · suppν is a closed SL2(R) orbit in E, and
any such orbit is contained in E[n] for some n.

Proof of Theorem 2.7 (Torsion alternative). Let µ =
∫
ν dP (ν) be

the ergodic decomposition of µ. By the preceding Corollary, for almost
every ergodic component ν of µ, either ν = µE or suppν ⊂ H(R) · E[n]
for some n. Thus we can write µ = a0µE +

∑∞
1 anµn where

∑∞
0 an = 1

and suppµn ⊂ H(R) · E[n]. If µ 6= µE, then an 6= 0 for some n > 0 and
µ(H(R) ·E[n]) > 0.

2.7 Nonlinearity

In this section we use the nonlinearity of σ to show its limit under the
Teichmüller flow does not concentrate on the torsion points of E.

Theorem 2.13 For any n ≥ 1 and any accumulation point µ of the mea-
sures m(As · σ) as s→ ∞, we have µ(H(R) · E[n]) = 0.

Proof. Since the torsion points of G/Γ lie over those of G/G(Z), it suffices
to treat the case where Γ = G(Z) = SL2(Z) ⋉ Z2.

Let H(r, ǫ) ⊂ V2(R) denote the set of translations by (x, y) ∈ R2 with
|x| < r, |y| < ǫ, and let H(r) = H(r, 0). Since H(R) =

⋃∞
1 H(r), to prove

the theorem it suffices to show µ(H(r) ·E[n]) = 0 for each fixed r > 0.
Consider the open set U = H(r, ǫ) ·E[n]. Let σs = As ·σ, let ms = m(σs)

and let
Ts = {t ∈ [0, p] : σs(t) ∈ U}.

We will show that the linear measure of Ts satisfies

lim supm(Ts) = O(ǫ). (2.7)
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(The implied constant may depend on r, n.) Since ms(U) = m(Ts)/p, it
will follow that µ(H(r) ·E[n]) ≤ lim supms(U) = O(ǫ2) and hence µ(H(r) ·
E[n]) = 0 as desired.

To estimate m(Ts), it is useful to pass to the universal cover G of E =
G/G(Z). Then we can regard σs as the map σs : [0, p] → G given by

σs(t) =




s st sx(t)

0 s−1 s−1y(t)

0 0 1


 .

The set E[n] ⊂ E is covered by the SL2(R)-orbits G[n] =
⋃
G[n]ij ⊂ G,

i, j ∈ Z, given by

G[n]ij =








a b (i/n)a+ (i/n)b

c d (i/n)c + (j/n)d

0 0 1


 , ad− bc = 1




.

Thus the points of G[n] in the same fiber as σs(t) are given by

ρij
s (t) =




s st (i/n)s + (j/n)st

0 s−1 s−1(j/n)

0 0 1


 , i, j ∈ Z.

Taking the difference between the final columns of ρij
s and σs, we find Ts =⋃

T ij
s where

T ij
s =

{
t :

∣∣∣∣∣

(
sx(t)

s−1y(t)

)
−
(

(i/n)s + (j/n)st

s−1(j/n)

)∣∣∣∣∣ <
(
r

ǫ

)}
,

and the vector inequality is taken componentwise. Equivalently, we have
T ij

s = Xij
s ∩ Y ij

s , where

Xij
s = {t : |x(t) − (i/n) − (j/n)t| < s−1r} and

Y ij
s = {t : |y(t) − (j/n)| < sǫ}.

Since σ is nonlinear, the set of t such that x(t) = (i/n) + (j/n)t has
measure zero; therefore, for each fixed i, j we have

lim
s→∞

m(Xij
s ) = 0. (2.8)
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Also, when j is large we have

m(Xij
s ) = O(s−1/|j|),

since Xij
s is the preimage of an interval of length s−1r under a map with

derivative approximately −j/n. More precisely, this bound on m(Xij
s ) holds

so long as |j| > M , where M = 2n sup[0,p] |x′(t)|.
We also have Y ij

s = ∅ unless

|j| < Js = n

(
sǫ+ sup

[0,p]
|y(t)|

)
= O(sǫ)

for large s. Similarly, we have Xij
s = ∅ unless

|i| < Is(j) = n

(
s−1r + |j/n| + sup

[0,p]
|x(t)|

)
= O(|j| + 1).

Therefore we have:

m(Ts) ≤
∑

|j|<Js

∑

|i|<Is(j)

m(Xij
s )

≤
∑

M<|j|<Js

∑

|i|<Is(j)

O(s−1/|j|) +
∑

|j|≤M

∑

|i|<Is(M)

m(Xij
s ).

Since the second sum is over a finite set of i, j, it tends to zero as s → ∞
by (2.8). Since Is(j) = O(|j| + 1), the first sum is O(|Js|s−1) = O(ǫ),
establishing (2.7).

Completion of the proof of Theorem 2.2 (Uniform distribution).
Let µ be any accumulation point of the measures m(As · σ) as s → ∞. By
the preceding result, µ assigns zero mass to the torsion points H(R) ·E[n] ⊂
E, so by Theorem 2.7 (Torsion alternative), we have µ = µE . Since the
accumulation point is unique, µE is actually the limit of m(As ·σ), and thus
the loops As · σ are uniformly distributed in E as s→ ∞.

Sharpness. In conclusion we remark that the converse to Theorem 2.2
also holds: As · σ is never uniformly distributed when σ is linear. Indeed, if
x(t) = (i/n)+(j/n)t on a set of positive measure, then we have µ(E(n)) > 0,
so m(As · σ) cannot converge to the uniform measure µE .
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3 Distribution of gaps

In this section we establish the relationship between gaps in
√
n mod 1 and

the lattice translates ΛN (x) sketched in the Introduction. We also determine
the probability that a random unimodular lattice translate meets a triangle
T as a function of area(T ). Using the main ergodic theory result of §2,
we then deduce an explicit formula for the limiting gap distribution F (t).
Finally we discuss generalizations of the main result and open questions.

3.1 Gap-counting functions

For each positive integer N we define a normalized gap-counting function
λN : [0,∞) → [0, 1] as follows. Consider the N numbers

√
n mod 1 in R/Z

for n = 1, 2, . . . , N . These partition R/Z into N intervals (of which ⌊
√
N⌋−1

have length zero). We call the lengths of these intervals the gaps in the
sequence

{√n mod 1 : 1 ≤ n ≤ N}. (3.1)

The function λN (x) is defined to be 1/N times the number of gaps whose
length is < x/N .

Clearly λN is a nondecreasing function, continuous from the left, which
is constant except for finitely many jumps, and satisfies λN (0) = 0 and
λN (∞) = 1. Moreover, we have

∫ ∞

0
(1 − λN (x)) dx =

∫ ∞

0
x d(λN (x)) = 1, (3.2)

because
∫∞
0 x d(λN (x)) is the total length of the gaps (the normalizing fac-

tors of N cancel), and
∫∞
0 (1 − λN (x)) dx =

∫∞
0 x d(λN (x)) by integration

by parts.
We are interested in the asymptotics of λN as N → ∞. We shall show

that there exists λ∞ : [0,∞) → [0, 1) such that λN (x) → λ∞(x), uniformly
in x. Moreover we shall write

λ∞(x) =

∫ x

0
F (ξ) dξ, (3.3)

where F : [0,∞) → (0,∞) is a continuous function to be described later.
Thus F is the asymptotic normalized distribution of gaps in {√n mod 1 :
1 ≤ n ≤ N}: for each x1, x2 ∈ [0,∞) with x1 < x2, the number of gaps in
[x1/N, x2/N ] is asymptotic to

∫ x2

x1
F (x) dx.
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To get at λN , define LN : R/Z → [0,∞) as follows: LN (t) is N times
the length of the gap containing t, unless t ≡ √

n mod 1 for some positive
integer n ≤ N , in which case we set LN (t) = 0. Then

IN (x) := {t ∈ R/Z : LN (t) < x} (3.4)

is the union of the gaps of length < x, and thus has measure

|IN (x)| =

∫ x

0
ξ d(λN (ξ)). (3.5)

To prove our claim about the asymptotics of λN , it will be enough to show
that

|IN (x)| →
∫ x

0
ξF (ξ) dξ (3.6)

as N → ∞, uniformly as x varies in bounded subsets of [0,∞).

3.2 From gaps to lattice translates in R2

It is time to use specific properties of the sequence {√n mod 1 : n ≤ N}.
As in the Introduction, we shall write each n uniquely as a2 + b with

a = ⌊√n⌋ =
√
n− {√n},

and exploit the special behavior of the function (a, b) 7→ {
√
a2 + b} on the

(a, b)-plane.
It will be convenient to assume that N is a perfect square greater than 1,

say N = s2 with s > 1. Once we prove that λN → λ∞ uniformly as N
increases through perfect squares, the uniform convergence of all λN to λ∞
will follow:

Lemma 3.1 Assume that there exists a continuous function λ∞ : [0,∞) →
[0,∞) such that {λs2 : s = 1, 2, 3, . . .} converges uniformly to λ∞. Then
{λN : N = 1, 2, 3, . . .} also converges uniformly to λ∞.

Proof. Every integer N is within O(N1/2) of a perfect square s21. Replacing
N by s21 changes at most 3|N − s21| ≪ N1/2 of the gaps, and multiplies the
normalizing factors by 1 + O(N−1/2). Under our assumptions that λ∞ is
continuous and λs2

1
converges uniformly to λ∞, it follows that λN does as

well.

23



Now let t ∈ [0, 1]. Then LN (t) = N(t2 − t1), where t2 is the smallest real
number ≥ t such that (a2 + t2)

2 ∈ Z for some positive integer a2 < s, and
t1 is likewise the largest real number ≤ t such that (a1 + t1)

2 ∈ Z for some
positive integer a1 < s. Our first key observation is that in the binomial
expansion

(aj + tj)
2 = a2

j + 2ajtj + t2j (j = 1, 2) (3.7)

the term a2
j is always an integer, so the condition (aj + tj)

2 ∈ Z is equivalent
to

2ajtj + t2j = bj , bj ∈ Z. (3.8)

Necessarily
0 ≤ bj ≤ (aj + 1)2 − a2

j = 2aj + 1. (3.9)

Define a function rt by

rt(a, b) :=
√
a2 + b− a− t. (3.10)

Then we may write

LN (t) = N
(
(t2−t)−(t1−t)

)
= N

(
min

rt(a,b)≥0
rt(a, b)− max

rt(a,b)≤0
rt(a, b)

)
, (3.11)

with a, b ranging over integers such that

0 < a < s, 0 ≤ b ≤ 2a+ 1. (3.12)

In fact the conditions on b are superfluous. Since a > 0, requiring b ∈
[0, 2a + 1] is equivalent to demanding that rt(a, b) + t ∈ [0, 1]. The smallest
positive and largest negative values of rt(a, b) as a, b vary over integers with
0 < a < s automatically have rt(a, b) + t ∈ [0, 1], because (a, b) = (1, 0) and
(a, b) = (1, 3) already give rt(a, b) + t = 0 and rt(a, b) + t = 1 respectively.

The next step is to change t2j in equation (3.8) to its linear approximation

t2 + 2t(tj − t) = 2ttj − t2 = t2j − (t− tj)
2 (3.13)

We expect that usually tj = t + O(1/N), and thus that tj will be within
O(1/aN2) of the solution τj of the equation

2(aj + t)τj − t2 = bj . (3.14)

Since for each ǫ > 0 we have 1/a < ǫ for all but a few (aj , bj) pairs, we thus
expect that replacing tj by τj in the definition of LN will change most gaps
by O(ǫ/N2), and thus will not affect the asymptotic behavior of |IN |. We
next establish the estimates that support our expectations.
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The solution of equation (3.14) is

τj =
bj + t2

2(aj + t)
. (3.15)

Let ρt, then, be the function

ρt(a, b) :=
b+ t2

2(a+ t)
− t =

a2 + b− (a+ t)2

2(a+ t)
, (3.16)

and define L′
N : [0, 1] → [0,∞) by

L′
N (t) := N

(
min

ρt(a,b)≥0
ρt(a, b) − max

ρt(a,b)≤0
ρt(a, b)

)
, (3.17)

with a, b in the same range (3.12) as in our formula (3.11) for LN (t). As
with LN , the condition b ∈ [0, 2a + 1] holds automatically for the minimal
and maximal (a, b), and thus need not be required explicitly. Analogous to
the formula (3.4) for |IN | in terms of LN , we then define

I ′N (x) := {t ∈ R/Z : L′
N (t) < x}. (3.18)

We shall prove:

Proposition 3.2 Suppose that the limiting gap distribution F : [0,∞) →
[0,∞) is continuous. Then formula (3.6), with convergence uniform in
bounded subsets of [0,∞), is equivalent to the same formula with IN re-
placed with I ′N :

|I ′N (x)| →
∫ x

0
ξ F (ξ) dξ (3.19)

and the same uniformity.

Proof. We use the following technical estimates.

Lemma 3.3 For all t ∈ [0, 1] we have

3

4
LN (t) ≤ L′

N (t) ≤ 3

2
LN (t). (3.20)

Moreover, for each A = 1, 2, 3, . . . the stronger inequality

2A+ 1

2A+ 2
L′

N (t) ≤ 2A+ 1

2A
LN (t) (3.21)

holds for all t ∈ [0, 1] except for a subset of length at most (A + 2)(A −
1)/(s − 1).
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Proof. Comparing equation (3.10) with (3.16), we see that rt(a, b) and
ρt(a, b) are either both positive, both negative, or both zero. Moreover,
unless rt(a, b) = ρt(a, b) = 0, we have

ρt(a, b)

rt(a, b)
=

√
a2 + b+ a+ t

2(a+ t)
∈
[
2a+ 1

2a+ 2
,
2a+ 1

2a

]
(3.22)

for each a, b in the range (3.12) and every t ∈ [0, 1]. Since a ≥ 1, inequal-
ity (3.20) follows. Furthermore, the stronger inequality (3.21) holds unless
a < A for the (a, b) pair attaining the maximum or minimum in equation
(3.11). But there are only (A+2)(A−1) integer pairs (a, b) with 0 < a < A
and 0 ≤ b ≤ 2a+ 1, and each affects only those t contained in a gap one of
whose endpoints is

√
a2 + b − a. Each gap has length less than 1/2(s − 1),

since {
√

(s− 1)2 + b − (s− 1) : 0 ≤ b < 2s} already partitions [0, 1] into in-
tervals of length < 1/2(s − 1). Thus the exceptional set for equation (3.21)
has length at most (A+ 2)(A− 1)/(s − 1), as claimed.

Corollary 3.4 For each x ∈ [0,∞) we have

∣∣I ′N
(3
4
x
)∣∣ ≤ |IN (x)| ≤

∣∣I ′N
(3
2
x
)∣∣, (3.23)

and for each A = 1, 2, 3, . . . also

∣∣∣∣I
′
N

(2A+ 1

2A+ 2
x
)∣∣∣∣−O(A2/s) ≤ |IN (x)| ≤

∣∣∣∣I
′
N

(2A+ 1

2A
x
)∣∣∣∣+O(A2/s). (3.24)

Proof. The estimates (3.23) and (3.24) follow immediately from the corre-
sponding bounds given by equations (3.20) and (3.21) in Lemma 3.3.

We complete the proof of Proposition 3.2 by taking A = 1 + ⌊s1/3⌋ (or
any increasing function of s such that A > 1 and A2/s → 0) and using the
continuity of F .

We have thus reduced the asymptotics of λN to the asymptotic distribu-
tion of the values of L′

N as N → ∞. We next describe L′
N (t) geometrically

in terms of the family of triangles T in the plane, shown in Figure 2 of the
Introduction. In the present notation, for each s, t, T is the triangle with
one vertex at (a, b) = (−t,−t2) and the opposite side contained in the line
a+ t = s, which contains the segment of the line b = 2ta+ t2 from the fixed
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vertex to (a, b) = (s − t, 2st + t2). Algebraically, T is the triangle whose
interior is given by the inequalities

0 < a+ t < s,
2c−
s2

(a+ t) < b− 2ta− t2 <
2c+
s2

(a+ t), (3.25)

for some c−, c+ with c− < 0 < c+.

Lemma 3.5 For each N = s2 and t ∈ [0, 1], if L′
N (t) 6= 0 then L′

N (t) is
the area c+ − c− of the largest triangle whose interior is given by equation
(3.25) such that this interior contains no integer points except possibly (0, 0)
or (0, 1). If L′N(t) = 0 then there is no such triangle because 0 = b−2ta−t2
has an integer solution (a, b) with 0 < a < s.

As c−, c+ move away from zero, our triangle expands from the fixed line
segment until each of the sides of the triangle through the vertex (0, t2) hits
a lattice point.

Lemma 3.6 When this happens, the triangle has area L′
N (t), unless L′

N (t) =
0 when the line b = 2ta+ t2 already contains a lattice point with 0 < a < s.

Proof. That the triangle in fact has area c+ − c− is clear. If b = 2ta + t2

for some integers a, b with a > 0 then necessarily 0 ≤ b ≤ 2s + 1 and
t =

√
a2 + b − a, so L′

N (t) = 0, and conversely. We may thus assume that
L′

N (t) 6= 0. In particular, 0 6= t 6= 1, so, since a is an integer, 0 < a+ t < s
if and only if 0 ≤ a < s. If a = 0 then b = 0 or b = 1, since for other
choices of b the triangle also contains (1, 0) or (1, 3). The inequalities on
b− 2ta− t2 in equation (3.25) are equivalent to c− ≤ s2ρt(a, b) ≤ c+. Since
s2 = N , our largest triangle has c+/s

2 equal to the smallest positive value
of ρt(a, b) with 0 < a < s, and c−/s

2 equal to the largest negative value.
Thus c+ − c− = L′

N (t) as claimed.

Fortunately the distracting possibilities (a, b) = (0, 0) and (0, 1) do not
affect L′

N (t) except for t in a subset of [0, 1] of length O(1/s):

Lemma 3.7 Allowing (a, b) = (0, 0) or (a, b) = (0, 1) in Lemma 3.5 does
not change L′

N (t) unless t < 1/(s − 1) or t−1 − t < 1/(s − 1).

Proof. If rt(0, 0) = −t/2 is smaller than c− then there are no lattice points
in the triangle interior

0 < a+ t < s, −t(a+ t) < b− 2ta− t2 < 0. (3.26)
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But the intersection of this triangle with a = s−1 is a line segment of length
> (s − 1)t. If t ≥ 1/(s − 1), this segment has length > 1 and thus contains
a lattice point. Likewise, if rt(0, 1) = (1 − t2)/2t then there are no lattice
points in the triangle interior

0 < a+ t < s, 0 < b− 2ta− t2 <
1 − t2

t
(a+ t) (3.27)

whose intersection with a = s−1 is a line segment of length > (s−1)(t−1−t).
If t−1−t ≥ 1/(s−1), this segment has length > 1 and thus contains a lattice
point.

We may thus ignore (0, 0) and (0, 1), since doing this changes L′
N (t) by

at most O(1/s) and thus does not affect the asymptotics of |I ′N (t)|.
We next apply an area-preserving affine linear transformation to R2 that

maps the fixed vertex (−t,−t2) to the origin, and the region defined by
(3.25) to a triangle depending only on c−, c+ but not on s and t. Our
transformation is:

w1 = s(b− 2ta− t2), w2 = (a+ t)/s, (3.28)

or in matrix form



w1

w2

1


 =




s −2st −st2
0 1/s t/s

0 0 1







b

a

1


 = Asσ(t)




b

a

1


 , (3.29)

where As = diag(s, 1/s, 1) as in (2.1), and

σ(t) := U(2t) =




1 −2t −t2
0 1 t

0 0 1


 = exp




0 −2t 0

0 0 t

0 0 0


 (3.30)

is in our unipotent subgroup defined in equation (2.4). Under this transfor-
mation, the triangle defined by (3.25) maps to the triangle

∆c−,c+ := {(w1, w2) ∈ R2 : 0 < w2 < 1, 2c−w2 < w1 < 2c+w2}, (3.31)

and Z2 maps to a translate Λs2(t) of a unimodular (covolume-1) lattice:

Λs2(t) :=





(w1, w2) ∈ R2 :




w1

w2

1


 ∈ Asσ(t)




Z

Z

1








. (3.32)
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The maximum area L(Λ) of a triangle disjoint from Λ. For any
lattice translate Λ in the (w1, w2)-plane, we let L(Λ) denote the area c+−c−
of the largest triangle of the form ∆c−,c+ disjoint from Λ. Set L(Λ) = 0 if
there is no such triangle (because Λ contains the point (0, w2) for some
w2 ∈ (0, 1)). If Λ is disjoint from {(w1, w2) : 0 < w2 < 1} then c− and c+
are arbitrary, and we set L(Λ) = +∞. We then have:

Proposition 3.8 For each s, x, the set of t ∈ [0, 1] such that L(Λs2(t)) ≤ x
has length |I ′s2(x)| +O(1/s).

We are thus led to study the function L(·) on the space, which we shall
call E, of all unimodular lattice translates in R2, and the distribution as
s→ ∞ of {Λs2(t) : t ∈ [0, 1]} in that space.

3.3 Consequences of ergodic theory

In this section we use the ergodic theory results of §2 to obtain a description
of the gap distribution function F (x) in terms of random lattice translates,
establishing Corollary 1.3 of the Introduction.

To apply the results of §2, note that Λs2(t), t ∈ [0, 1], parameterizes
the loop of lattice translates As · S considering in Corollary 2.3. By that
Corollary, as s → ∞, the loop As · S becomes uniformly distributed in the
space E of all lattice translates. Combining this result with properties of
the function L : E → R defined above, we obtain:

Proposition 3.9 For all x ∈ [0,∞), we have

|I ′s2(x)| → µE

(
{Λ ∈ E : L(Λ) ≤ x}

)
(3.33)

as s → ∞ through positive integers, and the convergence is uniform on
bounded subsets of {x : x ≥ 0}. If F (·) is continuous then

lim
N→∞

|I ′N (x)| = µE

(
{Λ ∈ E : L(Λ) ≤ x}

)
(3.34)

for all x ∈ [0,∞) and the convergence is uniform in x.

Proof. To prove the first part, let

Ex = {Λ ∈ E : L(Λ) ≤ x}.

We claim that µE(∂Ex) = 0. Indeed, the function L : E → [0,∞] is a
submersion at most points of E, so its level sets have measure zero. It fails
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to be a submersion only when the lattice translate Λ contains (0, 0) or a
point on the horizontal edge w2 = 1 of its maximal triangle. These lattices
meet Ex in a closed set of measure zero, and hence ∂Ex has measure zero.

Now let f : E → {0, 1} be the indicator function of Ex (defined by
f(Λ) = 1 iff Λ ∈ Ex.) By Proposition 3.8, to establish equation (3.33) it
suffices to show that

∫ 1

0
f(Λs2(t)) dt → µE(Ex)

as s → ∞. This statement would follow immediately from Corollary 2.3 if
f were continuous and compactly supported. In the case at hand, f is only
discontinuous on ∂Ex, a closed set of measure zero, so the same conclusion
readily follows by approximating f and 1 − f by functions in C0(E).

The first part of the Proposition, equation (3.33), is thus established.
For the rest, note that if F (·) is continuous then so is λ∞(·) by equation
(3.3). Then equation (3.33) yields (3.34) via Proposition 3.2 and Lemma 3.1.
Uniformity over all of [0,∞) then follows from the fact that each |IN (x)|,
and thus necessarily also lims→∞ |IN (x)|, is a nondecreasing function of x
and approaches 1 as x→ ∞.

Proof of Corollary 1.3. While the description (3.34) of limN→∞ |IN | in
terms of µE does give an answer of sorts to the question of the asymptotic
distribution of gaps in {√n mod 1}, this answer is not yet in a form con-
ducive to either computational or theoretical investigation: we can neither
easily compute say limN→∞ |IN (1)|, nor readily deduce the existence and
continuity of the asymptotic normalized gap distribution F (x). This dis-
tribution F is related with limN→∞ |IN | via equation (3.6), which must be
differentiated with respect to x to recover F . But it is not yet clear even that
the derivative exists. We next reformulate our description of limN→∞ |IN |
to make F visible.

For real c−, c+ such that c− < 0 < c+, consider the subset Sc−,c+ of E
consisting of lattice translates Λ with a point in ∆c−,c+. The measure of
this set depends only on the area c+ − c− of ∆c−,c+, because all triangles
of the same area are equivalent under ASL2(R), and µE is invariant under
ASL2(R). We may thus define a nondecreasing function p : [0,∞) → [0, 1)
by

p(c+ − c−) = µE(Sc−,c+) (3.35)

for all c−, c+ such that c− < 0 < c+. We have p(0) = 0 and p(+∞) = 1.
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We shall presently show that p has a continuous second derivative. As-
suming this for the moment, we can now prove Corollary 1.3 of the Intro-
duction, giving a simple formula for F (x):

Lemma 3.10 Assume that p is twice differentiable and that p′′ is continu-
ous. Then equation (3.3) holds for

F (x) = −p′′(x). (3.36)

Proof. We rewrite the right-hand side of equation (3.34) in terms of p:

µE

(
{Λ ∈ E : L(Λ) < x}

)
= µE(S0,x) −

lim
M→∞

M−1∑

j=0

[
µE(S(j+1)x/M−x,jx/M) − µE(Sjx/M−x,jx/M)

]
(3.37)

= p(x) − lim
M→∞

M
(
p(x) − p(x− x

M
)
)
.

That is,
µE

(
{Λ ∈ E : L(Λ) < x}

)
= p(x) − xp′(x). (3.38)

Now p(0) = 0, so p(x) − xp′(x) vanishes at zero (this can be seen also from
equation (3.38)), and

d

dx
(p(x) − xp′(x)) = −xp′′(x)

provided p′′ exists. This together with the integral formula (3.6) yields
(3.36).

Integral formula for F (x). To complete the proof of Corollary 1.3, we
will show p′′(x) exists and express it as a double integral, leading in the next
section to an explicit formula for F (x).

We must first recall some facts about primitive lattice vectors and the
measure on the space B of unimodular lattices. A vector w in some lattice
Λ0 is said to be primitive if w/k /∈ Λ0 for each k > 1. Equivalently, w ∈ Λ0

is primitive if and only if there exists w′ ∈ Λ0 such that {w,w′} is a Z-basis
for Λ0. For any nonzero w ∈ R2, the lattices having w as a primitive vector
constitute a circle (a closed horocycle) Zw in B: such a lattice is determined
by w′ with det(w,w′) = 1, and two such w′ determine the same lattice if and
only if they differ by an integer multiple of w. IfK ⊂ R2 is a bounded convex
set then the area of K is ζ(2) times the integral over B of the function fK
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taking any lattice Λ0 to the number of primitive vectors in K. In particular,
if K is small enough that fK(Λ0) ≤ 1 for all Λ0 ∈ B, then the lattices
with a primitive vector in K constitute a subset of B whose measure is
1/ζ(2) times the area of K. Moreover, we can recover the measure of any
measurable B1 ⊂ B as

µB(B1) =
1

ζ(2)

∫

w∈K
µw(B1 ∩ Zw). (3.39)

Here µw is the uniform measure on the circle Zw, normalized to µw(Zw) = 1;
and B1 ∩ Zw is a measurable subset of Zw for almost all w ∈ K.

Now by equation (3.35) the second derivative p′′(x), if it exists, equals
the value of (∂2/∂c−∂c+)µE(Sc−,c+) at any c−, c+ with c− < 0 < c+ and
c+−c− = x. Thus F (x) has the following geometrical interpretation: F (c+−
c−) dc− dc+ is the measure of the set of lattice translates Λ ∈ E that intersect
∆c−,c+ in exactly two points, one with w1/2w2 ∈ (c−, c− + dc−), the other
with w1/2w2 ∈ (c+ − dc+, c+).

The difference between these two points of Λ must be a primitive vector,
else Λ would contain another point on the line segment joining them, and
thus in ∆c−,c+ (because a triangle is convex). Using the formula (3.39) for
µB , we express F (x) as a double integral over the w2 coordinates v−, v+ of
the two vectors where Λ intersects ∆c−,c+. This lets us complete the proof
of Corollary 1.3 by proving the hypotheses of Lemma 3.10.

For v−, v+ ∈ (0, 1), let w = (c+v+, v+) − (c−v−, v−) be the difference
between the two vectors on the boundary of ∆c−,c+ . Then Zw parameterizes
unimodular lattice translates containing these two vectors. Let qx(v−, v+) ∈
[0, 1] be the measure of the subset of Zw on which this lattice translate is
disjoint from the interior of ∆c−,c+. We write qx rather than qc−,c+, again
because it depends only on x = c+ − c−.

Proposition 3.11 The function (x, v−, v+) 7→ qx(v−, v+) on [0,∞)×(0, 1)×
(0, 1) is continuous except on a set contained in {v− = v+}. For x ∈ [0,∞)
we have

−p′′(x) = F (x) =
1

ζ(2)

∫ 1

v+=0

∫ 1

v−=0
4v−v+qx(v−, v+) dv− dv+ , (3.40)

and F (x) is a continuous function of x.

Proof. The first continuity claim is geometrically evident: our subset of
Zw varies continuously in x, v, v′ except possibly when w is horizontal and
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thus parallel to the third side of ∆c−,c+. Since qx(v, v
′) is also bounded, the

double integral (3.40) exists and varies continuously with x. That it equals
both F (x) and −p′′(x) now follows from the geometrical description of F (x).
The factor 4v−v+ is the product of the lengths of the line segments

{(w1, w2) : w2 = v−, 2c−v− < w1 < 2(c− + dc−)v−}, (3.41)

{(w1, w2) : w2 = v+, 2(c+ − dc+)v+ < w1 < 2c+v+}, (3.42)

on which our vectors lie, and formula (3.39) accounts for the qx(v−, v+)/ζ(2)
factor.

3.4 Formulas for the gap distribution

In this section we complete the proof of Theorem 1.1 by giving, in Theorem
3.14, a closed formula for the gap distribution F (x).

We can compute qx and the integral in equation (3.40) in closed form.
We find:

Lemma 3.12 For all v, v′ ∈ (0, 1] and x > 0 we have

qx(v, v
′) = qx(v

′, v). (3.43)

If v ≥ v′ then

qx(v, v
′) = max

(
0,min

(
1,

r

vv′

)
− max

(
0,
v(1 − v′) − r

v(v − v′)

))
, (3.44)

where

r :=
1

2x
(3.45)

and max
(
0, (v(1 − v′) − r)/(v(v − v′))

)
is interpreted as +∞ if v = v′ and

r < v(1 − v′) and as 0 if v = v′ and r ≥ v(1 − v′).

Proof. Change coordinates linearly from w1, w2 to z, z′, chosen so that
∆c−,c+ becomes the fixed triangle interior

∆0 := {(z, z′) ∈ R2 : z > 0, z′ > 0, z + z′ < 1} (3.46)

of an isosceles right triangle with unit sides, whose closure intersects the
lattice translate Λ at

(z, z′) = (v, 0), (0, v′). (3.47)
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Since ∆0 has area 1/2, the linear transformation from (w1, w2) to (z, z′)
multiplies areas by a factor 1/2x = r. Thus in the (z, z′) plane Λ is a lattice
translate of covolume r. Therefore it is generated by (v, 0), (0, v′) and a
third vector on the line

vz′ + v′z = vv′ + r (3.48)

through the two points (3.47), determined up to translation by integer mul-
tiples of their difference (v,−v′). The proportion of such lattices disjoint
from ∆0 is clearly invariant under v ↔ v′. This establishes equation (3.43).
It follows that the computation of qx(v, v

′) for v ≥ v′ will yield qx(v, v
′) for

all v, v′.
Assume, then, that v ≥ v′. The lattice translate Λ is determined by

the z-coordinate of our vector (z, z′) on the line given by (3.48), with two
choices of z yielding the same lattice if and only if they differ by an integer
multiple of v. We may thus parameterize Λ by [0, v). We claim that Λ is
disjoint from ∆0 if and only if neither (z, z′) nor (v − z, v′ − z′) is in ∆0.
“Only if” is clear because both (z, z′) and (v− z, v′ − z′) are in Λ. To prove
“if”, observe that the general vector in Λ is

(0, v′) +m1(v,−v′) +m2

(
(z, z′) − (0, v′)

)
(3.49)

for some m1,m2 ∈ Z. We are to show that if the intersection Λ ∩ ∆0 is
nonempty then it contains the vector given by (3.49) with (m1,m2) = (0, 1)
or (1,−1). We first reduce to the case m2 = ±1. If m2 = 0 then the vector
is on the line joining (v, 0) and (0, v′) and thus cannot be in ∆0. If m2 > 1
then (z, z′)+⌈m1/m2⌉(v,−v), of the same form but with m2 = 1, is a convex
combination of the three vectors (3.47), (3.49), and is thus also contained
in ∆0. Likewise if m2 < −1 we find a vector in Λ ∩ ∆0 with m2 = −1.
Now if m2 = −1 then the z-coordinate m1v − z of (3.49) must exceed 0
(because the vector is in ∆0) but be smaller than v (since it is on the line
vz′ + v′z = vv′, and r < vv′ while vz′ > 0). Since 0 ≤ z < v, this forces
m1 = 1. If m2 = +1 then the z-coordinate is m1v + z, and its positivity
together with z < v force m1 ≥ 0. If m1 > 0 then (z, z′) itself (with m1 = 0)
is in ∆0, because it differs from (3.49) by m1(v,−v′) and v ≥ v′.

Now, given that z ∈ [0, v) and that (z, z′) is on the line (3.48), the
condition (v − z, v′ − z′) /∈ ∆0 is equivalent to z ≤ r/v′, while (z, z′) /∈ ∆0

becomes z ≥ (v′(1 − v) − r)/(v − v′). (If v = v′ the quotient is interpreted
as +∞ if the numerator is positive, −∞ if not.) The first condition leaves
the interval 0 ≤ z ≤ min(v, r/v′), and the second condition leaves

max

(
0,
v′(1 − v) − r

v − v′

)
≤ z ≤ min(v, r/v′). (3.50)
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The length of this interval, divided by the length v of [0, v), is given by the
right-hand side of equation (3.44). Since this ratio is qx(v, v′), we are done.

Corollary 3.13 If x ≤ 1/2 then qx(v, v
′) = 1 for all v, v′ ∈ (0, 1]. If x ≥ 2

then qx(1/2, 1/2) = 0. If 1/2 < x < 2 then qx(v, v′) is positive for all
v, v′ ∈ (0, 1] but does not equal 1 identically.

Proof. The three x ranges are equivalent to r ≥ 1, r ≤ 1/4, and 1 > r > 1/4
respectively. If r ≥ 1 then r/vv′ ≥ 1 and v(1− v′) ≤ r. Thus (3.44) reduces
to max(0, 1 − 0) = 1. If r ≤ 1/4 then v(1 − v′) > r at v = v′ = 1/2, so
the formula (3.44) for qx(1/2, 1/2) reduces to 0. For any r < 1 we have
qx(1, 1) < 1. If qx(v, v

′) = 0 then (v(1 − v′) − r)/(v(v − v′)) is either ≥ 1 or
≥ r/vv′. But

1 − v(1 − v′) − r

v(v − v′)
=

r − (v − v2)

v(v − v′)
, (3.51)

r

vv′
− v(1 − v′) − r

v(v − v′)
=

r − (v′ − v′2)

v′(v − v′)
. (3.52)

Thus r ≤ 1/4 in either case.

Phase transition at x = 1/2. The fact that qx(v, v
′) = 1 for x ≤ 1/2 can

also be seen geometrically: if Λ has a point in ∆0, then that point together
with (v, 0) and (0, v′) span a triangle whose area is a positive multiple of
r/2, but strictly less than the area 1/2 of ∆0; therefore r < 1. This yields
the fact that F (x) = 1/ζ(2) for x ≤ 1/2 (the first part of the following
theorem). Once x > 1/2, it is possible for Λ to meet ∆0, and thus qx(v, v

′)
does not equal 1 identically. This explains the phase transition of F (x) at
x = 1/2.

Lemma 3.12 reduces the computation of F (x) to a calculus exercise,
simplified somewhat by Corollary 3.13. We obtain:

Theorem 3.14 i) If x ≤ 1/2 then F (x) = 1/ζ(2).
ii) If 1/2 ≤ x ≤ 2, let r = 1/2x as in (3.45) and

ψ(r) = tan−1 2r − 1√
4r − 1

− tan−1 1√
4r − 1

. (3.53)

Then

F (x) =
1

ζ(2)

(
2

3
(4r − 1)3/2ψ(r) + (1 − 6r) log r + 2r − 1

)
. (3.54)
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iii) If x ≥ 2, let r = 1/2x again and

α =
1

2
(1 −

√
1 − 4r), (3.55)

the smaller root of α− α2 = r. Then

F (x) =
1

ζ(2)

(
4(1 − 4α)(1 − α)2 log(1− α) − 2(1 − 2α)3 log(1 − 2α) − 2α2

)
.

(3.56)

Remark. We have

tanψ(r) =
(r − 1)

√
4r − 1

(3r − 1)
, (3.57)

by the addition formula for the tangent; but we cannot define ψ(r) as
tan−1

(
(r − 1)

√
4r − 1/(3r − 1)

)
, because ψ(r) is not the principal value

of this arctangent for r ≤ 1/3.

Proof. By equations (3.40) and (3.43), we have

F (x) =
1

ζ(2)

∫∫

0<v′<v<1

8vv′qx(v, v′) dv′ dv. (3.58)

Case (i) is easy: by Corollary 3.13, qx = 1 identically, so the double
integral is just

∫ 1
0 8v(v2/2) dv = 1.

In case (ii), the last part of Corollary 3.13 simplifies our formula (3.44)
to

1 − qx(v, v′) = max
(
0, 1 − r

vv′

)
+ max

(
0,
v(1 − v′) − r

v(v − v′)

)
. (3.59)

Thus

1−ζ(2)F (x) =

∫∫

0<v′<v<1

8vv′
[
max

(
0, 1 − r

vv′

)
+ max

(
0,
v(1 − v′) − r

v(v − v′)

)]
dv′ dv.

(3.60)
By symmetry,

∫∫

0<v′<v<1

8vv′ max
(
0, 1 − r

vv′

)
dv′ dv =

∫∫

0<v,v′<1

4vv′ max
(
0, 1 − r

vv′

)
dv′ dv.

(3.61)
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This in turn equals

∫ 1

r
4v

(∫ 1

r/v
v′
(
1 − r

vv′

)
dv′

)
dv =

∫ 1

r
2(v − r)4

dv

v
(3.62)

= (3r − 1)(r − 1) − 2r2 log r.

For the second term in (3.60) we integrate

8vv′
v(1 − v′) − r

v(v − v′)
=

8v′(v(1 − v′) − r)

v − v′
(3.63)

over the region r < v < 1, v(1 − v′) > r. In this region v′ < v holds
automatically, else we would have

r < v(1 − v′) < v(1 − v) ≤ 1/4, (3.64)

contradicting r ∈ [1/4, 1]. We thus obtain

∫ 1

r

(∫ 1−(r/v)

0

8v′(v(1 − v′) − r)

v − v′
dv′

)
dv (3.65)

=

∫ 1

r

[
4v′(2r + v(v′ + 2v − 2)) + 8v(r − v + v2) log(v − v′)

]1−(r/v)

v′=0
dv

=

∫ 1

r

(
8v(r − v + v2)

(
log(r − v + v2) − 2 log v

)
+

4(v − r)(r − v + 2v2)

v

)
dv.

Evaluating this definite integral, entering its value into equation (3.60), and
solving for F (x) yields (3.54).

Finally, in case (iii) we see from equations (3.51) and 3.52) that the
integrand of (3.58) is supported on the union of the regions

vv′ < r and either v < α or v > 1 − α, (3.66)

where it equals 8v′(r − (v − v2))/(v − v′), and

vv′ > r and either v′ < α or v′ > 1 − α, (3.67)

where it equals 8v(r−(v′−v′2))/(v−v′). The union of these regions consists
of: the triangle 0 < v′ < v < α, contained in (3.66); the triangle 1−α < v′ <
v < 1, contained in (3.67); and the square 0 < v′ < α, 1 − α < v < 1, split
between the two regions along the segment 1 − α < v < 1 of the hyperbola
vv′ = r. Integrating the appropriate integrand over each subregion, adding
the results and dividing by ζ(2) yields the formula (3.56) for F (x) when
x ≥ 2.
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Theorem 3.14 confirms that F (x) is a continuous function of x: at the
boundary values x = 1/2 and x = 2 the formula (3.54) of (ii) agrees with
the values F (1/2) = 1/ζ(2), F (2) = (log 2 − 1

2)/ζ(2) given by (i) and (iii)
respectively. Moreover, F (x) is continuously differentiable, but not smooth
or even C2 at x = 2: the series expansions near x = 2 begin

ζ(2)F (2 − ǫ) = log 2 − 1

2
+ 3 log 2

ǫ

2
−

√
2π
ǫ3/2

6
(3.68)

+(12 log 2 + 3)
ǫ2

16
−

√
2π
ǫ5/2

8
+ (36 log 2 + 17)

ǫ3

96
· · ·

for x < 2 and

ζ(2)F (2 + ǫ) = log 2 − 1

2
− 3 log 2

ǫ

2
−

√
2(8 − 3 log(2ǫ))

ǫ3/2

12
(3.69)

+(12 log 2 + 3)
ǫ2

16
−

√
2(32 − 15 log(2ǫ))

ǫ5/2

80
− (36 log 2 + 17)

ǫ3

96
· · · .

for x > 2, first differing in the |x − 2|3/2 terms. (The coincidence of the
coefficients of integral powers of x− 2 persists, as can eventually be shown
with some manipulation of the formulas (3.54) and (3.56); it is not clear
what significance if any this might have.) At x = 1/2, the function given by
(3.54) first differs from the constant 1/ζ(2) in the cubic term:

ζ(2)F (2 + ǫ) = 1 − 16

3
ǫ3 + 24ǫ4 − 384

5
ǫ5 +O(ǫ6) (3.70)

for small ǫ ≥ 0. Finally, as x→ ∞ we obtain a Taylor expansion in powers
of 1/x:

ζ(2)F (x) =
1

2x3
+

9

16x4
+

11

16x5
+

175

192x6
+O(x−7). (3.71)

3.5 Generalizations

We can generalize our results simultaneously in three directions. First, in-
stead of gaps in {√n mod 1 : 1 ≤ n ≤ N}, we can analyze gaps in the
fractional parts of the square roots of the integers in (θ2N,N ] for fixed
θ ∈ (0, 1). Second, we can analyze the joint distribution of two or more
consecutive gaps. Third, for each positive rational u, we can replace {√n}
by {√un}. In each case our methods yield answers, sometimes (notably for
three or more consecutive gaps) surprising answers. We next briefly discuss
each of these generalizations.
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Gaps in {√
n mod 1 : θ2N < n ≤ N}. This is the easiest general-

ization: most of the analysis carries through except that the integers a or
aj in (3.7) and later must be in the range [θs, s) rather than [1, s). (This is
why we chose the lower limit θ2N rather than θN). This has the effect of
replacing the triangles ∆c−,c+ by the truncated triangles (trapezoids)

∆(θ)
c−,c+ := {(w1, w2) ∈ R2 : θ < w2 < 1, 2c−w2 < w1 < 2c+w2}. (3.72)

We find:

Theorem 3.15 Let p(θ)(t) be the probability that a random unimodular lat-
tice translate meets a given trapezoid of the form (3.72) with c+ − c− = t.
Then −p(θ) has a continuous second derivative F (θ), which is the asymptotic
gap distribution for {√n mod 1 : θ2N < n ≤ N}. That is, for any inter-
val [t0, t1] ⊂ [0,∞) the number of gaps whose length falls in [t0/N, t1/N ]
is asymptotic to N

∫ t1
t0
F (θ)(t) dt as N → ∞. Moreover, F (θ) is given by a

double integral formula (see (3.73) below); it is piecewise analytic on [0,∞),
restricts to the constant function (1 − θ2)2/ζ(2) on [0, 1/(2 − 2θ)], and is
asymptotically proportional to t−3 for large t.

Proof (sketch). We obtain this in much the same way as we did for
θ = 0. Let x = c+ − c−, and for v−, v+ ∈ (θ, 1) let w be the difference

(c+v+, v+) − (c−v−, v−) between two vectors on the boundary of ∆
(θ)
c−,c+.

Define q
(θ)
x (v−, v+) to be the measure of the subset of Zw that parameter-

izes unimodular lattice translates containing those two vectors and disjoint

from the interior of ∆
(θ)
c−,c+. (As was true for the triangles ∆c−,c+, all trape-

zoids ∆
(θ)
c−,c+ with the same value of x are equivalent under ASL2(R), so the

measure of that subset depends only on x.) We then generalize Proposi-

tion (3.11), again with much the same proof, by replacing qx with q
(θ)
x and

(3.40) with the double integral formula

F (θ)(x) =
1

ζ(2)

∫ 1

v+=θ

∫ 1

v−=θ
4v−v+q

(θ)
x (v−, v+) dv− dv+ . (3.73)

Since the largest triangles contained in ∆
(θ)
c−,c+ have area (1 − θ)x, we find

that there exist v−, v+ such that q
(θ)
x (v−, v+) < 1 if and only if 2x > 1/(1−θ).

Hence F (θ)(x) = 1
ζ(2)

∫ 1
v+=θ

∫ 1
v−=θ 4v−v+ dv− dv+ = (1 − θ2)2/ζ(2) for x ≤

1/(2 − 2θ), and F (θ)(x) < (1− θ2)2/ζ(2) for x > 1/(2 − 2θ). The remaining
properties of F (θ) also follow from the integral formula (3.73).
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We have not attempted to generalize Lemma (3.12) and Theorem (3.14)

by computing q
(θ)
x (v, v′) and F (θ) explicitly for any θ > 0. The sym-

metry (3.43) does generalize to q
(θ)
x (v, v′) = q

(θ)
x (v′, v), since ∆

(θ)
c−,c+ re-

tains the affine bilateral symmetry of ∆c−,c+. But the general formula for

q
(θ)
x (v, v′) will likely be somewhat more complicated than our formula (3.44)

for qx(v, v
′), making the double integral (3.73) even less pleasant to evaluate

than it was for θ = 0.
Joint distribution of consecutive gaps. In Section 1 we intro-

duced the notation J1, . . . , JN for the gaps left over when the circle R/Z
is cut at the points {

√
1}, {

√
2}, . . . , {

√
N }. Let us index these Ji in

their order of appearance on the circle, so that Ji+1 is the next gap af-
ter Ji. Theorem 1.1 describes the asymptotic distribution of the normal-
ized gap lengths N |Ji| in [0,∞). More generally we can study the joint
distribution of consecutive gaps: fix a positive integer r, and consider the
r-tuples (N |Ji+1|, N |Ji+2|, . . . , N |Ji+r|) ∈ [0,∞)r. Our methods also yield
the asymptotic behavior of this joint distribution for each r. We show:

Theorem 3.16 For each r = 1, 2, 3, . . ., there exists a nonnegative measure
Φ on [0,∞)r that is an asymptotic joint distribution of r consecutive gaps
in {{√n} : 1 ≤ n ≤ N}. That is, for any box B ⊂ [0,∞)r, the number
of r-tuples of consecutive gaps whose lengths lie in N−1B is asymptotic to
N
∫
B dΦ as N → ∞.

When r = 1 we have dΦ = F (t) dt where F is the distribution function
of Theorem 1.1. Once r > 1, we do not obtain explicit formulas for Φ, but
can still describe it in terms of lattice translates. Using this description we
can show that, as for r = 1, the distribution differs qualitatively from what
one would expect when cutting the circle at N random points, and indeed
the differences become more striking as r increases.

We already noted that when the circle is cut at N random points, the
resulting gaps are exponentially distributed almost surely as N → ∞. More
generally, for each r, the r-tuples of consecutive gaps almost surely approach
the product of r exponential distributions. In other words, there is no de-
pendence among nearby gaps. But when the cuts are at {√n} (0 < n < N),
nearby gaps are markedly dependent, and the dependencies become more
pronounced as r increases. For example, fix r and a positive real T < 1/2.
Then

∑r
j=1N |Ji+j | < T holds for a positive proportion of i ∈ [0, N−r], and

for each of these i, any two of the r consecutive normalized gaps N |Ji+j |
(1 ≤ j ≤ r) determine all r of them to within O(1/N). In other words, the
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simplex
{
(t1, . . . , tr) : tj > 0 (each j),

r∑

j=1

tj < 1/2
}

(3.74)

holds a positive fraction of the asymptotic joint distribution of r consecu-
tive gaps, and this part of the distribution is supported on a 2-dimensional
manifold. In particular, this part of the distribution is singular once r > 2.
Moreover, the entire distribution is supported on a union of manifolds of
dimension at most 5 in [0,∞)r, and is thus singular once r > 5.

The number 5 arises as the dimension of the space E of unimodular
lattice translates. Let Λ be a random lattice translate. Our analysis of the
case r = 1 led to a relation between the asymptotic distribution of N |Ji| and
the distribution of the largest negative and smallest positive values c−, c+ of
w1/2w2 in the intersection of Λ with the strip {(w1, w2) : 0 < w2 < 1}. More
generally, for any r the distribution of N(|Ji+1|, |Ji+2|, . . . , |Ji+r|) hinges on
the joint distribution of c− and the r smallest positive values of w1/2w2, call
them c1, c2, . . . , cr, in the intersection of Λ with the same strip. Note that
c1 = c+; it will be convenient to also set c0 = c−. We relate the distribution
of (c0, . . . , cr) with that of N(|Ji+1|, |Ji+2|, . . . , |Ji+r|) as follows. Recall
that to each x ∈ [0, 1] we associated a lattice translate Λs2(x), and proved
(Theorem 1.2) that the Λs2(x) are uniformly distributed on E as N → ∞, so
we may take Λs2(x) to be our random lattice translate Λ. We showed that,
for x outside a subset of [0, 1] of length o(1), the gap containing x has length
N−1(c1−c0+o(1)). Let that gap be J1. Then our analysis readily generalizes
to show that for each j = 1, . . . , r we have N |Ji+j | = cj − cj−1 + o(1) for
almost all x ∈ [0, 1]. Since each cj is a smooth function on the complement
of a measure-zero subset of E, it follows that the asymptotic distribution Φ
of N(|Ji+1|, |Ji+2|, . . . , |Ji+r|) is supported on a countable union of manifolds
in [0,∞)r each of dimension at most dimE = 5.

Moreover, if cr − c0 < 1/2 then the r + 1 points of Λ ∩ ∆c0,cr
must be

collinear, again because any three non-collinear points in Λ are vertices of
a triangle of area at least 1/2, which cannot be contained in the triangle
∆c0,cr

of strictly smaller area cr − c0. These r + 1 points must then be
equally spaced along the line they determine. Hence {τj} is the image of a
linear progression under a fractional linear transformation, and

(t1, t2, . . . , tr) = (c1 − c0, c2 − c1, . . . , cj − cj−1)

is in the image of a smooth function from SL2(R)/ASL1(R) to Rr. The
fact that the coset space SL2(R)/ASL1(R) has dimension 3 − 1 = 2 then
explains why the intersection of the simplex (3.74) with the support of Φ has
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dimension at most 2. We claimed further that this intersection contains a
positive proportion of the distribution, that it has dimension exactly 2 once
r > 1, and that any two of the tj map it injectively to R2. The first claim
amounts to the easy fact that cr − c0 < 1/2 on a subset of positive measure
in E. The remaining claims follow quickly from an explicit parameterization
of the tj; for instance, if cj = (Aj + B)/(Cj +D) for some

(A B
C D

)
∈ SL2(R)

then tj = 1
/(
Cj +D

)(
C(j − 1) +D

)
.

Note that the fact that all of the N(|Ji+1|, |Ji+2|, . . . , |Ji+r|) are within
o(1) of a subset of Rr of dimension at most 5 requires only the elementary
methods of this section; it is only to obtain their asymptotic distribution
that we need the ergodic-theory results of §2.

As in the case of r = 1, very similar results hold if we fix θ ∈ (0, 1)
and cut R/Z at {√n} (θ2N < n < N). Again the same analysis applies,
with the isosceles trapezoid (3.72) in place of the triangle ∆0. Since the
largest triangles accommodated by this trapezoid have area (1 − θ)/2, the
asymptotic gap distribution now has 2-dimensional support in the simplex∑r

j=1 tj < 1/(2 − 2θ).

Gaps in
√

un + ν mod 1. We obtain similar results if we fix a real ν
and a rational u > 0 and ask for the distribution of gaps, or joint distribution
of r consecutive gaps, in {√un+ ν} (0 < un+ν < N or θ2N < un+ν < N).
We find again that these distributions, normalized by multiplying each gap
by N , have asymptotic limits as N → ∞. The limit distributions do not
depend on ν but do in general depend on u. To construct these distribu-
tions we must replace lattice translates by translates of more complicated
periodic sets in R2. Still, the distributions for arbitrary u share the qualita-
tive properties of the distributions described above for u = 1. For instance,
the asymptotic density function for single normalized gaps is constant near
t = 0 and has a (C + o(1))/t3 tail as t → ∞; and the asymptotic joint
distribution of r > 1 consecutive normalized gaps is supported on a union
of manifolds of dimension at most 5 in [0,∞)r, of which those that intersect
small neighborhoods of the origin has dimension 2.

The argument generalizes our analysis of the case (u, ν) = (1, 0). In
that case, we were led to a sequence of curves {Λs2(x) : 0 < x < 1} in the
space ASL2(R)/ASL2(Z) of lattice translates. When u is an arbitrary pos-
itive rational, the same method leads us to curves in the space ASL2(R)/Γ
for some congruence subgroup Γ of ASL2(Z). This space is a finite cover
of ASL2(R)/ASL2(Z) that parameterizes lattice translates with additional
torsion structure. Happily we find that our ergodic result (Theorem 2.2)
applies in this more general setting: our curves again approach uniform dis-
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tribution in ASL2(R)/Γ. We thus establish the asymptotic gap distributions
for {√un+ ν }.

Let u = u1/u2 with u1, u2 coprime positive integers. As in the Introduc-
tion, fix t > 0, and for N ≫ 0 consider an interval I = [x, x + t/N ] ⊂ R/Z
with x chosen uniformly at random from [0, 1]. Then

{
√
un+ ν } ∈ I, some n with 0 ≤ un+ ν ≤ N

⇐⇒
√
un+ ν ∈ I + a, some a ≤

√
N,

⇐⇒ un+ ν ∈ (I + a)2 ≈ a2 − x2 + 2(a+ x)I.

Again we can replace (I + a)2 by a2 − x2 + 2(a+ x)I without changing the
asymptotic gap distribution. Now un+ ν ∈ a2 − x2 + 2(a+ x)I if and only
if

2(a+ x)I − x2 − ν

u
∋ n− a2

u
= n− u2

u1
a2.

Comparing this with our earlier computation for (u, ν) = (1, 0), we find
three differences: first, the triangle T of (1.3) must be translated by (0,−ν);
second, it must be scaled by u−1 in the vertical direction; third, the lattice
Z2 must be replaced by

{(a, b) ∈ R2 : a ∈ Z, b ∈ Z + u−1a2} = ω1/uZ2, (3.75)

where {ωv : v ∈ R} is the one-parameter family of transformations of R2

defined by
ωv(x, y) := (x, y + v2x). (3.76)

(Note that ωvZ2 depends only on the class of v mod 1.)
The first two changes are minor: the translation still yields an asymp-

totically random unimodular lattice translate, and the scaling divides its
volume by u, which corresponds to the fact that {n : 0 < un + ν < N}
contains u−1N + O(1) integers rather than N + O(1). But equation (3.75)
represents a more profound change: ω1/uZ2 is not a lattice on R2 unless
u1 = 1 or u1 = 2. Still, ω1/uZ2 is a disjoint union of at most u1 translates
of the same lattice, and its stabilizer in ASL2(R), call it Γ(u), contains a
congruence subgroup of ASL2(Z), namely the 3×3 matrices in ASL2(Z) con-
gruent to the identity mod u1. Hence Γ(u) has finite covolume in ASL2(R),
and the moduli space

E(u) := ASL2(R)/Γ(u)

of the images of ω1/uZ2 under ASL2(R) inherits a probability measure from
Haar measure on ASL2(R).

We can now describe the asymptotic gap distribution of
{
{√un+ ν } :

0 < un+ ν < N
}
.
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Theorem 3.17 Fix a positive u ∈ Q and any ν ∈ R. Let pu(t) be the
probability that a given triangle St of area t meets a random image of ω1/uZ2

under ASL2(R). Then Fu(t) := −p′′(t) is the asymptotic gap distribution
for {√un+ ν }. That is, for any interval [t0, t1] ⊂ [0,∞), the proportion
of gaps in

{
{√un+ ν } : 0 < un + ν < N

}
whose length is contained in

[t0u/N, t1u/N ] approaches
∫ t1
t0
Fu(t) dt as N → ∞.

Proof. By our analysis above, it is enough to show that as N → ∞ the
relevant image of [0, 1] in E(u) becomes uniformly distributed. The case
u = 1 of this is Theorem 1.2. But the proof of that result, culminating
in Theorem 2.2, applies for arbitrary rational u > 0: the image of [0, 1] is
still As · σ for some nonlinear horocycle section σ of finite period u1. The
remainder of the argument proceeds as before, and we conclude that Fu

gives the asymptotic gap distribution of {√un+ ν} for each ν.

In general, Fu does not coincide with the distribution F = F1 given by
the explicit formulas of Theorem 3.14; but it shares the same qualitative
behavior. For instance, any three points of ωuZ2 are either collinear or span
a triangle of area at least 1/2u1 or 1/u1 according as u1 is odd or even.
Generalizing our above arguments for u = 1, we deduce from this that Fu(t)
is constant for t between 0 and 1/2u1 or 1/u1 respectively. Computing this
constant takes more work. For u = 1, the stabilizer Γ(1) = ASL2(Z) of
ω1Z

2 = Z2 acts transitively on pairs of points that differ by a primitive
vector. This made it easy to describe unimodular lattice translates that
meet two sides of a triangle but not its interior. For general u, the stabilizer
Γ(u) still acts transitively on ω1/uZ2; indeed Γ(u) contains the abelian group
freely generated by (m,n) 7→ (m,n+1) and (m,n) 7→ (m+1, n+(2m+1)/u),
which acts on ω1/uZ2 simply transitively. But there is in general more than
one Γ(u) orbit of pairs of points in ω1/uZ2 that are “primitive” in the sense
that the line segment joining them contains no further points of ω1/uZ2. The
value of Fu(t) for small t is a sum over these orbits. We have not computed
this sum in general, but we can show that Fu(0) < 1 for all u, that Fu(0) → 1
as u1 → ∞ (uniformly in u2), and that if u1 = p or 2p for some odd prime p
then

Fu(0) =
1

ζ(2)

[
1 +

p− 1

p

p−1∑

i=2

(
1

i2
− 1

p2

)]
.

As we did for u = 1, we also obtain for every θ ∈ (0, 1) a function F
(θ)
u giving

the asymptotic distribution of gaps in
{
{√un+ ν} : θ2N < un+ν < N

}
by

truncating triangles to trapezoids, and an asymptotic joint distribution of r
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consecutive gaps each of whose support’s components has dimension at most
5 = dimE(u), with all components near the origin having dimension 2.

3.6 Open questions

We conclude this section with a few open questions suggested by our results.
Rates of convergence. We have obtained explicit formulas for the

function F (x) that describes the asymptotic normalized distribution of gaps
as N → ∞, but no estimates on how quickly the error approaches zero as N
increases. Numerical data such as exhibited in Figure 1 suggests that F (x)
approximates the actual gap distribution quite well for x > 1/2, but under-
estimates the distribution considerably for small x while overestimating it
slightly for x ∈ [ǫ, 1/2]. Can this behavior be explained?

In our analysis there are two sources of error: the linear approxima-
tion 3.13, which lets us approximate gap lengths LN (t) by L(Λs2(t)); and
the ergodic theory argument for Theorem 1.2, which lets us approximate
Λs2(t) by a random lattice translate. Estimating the former error should be
elementary if not pleasant. But the ergodic theory that proves Theorem 1.2
yields no error estimates at all. Can such error estimates be obtained at
least for the convergence of the specific family of curves Λs2(x) to the uni-
form distribution? Which of the two error sources accounts for the effects
observed numerically for x < 1/2?

Naturally we ask the same questions for the gap distributions that arise
in each the tractable generalizations we presented earlier, even in the cases
where we have not obtained an elementary closed form for the asymptotic
distribution.

Behavior of, and explicit formulas for, the asymptotic answers
to our generalized gap distribution problems. Can F (θ)(t) be ex-
pressed as an elementary function of t, θ, and if so what is this function?

Same question for the function F
(θ)
u for rational u > 0 with 2/u /∈ Z. Can

the joint distributions of r consecutive gaps be obtained explicitly for any
r > 1? If not, can one at least locate the phase transitions and/or supports
of these joint distributions on [0,∞)r?

Dependence on u; gaps in {√un} for irrational u? Numerical
experiments suggest that, for fixed irrational u > 0, the gaps in {√un}
approach the exponential distribution of gaps between random numbers
in R/Z. Suppose ui (i = 1, 2, 3, . . .) are rational numbers approaching u.
Does Fui

(t) → e−t for each t ≥ 0? (We know this only for u = 0.) If
that is true, might it be used to prove that the gaps in {√un} approach
exponential distribution, at least for some irrational values of u? More gen-
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erally one may ask this question for F
(θ)
ui

and for the joint distributions of r
consecutive gaps.
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