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Quantitative analysis of dynamic tumor cell phenotypes regulated by tumor associated 

macrophages. 

 

Abstract 

 Cancer cells and the tumor microenvironment (TME) dynamically interact to promote 

cancer progression. One such cell type demonstrated to create an immunosuppressive TME are 

tumor-associated macrophages (TAMs). Furthermore, macrophage infiltration has been 

associated with disease progression, angiogenesis, and metastasis. Methods such as single-cell 

RNA sequencing and multiplexed histology provide a detailed image of the tumor composition, 

including spatial co-localization and global ligand-receptor expression between TAMs and tumor 

cells. Nonetheless, it remains challenging to translate static snapshots of tissue composition into 

understanding how communication networks operate to coordinate dynamic biological 

processes.  

 In this dissertation, I aim to address this challenge by creating a computational pipeline to 

quantify dynamic phenotypes in vivo, focusing on understanding how TAMs influence cancer 

cell cytoskeletal dynamics and migration. To quantify cytoskeletal changes in individual cancer 

cells, I developed an integrated pipeline combining in vivo confocal (intravital) microscopy, 

automated tracking of individual microtubules, and multivariate statistics to study dynamics in 

live xenograft models of cancer. I discovered that in addition to the extracellular matrix, 

interaction with TAMs can lead to coherent microtubule alignment correlating with increased 

migration rates in individual cancer cells. Furthermore, I identified specific growth factors and 
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cytokine signaling mechanisms underlying this phenomenon. Although in vivo imaging allows 

signaling pathways to be monitored and manipulated in real-time, its limited multiplexing 

prevents global characterization of intercellular communication affecting disease progression. 

Therefore, I also developed a computational method utilizing known ligand-receptor interactions 

and single-cell transcriptomic data to understand how intercellular communication changes 

during biological processes such as cancer progression.  

 Altogether, this work aims to develop methods to capture and quantify cancer cell 

dynamics and understand how specific tumor microenvironment components regulate such 

dynamics. Developing new approaches that can accurately model the TME and detect subtle 

changes during cancer progression are essential to obtain a complete picture of how cancer cells 

evade treatment and metastasize. 
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Chapter 1: Introduction 
 
  

 

This thesis details research I have conducted under the mentorship of Dr. Miles 

Miller on applying computational and imaging methods to quantitatively study how 

intercellular interactions modulate dynamic properties of cancer cells. Cancer is a 

dynamic disease, where tumor cells are constantly engaging in transient and long-term 

communication with other cells over varying distances. Furthermore, this 

communication can be modulated by extracellular and intracellular perturbations which 

may drive processes such as cancer metastasis and treatment resistance, the primary 

causes of cancer-related deaths. Therefore, there is an essential need to understand 

how local interactions affect cancer cell behavior and dynamic phenotypes to improve 

cancer outcomes. 

 I begin this introduction detailing static and dynamic techniques to infer cell-cell 

communication in mammalian tissue in general, but with a special focus on examples 

from studies of solid cancers. I review the important successes and challenges of these 

various methods (sections 1.1-1.5), followed by describing current challenges and the 

need for new methods that can capture dynamic phenotypes and (1.6-1.7). I conclude 

with an outline of the remaining chapters(1.8).  

 

  



 

    2 

1.1 Challenges with studying cell-cell communication in mammalian 

tissue 

 New genomic and imaging methods provide increasingly detailed descriptions of 

the single-cell compositions of mammalian tissues. Initiatives such as the Human Cell 

Atlas, Tabula Muris, and the Human BioMolecular Atlas Program 1–3 generate maps of 

tissue composition helpful for quantifying cell-type abundance and organization. Such 

efforts yield static snapshots of tissue composition helpful for quantifying what cell-types 

are present and where; what cell-cell communication pathways are likely active; and 

how features differ across cohorts of tissues. Given the data complexity, computational 

tools have been essential at every step of analysis. Dimensionality reduction techniques 

like principal components analysis (PCA), UMAP and t-SNE organize multivariate data 

to identify cell-types. Co-localization analyses identify patterns in cellular organization. 

Cross-referencing data with known molecular interactions, for instance defined by a 

catalogue of curated ligand and receptor relationships, can identify extracellular 

communication networks and intracellular signaling pathways that may be active. 

 How can such detailed yet static single-cell maps of tissue structure inform 

function and causality? Optogenetics has been used with revolutionary success to 

address this question in neuroscience4. Here, I focus on communication outside the 

brain and largely on examples in the microenvironment of solid cancers. As reviewed 

elsewhere, methods for dynamic measurements and targeted perturbations5,6 are key to 

studying function and causality, generally interpreted by computational models 

incorporating directional probabilistic relationships (e.g., bayesian and boolean 

networks7) or molecular reaction/diffusion kinetics8. Unfortunately, approaches with high 
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spatiotemporal resolution lose multiplexing ability — the capacity to measure multiple 

genes or molecules — which is typically required to understand network-level features 

including feedback loops and higher-order signal processing.  
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Figure 1-1: Matching biological questions with tools to study cell-cell communication. 

Biological concepts (A) experimental tools (B) and computational methods (C) fall along a 

spectrum of molecular detail and spatiotemporal resolution. Understanding network-level 

functions of cell-cell communication (see targeted gray box at top) benefits from an integration 

across methods including in vivo confocal/multiphoton microscopy and reaction/diffusion 

modeling frameworks. Figure A-1 lists specific examples of experimental and modeling 

techniques listed in B-C. 
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1.2 Defining network structure / function along axes of space, time, 

and molecular breadth.  

 Techniques for studying cell-cell communication, and conceptualization of the 

biological processes they describe, can be categorized by where they fall along three 

dimensions of space, time, and molecular multiplexing breadth (Figure 1-1). 

Understanding where a given biological question lies along these axes (Figure 1-1a) 

may help select appropriately matched experimental (Figure 1-1b) and computational 

(Figure 1-1c) approaches (see Figure A-1 for a more detailed version of Figure 1). In 

this review we highlight a subset of experimental strategies (Figure 1-2) and 

computational analyses (Figure 1-3) drawn from recent investigations of cell-cell 

communication that offer insight at varying spatial, temporal, and molecular resolutions. 

 Communication by cell-surface or secreted proteins and their cognate receptors 

is an important class of signaling made complicated by its sheer size. >1000 

extracellular ligand/receptor (LR) relationships have been catalogued, and many LR 

pairs involve higher-order protein complexes, overlapping specificities, and competitive 

binding9. Ligands and receptors are conveniently inferred by gene expression, 

antibodies, and commercial reagents for tissue analysis, compared to communication 

via small molecules and mechanical force. Therefore many studies of communication 

networks in mammalian tissues focus on LR relationships, as does this review. 
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Figure 1-2: Experimental strategies for elucidating cell interactions in tissue. (A) Cartoon 

illustrating the range of distances over which cell-cell communication occurs. (B) Top 

left: Tissue cyclic Immunofluorescence (t-CycIF) of triple-negative breast cancer(TNBC) patient 

biopsies10. Tumor components were stained using panels of dyes and antibodies targeting cell 

nuclei (Hoechst), macrophages (CD68, CD163), t-cells (CD3, CD8), epithelium (keratin), 

proliferation (Ki67). Adapted from 10. Top right: ERK and JNK signaling activities were measured 

in ovarian cancer xenografts via intravital microscopy. Time-lapse imaging revealed adaptive 

ERK and JNK signaling in macrophage-proximal tumor cells. Adapted from 11. Bottom left: 

Intravital microscopy of extracellular vesicle release and transport in xenograft tumors. Adapted 
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from 12. Bottom right: Time-lapse confocal microscopy of mouse mammary tissue cultures 

visualizes coordinated basal cell contraction and calcium signaling propagation. Adapted from 

13. 

 

 LR signaling is categorized by the distances over which it occurs, classically 

ranging from autocrine signaling of cells communicating to themselves, to endocrine 

signaling of secreted ligands reaching receptors at distant tissues (Figure 1-2a). New 

biological understanding, in part driven by high resolution imaging, continues to offer 

refined perspectives of how processes such as cellular protrusions14, extracellular 

vesicle budding15, and extracellular matrix properties 12 all influence intercellular LR 

behaviors. 

 

  



 

    8 

1.3 scRNAseq maps of cell-cell communication 

 Techniques best suited for global molecular characterization at a single-cell level 

generally lack information about spatial organization and temporal dynamics, but are 

ideal for quantifying cell-types and broad programs of cell communication. scRNAseq 

has become the most popular technique for these objectives, and measures the gene 

expression of thousands of individual cells from tissue that has been digested into a 

single-cell suspension16–19. Numerous reports use scRNAseq to infer cell-cell 

communication by referencing a curated list of LR pairs from external databases9,15,20–

22.  

 A typical workflow for these studies begins with data preprocessing (quality 

control, normalization), dimensionality reduction (TSNE, SPRING), and unsupervised 

clustering (hierarchical or k-means clustering) to determine cell types. Each LR pair is 

then systematically evaluated between and within different cell types. Multiple scoring 

strategies have been employed to assess the strength of a particular LR interaction. In 

general, if a gene encoding a ligand is highly expressed in one cell type, while the gene 

encoding the cognate receptor is highly expressed in another cell type, the interaction 

between two cell types for that particular LR pair is enriched. Scoring functions range 

from a simple product of ligand and receptor expressions20 to more complicated 

functions that mitigate bias or weigh specific types of interactions such as those 

between receptors and extracellular matrix components15. Statistical significance 

calculations also vary between different methods, including parametric tests (i.e., 

regression, t-test), non-parametric tests (i.e., wilcoxon ranksum), and permutation-

based methods9. Because thousands of LR interactions are scored simultaneously, one 
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concern that arises is the high rate of false positives, and therefore, it is imperative for 

statistical significance analysis to correct for multiple hypotheses.  

 Workflow variations incorporate additional information to improve predictions. 

CellPhoneDB includes multi-subunit LR complexes23, and CellChat incorporates soluble 

agonists, antagonists, as well as stimulatory and inhibitory co-receptors to identify 

enriched interactions24. ICELLNET enables the prediction of cell interactions across 

different scRNAseq and bulk RNAseq datasets25. Methods such as RNAmagnet use a 

composite LR “adhesion” score to predict the attraction between different cell types15. In 

addition to identifying potential LR pairs mediating directional communication between 

cells, graph theory methods have also been applied to study the topology of intercellular 

communication networks. Specifically, graphical properties such as centrality, transitivity, 

and information flow can identify key cell-types and molecular signals that influence cell 

interactions24.  

 Extending beyond cell-cell communication, gene regulatory networks infer the 

effect of ligand-receptor interactions on downstream signaling pathways and consequent 

gene expression26–28. As many of these methods are dependent on the quality of external 

datasets, especially tables of LR interactions, curated dataset updates are periodically 

published in manuscript supplements9,23. scRNAseq has helped formulate hypotheses of 

cell communication that drive biological processes such as organ and tissue 

development15, homeostasis22, and disease progression11,20. 
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1.4 Spatial snapshots of cell-cell communication 

 Highly multiplexed imaging has expanded the ability to analyze communication 

across spatial length-scales. Resolving cell boundaries in dense tissue, classifying cell 

types, and assessing cellular functional states requires visualizing many molecular 

targets over the same region. New strategies overcome the limited multiplexing 

capability of traditional imaging modalities, and several are now commercialized.  

 One approach for multiplexed protein imaging is iterative cycles of fluorescent 

labeling, imaging, and bleaching or dissociating markers for multiple rounds. For 

example, cyclic immunofluorescence (CycIF) uses panels of standard, commercially 

available fluorescent antibodies to iteratively stain tissue over 8-20 cycles29. CODEX 

(Akoya Biosciences) stains tissue samples with a cocktail of DNA-conjugated antibodies 

followed by successive treatment with fluorescent nucleotide reporters30. Imaging mass 

cytometry is a non-cyclic imaging method that uses metal-conjugated antibodies 

followed by spatially resolved mass spectrometry to image over 40 different proteins 

simultaneously (Fluidigm)31. In addition to protein imaging, diverse protocols exist for 

imaging multiple RNA transcripts. Methods such as SLIDE-seq (Broad Institute)32, 

Spatial Transcriptomics (10x Genomics)33, and fluorescence in situ sequencing 

(FISSEQ; 10x Genomics)34 analyze RNA transcripts mapped to specific spatial 

coordinates in tissue by sequencing, while other methods such as STARMap35 and 

SABER-FISH36 achieve subcellular resolution by imaging select, targeted RNA 

transcripts.  

 To date, most methods to examine spatial communication measure enriched 

interactions between different neighboring cell types. Computational methods scan 
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tissue images at multiple scales and search for “neighborhoods,” or regions within the 

tissue of similar cell composition, thereby revealing enriched clusters of co-localized 

cell-types29,30,37,38. One approach identified spatial segregation of TAMs, activated 

macrophages (aMacs), dendritic cells (DCs), and others in a mouse colorectal cancer 

allograft model (Figure 1-3, bottom left). TAMs enriched in the tumor core compared to 

the lymphocyte-rich periphery. Cell adhesion, for instance via cadherins, promotes 

spatial segregation38. In another example, spatial analysis of ovarian cancer biopsies 

found that patients responding to combined PARP and PD1 inhibition displayed more 

co-localized clusters of PD-L1+ macrophages, hypofunctional CD8+ T cells, and tumor 

cells compared to non-responding patients39.  
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Figure 3: Quantitative modeling of cell-cell communication. Top Left: Computational 

modeling of cytokine concentration over characteristic length scales (!), governed by rates of 

diffusion and consumption from cytokine producing and consuming cells[Oyler-Yaniv et al., 

2017, Immunity, 46, 609-620]. Top Middle: scRNAseq ligand / receptor scoring from melanoma 

biopsies ranks tumor-macrophage signaling pathways by co-expression. Adapted from [Wang et 

al., 2020, Sci Adv, 6, eaaz8521]. Top right: Coupled ordinary differential equations model the 

kinetics of ligand-mediated signal transduction in melanoma cells and their response to BRAF 

inhibition. Adapted from [Gerosa et al., 2020, Cell Syst, 11, 478-494.e9]. Bottom left: (A) 

Neighborhood analysis of multiplex image mass cytometry data from syngeneic mouse tumors. 

Clustering highlights (B) different tissue regions, each with a (C) distinct cell composition. 

Adapted from [Stoltzfus et al., 2020, Cell Rep, 31, 107523]. Bottom right: Partial differential 

equation model of ligand-mediated ERK signaling in regenerating osteoblasts. Model 
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simulations generated periodic activity waves seen in vivo. Adapted from [De Simone et al., 

2021, Nature].  

  

 Intercellular communication can also be modeled on a smaller scale by studying 

direct cell-cell contact and visualized using data structures such as graphs and 

adjacency matrices24,30. Open-source software tools such as histoCAT37(analysis of 

neighbors and cellular interaction networks), Facetto40 (visual analytics platform), and 

CytoMap38(cell patterning, region networks, spatial correlations, etc.) have streamlined 

many of computational analyses for multiplexed imaging. Cell localization with a tissue 

is heavily regulated by intracellular gene regulatory programs and communication 

networks. By inferring gene expression gradients from from scRNA-seq, the spatial 

origin of individual cells and relationships between cells can also be computationally 

reconstructed41. 

 Multiplexed tissue imaging and spatial transcriptomics complement scRNAseq in 

quantifying LR communication while also supporting spatial analysis. For instance, 

Mehta et al. used t-CycIF (Figure 1-2B, top left) to assess TAM polarization in biopsies 

of patients with triple negative breast cancer, focusing on CD68, CD163, and the 

immunosuppressive ligand PDL1, which canonically binds the immune checkpoint PD1 

in juxtacrine. Elevated CD163+ PDL1+ TAMs and PD1+ T-cells in BRCA1-mutant 

tumors suggested TAM-mediated immunosuppression and motivated testing of a TAM-

targeted anti-CSF1R therapy10. 
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1.5 Complexity beyond cell-cell contact 

 It remains especially challenging to systematically parse how spatial organization 

impacts soluble ligands. In one study, the spatial range over which soluble ligands 

operate was approximated as a function of ligand production, effective diffusion, and 

cellular consumption rates42 (Figure 1-3, top left). By comparing locations of IL2-

producing CD4+ T-cells with pSTAT5 signaling in IL2-consuming regulatory T-cells in 

mice, soluble IL2 was modeled to exhibit  gradients over 30-100 μm. In application to 

cancer, two recent studies combined scRNAseq with in vivo confocal (intravital) 

microscopy to find sustained, local IFNγ production from CD8+ T-cells could propagate 

>800 μm and elicit bystander effects43,44. This evidence adds context to studies 

examining IFNγ and IL12 communication in response to anti-PDL1 treatment45 and 

CAR-T cell therapy46,47. Convection, extracellular matrix and decoy receptor binding, 

and cell migration are factors for future studies of other soluble ligands to weigh. 

 Additional factors beyond mere cell-cell contact can influence juxtacrine LR 

interactions. Extracellular forms of PDL1 have been demonstrated to modulate the 

PDL1-PD1 interaction, including via PDL1 anchored on secreted extracellular vesicles 

(EVs). The 30-150 nm exosome subset of EVs have been especially implicated and can 

be monitored in the blood of patients receiving PD1-targeted therapy48. In addition to 

modulating LR communication, EVs can transport mRNAs and intracellular proteins. In 

one study, the transport and action of EVs in tissue were studied by combining intravital 

microscopy with a Cre-LoxP system that reported on EV-uptake in individual cells. 

Malignant tumor cells produced EVs carrying pro-metastatic mRNAs to distant, less 

aggressive tumor populations (Figure 1-2B, bottom left)12. Communication mediated 
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by vesicles, cell debris, and albumin- or lipid-complexed components is also important 

for leukocytes exhibiting macropinocytosis, phagocytosis, and expressing high levels of 

relevant receptors. For example, subcapsular macrophages can capture tumor-derived 

EVs in the draining lymph node, thereby containing EV dissemination and modulating 

humoral immunity49.  

 Cell communication mediated by vesicles, including apoptotic bodies, is 

implicated in sensing cellular turnover and death. Wang et al. systematically examined 

LR communication between tumor cells and TAMs, since TAM recruitment correlated 

with drug resistance in a melanoma cohort11. scRNAseq from patient biopsies indicated 

communication between tumor cells and macrophages via the TYRO3, AXL, and 

MERTK family of receptors: receptors and their ligands GAS6 or PROS1 were 

expressed at high levels in both cell-types (Figure 1-3, top center)11. These receptors 

are associated with drug resistance in tumor cells, immunosuppressive efferocytosis in 

macrophages, and their ligands bind externalized phosphatidylserine on apoptotic 

debris to promote receptor clustering50. Thus, their signaling may be amplified by tumor-

targeted therapy, such as demonstrated with BRAF inhibition in melanoma11. In another 

example, RNA-seq analysis of purified cell populations from mice identified GAS6-AXL 

communication from dermal papillae to hair follicle stem cells as important in 

maintaining hair growth, and GAS6 expression was inhibited by both corticosterone and 

BMP as endocrine (systemic) and niche (local) cues, respectively51. These examples 

highlight how RNA-sequencing can identify putative LR pathways for mechanistic 

studies. 
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1.6 Interrogating cell dynamics by intravital imaging 

 While static measurements show how tissue communication is structured, 

spatiotemporal dynamics and perturbations better capture how such structures operate, 

particularly on a post-translational level. Given the limited multiplexing of intravital 

imaging (typically ~four fluorescence channels) compared to ex vivo methods, analysis 

usually focuses on key signaling components including FAK52, mTORC153, and 

ERK1/254,55 as well as strategies to optically perturb them in vivo56. Recent examples in 

tissue have used intravital microscopy to monitor waves of Ca2+ signaling in the mouse 

mammary gland that travel through gap junctions in neighboring cells13. Here, 

Stevenson et al. imaged calcium-driven contraction of ducts and alveoli following 

stimulation with the hormone oxytocin (Figure 1-2, bottom right).  

 Multiplexed imaging of in vivo signaling dynamics was used in the example from 

Wang et al. described above. Intravital microscopy examined how putative LR 

interactions, including via AXL and MERTK, impacted downstream kinase signaling 

dynamics in tumor cells near (<40 μm) TAMs (Figure 1-2B, top right)11. Kinase 

translocation genetic reporters57 recorded how ERK and JNK kinase pathways 

responded to therapeutic MEK1/2 inhibition, revealing local pro-resistance bypass 

signaling TAM-proximal cells11. 

 In vivo imaging can guide quantitative modeling of interstitial ligand transport and 

target binding. For instance, rhythmic waves of single-cell ERK activity have been 

observed to travel radially outward in regenerating zebrafish scales to control tissue 

growth58. Spatial wave propagation was modeled by diffusion of soluble ligand reacting 

with intracellular positive and negative feedbacks (Figure 1-3, bottom right). Dynamic 
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ERK activity has also been observed in mouse blastocysts59 and human xenograft 

tumors in mice60. In the latter example, pulsatile ERK activity was found in drug-adapted 

melanoma cells, and neighboring cells shared pulsing via autocrine/paracrine 

communication. Mass action kinetic models explained intracellular dynamics and related 

them to intravital observations (Figure 1-3, top right)60. Future modeling may 

incorporate spatial information via multi-compartment or finite element strategies, similar 

to as done for pharmacology61,62. 
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1.7 Role of intercellular communication on cellular dynamics 

 Even though cellular dynamics in the form of cell migration and proliferation have 

been studied since the advent of the microscope, recent advancements in intravital 

confocal microscopy have enabled the exploration of additional dynamic readouts. 

Examples include calcium signaling and the activity of downstream signaling pathways 

such as ERK as described in the previous section.   

 Despite success in measuring new types of dynamics in tissue, there remain 

several unmet challenges. First, due to the ability to measure a small number of 

molecular markers simultaneously, it is difficult to understand how interactions with 

other cell types affect these dynamic readouts. Second, the dynamic readouts 

themselves are limited and cannot capture sub-cellular changes which often precede 

cell-wide changes. Third, computational methods to analyze dynamic readouts require 

improvements to gain a better insight into various contributing extracellular and 

intracellular factors. 

 In this thesis, I address the challenges above by studying the role of tumor-

associated macrophages on cancer cell dynamics at varying scales ranging from sub-

cellular cytoskeletal changes to alterations in cell migration and morphology. In the 

context of cancer, communication with several cell types including dendritic cells, t-cells, 

fibroblasts, and other key components have been shown to play an important role in 

disease progression, and some elements can be reprogrammed to target cancer. 

Highlighted by the examples in the above sections, tumor-associated macrophages also 

play a vital role in these interactions by secreting several pro-inflammatory and anti-

inflammatory cytokines that can have variable effects on disease progression.  
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 I hope the analyses presented in this thesis paves the way for a more systematic 

and quantitative evaluation of how local environments affect cellular behavior, especially 

in the field of cancer, where our understanding of the tumor microenvironment has only 

scratched the surface. 

 

  



 

    20 

1.8 Overview 

 In this thesis, I aim to develop single-cell computational and experimental 

approaches to decipher how tumor-associated macrophages affect cancer cell 

microtubule dynamics and other high-level dynamic phenotypes including cell migration 

and disease progression. 

 In chapter 2, I detail a novel computational and imaging pipeline to visualize and 

quantitatively analyze microtubules dynamics in vivo. Intravital imaging in combination 

with plus-end tip tracking enables capturing of microtubules dynamics in live xenograft 

tumor models. In vivo microtubules behavior was compared to MT behavior observed in 

2D in vitro cultures, and 3D collagen gel cultures. 

 In chapter 3, I apply the detailed method presented in chapter 2 to understand 

how an important component of the TME, tumor-associated macrophages, affects MT 

dynamics. Furthermore, I describe how such dynamics also correlate cancer with cell 

morphology and cancer cell dynamics. Lastly, I perform a series of experiments to gain 

a mechanistic understanding of the phenomenon observed. 

 In chapter 4, I present a more generalized method to study dynamic biological 

processes, including cancer, from scRNA-seq datasets. Rather than focusing on sub-

cellular dynamics as in chapters 2 and 3, I aim to understand how intercellular 

communication changes and drives biological processes such as cancer progression. 

 Finally, in chapter 5, I discuss exciting new steps that can improve our 

understanding of how intercellular communication contributes to fundamental biological 

processes and disease progression. 
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Chapter 2 Developing and applying a framework to quantify 
microtubules dynamics of tumor cells in vivo. 
 

Abstract 

As a core cytoskeleton component, microtubules (MTs) mediate mitosis, directional 

signaling, and are therapeutic targets in cancer. In vitro studies have shown that 

microenvironmental biological and mechanical cues regulate MT dynamics, yet it has 

been a challenge to measure actual MT behavior of cancer cells in vivo. Here we used 

a newly developed imaging pipeline, based on computational plus-end tip tracking and 

in vivo confocal fluorescent (intravital) microscopy, to quantify the structure and 

dynamics of cancer cell MTs in a live xenograft mouse model. Despite finding no 

substantial differences in features including the speed of individual MTs in vivo 

compared with 2D in vitro cultures, cancer cells in vivo displayed more consistent 

alignment of MT growth along the major length axis of their respective cell bodies. This 

in vivo phenotype was only partially recovered when cells were cultured in 3D collagen 

gels as opposed to on tissue culture plastic. 

 

  



 

    22 

2.1 Introduction  

To study sub-cellular dynamic cell phenotypes, this chapter describes work on 

capturing intracellular microtubule dynamics in vivo. Microtubules are excellent 

candidates for studying cellular dynamics because they are dynamic in nature 

undergoing polymerization and depolymerization. Furthermore, they are involved in 

numerous cellular processes including migration, vesicular transport, cellular 

asymmetry, and cell division. Therefore, capturing this dynamic phenotype and 

understanding of how these important structures are changing provides a picture of a 

particular cells machinery.  

Microtubules are one of three major of components the cell cytoskeleton. The 

cytoskeleton is a dynamic network of polymeric filaments and regulatory proteins that 

coordinate cellular morphology, mitosis, and migration. It consists most prominently of 

actin filaments (F-actin) and microtubules (MTs), which are co-regulated through the 

small GTPases of the Rho family including Rac1 and Cdc4263,64. Both F-actin and MT 

structures are maintained through a balance of near constant polymerization and 

depolymerization65. While F-actin organizes into highly branched networks conducive to 

force generation, MTs are often longer (>50 μm in some cases), straighter, and turn 

over more slowly (every 3-5 min)66. F-actin governs rapid cycles of local cytoskeletal 

protrusion, adhesion, and contraction that are responsible for physical cellular 

propulsion. However, MTs control these cycles by establishing and stabilizing cell 

polarization through the directional trafficking of molecules and vesicles. In fact, MT-

controlled molecular asymmetry between the front and rear end of a migrating cell— 

and the correspondingly selective allocation of cell migration machinery including focal 
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adhesion proteins, proteases, and secretory vesicles — is critical for cellular 

migration67–69. 

Persistent cellular migration is central to development, wound-healing, and 

immune responses.  Moreover, directional migration of cancer cells drives metastatic 

invasion and dissemination, which is responsible for 90% of cancer death70. Decades of 

effort have gone into understanding how MTs and their dynamics are regulated in the 

context of metastatic solid tumors. However, the majority of these studies have been 

conducted using monocultures of cells growing on 2D tissue culture substrates71,72, 

which do not reflect the complex biological and mechanical environments that cancer 

cells encounter in vivo. MTs are typically more important for cell shape and migration in 

three-dimensional cultures than in 2D on stiff substrates, and 3D culture is more 

representative of the mechanical and adhesion environments found in vivo.  For 

example, actin-rich lamellae, which are characteristic of migrating cells on stiff 2D 

substrates, can be supplanted by long MT-regulated protrusions or pseudopods when 

cells are in soft 3D extracellular matrix (ECM)73,74. Furthermore, the migration 

characteristics of cancer cells, such as speed, persistence, and rate of protrusion 

formation, can be distinctively regulated in 2D vs. 3D cultures75–77. Treatment of cancer 

cells with both MT stabilizing (e.g., paclitaxel) and destabilizing (e.g., nocodazole) drugs 

results in loss of protrusions required for migration in 3D collagen gels. However, in stiff 

2D cultures, these drugs can have minimal impact of cellular migration78–80.  Similar 

results have also been observed in mesenchymal cells such as fibroblasts and 

endothelial cells74. Despite improvements in 3D culture systems, the complexity of in 

vivo tumor microenvironments may not ever be fully reproduced, thus begging the 



 

    24 

question: if MT dynamics and cell migration occur so distinctly in various tissue culture 

models, how do MTs actually behave in vivo?  Traditionally, it has been difficult to 

directly measure individual MTs in situ and in real-time using live animal models of 

disease or normal tissues. 

To address these issues, we developed an integrated computational and imaging 

pipeline that combines in vivo confocal (intravital) microscopy81, automated plus-end tip 

tracking of individual MTs82, and multivariate statistical analysis to study MT dynamics in 

live xenograft models of cancer. We analyzed MTs in a quantitative and spatially-

unbiased manner using the MT end binding protein, EB3, fused with a fluorescent 

protein. Automated detection of fluorescent EB3 from in vivo time-lapse microscopy 

images supported quantitation of MT growth rates and over a dozen other intrinsic MT 

track features at high accuracy for thousands of tracks across populations of individual 

cells. This approach revealed that in vivo, MT growth in cancer cells was especially 

aligned along the cell major axis and coherently with each other in the same cell, 

compared to the same cells grown in vitro on 2D tissue culture plastic or in 3D collagen 

gels. Coherent MT dynamics in vivo correlated with elongated cell morphology, 

formation of MT-rich pseudopod like structures and cell migration. Overall, here we 

present a platform for quantitatively examining the in situ dynamics of MTs in live 

xenograft models of cancer, revealing microenvironment-dependent behaviors critical to 

multicellular organization, cell-cell communication, and disease processes. 

 

  



 

    25 

2.2 Results 

2.2.1 Experimental setup for imaging, detecting, and tracking in vivo EB3-mApple 

comets. 

To visualize plus-end MT dynamics in cancer cells, we generated stable 

transfectants of the fusion protein EB3-mApple, using mApple as a photostability-

optimized variant of mOrange83 that was previously found to be ideal for intravital 

microscopy (IVM) 81. Fluorescent fusion proteins of EB3, also known as MT associated 

protein RP/EB family member 3 (MAPRE3), are widely used as tools to visualize MT 

dynamics in live cells84. They are relatively non-perturbing of endogenous dynamics, 

and can faithfully report on the activity of MT-targeting drugs in cancer cells 85,86. As a 

model system, we used HT1080 human fibrosarcoma cells, since they have been 

extensively characterized by IVM and in the literature for their migratory and invasive 

behavior, responsiveness to MT-targeting therapies, and distinct cytoskeletal 

characteristics in 2D vs. 3D tissue culture environments85–91. Xenografts of HT1080-

EB3-mApple cells were generated via subcutaneous injection, and dorsal window 

chambers were surgically implanted over tumors to enable stable and longitudinal 

imaging at subcellular resolution. To aid in distinguishing cells from each other in vivo, 

only a fraction of tumor cells expressed EB3-mApple. Upon formation of vascularized 

tumors at roughly 2 weeks post-inoculation, IVM was performed by anesthetizing 

subjects on a heated stage and immobilizing the window chamber for stable time-lapse 

imaging.   

In this model, IVM revealed comet-like EB3-mApple behaviors that were 

consistent with previous EB3-based studies of MT dynamics82,84. Automated 
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computational analysis accurately detected and linked comet-like structures to form 

time-lapse trajectories of individual MTs. We used the linking algorithm plusTipTracker 

to identify nearby comets in consecutive frames with similar properties, which also 

accommodated for transitory gaps between track segments arising from variable signal-

to-noise, focus, and EB3-binding (Figure B-1). We manually examined the accuracy of 

200 computationally derived tracks from tumor cells either in 2D culture or in vivo, and 

found a false positive rate of <5% (Figure B-2). Time-lapse images show track 

distributions throughout each cell. Therefore, employing this computational tracking 

pipeline allowed us to quantify a large number of tracks under various stimuli in a 

spatially and temporally unbiased manner.  

 

 

Figure 2-1. In vivo MT imaging and analysis. MT features (blue) and others were quantified 

from IVM of EB3-mApple comet trajectories (red). 

 

In our pipeline, we computed 14 unique track features to measure MT behavior 

and dynamics, including MT growth speed (average, minimum, maximum, and standard 

deviation), cellular location (distance to nearest cell edge, major axis, and minor axis, 

shown as x1, x2, and x3 respectively in Figure 2-1),  orientation (θ1 in Figure 2-1), 

persistence, curvature, displacement, and path length (x4 in Figure 2-1). We also 
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computed track coherence, a measure of how similar a track’s direction is to other 

tracks (related to θ2, Figure 2-1), at both local (within a 20 µm radius) and whole-cell 

levels. For instance, a cellular coherence value of 1.0 means all MT tracks move in the 

same direction and suggests asymmetric polarization, while symmetrically radiating MT 

tracks from the cell center would have a cellular coherence of 0.0. Because EB3 binds 

to only growing MT ends, we did not capture MT shrinkage and pausing92. All features 

were normalized to be independent of cell size. 

To gauge the impact of EB3-mApple itself on observed MT dynamics, we 

measured cell-by-cell correlations with EB3-mApple expression, finding no significance 

for the majority of track features (12/14). As exceptions, displacement and path length 

somewhat correlated (R2 < 0.25), explainable by the technical ability to image brighter 

MT tracks over longer time periods, and no correlation was found after correcting for 

track duration (Figure B-3). Genomic alterations of MAPRE3 (encoding EB3) and its 

expression by RNA-seq did not correlate with overall survival outcomes of cancer 

patients across The Cancer Genome Atlas (TCGA; Figure 2-2), suggesting that EB3 

itself is not a major driver of disease progression. These analyses thus support the use 

of EB3 as a relatively non-perturbative tool for MT imaging. 

 

 



 

    28 

  

Figure 2-2. Kaplan-Meier analysis of overall survival across The Cancer Genome Atlas (TCGA) 

as a function of EB3 alteration (copy number amplification and mutation; P-value was 

calculating using using a two-sided log-rank test; cBioPortal.org). 

 

 

2.2.2 Systematic profiling of MT dynamics identifies enhanced coherence among 

cells growing in vivo compared to in vitro. 

We quantified MT differences between cells growing in vivo compared to in vitro 

by performing matched analysis of the same HT1080 EB3-mApple cell line cultured on 

standard 2D tissue culture plastic (Figure 2-3). We also examined the ES2 human 

ovarian cancer (OVCA) cell line as a second model (Figure 2-3, B-5, B-6). In HT1080, 

the average MT growth rate of in vitro tracks (0.35 µm s-1 ± 0.15 µm s-1 s.d.) and in vivo 

tracks (0.38 µm s-1 ± 0.18 µm s-1 s.d.) were relatively consistent with prior studies in 

other cell types in vitro (pig kidney LLC-PK1 cells: 0.30±0.13 µm s-1, chinese hamster 

ovary CHO cells: 0.27±0.11 µm s-1, and human keratinocyte HaCaT cells: 0.31±0.12 µm 

s-1)82,93. There was no consistent difference in relative intracellular location of pre-

filtered MT tracks in HT1080: distances from the cell edge, major axis, and minor axis 
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revealed that the majority of MTs were closer to the cell center both in vivo and in vitro. 

However, in ES2, in vivo tracks were somewhat faster and further from the cell edge 

(Figure 2-B). These observations are consistent with known MT origination from 

microtubule organizing centers adjacent to the cell nucleus, and less stable and slower 

moving MTs at the cell periphery94. 
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Figure 2-3. (Continues on next page).   
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Figure 2-3 Cont. 

  

Figure 2-3. Microtubule dynamics in live xenograft tumor models. (A) Representative time-

lapse IVM of cancer cells growing in a dorsal window chamber from nu/nu host (left). MTs were 

tracked (center) and randomly pseudo-colored for visualization. (B) Representative in vitro time-
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lapse images were obtained from 2D culture using the same imaging system (left) and tracking 

software (center). (C-D) For each MT track, the (C) effect size was compared between in vivo 

and in vitro conditions along with (D) the corresponding distribution plot for HT1080 MT tracks 

(C: *two-tailed permutation test with Benjamini-Hochberg correction). (E) Distributions of MT 

features showing in vivo vs. in vitro differences shared for both HT1080 and ES2 xenograft 

models, using the same IVM setups (*two-tailed permutation test; bar denotes median). For 

HT1080, a total of n=8,126 tracks across 73 cells and 4 tumors were analyzed (A-E). For ES2 a 

total of n=2,857 tracks across 42 cells and 5 tumors were analyzed (C,E). Scale bar = 5μm 

(B,C). 

 

Compared to all other features, the orientation and coherence of MT tracks 

showed the greatest consistent increase for cells grown in vivo vs. in vitro. Orientation 

was computed from the angle between the directional vector of the MT track, and the 

directional vector of the corresponding cell major axis (Figure 2-1, θ1). A cosine 

transformation caused tracks parallel to the cell major axis to have high orientation. 

Nearly twice as many HT1080 MT tracks were angled off of the cell’s major axis by >45o 

(orientation <0.71) in vitro compared to in vivo (32.6% +/- 0.60% vs. 16.7% +/- 0.79% 

s.e.m., respectively), meaning MT tracks were more aligned with the cell’s major axis 

when cells were grown in vivo. As a related measurement, the MT coherence quantified 

how similarly a MT track was oriented to nearby tracks within a specified distance. A 

positive coherence value indicated that the track was traveling parallel to nearby tracks, 

while a large negative value indicated that the track was traveling antiparallel. 

Coherence was measured for each track at the local (within 20 µm from the track) and 

cellular level (across all tracks of a cell). Locally, in vivo and in vitro MT tracks displayed 
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comparable levels of MT coherence. However, when analyzing all tracks across the 

whole cell, MT tracks were more aligned and coherent in vivo. In vivo HT1080 MT 

tracks exhibited a 3.2-fold increase in mean cellular coherence compared to tracks from 

cells growing in vitro (0.10 ± 0.006 vs. 0.03 ± 0.002 s.e.m., respectively). Cells were on 

average more elongated in vivo, which can impact MT behaviors. However, even when 

comparing similarly-shaped in vivo vs. in vitro cells, MT orientation and coherence were 

still enhanced in vivo (Table 2-1).  

 

 

 

Table 2-1. Measuring MT dynamics independent of cell shape. Statistical significance 

between conditions (row interactions) and cell shape (column interactions) were calculated 

using a two way ANOVA (n=69 cells). ANOVA interaction terms between the independent 

variables were not significant.  

 

Differences between in vivo vs. in vitro conditions are a function of biological 

changes and technical biases. In subsequent imaging, we focused on the former and 

minimized the latter through comparisons across matched conditions. We tested (a) 

whether image quality could impact conclusions by creating artificially noisy images 
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(Figure 2-4), (b) if tracking parameters were sensitive to image differences by 

recomputing statistics on different parameter combinations (Figure B-7), and (c) 

whether individual cells were driving differences by permuting cell labels to compute 

significance (Figure B-8). (d) Excluded cells capturing <80% of a cell body within the 

field of view were also excluded from the main analyses, and we further evaluated if 

their inclusion altered results (Figure B-7). Overall, cells consistently exhibited greater 

MT alignment in vivo compared to 2D tissue culture plastic, in a manner robust to cell-

to-cell batch effects, variation in image quality, and variation in tracking parameters. 
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Figure 2-4. The effect of artificial image noise on MT track statistics. 

(A) Various levels of gaussian noise (µ=0, σ=100, 200, and 400 pixels) were added to images of 

HT1080 EB3-mApple cells grown in 2D culture. (B) The effect size between MT tracks from 

noisy in vitro images shown in A and HT1080 EB3-mApple in vivo images was measured using 

Cohen’s D statistic (n=23 cells). These data show that relatively greater MT cellular coherence 

and orientation seen in vivo are robust to added noise in the in vitro images. (C) 14 MT track 

features were statistically compared between noisy in vitro images and the original, clean (µ=0, 
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σ=0) in vitro images (2-tailed permutation test, n=10 cells), again suggesting that MT cellular 

coherence and orientation observations are robust to added noise in the imaging. 

 

 

2.2.3 3D collagen gel cell cultures display distinct MT dynamics  

MT dynamics can differ in cells growing in 3D hydrogel materials rather than on 

stiff 2D surfaces. We thus examined if the MT dynamics of HT1080 tumor cells 

observed in vivo could be recapitulated in soft 3D cultures. HT1080-EB3-mApple cells 

were grown in 3D collagen I hydrogel, since collagen I is a major TME structural 

component33 shown to influence cell migration and metastasis87,95. We used the same 

imaging pipeline to track MTs within the 3D cultured cells (Figures 2-5, 2-6, B-9, B-10, 

B-11).  

 

 

 

Figure 2-5. Representative confocal images of HT1080 EB3-mApple cells grown as indicated, 

with tracks pseudo-colored according to MT orientation along the major length axis of the cell 

(scale bar = 5μm; n=85 cells across n≥2 in vitro replicates and n=4 tumors). 
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Figure 2-6 Individual track distributions of MT features.  

Box plots show all MT tracks for each of the 14 track features. Each point corresponds to an 

individual MT track from an HT1080 EB3-mApple cell in vitro (red), in vitro 3D (green), or in vivo 

(blue) (total n=9,451 tracks; *two-tailed permutation test). The red line denotes the median of all 

MT tracks under the indicated condition.The red bar denotes the median of the cell medians 

(total n=85 cells). For all, box plot defined as Q1/25%tile, median, Q3/75%tile with outliers 

falling outside Q3/Q1±1.5*IQR. 
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We used principal components analysis (PCA) as a dimensionality reduction 

method to systematically compare how the pattern of co-correlated MT features 

changed under 2D and 3D culture conditions relative to in vivo phenotypes. The PCA 

scores and loadings plot indicates where experimental conditions (scores) and MT 

features (variable loadings) fall within the primary axes of covariation, the principal 

components (PCs; Figure 2-6A). 3D cultured cells behaved distinctly from cells grown 

in vivo, indicated by divergent PCA scores from the centrally positioned 2D culture 

(Figure 2-7A). Although MT orientation increased in 3D culture (Figure 2-7B), and 

therefore phenocopied in vivo dynamics, 5/14 features did not match in vivo behavior 

(Figures 2-6, B-11), including cellular MT coherence (Figure 2-7B). Thus, the in vitro 

3D track distribution failed to fully mimic the in vivo phenotype. 

 We next examined whether increased in vivo MT coherence could be explained 

by more elongated in vivo cell shape. We again performed PCA, but using features of 

gross cytoskeletal shape as variables (Figure 2-7C). The first and second principal 

components (PC1, PC2) broadly captured cell elongation and cell size, respectively. 

Although more detailed and/or volumetric analysis could reveal higher-order 

distinctions, both in vivo and 3D-cultured cells exhibited a positive PC1 shift compared 

to 2D-cultured cells, characterized by decreasing cell circularity and increased 

elongation (Figure 2-7D). Thus distinct in vivo MT dynamics could not be entirely 

explained by differences in cell elongation. 
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Figure 2-7. Coherent in vivo MT dynamics are not fully reproduced by 3D collagen in vitro 

cultures. (A) MT features were analyzed by principal components analysis (PCA), shown 

according to average condition score (± s.e.m.) and variable loadings (black squares; n=5794 

tracks, middle 95% for all features). (B) Violin plots show single-track distributions for orientation 

and cellular coherence (bar denotes median, cell averages overlaid as individual data points; 

*two-tailed permutation test; n=9,448 total tracks from 85 cells). (C) PCA captures covariation 

between cellular shape features (loadings, black) across imaging conditions (scores ± s.e.m.; 

n=106 cells). (D) Single-cell distributions of shape features, matching C (*two-tailed t-test; 
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n=106 cells; box plot bars represent the minimum, 25%tile, median, 75%tile, and maximum 

values). Source data are provided as a source data file.  
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2.3 Discussion 

Here we use multichannel confocal IVM coupled with computational image 

analysis to directly monitor the behavior of MT dynamics in a live xenograft mouse 

model of cancer. As a core cytoskeletal component, MTs participate in diverse cellular 

processes and are tightly regulated in a spatially dynamic, coordinated, and quantitative 

rather than binary manner. Furthermore, the dynamics of individual MTs within and 

between cells is highly heterogeneous, as are the impacts of MT-targeting drugs 

operating through distinct mechanisms. Therefore, simply counting MT tracks or 

measuring individual features such as speed can fail to capture higher-level patterns in 

co-regulated MT behaviors.  To address this issue, in this work we examined a wide 

spectrum of MT dynamic features across thousands of individual MTs, including speed 

and persistence in MT growth, and applied multivariate statistical methods to interpret 

patterns in MT behavior across experimental conditions. Our studies in multiple cancer 

cell models revealed that the cellular coherence and alignment of MT dynamics were 

among the most significantly altered properties that changed with microenvironmental 

context.  

In this work, we correlated MT alignment with cellular elongation and migration 

as components of cancer metastasis, yet the importance of MT alignment broadly 

extends to other biological processes involving directional signaling, protein trafficking 

and cellular migration. For instance, aligned MTs coupled with the endoplasmic 

reticulum facilitate directional fluid flow of intracellular cytoplasmic contents 96. Plus-end 

MT tip-tracking has repeatedly revealed MT coherence as important for directional cell 

migration. For example, MTs persistently grow at the cell leading edge, and 
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depolymerize at the trailing edge, during cellular elongation and directional migration in 

angiogenesis and wound healing97. In organismal development, coherent MT dynamics 

guide formation of the dorsal axis in Xenopus oocytes, as bundles of parallel MTs orient 

towards the dorsal end of cells prior to cortical rotation98.  

A majority of previous studies tracking MT end-binding proteins have relied 

primarily on in vitro models and non-mammalian model organisms. However, MT 

dynamics have more recently been examined in the central and peripheral nervous 

systems of mammals by imaging YFP-EB3 in mice, and key findings from this work 

examined MT orientation and anterograde directionality along the nuerite major axis 99. 

Polarized MT dynamics are essential for the elongation of neurites to form axons or 

dendrites as well as neurite remodeling after injury or neurodegeneration 100,101.  

Despite the increasing appreciation for aligned MT dynamics in orchestrating behaviors 

in tissue microenvironments, it has been difficult to directly study these behaviors in live 

animal models of cancer, and especially in a quantitative, systematic, and automated 

fashion. We anticipate that the imaging platform presented here, will lead to new 

directions in examining subcellular-scale signaling and regulatory processes, as well as 

MT-targeting drug action. 

 

  



 

    43 

2.4  Material and Methods 

2.4.1 Materials 

HT1080 and ES2 cells were originally from ATCC, and were cultured according 

to provider guidelines using DMEM (for HT1080) or McCoy’s 5a (ES2) medium, and 

10% FBS (Atlanta Biologicals), 100 IU mL-1 penicillin,100 μg mL-1 streptomycin 

(Invitrogen), with incubation at 37℃ and 5% CO2. Cells were routinely evaluated for 

mycoplasma contamination. HT1080-mem-mApple, HT1080-EB3-mApple, ES2-EB3-

mApple, and ES2-mClover cells were all generated by lentiviral transduction. The 

construct mApple-EB3-7 was a gift from Michael Davidson (Addgene plasmid # 54892), 

and mClover expression construct (pLentiCMV Puro DEST ERKKTRClover) was a gift 

from Markus Covert (Addgene plasmid # 59150; http://n2t.net/addgene:59150; 

RRID:Addgene_59150)57. Cell lines were tested for mycoplasma contamination using 

Lonza MycoAlert. Negative test results were obtained for cell lines used in the study. 

 

2.4.2 Intravital microscopy 

Confocal microscopy was performed using an Olympus FV1000 multiphoton 

imaging system. Animals were used in accordance with guidelines from the Institutional 

Subcommittee on Research Animal Care and under approval from the Institutional 

Animal Care and Use Committee (IACUC) at Massachusetts General Hospital. Animals 

were housed in a light-dark cycle, climate (temperature and humidity) controlled 

vivarium and kept under ad libitum food and water diet supplied by the MGH Center of 

Comparative Medicine staff. 2 million parental HT1080, HT1080-EB3-mApple, HT1080-

memApple, and/or ES2-EB3-mApple cells were suspended in 50μl PBS, injected under 
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the fascia 30 min after surgical dorsal window chamber implantation, in female 4-8 week 

old nu/nu mice (Cox7, MGH), and imaged approximately 2 weeks later with visible 

tumor formation. Static and time series images were collected using a XLUMPLFLN 60x 

or 20x water immersion objective (NA 1.0; Olympus America) and up to 10x digital 

zoom. Images were scanned sequentially using 405-nm, 473-nm, 559-nm and 633-nm 

diode lasers in combination with a DM405/488/559/635-nm dichroic beam splitter. 

Emitted light was then separated and collected using appropriate combinations of beam 

splitters (SDM473, SDM560 and SDM 640) and emission filters BA430-455, BA490-

540, BA575-620, and BA655-755 (all Olympus America). For EB3 imaging, to minimize 

photobleaching and potential artifact from translational drifting, we captured brief 

snapshots of MT dynamics for a given cell: movies were acquired for 40-130 sec in 

duration with a frame rate of between 0.8 to 2.7 seconds per frame, a relatively short 

dwell time (8 µs pixel-1), low laser power (λex 559 nm, 2% power), and at a single plane 

of focus. 

 

2.4.3 Study Design 

Sample sizes were determined by counting the number of MT tracks, cells, 

tumors, or mice depending on the analysis. For track based analyses sample sizes 

were not predetermined as all the tracks computationally determined were used for 

downstream analyses. Sample sizes for cells, tumors, or mice were chosen based on 

estimated effect sizes from prior studies with this xenograft model and in vitro cell 

culture experiments11,85,86,89,91. All experiments were performed with ≥ 3 independent 

replicates as described in the figure captions. Assignment of animals into treatment 
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groups, as with the IL10R or in vivo vs in vitro experiments, was performed randomly. 

For both in vivo and in vitro experiments, samples that underwent different treatments 

(Chapter 3 - drug treatment, co-culture conditions, MΦ polarization, etc.) were placed 

into different groups. For all MT track and shape experiments, results were obtained via 

unbiased computational scripts, and image acquisition was performed with unbiased 

parameters constant across treatment groups.  

 

2.4.4 3D Monoculture 

Three-dimensional cultures of cancer cells were performed according to 

previously described protocol102. Briefly, HT-1080 EB3-mApple cells were suspended in 

a 2.5 mg mL-1 collagen I gel extracted from rat tail (Corning) at the density of 1 million 

cells mL-1. The collagen gel containing the cells was deposited onto a MatTek dish 

(MatTek Corp.), and allowed to polymerize at 37°C and pH 8 for 30 min. in a humidified 

chamber. Following the polymerization, fresh growth media was introduced into the 

MatTek dish. The cells were imaged with confocal microscopy for MT dynamics 

following overnight incubation (24 hr.) in a humidified incubator. 

 

2.4.5 MT tracking and feature extraction 

EB3 comets were detected and linked to form MT tracks using the U-track 

software (http://www.utsouthwestern.edu/labs/danuser/software/)92. Cell boundaries, in the form of a 

mask, were constructed using ImageJ. In order for a MT track to be successfully called, 

it must pass a strict set of filters: (1) be present in a marked cell, (2) comets must be 

detected in at least three frames, (3) only a maximum of one gap is present, (3) must 
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travel at least 0.5 µm, and (4) comet persistence must be >0.60. Persistence was 

measured on a scale of 0 to 1, where 1 indicated a straight track. These constraints 

were enforced either directly using the U-track software or a custom script implemented 

in Python (Python3.6) that required a track CSV file, cell mask, and image metadata 

containing the image frame rate and resolution as input. The following U-track 

parameters and the defined ranges were used to achieve accurate tracking: Low-pass 

gaussian st.dev (1-3 pixels); high-pass gaussian st.dev (4-5 pixels); watershed 

segmentation minimum threshold (2-3 st. dev); minimum track length after first frame (2-

4); minimum number of gaps (0-1). The remaining parameters were set to the default 

settings. After obtaining a resolved set of MT tracks, fourteen features for each track 

were calculated: 

(1) Average speed (µm s-1), whereby the distance traversed between each frame was 

calculated via the python numpy library gradient function, and averaged across the 

entire time-lapse for a given track; (2) minimum speed, (3) maximum speed, and (4) 

speed standard deviation for a given track across frames; (5) net displacement (µm), 

calculated as |track end coordinate - track start coordinate|; (6) path length (µm), 

calculated as the total distance traversed by a track; (7) persistence, defined by (net 

displacement) x (path length)-1; (8) curvature, calculated as a third degree polynomial fit 

to the MT track using the numpy python library polyfit function. From this fitted 

polynomial, the curvature between frames was computed using equation 1. 
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x and y are the coordinates of the MT comet at each frame. Curvature was computed at 

each x-y coordinate and all values were averaged, resulting in one curvature value per 

track; (9) distance to cell edge, defined by a distance transform image (DT) created 

from the inverse of the cell mask. The pixel value in the DT image corresponds to the 

distance from the cell edge. This measurement was normalized to be independent of 

absolute cell size by dividing the sum of all pixel values that fall within the cell 

boundaries from the DT image by the total number of pixels inside the cell. Min-max 

normalization was lastly performed to scale measurements between 0 and 1; (10) 

distance to the cell major axis was calculated using the regionprops function from the 

sklearn python package, via the orientation, major_axis_length, and centroid 

parameters. From these parameters, points on the cell major axis were identified. 

Distances were normalized by the farthest point from the major axis along the cell 

boundary, such that all track distance measurements fell between 0 to 1; (11) distance 

to the cell minor axis was computed and normalized similar to the above, with the minor 

axis defined as perpendicular to the major axis; (12) local track coherence, calculated 

by the cosine of the angle between a query track and tracks within 20 μm radius within 

the same cell, and averaged across all such pairs of tracks; (13) cellular track 

coherence, calculated similarly to the local track coherence but for all tracks of a given 

cell rather than within a given radius; (14) track orientation, calculated as the cosine of 

the angle between the query track and the cell major axis. All features were calculated 

using python scripts. Track visualizations were constructed using either python scripts 

or GraphPad Prism (Prism 8) software. 
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 To test statistical robustness against unevenly distributed MT track behaviors 

from cell to cell, a permutation test was performed such that cell labels were shuffled 

between the different groups. A naïve wilcoxon rank sum test between pairs of cell 

populations was applied to determine the permutation p-value, for each MT feature. To 

determine the final p-value for each feature, the number of permutations with a p-value 

less than the p-value of the true distribution was divided by the total number of 

permutations. Without any permutations, the reported p-value obtained from a naïve 

wilcoxon rank sum test was < 10-40 in some cases. A maximum of 1000 permutations 

were run for each experiment. If there were no permutations that had a lower p-value 

than the naive rank sum test, then the final p-value is reported as p=0.001.  

Effect size calculations between two different MT populations (i.e. in vivo, in vitro 

2D, etc.)  was determined using Cohen’s D statistic, measured by equation 2. SDpooled is 

measured by equation 3.  

 

(2) Cohen'sD = !!"!"
#$#$$%&'

 

(3) #$&''()* = +,-.'%,-.%
/  

 

The means of population 1 and 2 are represented by μ1 and μ2, and the variances are 

represented by Var1 and Var2, respectively. 

  

Additional tests were conducted to determine the robustness of the analysis. The 

first test ensured that incompletely imaged cells in vivo did not effect the significance 
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tests. Cells that were more than 20% outside the field of view were omitted during this 

test and a two-tailed permutation comparing in vivo and in vitro HT-1080-EB3-mApple 

cell populations was conducted as described above (Figure B-8). The second test 

ensured that significance between in vivo and in vitro populations was not the result of 

noise differences or image quality. Artificial noise was added to a batch of in vitro cells 

(Gaussian noise with 0 mean and 100, 200, and 400 SD in pixels) using the ImageJ add 

specified noise function. The effect size between the noisy cell populations and the in 

vivo cell populations was measured. Significance was also measured between the 

artificially noisy and in vitro cells with no artificial noise added (Figure 2-4). 

 

2.4.6 Principal Component Analysis of MTs 

PCA of MT dynamics from the in vivo, in vitro 3D, and in vivo cell populations 

was performed using the python scikit-learn package on all 14 of the MT features. 

Outlier tracks, or tracks where any of the feature values were not within 5 and 95 

percentile were removed prior the PCA. Furthermore, the naive distribution of several 

features were not normal and highly skewed. Therefore, several transformations were 

used depending on the feature type. For features with a right skewed distribution, a log 

transformation (curvature, displacement, path length, average speed, minimum speed, 

maximum speed, and speed SD) or sqrt transformation (major axis distance and minor 

axis distance) was used. For features with a left skewed distribution, sqrt(1-x) 

transformation (MT orientation and persistence) was used. For the remaining features, 

no transformations were performed. The transformed dataset consisting of 

approximately gaussian distributed features were normalized (mean=0, SD=1). 
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2.4.7 Cell Shape Analysis 

Cell contact and shape analyses were implemented using MATLAB 

(MATLAB_R2016B) and/or Python. Masks of tumor cells and/or MΦ were obtained via 

manual curation or using a custom Cellprofiler pipeline. From the tumor cell masks, the 

computed cell circularity was determined using the following equation: 4!AP-2, where A 

is the area of tumor cell and P is the perimeter of the tumor cell. To standardize cell 

circularity measurements, cell circularities for cells grown under the control conditions 

were normalized (0 mean, 1 SD), while cell circularities for cells grown in other 

conditions were transformed according the pre-normalized circularity measurements 

from the control condition. In addition to circularity, cell eccentricity was also calculated 

from the MATLAB or python skimage regionprops function.  
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Chapter 3 In vivo microscopy reveals macrophage 
polarization locally promotes coherent microtubule dynamics in 
migrating cancer cells.   
 

The material in the chapter has been published in Luthria et al., Nature Communications 

(2020). 

Abstract 

Among analyzed microtubule features in chapter 2, cancer cells in vivo displayed higher 

coherent orientation of MT dynamics along their cell major axes compared with 2D in 

vitro cultures,  and distinctly from 3D collagen gel cultures. This vivo MT phenotype was 

reproduced in vitro when cells were co-cultured with IL4-polarized MΦ. Furthermore, 

MΦ depletion, MT disruption, targeted kinase inhibition, and altered MΦ polarization via 

IL10R blockade all reduced MT coherence and/or tumor cell elongation. We also show 

that MT coherence is a defining feature for in vivo tumor cell dynamics and migration, 

and is modulated by local signaling from pro-tumor macrophages. 
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3.1 Introduction  

Based on in vivo results presented in chapter 2, MTs establish directional cell 

polarity and juxtacrine signaling with neighboring cells67–69. We hypothesized that local 

intercellular interactions could contribute to the observed coherence of MTs in vivo. In 

addition to cancer cells, the TME is typically rich in other cell populations, including 

Tumor Associated Macrophages (TAMs). TAMs are among the most abundant 

leukocytes in the HT1080 xenograft model103 and in a large fraction of patient tumors104. 

TAM accumulation has been associated with disease progression, angiogenesis, and 

metastasis105,106. Using the same tumor xenograft model, our group has observed by 

histology, flow-cytometry, and IVM an overall ratio of roughly 1:4 in the relative content 

of TAMs:HT1080 tumor cells, although this varies across tumor regions91,107. These 

observations motivated us to ask whether TAMs could be contributing to the coherent 

MT behavior of tumor cells found in vivo. 

To address these questions we applied the imaging and computational pipeline 

developed in chapter two to measure how MT dynamics change while interacting with 

TAMs. We measured MT dynamical features in for in vitro and in vivo systems in two 

different cancer models. Analyses presented in chapter 2 revealed that in vivo, MT 

growth in cancer cells was aligned along the cell major axis and coherently with each 

other in the same cell, which correlated with elongated cell morphology. Intriguingly, 

these properties were especially enriched in cancer cells that neighbored tumor 

associated macrophages (TAMs). Coherent MT dynamics induced by neighboring MΦ 

were disrupted by drugs targeting epidermal growth factor receptor (EGFR) on tumor 

cells, and MΦ polarization via interleukin 10 receptor, IL10R. Acute disruption in 
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signaling and MT dynamics, via targeting of phosphoinositide 3-kinase (PI3K), preceded 

subsequent changes in gross cell shape, and MT-destabilizing vinblastine confirmed 

cellular elongation in vivo was MT-dependent. Overall, we present a platform for 

examining the in situ dynamics of MTs in live xenograft models of cancer, revealing MT 

coherence as a defining feature of in vivo tumor cell motility, and that pro-tumor MΦ 

signaling can produce such MT coherence in neighboring tumor cells. 
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3.2 Results 

3.2.1 TAMs regulate MT alignment in neighboring tumor cells 

Multicolor IVM co-imaged MT tracks and neighboring TAMs using a genetically 

engineered reporter mouse model with knock-in expression of GFP in place of one 

functional copy of Mertk (NOD.SCID MertkGFP/+), which has been validated by imaging 

and flow cytometry experiments for its high and selective expression in TAMs in this 

xenograft model107,108. Mertk heterozygosity exerts minor109 and in some cases 

undetectable110 impacts on disease progression compared to Mertk-/- phenotypes. IVM 

revealed that TAMs frequently neighbored or even wrapped around MT-rich tumor cell 

protrusions, including near vessels and fibers of collagen-rich extracellular matrix 

(Figure 3-1). 

To test whether TAMs influence MT coherence, we analyzed EB3 MT tracks in 

HT1080 and ES2 cells grown ± MΦ co-culture (Figure 3-2C,D). Bone-marrow derived 

MΦ were differentiated by macrophage colony-stimulating factor (MCSF) and polarized 

with interleukin-4 to produce M2-like MΦ (referred to here as IL4-MΦ), resembling 

tumor-promoting TAM phenotypes106. After IL4-MΦ co-culturing, we imaged tumor cells 

in contact with MΦ and quantified their EB3 tracks. Only two MT features showed 

consistent changes in co-culture vs. monoculture, across both cell lines: MT coherence 

and orientation (Figure 3-2C,D; Figure C-1,C-2,C-3), which also differed in the in vivo 

vs. in vitro comparison (Figure 2-3). This generalized to IL4-MΦ derived from the 

RAW264.7 MΦ cell line (HT1080 in Figure 3-2D), thus showing MΦ influence on tumor 

cell MT dynamics in 2 cancer cell lines and 2 MΦ models. 
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Figure 3-1. TAMs frequently neighbor tumor cells near vasculature and fibrillar 

extracellular matrix. (A-B) Representative IVM of HT1080 tumors grown subcutaneously in the 

dorsal window chamber of MertkGFP/+ NOD.SCID mice at low (left) and high (right) 

magnifications. (A) A long-circulating fluorescent NP, angiospark-680, and (B) 2-photon 

microscopy of second harmonic generation, SHG show tumor vasculature and fibrillar 

extracellular matrix, respectively. At bottom right, EB3 tracks are shown randomly 

pseudocolored for visualization. Scale bars are 1mm (A, right), 50μm (A-B, left), and 10μm (B, 

right). (C) Corresponding to images as in A, tumor cells were scored based on nearest proximity 

(<5μm) to GFP+ TAMs or AngioSPARK+ vasculature (data are means ± s.e.m.). For all, n=80 

total cells and n=4 tumors overlaid as individual data points in C. Source data are provided as a 

source data file. 
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3.2.2 MΦ polarization impacts MT dynamics of adjacent tumor cells. 

. Although TAMs frequently exhibit tumor-promoting phenotypes, in reality they 

can exist across a spectrum of MΦ polarization states. We therefore examined the 

effect of MΦ polarization on MT dynamics in co-cultured tumor cells. MCSF-

differentiated MΦ modeled what past literature has described as a M0-like phenotype, 

referred to here as simply MΦ 111. We further polarized MΦ either with IL-4 (described 

above) or with lipopolysaccharide and interferon gamma to produce M1-like MΦ112, 

referred to here as LPS/IFNγ-MΦ.  We imaged MΦ-adjacent tumor cells in each co-

culture and quantified the MT features (Figure C-4), ultimately focusing on MT 

coherence and orientation based on above results. Since these two features relate to 

one another, yet are highly variable, we used PCA and a single principal component 

(PC) to capture distributions of both features simultaneously. The comparison in PC 

distributions revealed that only in vivo and IL4-MΦ co-culture tracks displayed higher 

MT coherence and orientation compared to monoculture (Figure 3-3A). Pairwise 

differences in PC distributions (Figure C-2) and statistical effect size (Figure 3-3B) 

indicated IL4-MΦ co-culture tracks were most similar among all conditions to the in vivo 

tracks. These data suggest that TAM effects on MT dynamics depend on the underlying 

TAM polarization state.  
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Figure 3-2. IL4-polarized MΦ promote coherent MT alignment in neighboring tumor cells. 

(A-B) Representative fluorescence microscopy after 24 hrs of IL4-MΦ co-culture with EB3 tracks 

randomly pseudo-colored for visualization (scale bar = 10 μm). (C) Corresponding to A-B, the 

effect size for imaged MT features was compared between monoculture and 24 hr MΦ co-

culture (average of Cohen’s D effect size between batches). (D) From C, track distributions for 

the top two increased MT features, altered in both cell lines with co-culture, are shown with cell 

averages overlaid as individual data points (bar denotes median). All p-values were computed 

using a two-tailed permutation test with BH correction. For HT1080 cells, n=22,371 tracks 

across n=164 total cells were analyzed, and for ES2 cells n=1,424 tracks across n=33 total cells 

were analyzed. Source data are provided as a source data file. 

 

3.2.3 Kinase signaling disruption blocks MΦ-mediated MT coherence 

TAMs and tumor cells signal bidirectionally through multiple pathways. For 

instance, reports show TAM-produced ligands such as epidermal growth factor (EGF) 

signal to EGFR on cancer cells to promote cell migration113,114. In turn, tumor cell-

produced ligands such as colony stimulating factor 1 (CSF1) signal to CSF1R on TAMs 

to promote recruitment and M2-like polarization113,115. Downstream PI3K signaling is 

implicated in such signaling and MT dynamics116,117, and in TAMs, reports show PI3K 

inhibition (particularly of isoform p110γ) reprograms cells toward M1-like polarization118.   
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Figure 3-3. MΦ polarization results in increased MT coherence. (A) HT1080 MT 

cellular coherence and orientation were combined into a principal component (PC) for 

each MT track, and the cumulative distribution function of PC scores was calculated 

(*two-tailed permutation test; total n=10,968 tracks from n=118 total cells). (B) Effect 

sizes were calculated from results shown in A (*two-tailed permutation test using PC 

scores). 
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Given this evidence, we hypothesized that receptors and PI3K govern MΦ-

mediated MT polarization in tumor cells. We tested drugs and antibodies targeting (1) 

tumor-expressed receptors, including the RTKs EGFR and AXL, and integrin β1 

(heterodimerizing with α-integrins to bind ECM); (2) TAM-expressed receptors 

influencing TAM polarization, including toll-like receptor 7/8 (TLR7/8) and the RTKs 

MERTK and CSF1R; (3) PI3K isoforms including leukocyte selective p110δ and p110γ; 

and (4) Rho associated protein kinase (ROCK) as a representative effector of Rho-

family GTPases. ES2 co-cultured with IL4-MΦ were treated for 2-4 hr., and imaged MT 

features revealed that all treatments qualitatively decreased MT coherence and 

orientation, although only treatment with inhibitors targeting ROCK, PI3Kγ, and EGFR 

elicited significant effects (Figures 3-4; C-5).  In support, analogous experiments in 

HT1080 also showed effects from targeting EGFR and PI3Kγ, under IL4-MΦ but not 

other co-culture or monoculture conditions (Figure 3-5; C-6). These data thus suggest 

that coherent MT dynamics depend on context-dependent signaling activity in both MΦ 

and cancer cells. 
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Figure 3-4. Overview of MΦ-induced MT disruption screen.  

ES2 MT dynamics were imaged after 24 hr co-culture followed by 2-4 hr of drug treatment, and 

effect sizes were calculated as in B, however here in comparison to IL4-MΦ co-culture (*two-

tailed permutation test on PC scores with BH multiple hypothesis correction, fdr=0.05; n=29,591 

tracks from n=151 total cells).  
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Figure 3-5. Disruption of MΦ-induced MT coherence by targeted inhibition of cell 

signaling. (A-B) HT1080 MT dynamics were imaged after 24 hr co-culture followed by 2-4 hr. of 

drug treatment, and effect sizes were calculated as in Figure 3-2 (*two-tailed permutation test 

on PC scores; IPI-549(A): n=13,380 tracks from n=80 total cells; anti-EGFR(B) mAb: n=16,427 

tracks from n=112 total cells).  
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3.2.4  MΦ contact promotes pseudopod-like extensions in tumor cells 

Although MT dynamics may outpace the kinetics of bulk change in cell shape 

and migration (discussed further below), under more equilibrated conditions MT 

structure and cell shape can correlate with one another72. Because IL4-MΦ enhanced 

MT orientation in tumor cells, we hypothesized that co-cultured IL4-MΦ would also 

influence tumor cell shape. To determine whether such impacts depended on spatial 

MΦ / tumor cell proximity, HT1080 were also grown in conditioned media that had been 

incubated with IL4-MΦ for 24 hr. and then transferred to HT1080 for 18 hr. We used 

PCA to interpret coordinated changes in shape features (rather than MT dynamics as 

above). HT1080 co-cultured directly with IL4-MΦ shifted toward elongated, less circular 

shapes, and conditioned media elicited lower magnitude effects (Figure 3-6A). The 

circularity shape feature exhibited the most negative loading on the first PC (Figure 3-

6A), substantially decreased with co-culture (Figure 3-6B), and therefore was used as a 

representative metric in subsequent analyses. Overall, MΦ-enhanced MT coherence in 

tumor cells was matched with correspondingly decreased tumor cell circularity. 
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Figure 3-6.  (A,B) HT1080-mem-mApple cells were imaged after being cultured for 24 hrs in 

three different conditions. (A) PCA captures cell shape feature loadings (black) and scores for 

cells under these conditions (mean PC score ± s.e.m). (B) Single-cell circularity measurements, 

which exhibited the most negative PC1 loading in A, were directly compared (*two-tailed t-test; 

n=1,906 total cells across 23 replicate images; box plot as 25%tile, median, 75%tile with outliers 
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outside 1.5*IQR). (C) HT1080-mem-mApple tumor-bearing nu/nu mice were treated with 6 mg 

kg-1 vinblastine or vehicle, and confocally imaged 24 hr later (*two-tailed Mann-Whitney U test; 

n=225 total cells, n=4 tumors per group; box plots as in B). 

 

 

 

Figure 3-7. Correlations between cell shape and MT behaviors.  

(A) Cellular circularity was correlated with average MT orientation across individual HT1080 

EB3-mApple cells grown under the indicated conditions (data points denote individual cells; 

*two-tailed exact test). (B-D) Similar to A, (B) cellular circularity was correlated to MT cellular 

coherence, cellular eccentricity was correlated to (C) MT orientation and (D) MT cellular 

coherence across individual HT1080 cells (A-D: *two-tailed F-test; n=85 cells from three 

different experimental conditions). 
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Although care must be taken in interpreting shape from confocal images with 

narrow focal planes, we nonetheless found correlation between cell shape and MT 

dynamics, even within heterogeneous populations of cells imaged under the same in 

vitro or in vivo conditions (Figure 3-7). To directly test the dependence of elongated cell 

shape on MT structure, we treated mice bearing HT1080 tumors with 6 mg kg-1 MT 

destabilizing drug vinblastine119. 24 hr following treatment, tumors were confocally 

imaged to quantify cell shape from a membrane-tagged fluorescent protein (mem-

mApple). Cells with intact non-fragmented nuclear morphology in vinblastine-treated 

tumors exhibited increased circularity (Figure 3-6C) compared to cells from untreated 

tumors.  Taken together, MT dynamics correlated with elongated cell shape, and MT 

polymerization was required for such elongation in vivo.  

We next analyzed the spatial dependence by which MΦ could impact tumor cell 

shape.  Although HT1080 and IL4-MΦ co-cultures were well-mixed, stochastic 

distributions created diversity in the distance between tumor cells and their closest 

neighboring MΦ (Figure 3-8A). We therefore asked whether spatial MΦ proximity 

correlated with tumor cell circularity on a cell-by-cell basis, using an automated nearest-

neighbor analysis. Segmented tumor cell circularity was computed and algorithmically 

binned into one of three groups (low, medium, and high; see representative cell masks 

in Figure 3-8B). Next, we queried the proportion of cells in each group in contact (<5 

µm), nearby (6-30 µm), or far (>30 µm) from the nearest MΦ. This revealed enrichment 

in cell elongation among cells in close proximity with IL4-MΦ: tumor cells with low 

circularity were 5 times more likely to be in contact with, rather than far from MΦ, while 

tumor cells with high circularity showed no such bias (Figure 3-8B). 
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Given the in vitro evidence showing local effects of MΦ on tumor cells, we used 

an orthotopic mouse model of disseminated OVCA to study whether similar spatially-

dependent interactions could be observed in a relevant in vivo model of disease. We 

imaged disseminated tumors that formed roughly 1 week following intraperitoneal (i.p.) 

injection of ES2 cells. Upon terminal dissection of tumor-bearing organs (omentum, 

liver, ovary, and peritoneal wall), ES2 cells expressing cytoplasmic GFP were confocally 

imaged). 

In this experiment, MΦ were imaged using a fluorescent polyglucose-based 

nanoparticle (NP) recently demonstrated to accumulate with >90% selectivity in MΦ in 

multiple mouse models of cancer120 (Figure 3-9A). ES2 cells growing in intraperitoneal 

metastases were on average more circular than HT1080 growing on tissue culture 

plastic and ES2 cells growing in subcutaneous xenografts (Figure 3-10). Shape-based 

stratification binning was correspondingly adjusted. For each circularity bin, we queried 

the proportion of cells that were within 2 μm of the nearest NP+ MΦ. Similar to the in 

vitro HT1080 experiment, elongated tumor cells exhibited a clear bias for spatial 

proximity to MΦ in ES2 tumors (Figure 3-9B). Thus, analyses across two distinct 

models demonstrated that cancer cells nearby MΦ displayed a relatively more 

elongated shape.  
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Figure 3-8. MΦ promote pseudopod-like extensions in neighboring HT1080 tumor cells in 

vitro. (A) Representative co-culture imaging, highlighting instances at right of co-localized MΦ 

and tumor cell protrusion (scale bar = 50μm). (B) Cancer cell circularity from D was measured 

according to MΦ proximity (*chi-squared test; n=709 total cells across n=7 image replicates 

denoted by points; mean ± s.e.m.).  
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To more directly test the impact of MΦ on tumor cell shape, we depleted MΦ within 

intraperitoneal ES2 tumors using i.p. administration of clodronate liposomes (clod-lip)121 

(Figure 3-10B), and found increased ES2 circularity (Figure 3-9C). These results 

confirm that TAMs promote elongation in neighboring tumor cells, and furthermore show 

that TAMs can be manipulated to impact tumor cell morphology. 

 

3.2.5 MΦ associate with protrusions in migrating tumor cells 

We next examined whether MΦ-induced changes in MT coherence and cellular 

elongation corresponded to enhanced cancer cell migration. Because of known 

morphological differences between motile and non-motile cells72, we hypothesized that 

tumor cells with a more circular morphology had slower migration rates than elongated 

cells. We used roughly 2 hr time-lapse IVM (as in Figure 2-3; see ref. XX) of HT1080 

xenografts to measure cell migration by tracking individual cell centroid movements. 

The migration rate for all cells was 0.15 +/- 0.14 μm min-1 (mean +/- s.d.). As predicted, 

cell circularity correlated negatively with cell migration, and all cells with migration >0.25 

µm min-1 had circularity ≤ 0.4 (Figure 3-11A).  
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Figure 3-9. MΦ promote pseudopod-like extensions in neighboring ES2 tumor cells in 

vivo. (A) Representative confocal microscopy of disseminated intraperitoneal tumors, 

highlighting TAM-adjacent elongated tumor cells on right (scale bar = 20μm). (B) As in F, ES2 

circularity was measured as a function of TAM proximity (*chi-squared test; n=201 total cells 

across n=3 tumors denoted by points; mean ± s.e.m.). (C) Excised ES2 tumors were confocally 

imaged for cell circularity, following treatment with PBS or clodronate liposomes (*two-tailed t-

test; n=261 cells across n=13 tumors per group; box plot as minimum, 25%tile, median, 75%tile, 

and maximum). 
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Figure 3-10. Quantifying tumor cell shape in response to clodronate liposome treatment. 

Corresponding to Figure 3-9, ES2 tumors via intraperitoneal injectection  were treated with 

liposomes containing either clodonate or PBS as a vehicle control, and imaged confocally for 

cell shape. (A) Representative images and (B) quantification of single-cell circularities across 

tumors within the cohorts are shown (*two-tailed t-test, n=261 cells across n=13 tumors; error 

bars denote mean±s.e.m. for each group). (C) ES2 tumor cells were also implanted 

subcutaneously and imaged using a dorsal window chamber. 

 

Additionally, we tracked tumor phagocytes including TAMs by simultaneously 

imaging a fluorescently tagged NP (Figure 3-11B)91. Examples show phagocytic 

myeloid cells associating with and wrapping around protrusions of migrating cancer 

cells (Figure 3-11B, 3-11C), which correlated with greater cellular elongation and more 

rapid migration compared to non-TAM associated cancer cells within the same tumor 

(Figure 3-11). These data (Figure 3-11B) show that TAMs do not always co-migrate 

with tumor cells. Relatedly, MT dynamics were only mildly correlated with subcellular 

TAM positions relative to tumor cells (Figure C-11), such that TAMs were not always 

located at the leading tip of elongated tumor cells. These high-resolution data suggest 

that TAMs may not directly lead, but nonetheless interact with and likely guide cancer 

cells in a localized manner. 
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Figure 3-11. TAMs associate with pseudopod-like protrusions in migrating cancer cells. 

Time-lapse IVM tracked migration of individual HT1080-mem-mApple cells in tumors within the 

dorsal window chamber model. (A) Migration speed was correlated with cell circularity (data 

points are n=50 individual cells across n=4 tumors; *two-tailed f-test on cell level data). Blue and 

red correspond to cancer cells associated with TAMs or not, respectively, in B-C. (B-C) 

Representative tumor cells associated with TAMs (i-iv) or not (v-viii) are shown (B; scale bar = 

10μm) with corresponding migration (C).  
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Figure 3-12: Measuring migration rata of HT1080 cells in vivo  

(A-B) Example TAM-associated, migrating HT1080 cell is highlighted from a 20x field of view (A; 

scale bar = 20μm) and corresponding time-lapse (B; scale bar = 20μm). Cells have been 

shaded for visualization. (C) Migration speeds of individual HT1080 cells were compared with 

their nearest distance to TAMs, shown fit to a regression (left; Pearson’s coefficient and two-

tailed t-test) and binned by distance (right; *two-tailed t-test on cell level data; box plot as min, 

25%tile, median, 75%tile, and max; E-F: n=55 cells across n=4 tumors).  
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3.2.6 Acute changes in MT dynamics precede cell shape changes. 

Given their correlation under relatively equilibrated conditions, are MT dynamics 

simply a reflection of cell shape? We hypothesized that acute (<2 hr) changes in MT 

coherence would precede or predict subsequent changes in overall cell shape. As a 

proof-of-principle, we broadly targeted signaling using the first PI3K inhibitor to enter 

clinical trials, dactolisib (BEZ-235), which dually inhibits mTOR and pan-class PI3K 

signaling. EB3 dynamics were immediately imaged beginning 5 min post-treatment 

using HT1080 co-cultures. Dactolisib largely reversed the coherent MT phenotype 

induced by IL4-MΦ co-culture (Figure 3-13A,B). At early imaged time-points there was 

no visual evidence for cell death or apoptosis, nor did cellular circularity substantially 

change (Figure 3-13C). However, 24 hr post-treatment, co-cultured cells increased 

circularity (Figure 3-13D). This suggests that MΦ-enhanced MT coherence depends on 

mTOR/PI3K signaling pathways in a manner acutely decoupled from broader changes 

in cell shape, but in a more interrelated manner at longer timescales. To test effects of a 

selective perturbation, we used PCA to assess cell shape under co-culture conditions ± 

24 hr anti-EGFR mAb treatment.  IL4-MΦ co-culture elicited the strongest phenotype, 

reflected by a shift towards a positive PC1 score (Figure 3-14A) and correspondingly 

reduced cell circularity (Figure 3-14A), which was largely reversed upon EGFR 

inhibition. These results mirror the short term impact of anti-EGFR on MT dynamics 

(Figure 3-5), and further suggest linkage between acute MT dynamics and subsequent 

cell shape. 
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Figure 3-13. Drug-induced changes in MT dynamics precede changes in overall cell 

shape. (A) After 24 hr co-culture, HT1080 MT dynamics were imaged from 5 - 40 min following 

10μM mTOR/pan-PI3K inhibitor dactolisib (DAC), and effect sizes were calculated as in Figure 

3-3, comparing to untreated monoculture (*two-tailed permutation test; n=12,524 tracks from 

n=109 total cells). (B-D) Corresponding to A, MT tracks were clustered according to average 

values (B), and tumor cell shape quantified following DAC at < 40 min (C) or 24 hr (D) post-

treatment (*two-tailed Mann-Whitney U test; C: n=223 cells, D: n=413 cells)  
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Figure 3-14. EGFR inhibitor treatment of MT dynamics and cell shape. HT1080 were 

treated for 24-hr with anti-EGFR mAb (EGFRi), quantified for cell shape, and analyzed by PCA 

(E; n=1,594 total cells; mean ± s.e.m.) and for cell circularity (*two-tailed t-test; n=1,678 cells; 

bar denotes median). All box plots are min, 25%tile, median, 75%tile, and max  



 

    78 

3.2.7 Targeting of IL10R regulates MΦ polarization and MT coherence 

We hypothesized that in vivo MT coherence depended on the polarization state 

of neighboring TAMs, and therefore imaged MT dynamics in tumor-bearing subjects 

systemically treated with either an antibody blocking murine IL10R ligand engagement 

(anti-IL10R mAb, referred to as aIL10R) or an isotype control. Reports implicate 

autocrine IL10 in M2-like MΦ polarization122,123, and indicate that PI3Kγ inhibition, which 

elicited effects in vitro (Figure 3-5), reduces IL10 production in TAMs118. Furthermore, 

we analyzed single-cell RNA sequencing data (scRNAseq) from patient biopsies in 

multiple cancer-types (OVCA, melanoma, head and neck squamous cell carcinoma, 

HNSCC), and found that IL10 signaling may occur at especially high levels in myeloid 

cells including TAMs expressing both IL10 and its receptor components IL10RA (Figure 

3-15) and IL10RB (see Methods).   
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Figure 3-15. Infering IL10-IL10R interaction from scRNA-seq. (A) SPRING visualizes 

scRNAseq data by cell-type from 9 patient biopsies, most either high-grade (HG) or low-grade 

(LG) serous OVCA (n>2,900 total cells). Arrows and table report top values for IL10xIL10RA (fraction 

max) from published patient cohorts124–126. 
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Figure 3-16. CD206 western blot and densitometry 24 hr following aIL10R in RAW264.7 (*two-

tailed t-test; n=3; mean ± s.e.m.). (C) IL4-induced elongation in MΦ shape (calculated from 

combined shape features; scale bar = 10μm), was monitored 24 hr post-aIL10R (*two-tailed t-

test; n=100 RAW264.7 cells per group with 4 groups; means ± s.e.m.).  



 

    81 

Although IL10 is reported to promote M2-like MΦ polarization, we confirmed 

aIL10R effects through two assays. We used the mannose receptor CD206/MRC1 as a 

marker of M2-like MΦ polarization, and confirmed that aIL10R reduced its expression in 

IL4-MΦ (Figure 3-16A,C-9). We also quantified MΦ cellular morphology to assess MΦ 

polarization without relying on any single molecular marker (as similarly described112). 

Consistent with past studies112, round naïve MΦ became elongated upon IL4 treatment, 

which partially reversed upon aIL10R treatment (Figure 3-16B), thus suggesting 

aIL10R shifted MΦ polarization away from the M2-like phenotype.  

In vitro, aIL10R blocked the effects of IL4-MΦ on MT coherence and orientation, 

as reflected by a shift in the principal component describing the two features (Figure 3-

17A, calculated as in Figure 3-4, C-8), and also reversed the effects of IL4-MΦ on 

tumor cell circularity (Figure 3-17B). Encouragingly, similar impacts of aIL10R on MT 

dynamics and cell shape were also observed in vivo by IVM (Figure 3-17C;3-18 

measured as in Figure 3-3). Overall, these data show how TAM polarization via IL10 

locally shapes neighboring tumor cells to promote behaviors that distinguish in vivo MT 

dynamics from their in vitro counterparts (Figure 3-19). 
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Figure 3-17. Figure 9. Anti-IL10R antibody shifts MΦ polarization and reduces tumor cell 

MT coherence in vitro and in vivo. 

(A-B) HT1080 MT dynamics (A) and cell circularity (B) were quantified as in Figure 3-3, 4 hr 

following treatment with aIL10R (A: *two-tailed permutation test; n=21,218 tracks from 99 total 

cells; B: *two-tailed t-test; n=1,964 total cells). (C) Representative IVM of TAM-proximal HT1080 

following 48 hr treatment with aIL10R or the isotype control, in dorsal window chamber of nu/nu 

subjects (left), and corresponding HT1080 circularity (right; *two-tailed t-test on cell data; n=177 

total cells; scale bar = 25μm).  
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Figure 3-18. Analyzing effect of a-IL10R on MT dynamics in vivo. (A-C) MT dynamics were 

captured from Figure 3-17 and analyzed as in Figure 3-17A (*two-tailed permutation test; 

n=2,454 tracks and 51 total cells across n=8 tumors; bars denote mean; scale bar, 10μm). All 

box plots are min, 25%tile, median, 75%tile, and max.   
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3.3 Discussion 

How do TAMs shape tumor MT dynamics? Our data implicate MΦ polarization 

influenced by IL4, aIL10R, and PI3Kγ-targeted IPI-549, which in turn likely affects MT 

dynamics through interdependent processes, including i) local signaling; ii) guidance 

through contact and spatial confinement; and iii) alignment through matrix remodeling 

and force generation. Altered transcription, cytoskeletal shape, and post-translational 

activities in polarized MΦ all affect these processes. Our in vitro data suggests 

contributions from the latter (MT dynamics decouple from gross cell shape changes 

within minutes in Figure 3-13), and broadly establishes a role for TAM polarization. 

Experiments with erlotinib (Tarceva) and the human EGFR-neutralizing mAb225 (non-

humanized C225, cetuximab/Erbitux) suggest ligand-dependent EGFR signaling on 

cancer cells is required. EGFR ligands including heparin binding EGF (HB-EGF) are 

produced by both TAMs and cancer cells113,127. However, impacts of TAM polarization 

on ligand production are complex, and tumor EGFR signaling may likewise influence 

TAM polarization128. Thus, future work is needed to dissect EGFR-mediated tumor-TAM 

feedbacks, and more broadly, which other mechanisms are most important. 
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Figure 3-19 Summary schematic of TAM-dependent MT dynamics in cancer cells. (Top) 

Tumor cells in vivo exhibit high MT coherence and orientation along the major length axis of 

elongated, migrating cells. In vitro, cancer cells display this phenotype upon co-culture with M2-

like IL4-MΦ. (Bottom) The IL4-MΦ co-culture phenotype depends on cell signaling pathways in 

both tumor cells and MΦ, including EGFR on tumor cells, and pathways known to influence MΦ 

polarization including PI3Kγ and IL10R. In vivo, treatment with an IL10R-neutralizing antibody 

reduces MT coherence and orientation in neighboring cancer cells. 
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Intriguingly, microglia and astrocytes bearing some relationship to TAMs (e.g. 

with respect to phagocytic activity) have been implicated in outgrowth and guidance of 

MT-rich axons 129. Our results suggest that the polarization state of such cells — for 

instance as mediated by IL10R — could impact axon guidance, and IL10R signaling 

within astrocytes and microglia has been reported130,131. 

Technical limitations of our approach must be appropriately weighed. Variable 

MT density within individual cells makes it difficult to uniformly capture all MT dynamics, 

and therefore, our analysis was focused on a subpopulation of more centrally located 

MTs. Comets transiting in and out of the focal plane may not form continuous tracks. 

This occurs in cells grown in 2D and especially in 3D environments, and similar 

challenges arise in cell shape analysis. Strict tracking supports low false positive rates, 

but may decrease abilities to detect smaller and slower comets resulting in higher false 

negative rates, and different imaging conditions may bias the subpopulations of MTs 

being tracked (Figure B-3). We addressed many such issues through control 

experiments (for instance using synthetic imaging noise). Most importantly, this was 

addressed by testing hypotheses, including that TAM-repolarization via aIL10R may 

impact MT dynamics, through a comparison with matched control tumors or cells 

imaged under otherwise identical conditions. In this example, limitations and caveats of 

in vivo analysis applied equally across treatment groups, and MT dynamics still were 

observed to change in a manner consistent with the in vitro co-culture data. 

Here we demonstrate how local microenvironmental signaling with TAMs can be 

as much of a distinguishing factor as the 3D extracellular matrix environment in affecting 

MT behavior in vivo compared to in vitros. In fact, MΦ polarization is likely playing a 
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substantial role in shaping the extracellular matrix132. Our findings may be especially 

important for prodrug formulations of MT-targeted therapies based on nanoparticles 

(e.g. Genexol PM, used clinically in Korea) and antibody-drug conjugation (e.g. 

trastuzumab emtansine / Kadcyla), as these can accumulate in TAMs91,133. Future 

studies examining MTs and MT-targeted drugs in vitro might evaluate their action in the 

context of relevant populations including TAMs to better gauge true in vivo effects. 
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3.4 Methods and Materials 

Materials (i.e., cell lines, cell culture equipment, etc)  and methods (i.e., statistical 

analyses, imaging setup, etc) described in chapter 2 still apply for relevant experiments 

and computational analyses presented in this chapter. Additional material and methods 

are presented below. 

 

3.4.1 Materials 

Raw264.7 (Raw-MΦ) were originally from ATCC, and were cultured according to 

provider guidelines using DMEM Raw-MΦ and 10% HI FBS (Atlanta Biologicals), 100 IU 

mL-1 penicillin,100 μg mL-1 streptomycin (Invitrogen), with incubation at 37℃ and 5% 

CO2. Cells were routinely evaluated for mycoplasma contamination. Fluorescent-

conjugated nanomaterials were synthesized 5using PacificBlue (λex/λem = 

401nm/452nm) or VT680XL (λex/λem = 665nm/688nm) as labeling fluorophores using 

previously described protocols91,120. Briefly, carboxymethylated polyglucose (550 mg, 

2.3 mmol COOH) was dissolved in 6.2mL of MES buffer (50 mM), followed by addition 

of EDC (2.4 g, 12.5 mmol) and NHS (457.2 mg, 4.0 mmol). After 10 minutes at room 

temperature (RT), L-lysine (401.8 mg, 3.5 mmol) dissolved in 0.7 mL MES buffer (50 

mM) was mixed with the solution for 5 hours at RT. The mixture was then slowly added 

to ethanol (30mL). After centrifugation (2500 × g) for three minutes, a white pellet 

formed. This pellet was then dissolved in Milli-Q H20, filtered using a 0.22 μm nylon 

syringe filter (Thermo Fisher), filtered again with a centrifugal filer (MWCO 8–10 kDa, 

Amicon Ultra), and finally lyophilized resulting in solid particles (Macrin-NP). The 

Macrin-NP (20 mg) was then conjugated to VT680XL by dissolving it in MES buffer (200 
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μL, 50 mM) followed by triethylamine (2 μL, 14.4 μmol) and VT680XL-NHS (0.5 mg in 

215.5 μL DMF, 0.27 μmol). The solution was shaken at RT for 3h, purified using PD-10 

columns with water, and filtered using centrifugal filters. This new solution was further 

diluted with MES buffer (200 μL, 50 mM, pH 6.0) and treated with Et3N (2 μL) and 

succinic anhydride (100 μL, stored in 750 mM in DMSO). After shaking this mixture 

overnight, VT680XL-Macrin was purified using PD-10 columns and centrifugal filters 

(MWCO 10 kDa, Amicon Ultra). Fluorescently labeled Macrin was analyzed and 

confirmed by a SEC, a Varian Cary 100 UV/vis spectrophotometer, and a Varian Cary 

Eclipse fluorescence spectrometer. Poly(D,L-lactic-co-glycolic acid) PLGA-BODIPY 

encapsulated Poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) PLGA-PEG 

polymeric micelles and angioSPARK-680 were used as long-circulating vascular 

labeling agents. 91).   

The following antibodies and drugs (listed as target; source; calatog/clone#; 

concentration) were used for in vitro experiments only: Y-27632 (ROCK inhibitor; Tocris; 

Cat # 1254; 10μM); serabelisib (PI3Kα inhibitor; Selleck Chemicals; Cat # S8581; 

0.5μM), AZD6482 (PI3kβ inhibitor; Select Chemicals; Cat # S1462; 0.5μM), AMG319 

(PI3Kδ inhibitor; Selleck Chemicals; Cat # S7813; 0.5μM), IPI-549 (PI3Kγ inhibitor; 

Selleck Chemicals; Cat # S8330; 0.5μM), erlotinib (EGFR inhibitor; Selleck Chemicals; 

Cat # S7786; 5μM), UNC2025 (MERTK inhibitor; Selleck Chemicals; Cat # S7576; 

100nM), R848 (TLR7/8 agonist; Selleck Chemicals; Cat # S8133; 1μM), human Integrin 

β1/CD29 Antibody (R&D Systems; Clone # P5D2; 10μg mL-1), anti-CSF1R (BioXCell; 

Clone # AFS98 ;10μg mL-1), and Axl Fc Chimera (R&D Systems; Cat# 154-AL-100; 

10μg mL-1). For measuring MT dynamics, each treatment was given 2-4 hours prior to 
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imaging. For measuring cell shape each treatment was given 24 hr. prior to imaging. 

The following antibodies were used for in vitro and in vivo experiments: InVivoPlus anti-

mouse IL-10R (anti-IL-10R; BioXcell; Clone # 1B1.3A; 10μg mL-1), InVivoMAb anti-

human EGFR (anti-EGFR; BioXcell; Clone # 225; 10μg mL-1),  InVivoPlus rat IgG1 

isotype control (IgG ctrl; BioXcell; Clone HRPN; 10μg mL-1), InVivoMAb mouse IgG1 

isotype control (IgG ctrl; BioXcell; Clone MOPC-21; 10μg mL-1).  

 

3.4.2 Intravital Microscopy additions  

In instances (Figure 3-18), aIL10R or rat IgG isotope control was administered 

i.p. (200 μg in 100μL of PBS) to mice 5-7 days after HT1080-EB3-mApple injection and 

treated again after two days. Images were acquired after the first and second 

treatments. For visualizing TAMs, 24 hr. prior to the first day of imaging, mice were 

administered VT680-labelled polyglucose nanoparticles (Macrin)120. 

 

3.4.3 Disseminated OVCA imaging 

5 million ES2 cells stably transduced to express the GFP-variant, mClover, were 

suspended in 200 μl PBS and i.p. injected into female nu/nu mice of 6-10 weeks age to 

establish a model of disseminated OVCA. Beginning 3 days after tumor inoculation, 

mice were treated i.p. with 150 μl clod-lip (5 mg mL-1) or PBS control liposomes 

(Liposoma BV). 3 and 6 days after, 50 μl clod-lip or PBS-lip were again used. The 

following day, PacBlue-labelled polyglucose nanoparticles (Macrin) were administered 

i.v. and 24h later, mice were sacrificed for immediate ex vivo confocal imaging of tumor-



 

    91 

bearing organs. Macrin has been shown by flow cytometry and imaging to be >90% 

selective for tumor associated macrophages in mice120.  

 

3.4.4 BMDM Culture 

Murine bone marrow-derived MΦ (BMDMs) were isolated from the femurs and 

tibias of 6-8 week old C57BL/6 mice. Marrow was flushed from the bones using 10mL 

cold PBS flush via 21-gauge needle, cells were centrifuged for 5 min. at 300 x g, and 

resuspended with PBS. Ammonium chloride (0.8%, NH4Cl, StemCell Technologies) was 

added at 4℃ for 5 minutes to lyse red blood cells. The mixture was centrifuged again for 

4 min. at 300 x g.  Cells were then plated on a 24 well plate with Iscove’s Modified 

Dulbecco’s Medium (IMDM), 10% PBS + P/S, and 10ng mL-1 MCSF (Peprotech). The 

medium was replaced every 2 days for 6 days. On day 7, MΦ were cultured in fresh 

IMDM (MCSF-MΦ) or further polarized by replacing MCSF with 100 ng mL-1 

lipopolysaccharide and 50ng mL-1 interferon-gamma (LPS/IFNγ-MΦ), or 10 ng mL-1 

interleukin-4 (IL4-MΦ; Peprotech). After 24 hr. media was replaced with fresh IMDM, 

10% PBS + P/S for 12 hr., MΦ treated 8 hr. with 10 nmol Alexa647-labeled Macrin, and 

then treated with fresh IMDM. 

 

3.4.5 BMDM and Tumor Cell co-culture 

Immediately following the steps outlined aboveen, approximately 6,500 HT1080-

mApple cells or 10,000 ES2-EB3-mApple cells were seeded into wells already 

containing polarized MΦ, where they were then co-cultured for approximately 48 hours 

in a 96-well plate (Ibidi). The co-cultures and matched monocultures were all grown in 
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IMDM, and then fixed using a 4% PFA + PBS for 20 min. and imaged. For conditioned 

media experiments, approximately 6,500 tumor cells were seeded per well into a 

separate 96-well plate. The media from the MΦ culture was transferred into the 

separate well plate containing newly seeded tumor cells. Tumor cells were grown for 48 

hr., followed by fixing and imaging as above. In vitro images for cell shape quantification 

and ES2 EB3 imaging were acquired using a modified Olympus BX63 inverted 

microscopy system with environmental chamber and robotic stage.   

 

3.4.6 RAW264.7 and Tumor Cell Culture 

Approximately 500 RAW264.7 were seeded in a 96 well plate and treated 

with/without 20 ng mL-1 IL-4 (24 hr.), followed by VT-680 labelled Macrin (24 hr.). On 

day 3, approximately 1000 HT1080-EB3-mApple cells or ES2-EB3-mApple cells were 

seeded onto the plate. Cells were co-cultured for 24 hr. followed by drug treatment 

lasting 2-4 hours or 24 hr. (except aIL10R, which was treated for 48 hours prior to 

imaging; Figure 3-17). For ES2-EB3 MT dynamics drug screen, RAW264.7 were 

polarized and labelled with Macrin prior to seeded on a 10mL petri dish, and were 

seeded simultaneously with tumor cells.  

 

3.4.7 Western Blot for studying MΦ Polarization 

RAW264.7 were cultured in 6-well plates and treated with +/- 20ng mL-1 IL-4, +/- 

10μg mL-1 aIL10R, and/or +/- 10μg mL-1 Rat IgG isotope control, resulting in a total 4 

conditions (+IL-4 +aIL10R, +IL-4 +IgG ,+aIL10R, +IgG). Cell lysates were extracted 

from each well with RIPA buffer containing protease inhibitor and PMSF. 30 µg of total 
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protein was resolved on 4–12% NuPAGE electrophoresis gels (Invitrogen) and then 

transferred onto nitrocellulose membranes (Invitrogen). The membranes were incubated 

with the following antibodies at the corresponding dilution factors: rabbit anti-CD206 

antibody (Abcam, polyclonal) at 1:1000 or mouse anti-β actin antibody (Cell Signaling 

Technology, clone#8H10D10) at 1:2000. This was followed by incubation with the 

appropriate secondary antibodies conjugated to horseradish peroxidase (Cell Signaling 

Technology). The immunoreactive bands were detected with ECL Chemiluminescent 

substrates (Thermo). To quantify western blot images, densitometry analysis was 

performed using ImageJ, and the densitometry value for each protein was normalized to 

β-actin before further being normalized. 

 

3.4.8 PCA analysis of select MT features, Clustergram, and K-L Divergence 

PCA was performed using the python scikit-learn package. Two features, track 

orientation and track cellular coherence, were used, such that PC1 is a linear 

combination of the track orientation and cellular coherence features. To examine the 

differences between two track features: cellular coherence and orientation, across all 

nine HT1080 cell populations or conditions, K-L divergence was computed between the 

PC1 distributions of each condition (Figure C-2). Clustergram analysis involved finding 

the average MT track feature value for each HT1080 tumor cell population. This was 

accomplished by first removing all MT tracks that had feature values greater than three 

SD’s away for any of the plotted features of interest, followed by averaging track feature 

values for each cell population/condition. All columns were normalized (0 mean, 1 SD). 
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The average values were then clustered using hierarchal clustering (method=complete, 

metric=euclidean) via the clustergram function available in the python seaborn package.  

 

3.4.9 Contact Analysis (Figure 3-20) 

From the MΦ mask, a distance transform image (where each pixel value is the 

distance to the nearest MΦ) was constructed. The minimum distance between tumor 

cell and MΦ was computed using the the distance transform and the tumor cell mask. 

Tumor cells were binned according to low, medium, or high unnormalized circularity 

measures (Figure 3-8B: low=0,0.4), medium=0.4,0.7), high=[0.7,1), Figure 3-9B: 

low=[0,0.7), high=[0.7,0.8), medium=[0.8,1)). Computing significance scores over 

individual cells resulting in extremely low significance values, and therefore, significance 

was calculated using cell averages from image replicates for in vitro cells and tumors for 

vivo cells in all cell shape analyses unless explicitly stated otherwise. To calculate p-

values, averages across batches were calculated and outlier less Q1-1.5*IQR(inter 

quartile range) or greater than Q3+1.5*IQR were excluded from the calculations. A two-

sided t-test or nonparametric wilcoxon rank sum test was then applied to obtain a final 

p-value. 
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Figure 3-20. A) Image processing pipeline for how the distance of nearest macrophage was 

calculated for HT1080 cells (corresponding to Figure 3-8,3-9). 

3.4.10 Cell Migration Analysis 

HT1080-mem-mApple cells were imaged by IVM as described above with the 

EB3-mApple model and in a prior report91. Briefly, to track cell migration, confocal z-

stacks were acquired roughly every 5-10 minutes at multiple tumor locations for 

approximately 2 hr as reported91. Tumor associated phagocytes and microvasculature 

were labeled by co-administration of a dextran-coated nanoparticle known to be highly 

phagocytosed by perivascular macrophages (ferumoxytol-VT680XL), along with a more 

slowly extravasating PLGA-PEG polymeric nanoparticle91l.  Ferumoxytol-VT680XL was 

intravenously co-administered (750μg 44) with PLGA-PEG nanoparticle (100nM BODIPY) 

immediately prior to time-lapse imaging. 50 cells were identified, and a cell mask was 

created for each cell. From the cell mask, morphological features of eccentricity and 

circularity were calculated using custom python scripts. To calculate migration rates for 

each of these 50 tumor cells, the center of the cell was approximated and traced over a 

minimum of 4 frames. 

 



 

    96 

3.4.11 TAM and Vasculature Association Analysis 

The association between HT1080-mem-mApple cells and vasculature in vivo 

(Figure 3C) was determined by first generating a mask image representing the tumor 

vasculature via Otsu thresholding on the original images labelled with either 

AngioSPARK680 or PLGA-PEG polymeric nanoparticle. Individual cell masks were 

manually identified. If any region of the tumor cell overlapped with the vasculature 

mask, then the TC is marked as contacting vasculature. The same process was applied 

to macrophage images to study macrophage-tumor cell association. 

 

3.4.12 Monoculture and IL4-MΦ Coculture Effect Size/Significance Analysis 

The effect sizes between HT1080-EB3-mApple and ES2-EB3-mApple cells 

grown in monoculture and in coculture with IL4 polarized MΦ was determined for all 14 

MT features. The effect sizes were computed separately for each experiment run (2 for 

ES2-EB3-mApple) and (4 for HT1080-EB3-mApple) to account for potential batch 

effects, and pooled together. Some runs had slightly varying conditions described as 

follows: ES2-EB3-mApple runs 1 and 2: untreated monoculture vs IL4-polarized BMDM 

MΦ co-culture. For HT1080-EB3-mApple cells: (1) untreated monoculture vs IL4-

polarized BMDM MΦ co-culture, (runs 2-4) monoculture and IL4-polarized Raw MΦ; 

both treated with either Rat IgG isotope control (run 2), mouse IgG isotope control (run 

3), or DMSO control (run 4). Effect sizes for each run were calculated using Cohen’s D 

Statistic (see Methods: MT tracking and feature extraction) and averaged across 

multiple runs. To generate violin plots (Figure 3-2D), ES2-EB3-mApple tracks were 

combined from both runs (top) and HT1080-EB3-mApple tracks were combined for runs 
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2-4 (bottom). To calculate the significance of each feature between monoculture and 

coculture conditions, tracks from each batch were individually normalized (mean=0, st. 

dev.=1). An equal number of cells was randomly sampled (33 HT1080 cells and 33 ES2 

cells), and a maximum of 25 tracks from each cell was subsampled. 1000 permutations 

were then performed for two pooled MT track populations (+/- MΦ coculture) such that 

cell labels for MT tracks were shuffled between the cell populations being compared. A 

naïve wilcoxon rank sum test between pairs of cell populations was applied to 

determine the permutation p-value, for each MT feature. For each feature, the number 

of permutations with a p-value less than the p-value of the true distribution was divided 

by the total number of permutations to obtain a permutation based p-value. For multiple 

hypothesis testing correction (12 different features), a benjamini-hochberg correction 

(Q(fdr)=0.05) from the python statsmodels package was used to generate the final p-

value. 

 

3.4.13 Single-cell RNA sequencing (scRNAseq) analysis 

Analysis of ligand-receptor interaction from scRNAseq data was performed 

based on prior methods20. Briefly, scRNAseq data from biopsied patients was pooled 

across individuals. Cell-type identities (tumor, T-cell, myeloid cell, etc.) were provided 

from the published data annotations, and the average expression of IL10 was multiplied 

by the average expression of IL10RA or IL10RB for all such cell-type populations. 

Values were normalized to the maximum observed product (scaled to a maximum of 

1.0). SPRING software (accessed Dec 2019 - Jan 2020) was used for dimensionality 

reduction to visualize and categorize key cell populations134. For OVCA, scRNAseq data 
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(GSE118828 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118828) was 

pooled across samples from 9 biopsied subjects, including 5 with high grade serous 

OVCA, 2 with low grade serous OVCA, 1 with metastatic peritoneal disease, and 1 with 

a benign lesion126. Other analyzed data included scRNAseq data from 19 melanoma 

patients (GSE72056 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72056)124 and 18 patients with 

head and neck squamous cell carcinoma (HNSCC; GSE103322 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322)125. In all three 

datasets, IL10 to IL10RB signaling was highest for homotypic MΦ (MΦ to MΦ signaling) 

compared to all other cell-type pairings. 
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Chapter 4 Inferring Ligand receptor communication 
dynamics and signaling patterns from single-cell RNA sequencing 
datasets. 
 
The material in this chapter is unpublished and currently under preparation. 

Abstract: 

Biological processes such as homeostasis, development, disease progression are 

dynamic processes regulated by complex interactions between various cell types. 

Single-cell RNA sequencing has enabled the discovery of new cell types and 

quantification of receptors and their cognate ligands in mammalian tissues. However, it 

has been challenging to translate static cell-cell communication into a more 

comprehensive understanding of how these networks dynamically operate. To address 

this problem, we developed POLARIS, a single-cell RNA-seq based computational 

method to model how ligand and receptor interactions change during a biological 

process of interest. POLARIS combines ligand-receptor interaction analysis with 

inferred dynamical information obtained from single-cell trajectory methods. We apply 

POLARIS to examine two different biological processes: the epithelial to mesenchymal 

transition (EMT) and colorectal cancer progression. We recover important ligand-

receptor mediated regulatory signaling patterns present during these biological 

processes.     

 

  



 

    100 

4.1 Introduction 

Cells communicate with one another to change their internal state and drive 

critical cellular processes such as differentiation, proliferation, and reprogramming. 

When cell communication is altered or dysfunctional, diseases such as cancer ensue. 

Cellular crosstalk mechanisms vary, from mechanical cues between neighboring cells to 

endocrine signaling across organs. Single-cell RNA sequencing (scRNA-seq) 

technologies provide a detailed view of a tissue's cellular composition in both normal 

and disease states. In addition to revealing new cell types and tissue heterogeneity, 

scRNA-seq data analysis has recently enabled the exploration of an essential class of 

intercellular communication, ligand-receptor (LR) interactions. In such interactions, a 

small protein, or ligand, is secreted from one cell and binds to a surface receptor on the 

same cell (autocrine) or different cell (paracrine). 

Because LR interactions are targeted by numerous therapeutics, identifying 

potential interactions contributing to the disease progression is fundamental to 

improving clinical outcomes20. In cancer treatment, immunotherapies such as 

Pembrolizumab and Ipilimumab target PD1- PDL1 and CD28-CTLA interactions, 

respectively135. Screening scRNA-seq datasets for LR interactions across different cell 

types in a tumor has also revealed crosstalk mechanisms by which the tumor 

microenvironment promotes cancer progression. Such analyses have also explored 

other diseases and potential mediators in organ development and homeostasis9.  

As detailed in chapter 1, a typical computational pipeline for quantifying LR 

interactions from scRNA-seq data relies on a predefined list of validated LR pairs9. For 

each known LR pair, interaction strength is measured between different single-cell 
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populations based on a scoring function. The scoring function takes the ligand and 

receptor gene expression as inputs and outputs an interaction score. Combining the 

interaction scores from multiple LR pairs can result in a global communication network 

between cell types within a tissue sample of interest. Numerous publicly available 

computational tool kits, including CellPhoneDB23,136, CellChat24, ICELLNET25, and 

RNAMagnet15, provide a robust characterization of LR interactions from scRNA-seq and 

bulk RNA-seq measurements. Each method differs in the scoring function employed, 

significance testing, type of interaction measured, and incorporation of additional 

information such as downstream signaling pathways23.  

Because scRNA-seq experiments capture gene expression at a single time point, 

the computational approaches discussed above present only the structure of a 

communication network within a tissue. Understanding how cellular communication 

networks operate requires information on how intercellular interactions change over 

time. Recently developed single-cell trajectory analysis methods can infer dynamic 

information from scRNA-seq datasets137–139. Such methods arrange single-cells into 

trajectories based on gradual changes in gene expression, with the underlying 

assumption that a continuum of cell states is observed at any given time. Each cell can 

be assigned a pseudotime, a numerical value indicating that cell’s location along a 

trajectory or progression for the biological process of interest. We hypothesize that 

modeling LR interactions over pseudotime can provide insight into important regulatory 

programs driving dynamic biological processes. 

Here we detail a novel approach to analyze intercellular communication from 

scRNA-seq data, called POLARIS. Rather than identifying significant LR interactions 
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between cell types, POLARIS aims to understand how interactions between and within 

cell types change and modulate cell state, disease progression, and/or tissue 

homeostasis. POLARIS models intercellular communication in the form of ligand-

receptor interactions as a function of pseudotime. We first identify cellular trajectories 

indicating the biological process of interest and assign a pseudotime value to each cell. 

Second, we apply a curated list of LR interactions, and model how each LR pair 

changes over pseudotime. And finally, clustering and significance testing reveal 

enriched interactions and potential regulatory circuits. Inferring changes in LR 

interactions along cell trajectories reveals how such interactions may be affecting cell 

fate.  

By applying POLARIS on publicly available scRNA-seq datasets, we examine 

two different biological processes, the epithelial to mesenchymal transition (EMT) and 

colorectal cancer progression. We demonstrate that POLARIS recovers enriched LR 

interactions and provides insight into feedback/feedforward signaling behind these 

biological processes. 
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4.2 Results 

4.2.1 Modeling Cell-Cell Communication Over Pseudotime 

POLARIS relies on a series of computational steps to understand the relationship 

between intercellular communication and cell fate in a biological process of interest 

(Figure 4-1). First, pseudotemporal ordering of single cells is determined based on 

gene expression data. Numerous single-cell trajectory analysis software, including 

Monocle 2, STREAM, and Wishbone, are publically available to calculate the 

pseudotime of individual cells and detect cell lineages. The current implementation of 

POLARIS aims to capture how cells along different points in development signal to one 

another and has functionality for: 

1. Single lineages (step 1A). 

2. Multiple differentiated lineages arising from a common source (step 1B). 

3. Independent lineages arising from different sources (step 1C).   

Second, POLARIS models changes in intercellular interactions, particularly LR 

interactions, over pseudotime (Step 2). The analyses presented in this manuscript used 

a reference list of approximately 1,200 known, literature-supported, and manually 

curated ligand-receptor interactions, including chemokine, cytokine, cell-extracellular 

matrix, receptor tyrosine kinases interactions. For each LR pair, the ligand expression 

(pink curve) and cognate receptor expression (blue curve) are quantified along two cell 

lineages.  

In a typical LR analysis, single cells are assigned to a discrete number of cell 

types and the average ligand and receptor expression is used to compute an interaction 

score. Because cell states are not defined along continuous lineage and scRNA-seq 
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datasets have a high dropout rate, sliding window was used to construct a curve 

representing the proportion of cells expressing a ligand or receptor (gene count greater 

0)  as a function of pseudotime. After computing LR expression profiles, POLARIS then 

constructs an interaction topology map for each LR pair, denoted as a LR topology. 

Briefly, LR topologies are constructed via the tensor product of two functions: the ligand 

expression (l(t)) and receptor expression (r(t)).  Various signaling patterns display 

different topologies. For example, a LR interaction involved in a positive feedback 

mechanism where cells further along the lineage signal to cells earlier will generate a 

different pattern then LR pairs involved in feedforward or autocrine signaling.  

To decipher, quantify, and visualize these LR topologies, POLARIS utilizes 

various supervised and unsupervised strategies (step 3). Unsupervised learning 

methods such as PCA and clustering reveal LR pairs that demonstrate similar signaling 

patterns along cell lineages of interest. Supervised learning methods employed by 

POLARIS focus on predetermined or user-crafted regulatory patterns and quantifies the 

contribution of these patterns to the observed LR topology.  
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Figure 4-1: Overview of POLARIS. (Step 1) By applying single-cell trajectory methods, 

pseudotime values are computed for each cell. Interactions occurring within a single lineage 

(top), multiple lineages (middle), or independent lineages (bottom). (Step 2) The ligand 

expression profile along lineage A and the receptor expression profile along lineage B represent 

the fraction of cells expressing a particular ligand or receptor as a function of pseudotime. An 

LR topology is constructed for each LR expression profile. Each LR topology capture interaction 

patterns between two lineages for a particular LR pair. (Step 3) Applying computational methods 

including PCA, clustering, and supervised clustering to the set of LR topologies can reveal 

unique regulatory programs or interaction patterns for a particular LR pair. 

 

 

4.2.2 POLARIS captures important signaling patterns in EMT signaling 

The epithelial to mesenchymal transition is fundamental to several biological 

processes including cancer metastasis, embryogenesis, and organ development. 

During this transition, epithelial cells which originally have strong cell adhesion, begin to 

display a mesenchymal cell phenotype consisting of strong migratory capacity, ability to 
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invade the extracellular matrix (ECM), and dissolution of cell-cell junctions. To 

demonstrate the applicability of POLARIS to study the EMT transition, we re-examined 

a scRNA-seq dataset of 3133 cells from Cook et al. (2020)140. This dataset was 

generated by treating cultured A549 human lung-cancer cells with the EMT inducing 

factor, TGFB1. Cells were either left untreated or treated for 8 hrs, 1 day, 3 days, and 

7days before before being sequenced to construct a gene expression matrix. Each cell 

was computationally assigned a pseudotime by the study authors which correlated with 

EMT progression and used as inputs for POLARIS (Figure 4-2A).  

 

 

Figure 4-2: PCA analysis reveals distinct LR interaction patterns in EMT. (A) single cells 

are arranged by pseudotime indicating their current state along the epithelial to mesenchymal 

transition. (B) PCA analysis was performed on the set of LR topologies. (C) Visualization of PCA 

loadings for the first three principal components. 
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For each of the 1580 LR interactions a topology map representing the strength 

interaction for cells at different stages of EMT was constructed. Using POLARIS, we 

applied PCA to the set of computed topologies as a dimensionality reduction method to 

systematically identify different regulatory patterns (Figure 4-2B). A closer look at the 

PCA loadings reveal that while the first principal component (PC1) captures the overall 

interaction magnitude, the second (PC2) and third principal components (PC3) capture 

unique interaction patterns (Figure 4-2C). LR pairs with a negative PC2 value involve 

mesenchymal-like cells - further along the EMT axis - expressing genes encoding for 

ligands such as SEMA3C and FN1 which bind to epithelial-like cells - at the beginning of 

the EMT axis, suggesting a potential feedback mechanism. At the opposite end of the 

spectrum, cells with a higher PC2 value involve epithelial-like cells signaling to 

mesenchymal like cells. Positive and negative PC3 scores also indicate a separate set 

of interaction patterns.  

While PCA can help in resolving the predominant patterns governing a biological 

process of interest, in this case EMT, we also wanted to explore how much specific 

interaction patterns contribute to the observed behavior of each LR pair. For example, 

how significant is an autocrine interaction between mesenchymal-like cells for a specific 

LR pair. To perform this analyses, we handcrafted five distinct topologies: (1) 

mesenchymal-like cells signaling to each other (autocrine interaction between cells later 

in pseudotime), (2) mesenchymal-like cells signaling to receptors on epithelial-like cells 

(paracrine interaction between cells later and earlier in pseudotime), (3) intermediary 

cells signaling to each other, (4) epithelial-like cells signaling to mesenchymal like cells 
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(paracrine interaction between cells later and earlier in pseudotime), and (5) epithelial-

like cells signaling to each other (autocrine interaction between cells early in 

pseudotime)(Figure 4-3). POLARIS applies a convolution operation between the 

handcrafted topology and each experimentally determined LR topology. The results of 

this operation yields a quantifiable result indicating the similarity between the two 

topologies, and thereby the contribution of a specific signaling pattern to the observed 

interaction of the LR pair of interest.  
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Figure 4-3: Supervised clustering of LR topologies quantifies the contribution 

of LR interactions. (A) Implementation of supervised clustering begins in a convolving LR 

topologies with a set of user-defined synthetic topologies. This operation results in a 

matrix where columns correspond to specific LR pairs and rows correspond to interaction 

patterns. (B-D) Specific interactions patterns and the matched LR expression profile and 

topology are highlighted. 

 

Examining the top 50 LR pairs recaptured important hallmarks of EMT. For 

example, we observed an increase in a number of mesenchymal markers over 

pseudotime including fibronectin (Fn1) and fibrillar collagens(COL1A1)141. The 

expression profile of ligands also closely matched analyses performed on independent 

datasets142. More notably, POLARIS identifies an enrichment of cell-ECM interactions 

that are predominantly occurring between mesenchymal like-cells later in pseudotime. 

The observed autocrine signaling pattern may be suggesting a positive feedback 

mechanisms which continues to drive cells to become more mesenchymal-like (Figure 

4-3D). These findings are consistent with studies on fibroblasts revealing ECM 

production activates a profibrotic positive feedback loop143.  

 

In addition to cell-ECM interactions, we also recovered other distinct interaction 

patterns (Figure 4-3B,C). For example, epidermal growth factor receptor (EGFR) 

occurs via a predominantly paracrine interaction between early epithelial-like cells and 

later mesenchymal like cells (Figure 4-3B).   
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4.2.3 POLARIS reveals regulatory patterns between independent lineages in 

colorectal cancer. 

Many cancer treatments target components of the tumor microenvironment, 

including immune cells, extracellular matrix, and the tumor vasculature. Therefore, it is 

essential to investigate how these different components communicate to facilitate 

cancer progression. Recently, scRNA-seq analysis has successfully explored 

intratumoral heterogeneity in colorectal cancers(CRC)144. As an important follow-up, we 

evaluate how the different CRC TME cell types interact with and regulate each other. 

We examined a scRNA-seq dataset consisting of 7877 colorectal cancer cells, and 

1239 matched normal cells from 6 patients from Lee et al. (2020)145. After pooling all the 

cells, each cell was assigned a pseudotime based on how far its gene expression 

diverged from the normal cell population (Figure 4-4). By applying this method, 

pseudotime values approximate cancer progression.  

After computing pseudotime values for individual cells, we focused on three 

specific cell types: epithelial cells(5519 cells; 5024 tumor, 495 normal), myeloid cells 

(2371 cells; 1653 tumor, 718 normal), and fibroblasts (1226 cells; 1200 tumor, 26 

normal). Each of these cell types was defined as its own lineage, resulting in three 

distinct lineages. We applied POLARIS to study the communication between and within 

each lineage (Figure 4-5).  

Similar to the analysis in section 4.3.2, there is an enrichment of cell-ECM 

interactions, particularly between epithelial-epithelial and epithelial-fibroblast cell 

populations. These results are consistent with prior studies demonstrating that EMT 

transition is associated with a metastatic CRC phenotype146. Additionally, the 
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directionality in signaling differs between the different cell populations. Malignant 

epithelial cell populations (later in pseudotime) interact with both normal and tumor-

associated macrophages (Figure 4-5B). The trend between fibroblasts and epithelial 

cells is slightly different. A higher degree of signaling is observed between tumor-

associated fibroblasts and normal epithelial cells (Figure 4-5C). These signaling 

patterns suggest that aberrant ECM production from tumor-associated fibroblasts 

interacts with epithelial cells to facilitate cancer progression. In myeloid - epithelial cell 

interactions, malignant tumor cells may be reprogramming myeloid cells to create a 

prometastatic niche. A closer inspection at LR pairs indicates several interactions with 

CD44 as significant. CD44 is a known stem cell marker for CRC147, and because of the 

high degree of centrality, results suggest that targeting CD44 will significantly alter the 

observed cell-cell communication network. 
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Figure  4-4: Pseudotime analysis of cell types in CRC. (A-C) Individual cells are colored 

based on their location within the tumor as annotated in Lee et al. (2020)145 (left) or by the 

computed pseudotime scores (right). Epithelial cells (A), Myeloid cells (B) and Fibroblasts cells 

(C) were independently analyzed. ScRNA-seq data presented in this figure was obtained from 

Lee et al. (2020)145. 
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Figure 4-5. POLARIS evaluates intercellular communication between three independent 

lineages in CRC. (A-C) Signaling patterns between epithelial cells (A), epithelial and myeloid 

cells(B), and epithelial and fibroblasts cells (C) are highlighted. The contribution of each 

signaling pattern (left) is measured for each LR pair (right). The top 50 LR pairs are presented in 

the clustergram. For a more complete list of interactions see Figure C-1.  
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4.3 Discussion 

This chapter describes a new computational method, POLARIS, that 

incorporates known LR interactions and single-cell trajectory inference results to identify 

important LR-mediated signaling patterns that regulate a biological process of interest. 

We applied this method to two independent scRNA-seq datasets. The EMT analysis 

evaluated single-cells obtained from an in vitro study from a single lineage, while the 

CRC analysis evaluated three independent lineages consisting of cells from patient 

samples. We recovered several interactions and identified important signaling patterns 

consistent with other reports. Cells undergoing EMT displayed several coordinated 

interactions with extracellular matrix factors secreted by mesenchymal-like cells. 

Furthermore, POLARIS predicted a potential feedforward signaling mechanism driving 

EMT. In addition to identifying important signaling mediators in CRC progression, a 

unique direction-dependent interaction pattern was observed between epithelial-myeloid 

interactions and epithelial-fibroblast interactions.  

A majority of existing computational tools to quantify cellular interactions assume 

that cells exist as discrete cell types and require a prerequisite cell clustering step9. 

Therefore, they do not account for a continuum of cell states. These methods aim to 

understand the structure of global cell communication networks. However, 

understanding how interactions within these networks affect dynamic biological 

processes and vice versa requires evaluating how interactions change. A small number 

of methods combine trajectory analysis with external LR datasets 24,148 as we have 

here. The method presented in this chapter not only goes beyond correlating LR 

interactions with pseudotime, but also sheds light on how cells at various points in 
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pseudotime regulate each other. As a result, we can uncover new regulatory patterns 

between and within different cell types (Figure 4-5). Despite this, there are still several 

improvements that can increase the accuracy of detecting potential regulatory patterns. 

We can incorporate data from multi-subunit LR complexes and downstream signaling 

patterns. Furthermore, combining results from other known LR methods can limit the 

number of significant hits and enable more practical functional validation experiments.� 

With an increasing number of available scRNA-seq datasets, we hope computational 

methods such as POLARIS become important hypothesis generation tools. LR 

communication represents an important class of drug targets and inferring which LR 

pairs regulate disease progression can help in improving the drug discovery pipeline. 
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4.4 Methods 

4.4.1 Extracting LR expression profiles 

For each LR pair and corresponding interacting lineages, two curves were fitted 

as a function of pseudotime. l(t) models the fraction of cells expressing the ligand over 

the course lineage 1, and r(t) models the fraction of cells expressing the receptor over 

the course of lineage 2. In the special case of studying interactions within a single 

lineage, both lineages 1 and 2 are the same.  

Constructing LR expression profiles, denoted as l(t) and r(t), occurs via a series 

of computational steps. (1) The ligand and receptor expression along with the cells in 

the lineage of interest are filtered from the gene expression matrix. (2) The ligand and 

receptor expression is binarized as presented in the equation below: 

 

Xi,j is the expression value for gene i in cell j. If the number of transcript counts encoding 

a particular ligand or receptor is greater than a tunable threshold ẟ for a particular cell, 

then that cell is expressing the ligand or receptor of interest. For the analyses presented 

in this chapter, ẟ is set to 0.  

 

(3) A sliding window model is implemented to construct l(t) and r(t). Parameters of this 

model are the sliding window width and the step size. Discretization of functions l(t) and 

r(t) are computed. In summary, a sliding window operates over pseudotime (t) which 

ranges from 0 to 1. For all the cells falling within each window width(w), the fraction of 

cells expressing the particular ligand or receptor is determined. Following the first 
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iteration, the sliding window moved forward by a step size (s) and this process is 

repeated. As s approaches 0, l(t) and r(t) become continuous functions over 

pseudotime. For computational efficiency, the analyses presented in this chapter used 

the following parameters: w=0.2 and s=0.02.  

 

4.4.2 Constructing LR topologies 

For each ligand-receptor pair, two expression profiles are calculated: l(t) and r(t) 

as described in section 4.4.1. These functions have been discretized and stored as 

individual arrays, denoted as l and r. The size of both arrays are the same and 

dependent on the parameters (w and s) used to construct them. The tensor product or 

outer product, lTr  = l ⊗ r, is used to generate an LR topology. 

Each LR topology encodes interactions between two lineages via a particular LR 

pair. For example, consider two different LR pairs. In the first LR pair, cells later in 

pseudotime are interacting with cells earlier in pseudotime. For the second LR pair, an 

autocrine interaction is observed where only cells later in pseudotime are interacting 

with each other. The LR topologies representing both of the these unique interactions 

will be distinct. Applying additional computational methods such as machine learning 

algorithms can dissect and uncover the different types of interactions encoded by LR 

topologies.  

 

4.4.3 PCA analysis and supervised clustering  of LR topologies 
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Principal components analysis (PCA): LR topologies are implemented as 2D 

matrices. Each of these matrices are flattened to construct a feature vector. Prior to 

running PCA, feature vectors are standardized (μ=0, σ=1).  

Supervised clustering analysis: the goal of this analysis is to identify the 

contribution of user defined interaction patterns for each observed LR interaction. For 

the analyses presented section 4.2.2 and 4.2.3, a total of five and four user predefined 

topologies were created, respectively. Convolving each of the empirically derived LR 

topologies with the user defined topologies of the same size results in a numerical 

score. A high score indicates that the particular user defined interaction pattern is 

strongly observed between the two lineages, while a score highlights that the observed 

pattern is not observed. Repeating this process for each LR topology and all the user 

defined topologies results in a matrix where the rows correspond to a particular user-

defined interaction pattern (4 or 5) and the columns correspond to different LR pairs 

(Figure 4-6). To construct a clustergram from this matrix, we applied hierarchical 

clustering with euclidean distance and complete linkage using the python Seaborn 

package. 
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Figure 4-6: Supervised clustering of LR topologies. By convolving LR topologies with user-

defined synthetic topologies, LR pairs can be sorted based on the type of signaling  pattern they 

are displaying.   

 

 

4.4.4 Statistical Significance Testing 

Following supervised clustering, we identify how much specific interaction 

patterns are contributing to the empirical LR topologies. Determination of which of these 

interaction patterns is significant is accomplished for each LR pair individually via the 

following steps. Because LR topologies are computationally represented 2D matrices, 

we can model each matrix element via a gamma distribution (Figure 4-7). Based on the 

discovered the gamma distribution parameters, we generate a series of synthetic 

topologies that share the same distribution. For the current implementation this hyper-

parameter is set to 100, but can be modified depending on the user and desired 

significance threshold. Each of these synthetic topologies is convolved with a user-

defined topology of interest as detailed in section 4.4.3, to generate a score. Finally, 
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significance is computed by quantifying the number of synthetic topologies that scored 

higher than the original LR topology divided by the total number of synthetic topologies. 

In summary, this permutation based method quantifies the chances of observing a 

particular interaction score by chance for the LR pair of interest. To correct for multiple 

hypotheses, a Bonferonni correction was applied to the computed significance values 

by dividing each significance score by the total number of LR pairs evaluated. The 

significance threshold in the cluster gram was p=0.05. 

 

 

 

Figure 4-7: A gamma distribution fitted to a distribution of element values as described in 

section 4.4.4. Synthetic topologies are created by elements from sampling these gamma 

distributions.  

 

4.4.5 Single-cell RNA-seq datasets, data preprocessing, and analysis 
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Two different scRNA-seq datasets were analyzed in this chapter. In section 

4.2.2, scRNA-seq data from Cook et al. (2020)140 consisting of A549 cancer cells with 

EMT induced by TGFB1 treatment was analyzed. Cell count data was downloaded from 

NCBI Gene Expression Omnibus (Accession No. GSE147405). Only cells that were left 

untreated or treated for 8 hrs, 1 day, 3 days, and 7days with TGFB1 were included. The 

pseudotime scores presented in the manuscript were used in our analyses. 

In section 4.2.3, we analyzed the Kul3 colon cancer scRNA-seq dataset from Lee 

et al. (2020)145. Cell type labels, counts matrix, and normalized expression matrix were 

obtained from the NCBI Gene Expression Omnibus (Accession No. GSE132465). 

Pseudotime was computed for epithelial cells, myeloid cells, and fibroblast cell 

populations independently. To compute the psuedotime for epithelial cells, the relevant 

cell lines were first filtered from the normalized gene expression matrix. Epithelial cells 

classified as one of the following subsets were not included in further analyses: BEST4+ 

Enterocytes, Goblet cells, Intermediate Enterocytes, Mature Enterocytes, and Tuft cells. 

The expression matrix and metadata were stored as Scanpy objects. Cells were 

clustered based on gene expression using the Leiden algorithm (resolution=0.3)149. A 

single cell was randomly selected from a cluster with predominately normal epithelial 

stem cell population and was defined as a pseudotime of 0. Diffusion pseudotime (DPT) 

was used to determine a pseudotime value for the remaining cells138. Single cells were 

visualized using a UMAP projection. DPT, UMAP, and clustering was implemented from 

prebuilt functions from the Scanpy package. This process was similarly repeated for 

fibroblast cell populations.  
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For the myeloid cell population, two distinct cell populations were present in 

normal tissue, and therefore, identifying a single cluster to represent the beginning of 

pseudotime or root cell was challenging. To circumvent this problem, single cells were 

projected onto a 2D image using UMAP (Uniform Manifold Approximation and 

Projection). Each cell was assigned a numerical value representing the distance 

between itself and the nearest normal cell. These distance values were normalized to 

represent a pseudotime score between 0 and 1. The farther a cell is from a normal cell, 

the more differentiated it has become and the higher the pseudotime score. Normalized 

expression matrices were only used to compute pseudotime scores. For subsequent 

analyses presented in the methods above, the counts matrix was used. 

 

4.4.6 Implementation Details 

All analyses and methods were developed using Python v3.7.4. Clustergrams 

were constructed using the Seaborn package. All other figures were constructed using 

the Matplotlib. PCA analyses was performed using Scikit-Learn. Additional matrix 

operations were completed using the Numpy and Scipy packages. Single-cell analysis 

including pseudotime computation was accomplished using prebuilt functions from the 

Scanpy package.  
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Chapter 5 Discussion 
 

 

In this thesis, I have presented new computational and imaging methods to 

improve our understanding of how intercellular communication can affect dynamic 

cellular processes. Technical advances over the past decade have provided a detailed 

characterization of mammalian tissue through the study of gene expression (i.e., single-

cell RNA-sequencing), epigenetic state (i.e., scATAC-seq), spatial transcriptomics (i.e. 

slide-seq), protein localization (i.e., CycIF), and more. However, quantitative methods 

for capturing behavior for individual cells within a tissue remain limited. Static snapshots 

of tissue are insufficient to understand how spatiotemporally regulated processes such 

as tissue homeostasis, organ development, and embryogenesis operate.  

Diseases such as cancer are also highly dynamic. For example, the relationship 

between cancer cell dissemination and the TME often involves a rare subset of cells 

that have gained invasive properties. Therefore, methods that can accurately model the 

TME and detect subtle changes during cancer progression are essential to obtain a 

complete picture of the dynamic processes that ultimately lead to treatment resistance 

and metastasis. Methods such as in vivo imaging allow us to monitor cells in real-time. 

However, due to limited multiplexing ability, it remains challenging to decipher the role 

of intercellular communication in modulating a cells' behavior.  
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Figure 5-1. Applying DT to capture direction and magnitude of tumor microvasculature (left, 

middle) and cellular motion and perform pixel-by-pixel tracking in dense tissue (right). 

 

To tackle this challenging problem, I specifically focus on the role of tumor-

associated macrophages and cancer cell dynamics. This case study is fundamental to 

understanding the mechanisms that drive cancer progression. Tumor-associated 

macrophages (TAMs) represent an important class of immune infiltrates in the tumor 

microenvironment that has variable effects on cancer progression depending on their 

polarization state. Classically, TAMs exist along a spectrum of polarization states, with 

the extremes labeled as M2 or anti-inflammatory/pro-tumorigenic and M1 or pro-

inflammatory/anti-tumorigenic150. Recently, single-cell transcriptomics has revealed 

several additional polarization states in vivo 151. Based on these efforts, TAMs have also 

been suggested as targets for new immunotherapies103 or combinatorial treatments to 

counter cancer bypass signaling11.  

I begin my thesis by detailing a novel pipeline to quantitatively study cytoskeletal 

dynamics of cancer cells (chapter 1), and how such dynamics correlate to higher-level 

features such as cell morphology and migration rates. I discovered that interaction with 

the 3D extracellular matrix and infiltrating immune cells (namely macrophages) can 
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independently lead to increased coherent microtubule alignment in metastasizing 

cancer cells (chapter 2).  

In addition to studying how intercellular interactions affect sub-cellular dynamics, 

I inferred on a global level how intercellular interaction affect specific biological 

processes (chapter 3). I created a new computational method, called POLARIS, which 

combines traditional LR interaction analysis with single-cell pseudotime analysis to infer 

dynamic information from a static snapshot of gene expression values.  

Despite the advancements presented in this thesis on understanding cellular 

dynamics, several improvements can enable more high throughput analysis of 

spatiotemporal dynamics. The developments presented here only capture a small 

number of dynamical features, namely microtubule dynamics, cell movement, and 

disease progression (via single-cell trajectory inference methods). Ideally, it would be 

beneficial to automatically capture dynamical features from in vivo time-

lapse microscopy regardless of the experimental conditions. Analysis of subcellular 

dynamics such as lipid droplet behavior can be used to study cancer metabolism. High-

resolution imaging of fluorescently labeled drugs can also provide insight into drug 

distribution within the tumor. Small optical probes can be used to study fluid flow in the 

tumor microvasculature and activation of specific molecular signaling pathways (i.e. 

phosphosignaling). � 

Action-recognitions methods in computer vision offer one exciting approach to 

address this problem. Dense trajectories (DT) have outperformed other action-

recognition methods, except for neural networks (which require many curated videos 

under similar imaging conditions, limiting its generalizability)152. A proposed pipeline for 
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applying DT on time-lapse intravital microscopy to track the motion of various biological 

features is as follows. Implementation of DT yields a vector field capturing each pixel’s 

velocity in a series of time-lapse images153,154. Each vector can be assigned a cell 

based on the prior cell segmentation results. DT vectors also store metadata capturing 

the environment around each pixel. This makes DT ideal for capturing local 

microenvironmental changes surrounding individual cells, especially relevant in cancer 

research. Furthermore, DT may potentially be able to quantify many different types of 

dynamics, including cytoskeletal changes and drug transport, compared to specialized 

tracking software (i.e., U-track92). 

In addition to creating a more generalizable approach to capture cellular and sub-

cellular dynamics by computational methods such as DT, another challenging problem 

involves understanding the link between dynamic measurements and molecular 

markers. This task requires developing new high throughput methods to simultaneously 

capture dynamic and molecular features in vivo, analogous to how spatial transcriptomic 

approaches capture spatial and molecular features.� 

In conclusion, I hope these discoveries improve our understanding of what 

interactions contribute to disease progression and make cancer cells motile and how to 

target this motility to prevent cancer metastasis. More generally, I hope this research 

paves the way for more detailed high-throughput dynamical studies to gain a functional 

understanding of biological processes, in addition to tissue structure and composition.  
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Figure A-1: (A) Experimental and (B) computational methods for studying 

intercellular communication in mammalian tissue. Each method highlighted above 

is approximately placed along a spectrum of molecular, spatial, and temporal 

resolutions based on the type of information captured or analyzed. For example, 

scRNA-seq methods capture detailed molecular information (gene expression), but not 

spatial and temporal properties of a tissue, and therefore, located at one extreme. 

Multiplex imaging technologies measure spatial and molecular information and are 

located along the spatial-molecular axis. Note: This is a highlight reel with examples, 

rather than a comprehensive list of methods.   
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Figure B-1. Visualizing in vivo and in vitro MT tracks.  

(A) Representative in vivo time-lapse images of HT1080 EB3-mApple cells growing in a 

dorsal window chamber were obtained via IVM (left). MT tracks were computationally 

identified (center) and randomly pseudo-colored from red to yellow. (B) Representative 

in vitro time-lapse images were obtained from HT1080 EB3-mApple cells in 2D culture 

using the same imaging system (left) and computational tracking software (center). (A-

B) Scale bar, 10 μm. Asterisks mark cells excluded in analysis due to incomplete cell 

imaging within the field of view. A total of n=34 in vivo cells and n=39 in vitro cells were 

analyzed. 
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Figure B-2. (A) Workflow (left), example case (middle), and statistics (right) for hand-

validation of MT tracking to assess false positive rate. (B) False negative estimation is 

challenging as confirming the identity of all tracks is a difficult task. Nevertheless, we 

identified 30 of the most visible tracks in one representative in vitro movie and 

determined how many of these tracks were computationally detected and analyzed. 
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Figure B-3. Correlations between EB3 and cancer cell behavior. In HT1080 cells, 

EB3-mApple expression was examined for linear correlation with various MT features 

(Pearson’s correlation coefficient; *two-tailed t-test; n=38 cells), with significant 

correlates highlighted in red. At right, corresponding cell-by-cell values for MT 

orientation and cellular MT coherence are shown (correlation not significant). 

 

 

Figure B-4. Illustrative tracks showing varying levels of MT Orientation and Coherence 

(tracks are colored according to cellular coherence).   
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Figure B-5. Visualization of individual MT features. 

(A) A representative HT1080 EB3-mApple cell grown in 2D culture is shown to visualize 

14 MT track features. MT tracks are color coded based on the indicated track feature. 

(B) A representative in vivo HT1080 EB3-mApple cell, where MT tracks are pseudo-

colored according to the indicated feature above each image.  Tracks were quantified 

for a total of n=73 in vivo and in vitro cells.   
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Figure B-6. Quantifying MT dynamics in ES2 xenografts. Distributions of MT 

dynamics imaged in ES2-EB3-mApple cells imaged in vitro or within ~2 week old 

subcutaneous xenografts in the dorsal window chamber model of nu/nu hosts (n=2,857 

total tracks across 42 total cells and 5 tumors). *Two-tailed permutation test was 

performed for each distribution. 
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Figure B-7. (Continues on next page).   
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Figure B-7 Cont. 
 
 

 
 
Figure B-7. Parameter sensitivity analysis in MT tracking. PlusTipTracker algorithm 

parameters were varied and MT track features were recomputed using in vitro HT1080-

EB3-mApple cells, and single-track distributions are shown at bottom. Displacement, 

persistence, and track length but not orientation or cellular MT coherence were sensitive 

to the parameter changes (*kruskal-wallis (one-sided) based permutation test; n=15 

cells; center bar represent the median).   
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Figure B-8. (Continues on next page) 
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Figure B-8 Cont, 
 
 

  
 
 
 
Figure B-8. Permutation testing of MT track statistics.  

(A) A two-tailed wilcoxon rank-sum based permutation test was used to determine the 

statistical significance for each of the 14 MT track features between in vivo and in vitro 

HT1080 EB3-mApple cell populations. The wilcoxon statistic for the permutation (black) 

was compared to the wilcoxon statistic comparing the true in vivo and in vitro MT track 

distributions (red). (B) Corrected p-values were derived from the permutation test results 

shown in A (For A and B, n= 4983 tracks across 58 cells; 200 permutations). (C) To 

ensure that significance was not due to presence of incompletely imaged cells, the 

wilcoxon rank-sum permutation test was repeated after removing cells that were less 

than 80% visible. (D) Corresponding to C, the permutations (black) and true two-tailed 
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wilcoxon test statistic (red) comparing in vivo and in vitro HT1080 EB3-mApple included 

cells mostly in the field of view (For C and D, n= 4673 tracks across 58 cells; 200 

permutations). Additional un-occluded cells were added to the analysis to ensure that 

the number of cells remains constant. P-values for B and C were computed using a two-

tailed permutation test. For A and D, a swarm plot overlays the box plot. The bars of the 

box plot represent 1.5*IQR-Q1, Q1/25th percentile, median, 75th percentile, 1.5IQR*Q3, 

and whiskers represent data points falling outside this range.  
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Figure B-9. Representative imaging of tumor cells in 3D culture.  

Representative confocal images of HT1080 EB3-mApple cells grown in 3D collagen I 

gel culture with computationally-identified MT tracks randomly colored (scale 

bar=10µm).  
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Figure B-10. Visualizing MT features of tumor cells in 3D culture.  

A representative HT1080 EB3-mApple cell grown in 3D collagen I gel culture pseudo-

colored according to the indicated MT feature above each image.  A total of n=1325 

tracks across n=12 in vitro 3D cells were analyzed. 
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Figure B-11. Cell-average distributions of MT features.  

Box plots show the cell medians for each MT track feature. HT1080 EB3-mApple cells 

were either grown on 2D culture (in vitro, red), grown in 3D collagen I gel (in vitro 3D, 

green), or grown in vivo (blue). The red bar denotes the median of the cell medians 

(total n=85 cells). For all, box plot defined as Q1/25%tile, median, Q3/75%tile with 

outliers falling outside Q3/Q1±1.5*IQR. 
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Figure C-1. (A) Covarying MT cellular coherence and orientation values were combined 

into a principal component for each MT track, and the cumulative probability distribution 

of principal component scores (PC scores) was then calculated for each culture 

condition (*two-tailed permutation test), reproduced for reference from Figure 3-2C. 

Corresponding to A, the cumulative probability distribution of (B) MT Orientation values 
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and (C) MT Cellular Coherence values were separately calculated for each culture 

condition. For all (A-C), n=15,965 tracks from n=155 total cells. All box plots are defined 

as Q1/25%tile, median, Q3/75%tile with outliers falling outside Q3/Q1±1.5*IQR. 
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Figure C-2. Quantitative comparison of MT behavior under distinct culture 

conditions. From the PC scores in Figure C-1, the K-L divergence was computed 

between distributions from each culture condition. The bar-plot compares the K-L 

divergences of the in vivo PC score distribution to PC score distributions under all other 

conditions.   
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Figure C-3. Under each culture condition, the orientation value of (A) all tracks and the 

(B) cell-averages were calculated and visualized. Likewise the cellular coherence value 

for (C) all tracks and the (D) cell averages are shown. The red line denotes the median 

value of either all tracks(A, C) or the cell averages (B, D). For all (A-D), n=15,965 tracks 

from n=155 total cells. All box plots are defined as Q1/25%tile, median, Q3/75%tile with 

outliers falling outside Q3/Q1±1.5*IQR. 
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Figure C-4. Permutation statistics and individual track-level data in the ES2 co-

culture model.  

(A) A wilcoxon rank-sum based permutation test was used to determine the statistical 

significance for each of the 14 MT track features between ES2 EB3-mApple cells 
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cultured alone (monoculture) or cultured with IL4-MΦ (co-cultured). The wilcoxon 

statistic for the permutation (black) was compared to the wilcoxon statistic comparing 

the true mono-culture and co-culture MT track distributions (red). (B) Box plots show the 

distribution of MT track orientation and cellular coherence features. Each point overlaid 

on the box plot corresponds to an individual MT track from an ES2 EB3-mApple cell 

grown in monoculture (red) or in co-culture with IL4-MΦ (blue)(red line denotes median). 

(A-B) N=1,424 tracks across n=33 total ES2 cells were analyzed. All box plots are 

defined as Q1/25%tile, median, Q3/75%tile with outliers falling outside Q3/Q1±1.5*IQR. 
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Figure C-5 ES2 MT dynamics in response to targeted reagents and drugs. 

Corresponding to Figure 3-4, MT orientation and coherence were measured following 

treatment with the indicated targeted compounds in ES2-EB3-mApple cells, shown as 

single-track distributions (*two-tailed permutation test comparing treatment with 

untreated co-culture; n=10,968 tracks from n=118 total cells). Box plot bars represent 

the minimum, 25%tile, median, 75%tile, and maximum values.  
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Figure C-6. HT1080 MT dynamics in response to targeted reagents and drugs. 

Corresponding to Figure 3-5 and Figure 9-18, single-track distributions are shown for 

HT1080-EB3-mApple cells following treatment with anti-EGFR antibody (A: n=13,380 

tracks from n=80 total cells) and IPI-549 (B: n=16,427 tracks from n=112 total cells). 

Box plot bars represent the minimum, 25%tile, median, 75%tile, and maximum values. 

Significance values were computed using a two-tailed permutation test.  
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Figure C-8 (A) Representative images of HT1080-mem-mApple cells in co-culture with 

NP-labeled IL4-MΦ, highlighting instances of co-localized MΦ and tumor cell protrusion. 

(B) Quantification of NP+ cells to determine relative MΦ content present in 

intraperitoneal ES2-mClover tumors (two tailed unpaired t-test; n=16 tumors; error bars 

denote mean±s.e.m.). Signficance tests used in linear regression analysis(A-D) 

measure if slope is significantly nonzero.  
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Figure C-9. (C) Full image of blot corresponding to Figure 3-16. The blot was probed 

first with rabbit anti-CD206 primary antibody, followed by anti-rabbit secondary antibody 

(left). The blot was washed and then probed with mouse anti-actin primary antibody, 

followed by anti-mouse secondary antibody (right). CD206 band in the blot on the right 

is the result of residual HRP activity from the first blot.  
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Figure C-10. The effect of Anti-IL10R antibody treatment on MT dynamics. MT 

orientation (A) and coherence (B) of HT1080-EB3-mApple cells were measured 

following treatment with anti-IL10R antibody (A-B: n=21,218 tracks from 99 total cells). 

Significance values were computed by a two tailed permutation comparing two groups: 

IL4-MΦ co-culture vs all other cells. Box plot bars represent the minimum, 25%tile, 

median, 75%tile, and maximum values.  
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Figure C-11. (A) Example of tumor cell near a TAM located at its major length axis, for 

which quantification of “tumor-macrophage angle” is possible, in this case leading to a 

cosine value near 1.0.  (B) Such “tumor-macrophage angles” cannot be calculated from 

cases where no single TAM can be assigned as nearest to the tumor cell, and therefore 

were excluded from analysis of “tumor-macrophage angles.” (B-D) Cell-by-cell 

quantification of cellular MT coherence (C) and orientation (D) relative to the measured 

tumor-macrophage angle (C-D: *two-tailed F-test; n=32 cells).  

  



 

    160 

Appendix D Supplementary Information for Chapter 4 
  



 

    161 

 
Figure C-1 (continued on the next page)  
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Figure C-1. PCA analysis was performed on Ligand-Receptor x Interaction pattern 

matrix (example shown in Figure 4-5). Based on euclidean distances in PCA space a 

clustergram was created for each of the 28 different interaction patterns (A). To 

visualize specific patterns, each interaction was grouped by cell type (middle)and 

signaling pattern (bottom). The signaling patterns from A clustered more strongly 

together based on the directionality of signaling rather than the cell type involved. 
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