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Enhanced Genomic Stability and its Effects on Aging and the Epigenome 

 

Abstract 

The epigenomes of evolutionarily distant species undergo similar alterations during 

aging, but the upstream causes of these changes are unclear. DNA damage is one potential cause, 

as epigenetic changes arising from DNA damage are remarkably similar to those observed 

during aging. To more definitively test if DNA damage is a cause of age-related epigenetic 

dysfunction, model organisms with enhanced DNA repair should be used to determine whether 

improved genomic stability mitigates epigenetic changes during aging. Generating such 

organisms has proven difficult, due to toxicity from overexpressing endogenous DNA repair 

proteins. I hypothesized that expressing exogenous DNA repair proteins could would be a more 

viable strategy for generating multiple model organisms with enhanced genomic stability.  

In Chapter 2, I identify multiple DNA repair proteins from radioresistant organisms that 

improve the genomic stability of human fibroblasts exposed to hydrogen peroxide. Two of these 

proteins- the single-stranded DNA-binding protein SSB and the double-stranded DNA-binding 

protein Dps1- also enhanced genomic stability in Saccharomyces cerevisiae, with SSB also 

improving genomic stability in Caenorhabditis elegans. I discovered that SSB improves genomic 

stability by enhancing the efficiency of non-homologous end joining, while Dps1 likely 

improves genomic stability by protecting DNA from free radical damage.    

In Chapter 3, I tested whether SSB and Dps1 could preserve the epigenomes of yeast and 

worms in response to either DNA damage or aging. Both genes mitigated the loss of silencing at 
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the HMR locus caused by DNA damage, a major epigenetic change that occurs during yeast 

aging. However, only Dps1 was able to extend yeast replicative lifespan. SSB extends the 

lifespan of worms while also improving healthspan. I discover that worms undergo a global 

reduction of histone 3 levels with age and following DNA damage, and show that SSB 

transgenic worms have a delayed onset of this loss. 

In Chapter 4, I explore how SSB and Dps1 can be further characterized and utilized in 

aging research. Taken together, these results suggest that DNA damage is a conserved driver of 

age-related epigenetic changes, and that enhancing genome stability preserves the aging 

epigenome.   
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Chapter 1: The Roles of Genomic Instability and Epigenetic Dysfunction in Aging 
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I. Genomic Instability as a Cause of Aging  

 
a. Origins of the DNA Damage Theory of Aging 

Aging is characterized by a time-dependent increase in mortality and a decline in 

physiological functions. Although humans have sought to understand, delay, and reverse aging 

for thousands of years, it is only during the last fifty years that these efforts have demonstrated 

tangible progress. During this time, we have uncovered some of the underlying cellular and 

molecular causes of aging, and have demonstrated that aging is a malleable process whose 

trajectory can be radically shifted, at least in model organisms [1-2]. As aging is a seemingly 

universal process, research in this field has employed a diverse array of organisms including 

yeast [3], fish [4], insects [5], nematodes [6], mammals [7], and even bacteria [8]. Although the 

average lifespan of these species can differ by more than a thousand-fold [9-11], they remarkably 

undergo many of the same cellular and molecular changes as they age. Nine of the most 

commonly observed changes have been branded as the “hallmarks of aging” [12], and it is 

speculated that some or all of these hallmarks play causal roles in the aging process.  

 Genomic instability is one of the most well-studied hallmarks of aging. Ironically, a 

“DNA damage theory of aging” actually predates most research on either DNA damage or aging. 

In 1958, just five years after the seminal publication of the double-helix model of DNA, 

physicist Gioacchino Failla first suggested that DNA damage could be an underlying cause of 

aging [13]. Specifically, Failla believed that aging could be explained by mutagenic events 

caused by background radiation, ultraviolet light from the sun, and “chemical carcinogens”. 

Failla cited the inverse relationship between lifespan and mutation rate in a small number of 

species to support this view. Shortly thereafter, a similar theory was independently proposed by 
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Leo Szilard, who devised a mathematical model whereby aging was driven by DNA damage that 

leads to “chromosomal inactivation” and subsequent cell death [14].  

Although these two models of aging are now recognized as overly simplistic, decades of 

subsequent research in genetics, molecular and cellular biology, and comparative biology have 

affirmed a close relationship between genomic stability and aging. Cumulatively, these studies 

have reached the following five conclusions that demonstrate a likely role for DNA damage in 

promoting aging:   

1) The frequency of many DNA lesions increases with age.  

2) The efficiency of most DNA repair pathways declines with age.  

3) There is a positive correlation between a species’ DNA repair capability and lifespan.   

4) Elevating DNA damage levels can reduce lifespan.  

5) Interventions that extend lifespan frequently reduce levels of DNA damage.  

 

b. Increased DNA Damage and Decreased DNA Repair Capacity During Aging 

Levels of most DNA lesions increase during aging across many species. Analysis of 

various mouse and human tissues has demonstrated an age-related increase in abasic sites [15], 

oxidized nucleotides [16-17], double-strand breaks (DSBs) [18-19], and gross chromosomal 

aberrations [20-21]. Similar age-related increases in DNA damage also occur in other species 

(Table 1.1), demonstrating that genomic instability is a highly conserved characteristic of aging. 

Research into the mechanisms underlying these increased levels of DNA damage has suggested 

that a decline the efficiency of many DNA repair pathways is at least partially responsible. 

Human fibroblasts and tissue extracts show dramatic age-related decreases in the efficiency of 

multiple DSB repair pathways [19, 53], base-excision repair [54], nucleotide excision repair [55],  
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Table 1.1: Age-related changes in DNA lesions  
 

Lesion Organism Tissue Change with Age Reference 
 
 
 
 
 
 
 

Double-strand 
breaks  

 
 
 
 
 

 
Humans 

Ovary 
PBMCs 
HSCs 

Increase 
Increase 
Increase 

[18] 
[19] 
[30] 

 
 
 
 

Mice 

Ovary 
Brain cortex 

Skeletal muscle 
Heart muscle 

Kidney 
Lung  

Spleen 
Liver 

Increase 
Increase 
Increase 
Increase 
Increase 
Increase 
Increase 
Increase 

[18] 
[25] 
[31] 
[31] 
[31] 
[31] 
[31] 
[32] 

Yeast N/A Increase [22,37] 
Flies Germ cells Increase [23] 

Killifish Muscle 
Brain & retina 

Increase 
Increase 

[24] 
[26] 

 
 
 

Single-strand 
breaks 

Humans PBMCs Increase [36] 
Mice Brain 

Brain 
Liver 
Liver 

Kidney 

Increase 
No change 
Increase 

No change 
No change 

[34] 
[43] 
[38] 
[43] 
[43] 

Worms Whole body Increase [35] 
 
 
 
 
 
Oxidized bases 

Human Skeletal muscle 
Brain 
CSF 

Colon 
Pituitary 

Increase 
Increase 
Increase 
Increase 
Increase 

[17] 
[27, 33] 

[40] 
[41] 
[42] 

Mice  Liver 
Kidney 
Heart 
Brain 

Increase 
Increase 
Increase 
Increase 

[16] 
[16] 
[16] 

[16, 39] 
Yeast N/A Increase [52] 

Worms Whole body Increase [28] 
Flies Intestinal stem cells Increase [29] 

Abasic sites Human Leukocytes Increase [15] 
 
 
 

Aneuploidy 

Human  Skin fibroblasts 
Oocytes 

Bone marrow 
Blood & buccal 

Liver 

Increase 
Increase 
Increase 
Increase 

No change 

[20,21] 
[44] 
[47] 
[50] 
[51] 

Mouse Oocytes 
Brain 

Increase 
Increase 

[45] 
[46] 

Yeast N/A Increase [48,49] 
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and mismatch repair [56]. This also appears to be a well-conserved phenomenon, as aging also 

decreases the efficiency of DNA damage repair in rodents [60-62], flies [23, 57-58], worms [59], 

and yeast [22,63].  

c. Positive Correlation Between Lifespan and DNA Repair  

 While these findings clearly establish that most species experience increased genome 

instability with age, they don’t demonstrate whether DNA damage plays a causal role in aging. 

More suggestive, though still not definitive, evidence comes from comparative biology studies 

showing that DNA repair efficiency is positively correlated to species’ lifespan. This was first 

reported in a seminal publication by Hart and Setlow [64], who monitored repair of DNA 

damage in skin fibroblasts derived from seven species with highly variable lifespans. They found 

that the repair efficiency of UV-induced DNA damage was logarithmically proportional to 

lifespan, likely indicating a positive correlation between lifespan and the efficiency of nuclear 

excision repair. Subsequent studies monitoring repair of UV-induced damage in cells from 

additional species have confirmed these findings [65, 66]. Furthermore, lifespan has also been 

found to positively correlate with the efficiency of DSB repair [67] and base-excision repair [68].  

The correlated efficiency of multiple DNA repair pathways with lifespan across a large 

number of species raises the possibility that reducing genome instability is an evolutionarily 

conserved longevity mechanism. This argument was greatly strengthened by Tian et al [67], who 

directly demonstrated that the efficiency of a DSB repair protein affects lifespan. They found 

that inter-species differences in DSB-repair efficiency was largely due to differential activity of a 

single DSB repair protein: SIRT6. This member of the Sirtuin family plays multiple roles in non-

homologous end joining (NHEJ) and homologous recombination (HR)- the two major DSB 

repair pathways-, including stimulating the PARP1 repair enzyme [69], stabilizing the DSB 
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sensing kinase DNA-dependent protein kinase (DNA-PK) [70], relaxing chromatin to make DSB 

sites accessible to repair proteins [71], and binding to DSBs and subsequently recruiting the 

ATM protein kinase [72]. They found that only five amino acid substitutions in SIRT6 were 

responsible for the differential DSB repair activities between the fibroblasts of mice - a short-

lived species with poor DSB repair efficiency -  and beavers - a long-lived species with high 

DSB repair efficiency. Critically, they showed that this discrepancy in SIRT6 activity had a 

direct impact on lifespan. Flies expressing either wild-type mouse SIRT6 (weak DSB repair 

activity) or a mutated beaver SIRT6 carrying the mouse amino acids at the five residues critical 

for SIRT6 activity (also weak DSB repair activity) had a slightly extended lifespan, while a 

much stronger lifespan extension was achieved by expressing either the wild-type beaver SIRT6 

(strong DSB repair activity) or a mutated mouse SIRT6 carrying the beaver amino acids at the 

five residues critical for activity (also strong DSB repair activity). These findings add support to 

the argument that DSBs play a causal role in aging, though it should be noted that SIRT6 

regulates multiple other processes linked to aging, including inflammation [73], metabolism [74], 

retrotransposon activity [75], and senescence [76]. Consequently, it is unclear how much of 

SIRT6-mediated lifespan extension is solely due to its role in enhancing DSB  repair. 

d. Exacerbating Genome Instability Accelerates Aging Phenotypes 

Additional support for a causal role of DNA damage in aging comes from studies of 

human subjects and model organisms that have experienced elevated levels of DNA damage. 

Most notable are clinical observations made in patients with progeroid syndromes. These are rare 

genetic conditions that are commonly referred to as “accelerated aging” due to sharing some, but 

not all, aging characteristics. These clinical features include shortened lifespans [79-81] and an 

increased predisposition to age-related diseases [82,83]. Further supporting an association 
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between progeroid syndromes and aging, tissues and cells from progeroid syndrome patients and 

corresponding mouse models exhibit accelerated onset of several aging hallmarks, including 

genomic instability [84], metabolic defects [85], accumulation of senescent cells [86], epigenetic 

dysfunction [87], and stem cell exhaustion [88]. Intriguingly, the mutations underlying all 

progeroid syndromes are found exclusively in genes that encode DNA helicases, proteins 

involved in DSB repair, or structural components of the nuclear lamina. The fact that all of these 

proteins are essential for maintaining the integrity of the genome further underscores the close 

relationship between genomic stability and aging. Although some of the key progeroid syndrome 

phenotypes can’t be recapitulated in non-mammalian organisms, mutating or decreasing the 

expression of the genes underlying progeroid syndromes significantly reduces the lifespan of 

yeast [89], worms [90,91], and flies [92,93], again suggesting that genomic stability has a 

potentially universal role in the aging process.  

The findings from these progeroid models are further corroborated by clinical and 

laboratory studies in which DNA damage is transiently elevated, rather than the chronic 

elevation that occurs in progeroid syndromes. Survivors of pediatric cancers who were treated 

with chemotherapeutic agents exhibit multiple symptoms of “accelerated aging”, including 

frailty, increased incidences of age-related diseases, and a shortened lifespan [94]. Similarly, 

survivors of the two 1945 atomic bomb attacks in Japan exhibited a decrease in lifespan that is 

likely proportional to their radiation exposure levels [95]. These findings are consistent with 

experimental findings that increasing DNA damage with genotoxic agents decreases the lifespan 

of yeast [96], worms [91], flies [97], and mice [98]. Furthermore, multiple characteristics of 

accelerated aging are observed in two mouse models that allow for temporally-controlled 

induction of DSBs via expression of the restriction endonucleases SacI [32] or I-PpoI [99,100] . 
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Brief expression (~3-4 weeks) of these endonucleases early in life (~3-6 months) leads to a 

transient elevation in DSB levels, which causes molecular (e.g. acceleration of epigenetic clock), 

cellular (e.g. increased cell senescence), histological (e.g. decreased muscle mass), and 

functional (e.g. decreased endurance) phenotypes that are observed during aging.  These 

findings, combined with the aforementioned insights from progeroid syndromes, further 

highlight genomic stability as a key lynchpin underlying the aging process across species. 

e. Lifespan-extending Interventions are Associated with Genome Stability 

A final line of evidence suggesting a key role for genome stability in regulating aging 

comes from studies on the effects of lifespan extending interventions on DNA damage levels and 

repair efficiency. Calorie restriction (CR) was the first intervention shown to robustly extend 

lifespan [101], and decades of subsequent studies have validated this finding across numerous 

species [102-106]. Although there are multiple mechanisms responsible for CR-mediated 

lifespan extension [107], enhanced genomic stability is a prominent one. CR reduces age-

associated accumulation of DNA damage across multiple tissues in mice and rats, including 

substantial reductions of oxidative DNA damage (8-OHdG) in the brain [16, 108-109], heart [16, 

108-110], skeletal muscle [108,109], and liver [16, 109-110]- tissues with high metabolic 

activities and levels of oxidative stress. CR also significantly extends lifespan and reduces 

neuronal DSB levels in Ercc1Δ/- mice, a short-lived strain that is deficient in DSB repair and 

nucleotide excision repair [111]. These reduced levels of DNA damage are likely due to 

enhanced DNA repair activities, as CR positively regulates multiple DNA repair pathways, 

including NHEJ [112], base-excision repair [113], and nucleotide excision repair [62].  

Enhanced genomic stability is also associated with some of the most well-validated 

lifespan extending compounds. This was best demonstrated by Halicka and colleagues [114], 
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who investigated the molecular and cellular mechanisms underlying seven compounds that 

extend the lifespan of various model organisms. They found that treatment with each of the 

seven compounds reduced DSB levels in multiple human cell lines. These results are consistent 

with findings that some of these compounds- including metformin and resveratrol- have specific 

roles in the regulation of DSB repair [115,116]. It has yet to be shown if these compounds reduce 

DNA damage levels during aging in wild-type animals, and this line of investigation would 

provide more evidence surrounding the role of genomic stability in promoting lifespan extension.  

II. Evidence that Genomic Stability is a Driver of Epigenetic Dysfunction 

a. Mechanisms through which Genome Stability Affects Aging 

Although there is widespread agreement that genomic stability plays an integral role in 

determining age-related health and lifespan, there is substantial disagreement about the 

underlying mechanisms. Genomic instability has a variety of deleterious effects on cellular 

function, and several of these have been proposed as having a causal role in aging (Figure 1.1).  

One of the first theories of aging suggested that mutations resulting from DNA damage 

could be a driver of aging. This “mutation accumulation theory of aging” posits that accrual of 

mutations has deleterious effects that ultimately lead to cellular and organismal decline [117]. 

Support for this hypothesis largely comes from associations between mutation levels with age 

and age-related diseases [118], along with the findings that there is a negative correlation 

between mutation levels and lifespan [119]. However, a number of studies employing different 

model organisms have cast substantial doubt on the importance of mutations in aging. Two 

mouse models with defects in transcription-coupled nucleotide excision repair showed a  

reduction in lifespan but no increase in mutation rate [120], while the mutation rate during yeast 
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Figure 1.1: Proposed mechanisms by which genomic instability drives aging.  
Genomic instability has consequences that are deleterious to cell function. Four of these 
consequences- increased mutations, the onset of senescence, the induction of apoptosis, and 
changes to the epigenome- have been proposed as causal mechanisms through which genomic 
instability drives aging.   
 
replicative aging is negligible (averaging less than one mutation per lifespan), and a yeast strain 

with a highly elevated mutation rate does not undergo premature aging [121]. These and other 

findings [122,123] uncoupling mutation accumulation with lifespan suggest that mutations are 

unlikely to play a major, causal role in the aging process.  

 Another hypothesis is that DNA damage leads to an increase in the number of apoptotic 

and senescent cells, and that this reduction in healthy cells is a key driver of organismal decline. 

Levels of apoptotic cells increase in several tissues during mammalian aging, and this 

mechanism is partially responsible for some prominent age-related physiological changes, 

including thymic involution [124], loss of myocytes [125], reduced T-cell counts [126], and 
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sarcopenia [127,128].  Similarly, increased levels of senescent cells have been observed during 

aging in mouse spleen, small intestine, kidney, liver, lymph nodes, and lymphocytes, [129,130].  

Senescent cells are especially deleterious because of the cell non-autonomous mechanisms 

through which they impair tissues. Most notably, senescent cells secrete an assemblage of 

inflammatory cytokines, proteases, growth factors, and free radicals that can damage nearby 

healthy cells, a phenomenon called senescence-associated secretory phenotype (SASP) [131]. 

There is strong evidence that senescence plays a causal role in aging, as removal of senescent 

cells extends lifespan and healthspan in wild-type mice [132,133], and senescent cells have been 

implicated in the pathology of several age-related diseases including osteoarthritis [134], 

atherosclerosis [135], and type 2 diabetes [136]. While this loss of healthy cells likely plays a 

causal role in aging, apoptosis and senescence can be induced by numerous mechanisms that are 

independent of DNA damage, such as tumor-necrosis factor ligand binding [137] and oncogenic 

stimulation [138]. Consequently, the exact contribution of DNA damage to this process is 

unknown and should be a subject of further investigation.  

b. Epigenetic Dysfunction During Aging  

A more recent hypothesis is that genomic instability contributes to aging by causing 

epigenetic dysfunction, another universally observed hallmark of aging. The epigenome is 

constantly changing in response to environmental stimuli or changes in cellular conditions, such 

as infection [139], nutritional conditions [140], and chemical exposures [141]. The epigenome of 

all common model organisms undergoes dramatic alterations during aging, including changes in 

nucleosome occupancy, histone modifications, and DNA methylation patterns and levels (Table 

1.2). Some age-related epigenetic changes are species-or tissue-specific, while others are more 

widely conserved. One commonly observed epigenetic change is a loss of heterochromatin, 
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largely due to decreased expression of histones [142-146] and a general decline in repressive 

histone modifications [145, 158-165]. One consequence of heterochromatin loss observed across 

species is an age-related increase in expression of repetitive elements [144,174], which can 

amplify cell dysfunction by causing DNA damage and driving inflammatory responses through 

the cGAS-STING pathway [175]. Loss of heterochromatin likely plays a causal role in the aging 

of most species, as preservation of heterochromatin consistently extends lifespan. For example, 

the median replicative lifespan of yeast can be extended ~30% by countering the age-related loss 

of nucleosomes through overexpression of Histones 3 & 4 or by deletion of the gene encoding 

HIR1, which suppresses transcription of histone genes [176]. Similarly, knockdown of the 

histone methyltransferase set-26 in C. elegans counteracts decreased levels of Histone 3 and the 

heterochromatin markers H3K27me3 and H3K9me3 during aging, commensurate with a ~20% 

increase in median lifespan [145]. Although similar aging studies directly altering levels of 

histones or histone modifying enzymes have not been performed in mammals, preservation of 

heterochromatin is commonly observed in long-lived mice. For example, the long-lived Ames 

dwarf mice have higher hepatic and brain levels of the repressive H3K27me3 marker and lower 

levels of the transcriptional activation marker H3K4me3 at 20 months of age [177]. Similarly, 

brains of rapamycin-treated and dietary restricted mice exhibit higher H3K27me3 levels were 

found in the brains of rapamycin-treated and dietary restricted mice [164], two interventions that 

extend lifespan and improve healthspan [178,179].   

 

 

 

 



13 
 

Table 1.2: Age-related changes to the epigenome 
 

Epigenome 
Change 

Marker Organism Tissue Age-related 
change 

Reference 

 
Histone 
Levels 

H3 & H4 Human Senescent cells Decline [142] 
H1 & H2 Mouse Muscle stem cell Decline* [143] 

 
H3 

Yeast N/A Decline [144] 
Worm Whole body Decline [145] 

Fly Whole body Decline [146] 
 
 
 
 
 
 
 

Histone 
Variants 

 
 

H3.3 

Human Brain 
Senescent fibroblasts 

No change 
Increase 

[147] 
[148] 

 
Mouse 

Brain 
Liver 

Kidney 
Heart 

Increase 
Increase 
Increase 
Increase 

[147,149] 
[149] 
[149] 
[149] 

H2A.Z Human Senescent fibroblasts Increase [149] 
Mouse Brain Increase [150] 

 
 

H2A.J 

Human  Epidermis 
Senescent fibroblasts 

Increase 
Increase  

[151] 
[152] 

 
Mouse 

Epidermis 
Hair-follicle stem cell 
Senescent fibroblasts 

Increase 
Increase 
Increase 

[152] 
[152] 
[152] 

 
MacroH2A 

Human Senescent fibroblasts Increase [153] 
Mouse Lung 

Skeletal muscle 
Increase 
Increase 

[153] 
[153] 

Baboon Skeletal muscle Increase [153] 
 
 
 
 
 
 
 
 
 
 
 

Histone 
Modifications 

 
 

H3K4me3 

Human Brain Increase** [154] 
Mouse Quiescent stem cells Decrease** [143] 
Yeast N/A Increase [155] 
Fly Head Increase [156] 

Worm Whole body Increase** [157] 
H3K9me2 Fly Whole body Decrease [146] 

 
 
 
 
 
 
 
 
 

H3K9me3 

 
 

Human 

Hematopoietic stem 
cells 

Decrease [158] 

Mesenchymal stem 
cells 

Decrease [159] 

HGPS fibroblasts Decrease [160] 
 
 

Mouse 

Brain 
Brain 

Increase 
Decrease 

[161] 
[162] 

Hematopoietic stem 
cells 

Decrease [158] 

Muscle stem cells Decrease [163] 
Worm Whole body Decrease [145] 

Fly Whole body Increase [156] 
Killifish Skeletal muscle Increase [24] 
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H3K27me3 

Human HGPS fibroblasts Decrease [160] 
Mouse Brain 

Satellite cells 
Decrease 
Increase 

[164] 
[143] 

Worm Whole body Decrease [165] 
Fly Skeletal muscle Increase [166] 

Killifish Skeletal muscle 
Brain 

Increase 
Increase 

[24] 
[167] 

H3K36me3 Worm Whole body Decrease [145] 
H3K56Ac Human Senescent fibroblasts Decrease [142] 

Yeast N/A Increase [168] 
 

H4K16Ac 
Human Liver Decrease [169] 
Mouse Liver 

Kidney 
Decrease 
Decrease 

[169] 
[169] 

Yeast N/A Increase [168] 
 
 

DNA 
methylation 

 
 
 

5mC 

 
 

Human 

Senescent fibroblasts 
Hematopoietic cells 

Leukocytes 
Lung fibroblasts 

Decrease 
Decrease** 
Decrease 
Decrease 

[170] 
[171] 
[172] 
[173] 

 
Mouse 

Brain 
Liver 

Small Intestine 

Decrease 
Decrease 
Decrease 

[173] 
[173] 
[173] 

*Transcriptional change. Unknown if protein expression is altered.  
**Site-specific, rather than global, changes.  
 

 Changes in the DNA methylation landscape is another epigenetic change that is 

especially important for mammalian aging. Methylation of cytosine’s carbon 5 generates 5-

methylcytosine (5mC), a modification that regulates gene expression in certain contexts. Most 

significantly, methylation of CG dinucleotides (CpGs) in or near promoters, and particularly the 

transcriptional start site, serves to repress gene expression [180]. An early study on DNA 

methylation revealed a reduction in 5mC levels in repetitive genomic loci in aged cow thymus 

and heart [181]. Subsequent studies found global loss of 5mC during aging in several tissues of 

mice [182], rats [183], and humans [171], in addition to human fibroblasts during continual 

passaging in vitro [184]. These findings suggest that global hypomethylation is a conserved 

feature of mammalian aging. Intriguingly, a longitudinal study analyzing global DNA 

methylation levels from blood cells in “middle/advanced age” subjects found that a decrease in 
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global methylation was associated with worsening frailty status [185], linking this epigenetic 

change with a key aging phenotype. 

 In addition to this global hypomethylation, aging is associated with highly site-specific 

DNA methylation changes that include both loss and gain of methyl groups. Remarkably, a 

subset of these site-specific changes correlate exceeding well with chronological age [186]. This 

has resulted in the development of several DNA methylation “clocks”, which are the most 

accurate biomarkers of aging currently known. While some clocks are tissue- or species-specific, 

others retain high activity across tissues or species [186,187]. Recently, a “universal DNA 

methylation clock” has been developed which accurately (R2>0.96) predicts chronological age 

across 59 tissues derived from 128 mammals [188]. In addition to their ability to predict 

chronological age, these clocks also reflect age-related health. Methylation clocks correlate 

closely with clinical frailty scores [189], cognition [190], and are accelerated in patients with 

age-related diseases including Alzheimer’s disease [191], type two diabetes [192], and cancer 

[186]. Furthermore, these clocks “tick” at a slower rate in long-lived mice and in mice and non-

human primates subjected to interventions that extend lifespan [193,194]. The robustness of 

these clocks in predicting biological age and health status across species suggests that the 

underlying causes of aging are highly conserved and that the epigenome plays a key role in 

regulating the aging process.  

c. Evidence that Genomic Instability is a Driver of Epigenetic Dysfunction 

One tantalizing, unresolved question is why the epigenomes of evolutionarily diverse 

species with vastly different lifespans undergo many of the same changes with age. Though there 

are likely multiple drivers of epigenetic dysfunction during aging, genomic instability has 

emerged as one of the more likely culprits due to documented connections between genomic 
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instability age-related epigenetic changes (Figure 1.2). One of the first lines of evidence 

suggesting this is that DNA damage in yeast accelerates the onset of epigenetic changes 

commonly observed during aging. Two major epigenetic changes that occur during yeast aging 

are desilencing of sub-telomeric regions and silent mating loci, the latter leading to sterility 

[196,197]. Both of these epigenetic changes result from the redistribution of chromatin factors 

involved in maintaining silencing, including members of the Sirtuin family. Inducing DSBs in 

yeast through either genotoxic agents or expression of a restriction endonuclease leads to 

desilencing of both telomeres and the silent mating loci through a similar redistribution of the 

Sirtuin family members SIR2 and/or SIR3 to sites of DSBs [198,199]. This raises the possibility 

that many age-related epigenetic changes might be caused by redistribution of chromatin 

modifiers to sites of DSBs, which increase in frequency during aging [22, 37].  

 Intriguingly, a highly similar pattern of redistribution of chromatin modifiers is observed 

during aging and following DSB induction in mammals. Aging of the neocortex in mice is 

associated with derepression of many genes kept transcriptionally silent by SIRT1, the yeast 

SIR2 homologue. Induction of DSBs through H2O2 treatment is sufficient to cause desilencing of 

many of these same genes due to SIRT1 relocalization to sites of DSBs, similar to what is 

reported in yeast [199]. Furthermore, DNA damage in both yeast and mammals causes 

derepression of repetitive elements [75,200] another epigenetic change that is widely observed 

during the aging of distantly related species. Redistribution of both yeast SIR2 and mammalian 

SIRT1 is dependent on the DNA damage response (DDR), as this redistribution is blunted 

without the activities of PI3-kinase related protein kinases (MEC1 for yeast and ATM for 

mammals) [198,199]. Since the components of the DDR are widely conserved, it’s likely that the 

epigenetic changes that occur in response to DNA damage are highly conserved as well.  
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Figure 1.2: Genomic instability accelerates several age-related signs of epigenetic 
dysfunction. Inducing genomic instability across several different model organisms results in 
long-lasting epigenetic changes, several of which occur during the aging process. Prominent 
among these are DNA methylation changes that accelerate the DNA methylation clock, 
relocalization of chromatin-binding factors that alters gene expression, loss of histones, and an 
overall loss of heterochromatin resulting from histone loss and changes to histone 
posttranslational modifications.  

 

Adding further evidence that DNA damage is a likely driver of epigenetic decay during 

aging, two recent mouse models demonstrated that DSBs are sufficient to accelerate multiple 

aspects of epigenetic aging. In one model, DSBs were induced in four to six-month-old mice by 

expression of the I-PpoI restriction endonuclease for three weeks. Tissues of these mice analyzed 

at 15 months of age showed multiple signs of exacerbated epigenetic aging, including increased 

expression of repetitive elements in the muscle and liver, acceleration of the DNA methylation 

clock in skeletal muscle, and a skeletal muscle gene expression profile that closely resembled 
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that of mice nine months older (15 vs. 24 months) [99]. Similar results were obtained in vitro 

using fibroblasts isolated from these mice. Inducing I-PpoI expression for one day in these 

fibroblasts moderately elevated DSB levels, yet was sufficient to cause long-term changes to the 

epigenome that mimicked age-related changes. Prominent changes included redistribution of the 

histone marks H3K27me3, H3K27ac, and H3K56ac, reduced expression of histone genes, 

increased transcription of repetitive LINE-1 elements, acceleration of the DNA methylation 

clock, and an overall gene expression profile that closely resembled that of fibroblasts derived 

from older mice [100]. Importantly, the cells and mice from this model of accelerated epigenetic 

aging displayed accelerated aging phenotypes, including increased frailty, decreased grip 

strength, decreased endurance, and impaired learning and memory in the mice, along with an 

early onset of senescence in the fibroblasts. These results were corroborated by a separate study 

in which the restriction endonuclease SacI was expressed specifically in the livers of three month 

old mice for 9 days. Livers of these mice showed epigenetic and histological evidence of 

accelerated aging as quickly as one month later, including gene expression profiles that matched 

those of older animals, increased cell senescence, and increased karyomegaly [32]. 

Taken together, all of these findings strongly suggest that genomic instability is a 

universal driver of the age-related epigenetic dysfunction observed across species.  

III. Strategies for Enhancing Genomic Stability  

a. Background and overexpression of endogenous DNA repair proteins 

Most investigations of the role of DNA damage in aging have looked for correlations 

between DNA damage and age-related outcomes, or have sought to exacerbate DNA damage and 

see if this is sufficient to accelerate cellular, molecular, and physiological aspects of aging. 

Correlative studies, while informative, cannot provide definitive evidence for a causal role of 
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DNA damage in aging. This is especially true since many of the aging hallmarks, not just 

genomic instability, have compelling correlations with aging. For example, while the lifespan of 

species correlates with the efficiency of several DNA repair pathways [64-68], it also correlates 

well with proteostasis [201] and the rate of telomere shortening [202]. While more definitive 

conclusions can be drawn from studies that exacerbate genomic instability, this approach 

generates DNA damage levels that vastly exceed endogenous levels. Consequently, it is unclear 

if the findings of these studies are an accurate depiction of the role of genomic instability in 

aging.  

An alternative strategy is to enhance genomic stability and see how this affects lifespan, 

healthspan, and cellular and molecular changes during aging. Since this would specifically lower 

endogenous DNA damage levels, it would lead to a much clearer understanding of the role of 

DNA damage in aging. While the utility of this strategy has been widely recognized [203], it has 

proven exceptionally difficult to enhance genomic stability. The most sensible and common 

approach to improving genomic stability has been to overexpress key DNA repair proteins. This 

strategy seems particularly well-suited to enhancing genomic stability during aging, since the 

expression levels of several DNA repair proteins decrease during aging, coinciding with 

decreased DNA repair efficiency [204,205].  

 Unfortunately, overexpression of endogenous DNA repair proteins has largely failed to 

improve genomic stability, particularly in mammals. One common problem is that 

overexpression of endogenous DNA repair proteins results in apoptosis. This has been observed 

following overexpression of the mismatch repair proteins MSH2 and MHL1 [206], the WRN 

helicase [207], and the RAD51 recombinase [208]. Although the exact mechanism behind this 

phenomenon is unknown, it is likely that overexpression of these proteins disrupts the carefully 
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regulated stoichiometry between DNA repair proteins that are involved in the same complexes or 

repair pathways. This rationale could also explain why overexpression of some DNA repair 

proteins actually increases genomic instability. For example, overexpression of either the base 

excision repair glycosylase NTHL1 or a catalytically inactive variant increases DSBs in 

nontransformed human cells [209], while overexpression of mismatch repair proteins in yeast 

increases mutation rates and sensitizes cells to genotoxic agents [210]. Another common finding 

is that overexpression of individual DNA repair proteins is often insufficient to enhance the 

efficiency of repair. Mao et al [211] found that human fibroblasts had a decreased efficiency of 

HR repair during replicative aging, coinciding with lower expression levels of Rad51, Rad51C, 

Rad52, and NBS1- key proteins involved in this DSB repair pathway. However, overexpression 

of each of these proteins didn’t improve HR efficiency, and overexpression of Rad52 alone, or 

overexpressing all of the proteins together, actually decreased HR efficiency.  

 The most notable exception to these findings is that overexpression of SIRT6 is sufficient 

to enhance the efficiency of HR and NHEJ [69]. Though the reason for this exception isn’t 

completely understood, it could be due to SIRT6’s activities being far upstream in DSB repair 

pathways [69-72]. However, SIRT6 is not an ideal candidate for understanding how specific 

enhancement of DSB repair affects aging, as SIRT6 plays pivotal roles in other longevity-linked 

processes [73-76].    

b. Overexpression of exogenous DNA repair proteins  

Expressing exogenous (i.e. “from other species”) DNA repair proteins is an alternative 

strategy for improving genomic stability. Although this strategy has received little attention 

compared to overexpression of endogenous proteins, there are reasons to believe that this is a 

more promising approach. First, expressing an exogenous protein with no homolog is likely to 
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avoid the issues of stoichiometric imbalance that occur when overexpressing endogenous DNA 

repair proteins that are known to work in complexes. Second, overexpressing an exogenous 

protein has the potential to add new DNA repair or protection mechanisms to cells and 

organisms, whereas overexpressing endogenous proteins can only add to the efficacy of existing 

mechanisms. Finally, exogenous proteins have the potential to be orders of magnitude more 

efficient at DNA repair or protection than endogenous mechanisms, meaning that even a low 

level of overexpression of an exogenous protein could dramatically lower the level of 

endogenous DNA damage. In contrast, the impact of endogenous proteins is constrained by the 

extent to which the protein can be safely overexpressed. The trade-off is that exogenous proteins 

have a higher likelihood of being non-functional when expressed in another species, particularly 

if they require other proteins for their activity that do not have an appropriate homolog expressed 

in that species.  

 The potential of this approach is best illustrated by mice that express photolyases from 

the plant Arabidopsis thaliana. Photolyases are a class of enzymes that directly repair 

cyclobutene pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PP), helix distorting lesions 

that are caused by ultraviolet (UV) light exposure. These enzymes are largely phylogenetically 

conserved, with the exception of placental mammals. Mice expressing the A. thaliana photolyase 

have improved repair of UV-induced DNA damage, as evidenced by an increased rate of CPD 

and 6-4PP removal, decreased mutagenic events, reduced apoptosis levels, and decreased 

incidence of skin cancer [212,213]. This improvement is the result of the many advantages 

photolyases have in comparison to the nucleotide excision repair pathway used by placental 

mammals. These include a far quicker rate of lesion repair (occurring in less than a 
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nanosecond!), the ability to repair damage themselves without the need for dozens of other 

proteins, and the avoidance of strand breaks as part of the repair process [214]. 

 Mammalian genomic stability has also been improved by expressing exogenous DNA 

repair and protection proteins from organisms that are highly resistant to multiple forms of DNA 

damage. Dsup is a double-stranded DNA-binding protein that is unique to Tardigrades- known 

informally as “water bears”- a phylum comprised of microscopic animals that are highly resistant 

to multiple genotoxic agents. Human cells expressing Dsup have dramatically enhanced genomic 

stability, as evidenced by a ~50% reduction in DSB levels following treatment with H2O2 or 

gamma irradiation, concurrent with increased survival and decreased apoptosis [215,216]. This 

improved genomic stability results from Dsup binding to the genome in a nucleosome-like 

structure and protecting it from hydroxyl radicals [217]. This is the first evidence suggesting that 

some of the key mechanisms underlying the extraordinary genomic stability of “extremophiles” 

can be transferred to other species by expression of exogenous proteins.  

Surprisingly, this method of improved genomic stability is not limited to eukaryotes, as 

proteins from bacterial extremophiles can also safeguard mammalian genomes. One of the most 

impressive examples comes from mice that express PprI, one of the key regulators of the DDR in 

the radioresistant bacterium Deinococcus radiodurans. Mice expressing this transgene had 

substantially improved survival when exposed to lethal doses of gamma irradiation [218]. 

Furthermore, they exhibited fewer adverse side effects from radiation exposure, including 

reduced lymphopenia and decreased levels of apoptotic splenocytes and thymic cells. PprI 

resulted in increased expression across several tissues of the RAD51 recombinase, which aids in 

the repair of DSBs caused by radiation. This replicates one of the key mechanisms of PprI in its 

native organism, where PprI causes transcriptional upregulation of the RAD51 homolog RecA 
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following radiation exposure [219]. This is a remarkable finding, especially since mice have no 

identified PprI homolog and PprI would have to be transported into the nucleus to directly 

stimulate transcription of RAD51, a process that isn’t required in bacteria which lack a nucleus.  

Collectively, these findings suggest that expression of exogenous DNA repair and 

protection genes- and in particular ones from radioresistant extremophiles- is a promising 

strategy for enhancing the genomic stability of mammals and potentially other organisms. 

Organisms expressing these proteins could then be used to examine whether improved genomic 

stability impacts age-related epigenetic decay, lifespan, and healthspan.  

IV. Summary 

Genomic instability and epigenetic dysfunction are two hallmarks of aging that are widely 

observed across species. Changes to the epigenome likely play a pivotal role in the aging 

process, as epigenetic markers like DNA methylation patterns are highly accurate biomarkers of 

aging and interventions that slow or reverse age-related changes to the epigenome frequently 

extend lifespan. Although the underlying causes of epigenetic dysfunction are unknown, 

genomic instability is a suspected culprit due to the highly similar changes that occur to the 

epigenome during aging and following the induction of DNA damage. However, these 

similarities are from experiments in which DNA damage levels are highly elevated, and it is 

unknown if they accurately recapitulate the epigenetic changes that occur under endogenous 

levels of DNA damage. The hypothesis that genomic instability is a driver of age-related 

epigenetic decline could more definitively be tested by engineering organisms with enhanced 

DNA damage prevention or repair capacities and testing if the epigenomes of these organisms 

are better preserved during aging. Despite many attempts, it has proven difficult to generate 

organisms with improved genomic stability, as overexpression of endogenous DNA repair 
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proteins is frequently toxic. There is emerging evidence that expressing DNA repair or protection 

proteins from other species might be a more fruitful strategy for enhancing genomic stability, but 

this strategy has not been thoroughly explored.  

In chapter two of this thesis, I explore this strategy by identifying and characterizing novel 

proteins from the radioresistant bacterium Deinococcus radiodurans that enhance genomic 

stability in mammalian cells, yeast, and worms. In chapter three, I use transgenic yeast and 

worms expressing these proteins to test the hypothesis that improved genomic stability extends 

lifespan, improves healthspan, and stabilizes the epigenome following DNA damage and during 

aging.   
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I. Statement of Work 

All experiments described in this chapter were designed by myself and David Sinclair, with 

input from dissertation committee members Raul Mostoslavsky, Stephen Elledge, Vadim 

Gladyshev, and Bruce Yankner. Notably, Bruce Yankner was the first to suggest that C. elegans 

would be an ideal model for testing the effects of SSB on lifespan and healthspan, while all 

committee members recommended the generation of Dps1 mutants to test its mechanism of 

action. I conducted all experiments except for the generation of transgenic worms. Joe Zullo 

(Yankner Lab) designed and conducted the microinjections that generated all transgenic worms, 

using plasmids I generated and provided. Xiao Tian (Sinclair Lab) helped conduct the HR and 

NHEJ efficiency assays, specifically helping me optimize the transfection protocol. While I 

conducted the yeast rDNA recombination experiments, Brianah McCoy and Qiurui Zeng (both 

of the Sinclair Lab) helped in the blinded scoring of colonies. Jae Hyun Yang (Sinclair Lab) 

helped in the design of the experiments measuring DSB repair in I-PpoI-inducible fibroblasts 

and provided the cells for this experiment. Roger Chang (Silver Lab) provided the glycerol 

stocks of D. radiodurans from which genomic DNA was extracted. Patrick Griffin (Sinclair Lab) 

constructed and validated the Cell Profiler program I used to analyze DSB foci. I performed all 

of the other analysis of the data in this chapter, and generated all of the graphs and images.  
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II. Abstract 

Fully understanding if and how endogenous levels of DNA damage contribute to the aging 

process has been hampered by an inability to specifically improve genomic stability across 

model organisms. The most widely attempted method, overexpression of endogenous DNA 

repair proteins, has encountered frequent failures due to either an inability to improve DNA 

repair or by inducing cell death. Expression of exogenous DNA repair proteins has yielded some 

success, but this strategy has not been thoroughly explored. Here, I report the identification of 

proteins from the radioresistant bacterium Deinococcus radiodurans that enhance genomic 

stability across mammalian cells, yeast, and worms. Using H2O2 resistance as a proxy for 

improved genomic stability, I screened a library of the key genes involved in maintaining D. 

radiodurans genomic stability. Six genes improved H2O2 survival across multiple human cell 

lines. Two of these genes- encoding the single-stranded DNA binding protein SSB and the 

double-stranded DNA binding protein Dps1- also improved H2O2 survival in S. cerevisiae. SSB 

also improved survival to multiple genotoxic agents in C. elegans. I validated that SSB and Dps1 

protect the genome by showing a reduction in DSBs in human cells following H2O2 treatment. 

Using DSB reporter assays, I find that SSB improves genomic stability by enhancing the 

efficiency of NHEJ in mammalian cells and yeast. This was further corroborated by increased 

repair of DSBs induced by a restriction endonuclease. Analysis of Dps1 mutants show that its 

protective effects required both DNA binding and sequestration of Fe2+ ions, suggesting that 

Dps1 protects the genome from hydroxyl-mediated DNA damage. Overall, these results 

demonstrate that proteins from radioresistant organisms can be highly effective at improving 

genomic stability across species. These characteristics make these proteins, and in particular SSB 

and Dps1, ideal tools for understanding how improved genomic stability affects aging.  
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III. Introduction  

Protecting the integrity of the genome is essential for the survival of all organisms. The 

genome is constantly being damaged by a variety of endogenous and exogenous forces, 

including ultraviolet rays, reactive oxygen species (ROS) and other free radical byproducts from 

cellular metabolism, alkylating agents, and radiation. It is speculated that protection of genetic 

material was one of the major challenges that faced the first life forms [1], particularly since the 

early Earth was exposed to high levels of radiation. Consequently, it is not surprising that 

organisms have evolved several highly conserved mechanisms for protecting and repairing the 

genome. Archaea, bacteria, and eukaryotes share many similar DNA repair pathways, including 

mismatch repair, nucleotide excision repair, base excision repair, homologous recombination, 

and non-homologous end joining [2,3]. Not only are the steps of these repair pathways quite 

similar, but there are also substantial structural similarities between the key proteins involved in 

these processes. 

Despite the highly conserved nature of these repair pathways, there is substantial variation in 

the efficacy of DNA repair and protection mechanisms between species, even between closely 

related ones. A study of fibroblasts derived from 18 rodent species found an approximately five-

fold difference in their ability to repair UV-induced DNA damage and up to a two and a half-fold 

difference in their ability to repair DSBs [4]. A separate study reported a ~50-fold difference in 

the repair efficiency of UV-C and H2O2 damage among rodents [5]. Even more substantial 

discrepancies are discovered when comparing genomic stability among more evolutionarily 

distant species. The most common method for assessing genomic stability across divergent 

species is by comparing levels of DNA damage and cell death following exposure to different 

doses of genotoxic agents. Comparing the reported LD50 of different organisms reveals a 
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staggering difference in sensitivities to various genotoxic agents: a ~3,000-fold difference to 

gamma irradiation [6,7], a >200-fold difference to UV-C [8,9] , and a >100-fold difference to 

H2O2 [10,11].             

 One conspicuous finding from these studies is that a select group of species are able to 

survive extraordinarily high doses of multiple genotoxic agents. These species primarily belong 

to specific phylums across all three domains of life and live in a variety of different habitats, 

suggesting a genetic, rather than environmental, basis for their enhanced resilience. Although 

there is still some debate about the mechanisms that underlie these unusual phenotypes [12,13], 

there is strong evidence that enhanced DNA protection and repair mechanisms play a large role. 

Supporting this, mutating DNA repair genes greatly sensitizes these organisms to genotoxic 

agents [9,14]. More concrete evidence comes from a directed evolution study in E. coli, a 

bacterium with unremarkable radioresistance. This approach uncovered that the gamma 

irradiation LD50 to E. coli could be greatly enhanced by only making point mutations in recA, 

dnaB, and yfjk, three genes involved in DNA repair and metabolism. These three mutations 

conferred a level of radioresistance of E. coli that was very comparable to that of D. 

radiodurans, likely the most radioresistant organism on the planet [13].  

Genomic instability is a suspected cause of aging due to its increased frequency with age 

[15,16] , the positive correlation between DNA repair capabilities and lifespan [4,17], and the 

reduced lifespan of organisms with elevated DNA damage [18-20]. However, the most definitive 

test of this hypothesis would be to evaluate if improving genomic stability leads to lifespan 

extension. This has proven difficult to achieve, as overexpressing endogenous DNA repair 

proteins, surprisingly, does not typically improve genomic stability [21-23]. However, genomic 

stability has been improved by expressing exogenous DNA repair proteins from organisms 



43 
 

resistant to high levels of genotoxic agents. E. coli expressing either PprA or PprI, two genes 

essential for maintaining genomic stability in D. radiodurans, have enhanced resistance to both 

gamma irradiation and H2O2 [24,25]. Both of these genes are unique to the Deinococcus-

Thermus phylum, indicating their ability to enhance genomic stability does not require other D. 

radiodurans-specific proteins. Further showing that these genes can maintain activity across 

different species, PprI enhances DSB repair in mammalian cells [26] and in mice [27] by 

stimulating expression of RAD51, similar to its ability to stimulate transcription of RecA in D. 

radiodurans [28]. Mammalian genomic stability is also improved by expressing Dsup, a protein 

unique to radioresistant Tardigrades. Dsup coats the genome of human cells and reduces DSB 

levels following exposure to gamma radiation [29].   

These findings suggest that exogenous DNA repair and protection proteins are promising 

tools for enhancing genomic stability across species. Enhancing genomic stability across 

multiple species would allow us to test whether DNA damage has a causal role in aging. Here, I 

identify and characterize DNA repair and protection proteins from the radioresistant bacterium 

D. radiodurans that can enhance genomic stability across several species, including the common 

aging models S. cerevisiae and C. elegans. Organisms expressing these proteins can be used in 

future studies to test how improved genomic stability affects cellular and molecular hallmarks of 

aging, healthspan, and lifespan.   

IV. Results 

D. radiodurans genes enhance mammalian genomic stability 

 To identify exogenous genes that enhance genomic stability, I evaluated whether genes 

from the radioresistant bacterium Deinococcus radiodurans could enhance the genomic stability 

of human cell lines. D. radiodurans was chosen because:  
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1) It has extraordinarily high resistance to several different genotoxic agents [30], suggesting 

exceptional genomic stability.  

2) Many of the genes underlying this phenotype have been identified and extensively 

characterized (Table 2.1). 

3) The Deinococcus-Thermus phylum contains several unique genes encoding DNA repair or 

DNA-binding proteins that are essential for its remarkable resistance to genotoxic agents [31,32].  

 

A literature review identified 24 genes that are strongly implicated in specifically maintaining 

genomic stability in D. radiodurans (Table 2.1). Genes were considered to have a “specific” role 

in maintaining genomic stability if they had a documented or highly suspected role in preventing 

or repairing DNA damage. This criterion helps exclude pleiotropic genes that might have several 

effects unrelated to genomic stability. In addition to these 24 D. radiodurans genes, I included 

the dsup gene from the radioresistant eukaryote Ramazzottius varieornatus, as it has already been 

shown to enhance genomic stability in human cells [29].  

These 25 genes were cloned into a mammalian expression vector containing an in-frame 

nuclear localization sequence (NLS) from the human c-myc gene and a V5 tag (Fig 2.1a). I first 

tested whether these genes could be successfully expressed and localized to the nucleus of 

human cells. This was of particular concern since these genes were not codon optimized, and the 

GC content of many of these genes exceeds 75%, reflecting the GC-rich nature (67%) of the D. 

radiodurans genome [33]. All 25 genes were successfully expressed at high levels in transiently 

transfected HEK293T cells, with all genes showing nearly exclusive nuclear localization (Figure 

2.1b).  
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Table 2.1: Deinococcus radiodurans genes implicated in genomic stability  

 

To test if any of these genes enhance genomic stability, I conducted an H2O2 viability screen 

in HEK293T cells. This assay was chosen because oxidative stress is a common source of 

endogenous DNA damage, is implicated in several aging and age-related diseases [34-36], and 

H2O2 treatment accelerates age-related epigenetic decay in both yeast and mammalian cells [37]. 

This screen identified five D. radiodurans genes, along with the R. varieornatus gene dsup, that 

significantly enhanced viability (Fig 2.1c). We further validated these findings by demonstrating 

that these six genes also enhanced H2O2 viability in primary human fibroblasts (Fig 2.1d).   
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Figure 2.1: Expression and H2O2 viability screening in human cell lines. (A) Overview of 
expression vector features used to express D. radiodurans transgenes in human cells. (B) ICC of 
two D. radiodurans genes expressed in HEK293T cells. These are representative of expression 
and localization of all 24 transgenes. (C) H2O2 viability screen in HEK293T cells. Data depicts 
average viability + SEM from 3 experiments analyzed using a one-way ANOVA. (D) Testing 
hits from HEK293T cells in an H2O2 viability assay in primary IMR-90 human fibroblasts. Data 
depicts average viability + SEM from 3 experiments analyzed with a one-way ANOVA. 
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Ssb and dps1 enhance the genomic stability of yeast  

Since my goal was to identify genes that enhance genomic stability across multiple 

organisms, I next tested whether these genes affect genomic stability in the fungi Saccharomyces 

cerevisiae. Yeast strains were generated that successfully expressed each of the six genes that 

enhanced viability in human cell lines (Fig 2.2A). Two of these six genes- ssb and dps1- 

enhanced H2O2 viability in yeast (Fig 2.2B-C), suggesting that they may bolster genomic 

stability. To further test this possibility, I tested how these genes impact the stability of the rDNA 

locus. The yeast rDNA locus is a highly repetitive region comprised of 150 – 200 copies of the 

9.1 kb rDNA sequence. Instability at this locus leads to the formation of extrachromosomal 

rDNA circles, which is the major cause of yeast replicative aging [38,39]. rDNA stability was 

monitored using an ade2 strain containing a single ADE2 gene integrated in the rDNA locus. 

This ADE2 can be lost through recombination, resulting in the formation of “half-sector” 

colonies that are half red and half white (Fig 2.2D). This reporter was validated by inducing 

genomic instability with H2O2. As expected, H2O2  increased rDNA recombination rates (~4-

fold, Fig2.2E), while overexpression of the rDNA stabilizing gene SIR2 suppressed 

recombination (Fig2.2F). Three D. radiodurans genes- ssb, dps1, and ddrB- also significantly 

lowered rDNA recombination rates, suggesting they enhanced rDNA stability (Fig2.2F).  

Ssb enhances DSB repair while Dps1 shields the genome from DNA damage 

 I chose to further study ssb and dps1, as these were the only two genes that enhanced 

genomic stability in all mammalian and yeast cell assays. Ssb encodes a single-stranded DNA 

binding protein that is involved in DNA replication and double-strand break (DSB) repair [40]. 

D. radioruans SSB shares significant homology with other bacterial single-stranded binding 

proteins, although it is the only known bacterial single-stranded binding protein that contains 
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Figure 2.2: D. radiodurans genes improve genomic stability in yeast (A) ICC demonstrating 
transgene expression. (B) H2O2 viability of yeast exposed to 5 mM H2O2. Data represents average 
survival + SEM of three different experiments, with each experiment using a unique isolate from 
each group. Data analyzed with a one-way ANOVA.  (C) Representative colony images from  
H2O2 viability assay (D) Schematic of rDNA recombination reporter assay. (E) rDNA 
recombination rates with H2O2 treatment. Data represents average recombination rate + SEM 
from ten different isolates tested across three different experiments. Data analyzed using 
student’s t-test.  (F) Average rDNA recombination rate + SEM  in yeast expressing transgenes. 
At least five different isolates were tested for each group across at least three different 
experiments. Data analyzed with a one-way ANOVA.  
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more than one OB-fold, the ssDNA binding domain [41]. SSB plays a vital role in the 

radioresistant phenotype of D. radiodurans, as reducing SSB expression by ~50% leads to a 93% 

decline in the LD50 for gamma radiation [32]. Dps1 encodes a double-stranded DNA-binding 

protein that belongs to the bacterial family of “DNA-binding proteins from starved cells”. These 

proteins are upregulated in response to a variety of stressors including starvation, oxidative 

stress, and exposure to high concentrations of certain metals [42]. D. radiodurans Dps1, like 

other members of the Dps family, contains an N-terminal DNA-binding domain followed by 

several alpha helix motifs. These alpha helices contain a total of four amino acids that are 

involved in the binding of Fe2+ ions. Dps1 monomers pack together to form a dodecameric 

structure containing a large central cavity that can bind up to 500 Fe2+ ions [43]. Dps proteins 

protect DNA from oxidative damage by binding DNA, and thus protecting it from free radical 

damage, and by sequestering Fe2+ ions, which are required to produce free radicals through the 

Fenton reaction.    

I wanted to understand the mechanisms through which SSB and Dps1 protect the 

genomes of mammalian and yeast cells. Since both enhanced H2O2 viability, I hypothesized that 

they might reduce DSB levels. DSBs are the most deleterious form of DNA damage that has 

been implicated as one of the main causes of H2O2 -mediated death [44]. Primary human 

fibroblasts expressing SSB or Dps1 had significantly reduced DSB levels both 8 and 24 hours 

following H2O2 treatment (Fig 2.3A-B), supporting my hypothesis that they are improving 

genomic stability.  

 I next wanted to uncover the specific mechanisms through which SSB and Dps1 were 

reducing DSB levels. One potential mechanism would be by improving the efficiency of DSB 

repair. This hypothesis was tested using two human primary fibroblast lines used for monitoring 
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the efficiency of one of the two major DSB repair pathways: either non-homologous end joining 

(NHEJ) or homologous recombination (HR). These reporter cell lines were previously used in 

screens to identify endogenous proteins that enhance DSB repair, finding that only 

overexpression of SIRT6 could improve the efficiency of DSB repair [45,46]. Human fibroblasts 

expressing SSB have improved NHEJ efficiency, while fibroblasts expressing Dps1 or the other 

D. radiodurans genes identified in my original viability screen have no improved efficiency of 

either DSB repair pathway (Fig 2.3C-D). Critically, SSB expressing fibroblasts maintained the 

same level of HR efficiency as control cells. This suggests that SSB’s enhancement of NHEJ 

activity does not merely reflect a shift from HR towards NHEJ, and indicates that SSB is 

improving the overall ability of a cell to repair DSBs.   

To further test SSB’s ability to enhance DSB repair, I evaluated if SSB could affect the 

repair of endonuclease-induced DSBs. Our lab has previously reported the development of a 

murine fibroblast cell line through which DSBs can be induced by the tamoxifen-controlled 

expression of the restriction endonuclease I-PpoI [47]. Fibroblasts expressing SSB showed a 

significant reduction in DSB levels one day after I-PpoI induction (Fig2.3E-F), adding further 

evidence that SSB enhances the efficiency of DSB repair. I further tested whether SSB could be 

having the same effect in yeast. NHEJ efficiency in yeast can be evaluated by monitoring the 

transformation efficiency of a plasmid that has been linearized in vitro, as yeast that fail to repair  

this plasmid will not grow under certain selective conditions (Fig2.3G) [48,49]. Yeast stably  

expressing  SSB displayed improved repair of the in vitro linearized plasmid, suggesting that 

SSB also improves NHEJ efficiency in yeast (Fig2.3H).   
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Figure 2.3 (Continued) 

 

 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: SSB and Dps1 promote genomic stability, with SSB enhancing NHEJ 
(A) DSB levels following H2O2 treatment in human fibroblasts. Data represents averages taken 
from three experiments with three replicates per experiment and analyzed with a one-way 
ANOVA. (B) Representative image of yH2AX foci in SSB expressing cells 8 hours after H2O2 
treatment. (C) Efficiency of NHEJ and (D) HR in human fibroblast reporter cells stably 
expressing transgenes of interest. Data represents average repair efficiency from three different 
experiments and analyzed with by a one-way ANOVA. (E) DSB levels 24 hours after I-PpoI 
induction in mouse ear fibroblasts expressing transgene of interest. Data represents average 
percentage of cells + SEM across three different experiments and analyzed with a one-way 
ANOVA. (F) Representative image of yH2AX foci in SSB and control fibroblasts 24 hours after 
I-PpoI induction. (G) Schematic of assay to assess NHEJ efficiency in yeast. (H) Colony 
formation in Scrambled or SSB expressing yeast following the transformation procedure 
depicted in G. Representative images from two experiments are shown. A third experiment was 
conducted and showed similar results.   
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While Dps1 also reduced DSB levels following H2O2 treatment, it did not have any effect 

on DSB repair efficiency. I hypothesized that Dps1 could be reducing DSB levels in mammalian 

cells by binding to the genome and sequestering Fe2+ ions, as these are the two mechanisms 

through which Dps-family member proteins protect DNA in vivo and in vitro [42,50]. To test 

this, I generated three Dps1 mutants that lacked the DNA-binding domain, lacked one of the four 

Fe2+ binding sites, or lacked all 4 Fe2+ binding sites (Fig2.4A). All Dps1 mutants exhibited a 

significantly reduced ability to protect human fibroblasts from H2O2 -mediated death. This 

suggests that Dps1 enhances genomic stability by protecting DNA from free-radical-induced 

DNA damage (Fig2.4B).   

 

 

 

 

 

 

 

 

 

Figure 2.4: Dps1 protection requires DNA-binding and Fe2+ sequestration. (A) Domains of 
Dps1 monomer highlighting DNA-binding domains and the five Fe2+ sequestration residues. (B) 
Average H2O2 viability + SEM of Dps1 mutants in HEK293T cells. Data represents three 
different experiments analyzed with a one-way ANOVA. 
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Ssb enhances genomic stability of C. elegans   

 I next tested whether SSB or Dps1 could enhance the genomic stability of C. elegans. 

While three SSB transgenic worm lines were established, along with two GFP and two empty 

vector control lines, no viable Dps1 lines were generated following two separate attempts. The 

NLS tagged transgenes localized predominantly, but not exclusively, to the nucleus (Fig 2.5A). 

To examine if SSB improved genomic stability, I tested if SSB transgenic worms had altered 

viability in response to the genotoxic agents H2O2 and ultraviolet light, as increased resistance to 

both of these agents is associated with interventions that extend longevity [51-54]. SSB 

transgenic worms had substantially higher resistance to H2O2 treatment (Fig 2.6B), consistent 

with my previous findings in mammalian and yeast cells. SSB expression also led to a modest 

increase in the lifespan of worms exposed to UV-C. In addition to this increased survival, SSB 

worms exposed to non-lethal doses of UV-C and H2O2 appeared to maintain higher levels of 

motility, further suggesting increased resistance to DNA damage. Collectively these results 

suggest that SSB transgenic worms likely have enhanced genomic stability.     

Figure 2.6 SSB transgenic worms have increased genomic stability. (A) SSB expression in 
transgenic C. elegans, highlighting probable nuclei in the gut and head. (B) H2O2 survival in C. 
elegans 8 hours after H2O2 treatment. Data represents average survival +/- SEM from three 
different experiments analyzed with a one-way ANOVA. 
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V. Discussion 

To the best of my knowledge, this is the first genetic screen identifying exogenous proteins 

that enhance genomic stability. One of the surprising results was the high frequency (5/23) of 

screened D. radiodurans genes that enhanced H2O2 viability in human cells. This 22% hit rate is 

much higher than the 2% hit rate reported from a genome-wide screen identifying endogenous 

genes that could improve H2O2 viability in human fibroblasts [55]. Part of this discrepancy is 

likely due to my screen specifically targeting genes involved in genomic stability, which is 

known to be a key factor in surviving high levels of oxidative stress [56]. Consequently, it would 

be expected that this targeted approach would have a higher hit rate than an unbiased, genome-

wide screen. However, this could also reflect an improved ability of exogenous proteins, 

particularly from organisms with remarkable stress resistance, to improve genomic stability and 

viability in other species. Additional gain-of-function studies screening larger numbers of 

exogenous genes will provide more quantitative evidence that clarifies whether proteins from 

stress-resistant organisms are especially capable at improving genomic stability.  

Another noteworthy finding is that all six genes that improved H2O2 viability have very 

similar functions: either binding single- or double-stranded DNA. Based on my findings on the 

mechanisms of Dps1-mediated protection, along with previous findings about the dsDNA 

binding protein Dsup [29], it is likely that these dsDNA binding proteins help prevent DNA 

damage. On the other hand, ssDNA-binding proteins are more likely to aid in DNA repair. This 

is supported by the finding that SSB enhanced NHEJ efficiency in human cells while expression 

of DdrA, an ssDNA-binding protein structurally similar to the HR factor RAD52 [57], had a 

negative impact on NHEJ efficiency. DNA strand breaks caused by H2O2 treatment results in 

high levels of ssDNA that is susceptible to digestion by exonucleases, and preservation of these 
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ends is essential to prevent extensive degradation of the genome and for aiding in DSB repair 

[58]. The high hit frequency of ssDNA-binding proteins could indicate that binding and 

protection of single-strand ends is one of the critical factors for ensuring survival following high 

levels of oxidative stress. The lack of hits outside of DNA binding proteins might also indicate 

that D. radiodurans proteins with other functions in maintaining genomic stability, such as those 

involved in resolving Holliday junctions during HR [59], require other proteins that are not 

present when expressed in other organisms. This is one of the major drawbacks of an exogenous 

screening approach, as many proteins, especially those involved in DNA repair, operate in multi-

protein complexes and would be unlikely to function in organisms that are evolutionarily distant 

from their native species. 

Finally, SSB’s enhancement of NHEJ efficiency across species highlights the potential of 

exogenous proteins to generate unique phenotypes that might be difficult to achieve through 

more conventional approaches. Several researchers have attempted to enhance DSB repair 

through overexpression of numerous endogenous repair genes, with only one candidate, SIRT6, 

demonstrating improved efficiency [45,46]. One possible explanation is that SSB is acting 

through a unique mechanism that dramatically improves one or more steps in the NHEJ repair 

pathway, and that such a level of extraordinary improvement is unlikely to be achieved by 

merely increasing expression levels of endogenous proteins. A similar phenomenon was 

previously reported in mice expressing a plant photolyase, with these transgenic mice showing 

massively accelerated repair of UV-induced lesions [60,61]. Future investigations on the specific 

mechanisms through which SSB participates in NHEJ will help clarify why it is one of the only 

proteins that can improve NHEJ and may also provide insights into other proteins or strategies 

that could bolster DSB repair.      
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These findings cumulatively suggest that genomic stability of mammalian cells, yeast, and 

worms can be enhanced by expression of SSB and Dps1. Consequently, organisms expressing 

these proteins would be excellent model systems for testing the effect of improved genomic 

stability on aging, helping us understand how endogenous levels of DNA damage affect cellular 

function and whether it has a causal role in determining lifespan or healthspan.  

VI. Materials & Methods 

Plasmid Generation  

A glycerol stock of Deinococcus radiodurans R1 was generously donated by the lab of Pam 

Silver (Harvard Medical School). Genomic DNA was extracted from saturated D. radiodurans 

cultures, and genes of interest (Table 1) were PCR amplified to contain the full open reading 

frame (excluding stop codon) along with flanking attB1 and attB2 sequences (Primers in Table 

1.3). Dsup from Ramazzottius varieornatus was amplified from a plasmid generously provided 

by the laboratory of Takekazu Kunieda (The University of Tokyo). Gfp, mcherry, and sir2 were 

amplified from plasmids belonging to the Sinclair Lab. The “Empty Vector” control used in all 

experiments was generated by amplifying a 59-nucleotide sequence synthesized by IDT that 

doesn’t encode for any protein. Amplified PCR products were purified (Omega Biotek #6492-

02) and subsequently cloned into the Gateway Donor vector pDONR223 (Addgene #2395) using 

the Gateway BP Clonase Enzyme Mix (ThermoFisher #11789100). These donor vectors were 

then purified (Omega Biotek D6942-02), and subsequently cloned into a modified Gateway Entry 

vector pLEX307 (Addgene #41392) using the Gateway LR Clonase Enzyme Mix (ThermoFisher 

#11791100). This vector was modified to contain a 27-nucleotide sequence encoding a nuclear 

localization signal from c-myc 5’ to the attR2 site, generating a vector we named 

“pLEX307_NLS”. Expression of all transgenes in mammalian cells was accomplished using 
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pLEX307_NLS. Transgene expression in S. cerevisiae was accomplished using the 

pAG306GPD-ccdB plasmid (Addgene #14140). Genes were amplified from their 

pLEX307_NLS vector (Primers in Table 1.3) to contain the open reading frame, c-myc NLS, 

and V5 tag, flanked by attB1 and attB2 sites. These amplicons were PCR purified, cloned into 

the pDONR223 entry vector, and then subcloned into the pAG306GPD-ccdB Gateway Entry 

plasmid. Plasmids for transgene expression in C. elegans were generated following the same 

protocol as described for yeast, except pCFJ150 (Addgene #19329) was used as the Gateway 

Entry plasmid.  

 
Cell Culture  

293T cells (ATCC #CRL-3216) and IMR-90 cells (ATCC #CCL-186) immortalized with 

hTERT were cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. 

Cells were grown in a 37oC incubator with 5% CO2. The I-PpoI-inducible fibroblasts were 

harvested from the ears of 3-month old ICE mice. These cells were cultured in DMEM 

supplemented with 20% FBS, 1% penicillin-streptomycin, and 0.1 mM beta-mercaptoethanol. 

ICE fibroblasts were grown in a 37oC incubator with 3% O2 and 5% CO2. All cells were 

maintained at 20-80% confluency, with media being changed at least every three days. H2O2 

(Sigma Aldrich #H1009) and 4-OHT (Sigma Aldrich #H7904) were added at the indicated 

concentrations directly to the culture medium. hTERT IMR-90 cells stably expressing the 

transgenes of interest were generated by transducing hTERT IMR-90 cells in 6-well plates at 

~40% confluency with lentivirus encoding the transgenes in a pLEX307_NLS vectors. 500 μL of 

lentivirus was added to 1.5 mL of growth media per well, along with 5 μg/mL of Polybrene 

(Fisher Scientific #NC9840454). The following day the media was removed, cells were washed 

three times with PBS, and growth media was replaced. Three days after transduction, cells were 
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split with growth media containing 2 μg/mL Puromycin (Thermo Fisher Scientific #A1113802). 

Cells were incubated for three days, with media changed every day with fresh growth media 

containing Puromycin.  

 
Yeast Strains 

Yeast strains are listed in Table 1.4. Yeast expressing the transgenes of interest were generated 

by transforming the appropriate strain with expression vectors that had been linearized within the 

URA3 site. For transformation, yeast strains were streaked out from glycerol stocks onto YPD 

plates, incubated at 30oC for two days, and then single colonies were picked into YPD media. 50 

mL cultures of logarithmically growing yeast cells (OD600= 0.500 – 0.700) were resuspended in 

10 mL of a 1X lithium acetate (1X LiOAc) buffer containing 0.1 M LiOAc, 10 mM Tris-HCl 

(pH 8.0), and 1 mM EDTA. Cells were centrifuged, supernatant removed, and resuspended in 1 

mL of 1X LiOAc buffer. 100 μL of yeast cells, 36 μL of 1M LiOAc, 10 uL of 10 mg/mL salmon 

sperm DNA (ThermoFisher Scientific #15632011), and up to 1.5 μg of linearized plasmid was 

then added to a microcentrifuge tube. 280 μL of 50% PEG-3350 was then added, the tube 

vortexed, and incubated for 30 minutes at 30oC, rotating at 45 RPM. DMSO was added to a final 

concentration of 10%, vortexed, and heat shocked at 42oC for 15 minutes. Cells were then placed 

on ice for 5 minutes, centrifuged, and resuspended in 200 μL of TE buffer (pH 8.0). 125 μL of 

resuspended cells were transferred to CSM-URA plates. These plates were placed in a 30oC 

incubator for three nights. Resulting yeast colonies were subsequently picked, grown in CSM-

URA media, and frozen down as glycerol stocks.     

 
Worm Strains 

N2 Bristol Caenorhabditis elegans worms were used for all experiments. Worms were cultured 

at 20oC on NGM plates with OP50 bacteria. Transgenic worms were generated by microinjection 
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of pCJF150 expression plasmids into the gonads of N2 worms. For experiments, worms were 

synchronized by conducting a 5-10 hour egg lay simultaneously with all of the relevant strains. 

Progeny from these worms were then used for experiments.  

 
Immunocytochemistry  

Cells were grown to 40-80% confluency in 8-well glass chamber cover slides (ThermoFisher 

#155409PK). Media was removed, cells were washed twice with 500 μL of PBS, and then fixed 

with 4% formaldehyde for 15 minutes. Cells were then washed twice again with PBS and 

permeabilized with 0.2% TritonX-100 in PBS (PBS-T). Cells were washed twice again, blocked 

with 5% BSA in PBS-T. For localization of transgenes, cells were incubated for one hour with a 

FITC-conjugated V5 antibody (ThermoFisher #R963-25) in 5%BSA PBS-T at 1:1000. For 

detection of DSB foci, cells were incubated for one hour with an 𝛾H2AX antibody (Cell 

Signaling #2577) diluted 1:1000 in 5%BSA PBS-T, washed three times with PBS, and then 

incubated with an HRP-conjugated anti-Rabbit IgG antibody (VWR #NA934) diluted 1:5000 in 

5% BSA PBS-T. Cells were washed three times with PBS, and then incubated for 10 minutes 

with DAPI in PBS at 1:10,000. Cells were then washed twice more with PBS and imaged.     

 
Mammalian Cell H2O2 Viability 

H2O2 viability was assessed in 293T cells using the MTT viability assay [62]. 293T cells were 

seeded in 24-well tissue culture plates at 175,000 cells/well and grew overnight. The next day, 

cells were transfected with 650 ng of pLEX307_NLS plasmids containing the transgene of 

interest. Transfections were done in Optimem reduced serum media (ThermoFisher #31985062) 

with plasmid DNA incubated in Optimem along with PEI transfection reagent. Transfection 

mixes were added to the seeded cells, cells were incubated overnight, and the following day the 

media was removed and fresh growth media was added. The following day, media was removed 
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and growth media containing 1150 μM of H2O2 was added to the cells. Cells were incubated 

overnight. The following day, media was removed, and replaced with 1 mL of fresh growth 

media. 200 μL of MTT solution (5 mg/mL MTT in PBS) was added, and cells were placed back 

in the incubator for 3.5 hours. Media was then carefully removed, and 1 mL of MTT solvent (4 

mM HCl, 0.1% NP-40 in isopropanol) was added to cells. Solvent was mixed with the cells 

thoroughly, followed by a 20 minute incubation while rocking. Absorbance was then monitored 

at 590 nM using a plate reader.  

H2O2 viability was assessed in hTERT-IMR90 cells using Calcein-AM (VWR #206700). 

Cells stably expressing the transgenes of interest were plated at 10,000 cells/well in 96-well 

tissue culture plates. The following day, media was removed and exchanged with growth media 

containing 450 μM H2O2. Cells were incubated overnight, and the following day media was 

removed, cells were washed once with PBS, and 500 μL of Calcein-AM dissolved 1:400 in 

phenol-red free skeletal muscle cell growth media (PromoCell #C23060) was added. Cells were 

placed back at 37oC for 30 minutes, after which media was removed, cells were washed once 

with PBS, and fluorescence was monitored using a plate reader (excitation = 490 nm, emission = 

520 nm).     

 
Yeast H2O2 Viability 	

Yeast were grown overnight in CSM-URA media in a 30oC shaking incubator. The following 

day, cultures were backdiluted into 11 mL of CSM-URA media at OD600=0.3. Cultures grew 

until OD600=0.6, at which point each individual culture was split into two 5 mL cultures. 5 mM 

of H2O2 was added to one of these cultures, no H2O2 was added to its counterpart, and tubes were 

put back in the incubator for 90 minutes. A small volume of each culture was diluted ~1:25,000 

in diH2O, and 100 μL of this dilution was plated onto YPD plates and spread with autoclaved 
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beads. Plates were put in a 30oC incubator for three days, after which colonies were counted and 

viability was calculated by dividing the number of colonies resulting from the 5 mM H2O2 -

treated culture by the number of colonies resulting from the culture that did not receive H2O2.   

 
Worm H2O2 and UV-C Viability 

For H2O2 viability, 3 day old worms were harvested from their NGM plates by washing with M9 

buffer, worms were washed twice with 15 mL of M9 buffer, and resuspended to a final volume 

of 1 mL. This 1 mL suspension of worms in M9 buffer was then added to 1 mL of M9 buffer in a 

6-well tissue culture plate. 1 mL of M9 buffer with 3 mM H2O2 was then added to these wells, 

for a final H2O2 concentration of 1 mM. Worms were incubated for 8 hours, after which survival 

was assessed. Worms were scored as dead if no movement was detected after they had been 

prodded twice with a platinum wire. For UV-C viability, 3 day old worms were picked onto 

NGM plates without OP50 and exposed to the appropriate dose of 254 nm UV-C using a UV-

Stratalinker 1800. Worms were then carefully transferred back to an NGM plate with OP50, and 

survival was monitored each day.  

 
Yeast rDNA recombination  

Yeast were grown overnight in CSM-URA media in a 30oC shaking incubator. The following 

day, cultures were backdiluted with CSM-URA media to OD600=0.3. Cultures grew until 

OD600=0.5 – 0.7. 5 mL of each culture was then transferred into a new tube, and 1 mM of H2O2 

was added if needed. Cultures were then incubated for 90 minutes in the 30oC shaking incubator. 

A small volume of each culture was diluted ~1:25,000 in diH2O, and 500 μL of this dilution was 

plated onto 150 mM YPD plates not supplemented with adenine, and spread with autoclaved 

beads. Plates were put in a 30oC incubator for three days. Plate identities were blinded, and total 
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colonies and number of half-sector colonies were counted. Plates were unblinded, and 

recombination frequency was calculated by calculating the percentage of half-sector colonies.   

 
Yeast NHEJ Efficiency Assay 

YDS106 strains with an integrated empty vector or SSB vector were used in this experiment. 

Three independent cultures were prepared for each strain. Strains were transformed with 500 ng 

of EcoR1-linearized pRS314 plasmid and 25 ng of circularized pRS315. Transformed cells were 

plated onto CSM-TRP plates and CSM-LEU plates, and plates were incubated at 30oC for three 

days. Pictures of the resulting colonies were then taken. For negative controls, both strains were 

transformed without the addition of plasmids, and plated onto CSM-TRP and CSM-LEU plates.  

 
Mammalian HR and NHEJ Efficiency Assay  

The human fibroblasts, DsRed expression plasmid, and I-SceI expression plasmid used in this 

experiment were generously donated by the Gorbunova Lab. These cells are hTERT-

immortalized human fibroblasts isolated from neonatal foreskin that contain a stably integrated 

copy of the NHEJ and HR reporter cassettes, as previously described [45,46]. Cells at ~50% 

confluency were electroporated using the CZ167 pre-programmed protocol on a 4D Nucleofector 

X Unit device (Lonza Biosciences #AAF-1002X). Cells were electroporated with a mixture 

containing 5 μg of an I-SceI expression plasmid, 5 μg of the appropriate pLEX307_NLS 

expression plasmid, and 50 ng of a DsRed expression plasmid. Three days after transfection, 

cells were harvested and GFP+ and DsRed+ cells were quantified by flow cytometry using a 

LSR-II Analyser (BD). Efficiency of HR and NHEJ was calculated by comparing the 

GFP+:DsRed+ ratio in each group to the GFP+:DsRed+ ratio of the empty vector control.  
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DSB Repair in ICE Cells  

Repair of I-PpoI DSBs was evaluated in ear fibroblasts from 3 month old ICE mice (Cre-/+ I-

PpoI-/+) that stably expressed transgenes of interest. Corresponding fibroblasts from 3 month old 

CRE mice (Cre-/+ I-PpoI-/-) were used as controls for spontaneous DSB levels in the presence of 

4-OHT.  When cells were ~50% confluent, growth media was replaced with fresh growth media 

containing 0.5 μM 4-OHT to induce I-PpoI expression. The following day, media was removed, 

cells were fixed, and immunocytochemistry was conducted using a 𝛾H2AX antibody (Cell 

Signaling #2557). Cells were then imaged on a camera-equipped Nikon Eclipse Ti microscope 

using NES Elements software. Captured images were automatically analyzed using a Cell 

Profiler pipeline designed for the quantification of 𝛾H2AX foci.  

Data Analysis 

All statistical analysis performed using student-t tests, one-way ANOVAs, or two-way ANOVAs 

using  GraphPad Prism 9.3.0. Dunnett’s test was applied to all one-way ANOVAs, and Tukey 

test applied to all two-way ANOVAs to control for multiple comparison testing. Asterisks 

signify the following: * (p<0.05), **(p<0.01) ***(p<0.001), ****(p<0.0001).  
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Table 1.3: Primers used for amplification of D. radiodurans genes 

Gene Forward Primer Reverse Primer 
DdrA 

 

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAAGC
TGAGCGATGTCCAGAAACGACTGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGAACGGCGTT
TCTTCTTCC 

DdrB GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTTGC
AGATTGAATTTATCACC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGAACGGCGT
TTCTTCTTCC 

DdrC GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGGTA
CTGGAGACCCCTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTGTCAAAAAC
ATAATCTGTGCTAGAATATC 

DdrD GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGATA
CCCTGAAAAAAGCTGGAACGATG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGGCTGCCGGG
GTGTTTTC 

Dps1 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACGA
AGAAAAGCACCAAGAGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGTCGAGGCGC
TCGTCGTC 

Dps2 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCGTC
ATTCTGTGAAAACTGTTGTGGTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGGCCACGC
AGCGGCAC 

DR_0179 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCAAC
AGCAGACAGGCGGGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCACCGTGG
GCGGCCAG 

DR_0199 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGACA
TGAAGAAGTTGATGAAGCAGATG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGCCGGGC
AGTCCCAG 

DR_0428 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGGG
CCAGGCCGTACC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCAGAAGACGT
TGAGCGATGTTCG 

DR_0756 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCG
TCTCCGCCGCC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCAGGTAAGCC
AGTTCCCAGTCCTTG 

DR_1769 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCTG
ACCCCGCTGCCCG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGGCGCACG
ACGCCCGG 

DR_2162 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGATTCT
CGCCGCCGAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTTCCTGCCT
GACCTGCC 

DR_2444 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCG
ACCTGCCATCTCTGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCGCGCACG
ACTTCCAG 

DR_A0282 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTTCAT
GAAGAGCAAGGCCGCCGGCTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGACGGGTG
GTGAAATCGTTGACCTC 

DR_B0067 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTCTG
GTAAGCGCGCCG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGGCTTCCA
AGTCCATCGAAAG 

Dsup GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCAT
CCACACACCAATCATC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTCCTCTTCC
GTCCTCCAGC 

eGFP GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGTGA
GCAAGGGCGAGGAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGTACAGC
TCGTCCATGCCGAG 

Empty GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGACTG
AGGGTCACTGATCTACTCAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGTTACACTG
ATCGACGTCCTTGC 

HU GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACGA
AAAAGTCTACCAAGGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCAGGTTGCCC
TTGAGGGTG 

IrrE GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCCA
GTGCCAACGTCAGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGTGCAGCG
TCCTGCGGC 

mCherry GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGTGA
GCAAGGGCGAGGAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGTACAGC
TCGTCCATGCCGC 

Mfd GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCC
TTAGCGCTACCCCCAAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCCCGAAGTAC
CCCAGCACCTCAATC 

Mnth GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGATT
CCCGTTCTCCCAGCCTGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCCCCCAGC
AGCTCCCAC 

MutM GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCCG
AACTGCCGGAAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTGCGCTCCGG
TCTGTTCTG 

PprA GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCAA
GGGCTAAAGCAAAAGACCAAAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTCTCGCGC
AGGCCGTG 

RadA GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGAGC
GGGTGGCGGTGCTG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGCCAAACG
GCTTTCACGGCTTC 

RecA GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGCA
AGGACGCCACCAAAGAAATCTCC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCTTCGGCG
GCTTCGGG 

RecF GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGGGG
ATGTGCGTCTCTCGG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCCGTGCCC
TCCGCTTG 

RecN GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCC
GCAAGGCCCGTAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCAGCCAGC
AACTCGCG 

RecO GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCGCT
CACGCACCGCC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTCAGCACC
GGCACGCC 

RecR GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAAAT
ATCCGCCTTCCCTCGTGTCCCTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGGGATGCG
GGCACCG 

RqkA GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCGC
TGACCCCTGGAACCC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCCCTTCCTGCT
CGCTGCG 

RSR GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAAGA
ACTTGCTCCGTGCCATCAAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCAACCTCGCCC
CGCGCAAAAG 

RuvA GGGGACAAGTTTGTACAAAAAAGCAGGCTATGATTG
CTTACTTGTCCGGCGTGGTGCGT 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCCGCAGCCGC
CCGAGGGC 

RuvB GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACTG
CCCCCGAGAATCTGG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGTTCAGAAAG
ATGCCGTTGCCGTC 

RuvC GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGGG
TTCTGGGGATTGACCCCG 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCGCCGCAGC
GGGGC 

Sir2 GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCA
TCCCACATATGAAATACGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGAGGGTTTTG
GGATGTTCATCTGATG 

SSB GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCCC
GAGGCATGAACCAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGGGCAGG
TCGTCTTCTTCCGGCGG 

TerF GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGTG
CACAGGTTAGGGATGGAAGAC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGATTCGGTTG
CTCTTGGCCAGGTTG 

UvsE GGGGACAAGTTTGTACAAAAAAGCAGGCTATGACCT
CGGCCTGTGAAGC 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGTCTTTCTTGA
ACGGCGCCATC 
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Table 1.4: Yeast strains used in this study  

Strain ID Genotype 

PSY316AT MATα, ura3-53 leu2-3, 112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R 

YDS970 PSY316 MATα, ura3-53 leu2-3, 112 his3-Δ200 ade2-1,01 can1-100 ADE2-
TEL V-R, HMR::GFP 

W303 W303 Mata, ade2-1, leu2-3, 112, can1-100, trp1-1, ura3-52, his3-11, 15,  

YDS106 W303 Mata, ade2-1, leu2-3, 112, can1-100, trp1-1, ura3-52, his3-11, 15, 
RDN1::ADE2, RAD5 
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I. Statement of Work         

All experiments described in this chapter were designed by myself and David Sinclair, with 

input from dissertation committee members Raul Mostoslavsky, Stephen Elledge, Vadim 

Gladyshev, and Bruce Yankner. I conducted all experiments, with the following exceptions. Joe 

Zullo (Yankner Lab) solely conducted one of the three C. elegans longevity experiments 

described in this chapter. Chris Perry (Sinclair Lab) assisted me in conducting the remaining two 

C. elegans longevity experiments, scoring survival for approximately half of the days of each 

experiment due to COVID-related restrictions preventing me from entering the lab on certain 

days. All worm strains used in this experiment were generated by Joe Zullo, as previously stated 

in the “Statement of Work” for Chapter two of this dissertation. Brianah McCoy (Sinclair Lab) 

assisted me in conducting the HMR desilencing assays in response to heat shock and galactose-

induced EcoR1. Yeast replicative lifespan analysis was conducted by Ruofan Yu and Wei Liu of 

Weiwei Dang’s Lab at Baylor College of Medicine using strains I generated. They also 

performed the replicative lifespan analysis. I performed all of the other data analysis and 

generated all of the figures shown in this chapter.  
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II. Abstract 

Genomic instability and epigenetic dysfunction are two widely conserved hallmarks of aging. 

It is unclear if genomic instability plays a causal role in aging, largely due to the inability to test 

whether enhanced genomic stability affects lifespan or healthspan. Likewise, it is unknown if 

DNA damage is a driver of age-related epigenetic dysfunction, although both DNA damage and 

aging lead to remarkably similar epigenetic changes. Here, I investigate these questions using 

yeast and worms that have enhanced genomic stability through the expression of the D. 

radiodurans proteins Dps1 or SSB. In yeast, SSB and Dps1 mitigate desilencing of the HMR 

silent-mating loci, a key hallmark of age-related epigenetic dysfunction, in response to DNA 

damage. Dps1 extends yeast replicative lifespan, but SSB surprisingly shortens replicative 

lifespan. This suggests that  SSB is detrimental under conditions of endogenous levels of DNA 

damage, despite being beneficial under conditions of elevated DNA damage. Conversely, SSB 

expression extends median lifespan in worms by ~20%. SSB transgenic worms also have an 

improved healthspan, displaying increased locomotion during aging and decreased accumulation 

of autofluorescent pigments. Furthermore, I find that SSB transgenic worms display increased 

levels of histone 3 (H3) and H3K27me3 during middle and late ages, marks which are 

progressively lost during C. elegans aging. This H3 and H3K27me3 loss is accelerated by 

inducing DNA damage early in life, suggesting that genomic instability might be a driver of this 

loss. Taken together, these results indicate that enhanced genomic stability can extend lifespan 

and improve healthspan, and that this improvement is correlated with increased epigenetic 

integrity. However, these findings also highlight that effective strategies for improving genomic 

stability are species-specific.   
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III. Introduction 

Genomic instability has long been implicated in aging largely due to increased accumulation 

of DNA damage with age [1-3] and due to multiple lines of experimental and clinical evidence 

showing that elevated DNA damage levels reduce lifespan and healthspan [4-8]. However, it is 

still uncertain if DNA damage plays a causal role in aging. The most rigorous test of this 

hypothesis would be to generate organisms with enhanced genomic stability and evaluate 

whether this impacts lifespan or healthspan. Despite many efforts, generating such organisms has 

proven exceptionally difficult, largely due to negative consequences from overexpressing 

endogenous DNA repair proteins [9-11].  

Another related and unresolved question is how DNA damage contributes to cellular and 

organismal aging. Hypotheses have included increasing mutation rates, causing apoptosis, 

triggering cell senescence, and exacerbating inflammation [12]. Though there are varying 

degrees of supporting evidence for each of these theories, all of these factors could plausibly play 

a role in DNA damage contributing to aging. An intriguing hypothesis that has been the subject 

of several recent investigations [13-15] is that DNA damage leads to permanent changes to the 

epigenome. This hypothesis links genomic instability and epigenetic dysfunction, two of the 

most commonly observed aging hallmarks across species [16]. Epigenetic changes play key roles 

in DNA damage signaling and repair, particularly during DSB repair. Successful DSB repair 

requires substantial alterations to the epigenome, including eviction of nucleosomes [17], 

acetylation of histone tails to facilitate chromatin relaxation and allow access for DNA repair 

enzymes [18], ubiquitination of chromatin [19], phosphorylation of Ser139 on H2A to recruit 

DSB repair proteins [20], relocalization of chromatin modifiers to DSB sites [21], and erasure of 

DNA methylation marks at damage sites [22].  
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Although these changes are thought to fully reset after DSB repair, there is emerging 

evidence that some epigenetic changes persist long after [23]. For example, HR-mediated repair 

of DSBs in mammalian cells leads to long-lasting changes in DNA and histone methylation 

patterns around the damaged site, and these changes are even stably transmitted to daughter cells 

[24]. In addition to epigenetic changes arising from DNA repair, persistent accumulation of 

DNA lesions themselves can result in substantial changes to the epigenome. The oxidative DNA 

lesion 8-oxo-dG reduces expression of nearby genes through several mechanisms, including 

impaired transcription factor binding [25] and increased stalling of RNA pol II [26]. Notably, 

this DNA lesion accumulates with age across many species and tissues [27-30], and is 

responsible for the age-related downregulation of many important genes in the human cortex 

[30].  

The hypothesis that DNA damage is a driver of epigenetic dysfunction during aging is further 

supported by evidence that elevating DNA damage levels across species accelerates epigenetic 

changes that naturally occur during aging. For example, DNA damage causes the derepression of 

repetitive elements in both yeast [31] and mammalian cells [21], leads to heterochromatin loss in 

yeast [32] and mammalian cells [15], and accelerates DNA methylation clocks in mice [14] and 

humans [33]. However, these findings are all derived from studies in which DNA damage levels 

are greatly elevated, making it unclear if endogenous levels of DNA damage are sufficient to 

cause age-related epigenetic changes.  

Here I use yeast and worms with enhanced genomic stability, achieved through expression of 

the D. radiodurans DNA-binding proteins Dps1 and SSB, to investigate the connection between 

DNA damage, epigenetic stability, and aging. I test whether enhanced genomic stability affects 
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the epigenome in response to DNA damage and aging, whether it improves healthspan, and 

whether it extends lifespan.  

IV. Results 

SSB and Dps1 mitigate loss of HMR silencing following DNA damage 

 I first tested whether SSB or Dps1 could mitigate epigenetic dysfunction caused by DNA 

damage in yeast. One of the classical examples of epigenetic dysfunction during yeast aging is 

loss of silencing at the silent mating type loci HMR and HML [34]. DNA damage causes a 

similar loss of silencing at the HMR locus [21], likely resulting from the relocalization of 

silencing factors, such as Sirtuin proteins SIR2/3/4, away from the silent mating loci and to sites 

of DNA damage [21, 35]. I used a yeast strain harboring a GFP reporter at the HMR locus (Fig 

3.1A) to test if SSB or Dps1 can mitigate this loss of silencing. In the absence of DNA damage, 

yeast expressing SSB or Dps1 had no change in HMR desilencing, indicating that SSB and Dps1 

did not affect the regulation of this loci under normal culture conditions. However, SSB and 

Dps1 significantly reduced HMR desilencing following H2O2 treatment, indicating that they 

helped preserve the epigenome following DNA damage (Fig 3.1B). It’s unlikely that this 

preservation of the epigenome is deleterious, as I previously reported that yeast expressing SSB 

or Dps1 have increased survival following H2O2 treatment.  

 To further explore the connection between DNA damage and epigenetic stability, I tested 

if SSB or Dps1 could suppress HMR desilencing caused by EcoRI-induced DSBs. Expression of 

EcoRI led to HMR desilencing, albeit not quite as dramatically as following H2O2 treatment. 

Yeast expressing SSB had a moderate, but not statistically significant, reduction in HMR 

desilencing, while Dps1 had no effect (Fig3.1C). These findings are consistent with my previous 

findings on the mechanisms through which SSB and Dps1 promote genomic stability. Since SSB 
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enhances NHEJ efficiency, it is expected to enhance genomic stability by accelerating repair of 

DSBs formed by either EcoRI or H2O2. Dps1 likely binds to the genome and prevents hydroxyl-

mediated DNA damage. Consequently, Dps1 is expected to promote genomic stability following 

H2O2 treatment, but not expected to impact the formation or repair of DSBs caused by restriction 

endonucleases.   

 While it seems probable that SSB and Dps1 are suppressing HMR desilencing by 

promoting genomic stability, it is possible that this epigenetic preservation is caused by another 

mechanism. One alternative possibility is that SSB or Dps1 are enhancing H2O2 viability and 

mitigating HMR desilencing by causing a non-specific increase in yeast stress resistance, rather 

than by preserving genomic stability. To test this possibility, I subjected yeast to heat shock, a 

stressor which leads to protein misfolding, aggregation, and epigenetic dysfunction [36]. Heat 

shock increased HMR desilencing, but this epigenetic dysfunction was not rescued by either SSB 

or Dps1 (Fig3.4D). In contrast, yeast overexpressing the HMR silencing factor SIR2 had reduced 

desilencing following both heat shock and H2O2 treatment. Since SIR2 is one of the major HMR 

locus silencing factors, it is expected that its overexpression would likely mitigate all causes of 

HMR desilencing. The inability of SSB and Dps1 to reduce HMR desilencing by heat shock 

strongly suggests that these proteins preserve epigenetic integrity specifically by enhancing 

genomic stability.  
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Figure 3.1 SSB and Dps1 suppress HMR desilencing caused by specific mechanisms of 
DNA damage. (A) Schematic representing this reporter assay. A gene encoding GFP was stably 
integrated at the HMR locus, which is normally kept silenced by several factors, including 
members of the SIR family of proteins. (B) HMR desilencing following H2O2 treatment, (C), 
EcoR1 Expression or (D) heat shock. Data shown for B-D represent the average percent of GFP-
positive cells + SEM of five different yeast isolates, with each isolate tested in three different 
experiments for each assay. All data was analyzed by two-way ANOVA.  

 

Dps1 extends yeast replicative lifespan 

 Next, I wanted to test if SSB or Dps1 extends yeast lifespan. Yeast have two distinct 

modes of aging; chronological lifespan- which tracks how long yeast remain viable in stationary 
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culture-  and replicative lifespan- which monitors how many daughter cells are produced. 

Genomic stability is closely connected to yeast replicative aging [37], but its importance in 

chronological aging is largely unknown. I tested if rDNA instability, one of the main signatures 

of genomic instability during replicative aging, was altered during chronological aging. Rates of 

rDNA recombination were virtually identical in chronologically “young” and “old” cells (Fig 

3.2A), indicating that rDNA stability is unaltered during chronological aging. Furthermore, yeast 

cultured under low glucose conditions- an intervention that substantially extends chronological 

lifespan [38]-  showed no changes in rates of rDNA recombination (Fig 3.2A). These findings 

suggest that rDNA instability is not associated with yeast chronological aging, potentially 

suggesting that genomic stability is not a major driver of this mode of aging. Neither SSB nor 

Dps1 had any effect on the chronological lifespan of yeast, which would be expected if genomic 

instability was not a driver of chronological aging (Fig 3.2B-C).  

 In contrast, enhanced genomic stability is well-connected to lifespan extending 

interventions in yeast replicative aging [37]. Yeast expressing Dps1 had a ~20% extension of 

median replicative lifespan, while yeast expressing SSB had a ~10% reduction in median 

lifespan (Fig 3.2D). Consequently, although both SSB and Dps1 promoted genomic stability 

under conditions of H2O2 treatment, it appears that only Dps1 is beneficial for longevity under 

normal culture conditions, while SSB antagonizes longevity. Experiments are ongoing to 

determine how Dps1 impacts levels of DNA damage and epigenetic dysfunction during yeast 

aging.         
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Figure 3.2: Chronological and replicative lifespan in transgenic yeast and genomic 
instability in the chronological aging model. (A) rDNA recombination rate during 
chronological aging. Data represents the average rDNA recombination rate + SEM from three 
different experiments and analyzed by a two-way ANOVA. (B) Chronological lifespan of 
transgenic yeast. Data represents the chronological lifespan of three isolates from each group +/- 
SEM. (C) Quantification of the area under the curve (AUC) of the chronological lifespan data 
shown in B. Data was analyzed with a one-way ANOVA. (D) Replicative lifespan of transgenic 
yeast. Data represents the mean replicative lifespan from at least 100 mother cells of each 
genotype.   
 

SSB improves healthspan and extends lifespan in worms  

 Like many multicellular organisms, C. elegans experience a progressive loss of health 

during aging [39]. Some interventions that affect aging in C. elegans alter both lifespan and 
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healthspan, while others only change one of these parameters [40]. Loss of motility is one of the 

most commonly observed healthspan parameters that declines with age and is one of the earliest 

observable changes in C. elegans health [39]. SSB transgenic worms had no difference in 

motility compared to control lines in early adulthood. However, SSB expressing worms 

experienced a more gradual loss of motility during aging, resulting in significantly higher 

movement in “elderly” worms (Fig 3.3A).  

To further explore the effect of SSB on healthspan, I monitored changes in 

autofluorescence during aging, another commonly used healthspan marker [41]. C. elegans 

increasingly autofluoress under several different excitation wavelengths during aging. Although 

there is dispute around the underlying mechanisms of this phenomenon, with accumulation of 

lipofuscin pigment or advanced glycation end products commonly proposed reasons [41,42], the 

degree of autofluorescence frequently reflects age-related health [42]. Similar to motility, SSB 

transgenic and control worms displayed no difference in autofluorescence during early adulthood 

(Fig 3.3B), but old SSB transgenic worms had lower levels of autofluorescence indicating an 

improved healthspan.  

As a final evaluation of healthspan, I tested whether SSB alters reproduction. Worm 

fecundity peaks in early adulthood (~2 days old) and then gradually declines until ceasing around 

one week of age [43]. Some interventions that impact healthspan or lifespan also alter 

reproductive behavior [44]. Frequently, these interventions lower fecundity or delay the onset of 

progeny production, suggesting a trade-off between reproductive success and aging [44]. SSB 

transgenic worms displayed no difference in reproductive behavior, with both total fecundity 

(Fig 3.3B-C) and the kinetics of progeny production (Fig 3D) virtually identical to that of 
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control strains. Taken together, these findings indicate that SSB improves healthspan during 

aging, and that this improvement is not a result of altered reproductive behavior.   

 To further test if SSB has an impact on aging, I evaluated whether SSB affected lifespan. 

SSB transgenic worms had an extended median lifespan of ~20%, while maximal lifespan was 

extended ~15% (Fig 3.3E-F). The effect size was similar when comparing SSB transgenic 

worms to control lines containing either an empty vector or expressing GFP, indicating that 

exogenous transgene expression alone was not responsible for lifespan extension.                                                                              
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Figure 3.3 (Continued)  

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Improved healthspan and lifespan of SSB transgenic worms.  
(A) Age-related changes in motility as measured by body-bends and (B) autofluorescence. Data 
from A and B depicts average + SEM from 10 different worms per timepoint/group and analyzed 
with a two-way ANOVA. (C) Total fecundity in individual (n=5 per line) and (D) combined C. 
elegans strains. Data represents average progeny + SEM and was analyzed by a one-way 
ANOVA. (D) Average progeny production of C. elegans lines during aging (n=5 for each 
timepoint). (E) Lifespan of Empty Vector, eGFP, and SSB individual lines. (F) Combined 
lifespan curves for the individual lines shown in E.  
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SSB mitigates loss of H3 caused by aging or DNA damage  

 I next wanted to test the hypothesis that SSB transgenic worms have enhanced 

epigenomic stability during aging. One of the most commonly reported changes to the 

epigenome of aging worms is a global loss of the heterochromatin marker H3K27me3 [45,46]. I 

first tested whether the N2 C. elegans lines used in this study undergo age-related loss of 

H3K27me3. This was of particular importance since all previous reports of age-related loss of 

H3K27me3 were performed in germline-deficient worms [45,46], whereas the worms used in 

this study have an intact germline. These worms also exhibited an age-related decrease in 

H3K27me3 levels, although this was largely a result of reduced histone 3 (H3) levels rather than 

specific loss of the H3K27me3 marker (Fig 3.4A). A decline in H3 levels during worm aging has 

previously been reported in a germline deficient worm strain [46], with no previous reports of H3 

changes in worms with an intact germline.   

 Next, I tested if the loss of H3 and H3K27me3 could be driven by DNA damage. Age-

related epigenetic changes in yeast, mammalian cells, and mice can be accelerated by inducing 

DNA damage [14,15,21], but there is very little evidence for this in worms. To test this 

possibility, DNA damage was briefly induced in early adult (Day 3) worms through a 1-hour 

treatment with H2O2. This DNA damage event accelerated the loss of H3 during aging with Day 

9 levels of H3 that were ~40% lower than that of age-matched controls (Fig 3.4B). Similar to our 

observations during aging, H3K27me3 expression declined at very similar levels to global H3. 

This suggests that H3K27me3 is not specifically being lost in our strains due to either aging or 

DNA damage, but is declining as a consequence of a global reduction in total H3.  

 Finally, I tested whether SSB affected the observed changes in H3. SSB transgenic 

worms had a smaller loss of H3 and H3K27me3 levels after H2O2 treatment, further suggesting 
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that enhancing genomic stability mitigates epigenetic dysfunction caused by DNA damage. SSB 

worms also maintained higher H3 and H3K27me3 levels during aging, suggesting that SSB also 

protects against age-related epigenetic changes (Fig 3.4C). Taken together, these findings 

suggest that DNA damage is likely a contributing factor to epigenetic dysfunction during C. 

elegans aging. They also suggest that SSB helps preserve the epigenome during damage and 

aging, suggesting a causal relationship between DNA damage, epigenetic integrity, and aging.      
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Figure 3.4 (Continued)  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Aging and DNA damage drive decreased Histone 3 expression, which is rescued 
by SSB. (A-B) Changes in H3 and H3K27me3 during C. elegans aging and (C-D) following an 
early-life exposure to H2O2. Immunoblots in both A and C show whole-body lysates from worms 
collected across three separate experiments and run on the same gel. B and D represent the 
average intensity +SEM of H3 and H3K27me3 across the three experiments. Data was analyzed 
by a two-way ANOVA. (E) Immunoblot and (F-G) quantification of H3 and H3K27me3 levels 
from two Empty Vector and two SSB transgenic lines during aging.  
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V. Discussion 

To the best of my knowledge, this is the first evidence that specifically bolstering genomic 

stability preserves the integrity of the epigenome. Epigenetic dysfunction was reduced in both 

yeast and worms during acute DNA damage and during worm aging, suggesting that genomic 

stability is one of the key lynchpins underlying epigenetic integrity. I am currently following up 

on these findings by testing if enhanced genomic stability also suppresses epigenetic dysfunction 

in mammalian cells. Specifically, I will investigate if SSB’s enhanced repair of I-PpoI-induced 

DSBs in mouse fibroblasts can stabilize the epigenome. These DSBs are reported to accelerate 

several markers of epigenetic aging, including the acceleration of the DNA methylation clock, 

reduced histone 3 and histone 4 expression, and global and site-specific changes in H3K27 

posttranslational modifications [15]. Additionally, I am testing if SSB or Dps1 can mitigate the 

desilencing of SIRT1-repressed genes that occurs following H2O2 treatment in mammalian cells 

[21]. This mechanism bears a striking resemblance to the H2O2 -mediated desilencing of the 

silent mating loci in yeast, which results from the redistribution of  the SIRT1 orthologue, Sir2, 

and other Sirtuin family members following DNA damage.   

One of the surprising findings from this study is the divergent effects of SSB and Dps1 

on yeast replicative lifespan, with Dps1 extending and SSB shortening lifespan. Yeast expressing 

either of these proteins displayed multiple phenotypes that are associated with increased 

longevity, including increased H2O2 resistance [47,48], decreased rDNA instability [49,50], and 

decreased HMR desilencing [21]. It is likely that the different lifespan effects are due to the 

different mechanisms through which SSB and Dps1 are protecting the genome. My experiments 

in Chapter 2, along with previous findings on Dps family proteins [51,52], suggest that Dps1 

binds to the genome and protects it from hydroxyl-mediated damage. Hydroxyls and other free 
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radical byproducts of cellular metabolism have been implicated in yeast replicative aging [53,54] 

and can damage the genome by resulting in single-strand breaks, DSBs, or oxidative DNA 

lesions, with the latter two forms of damage increasing during yeast aging [1,28]. Counteracting 

oxidative stress through either antioxidant treatments [55,56] or through interventions that 

decrease ROS production [57,58] extends replicative lifespan, suggesting a likely role for 

oxidative damage in this mode of aging. Dps1 likely extends lifespan by binding to the genome 

and lowering levels of free radical-induced damage. This theory is currently being tested by 

evaluating whether yeast expressing Dps1 have lower levels of 8-oxo-dG or DSBs during aging. 

This proposed mechanism of action would also explain why Dps1 enhanced viability, decreased 

rDNA instability, and decreased HMR desilencing in H2O2-treated yeast.  

In contrast, my experiments in Chapter 2 demonstrate that SSB improves NHEJ 

efficiency in yeast, making this the likely explanation for why SSB transgenic yeast are more 

resistant to H2O2. NHEJ activity is critical for yeast under supraphysiological levels of DNA 

damage. This is supported by the finding that yku70 mutant strains, which have impaired NHEJ 

activity, have increased DSB levels following H2O2 treatment [59] and decreased viability 

following H2O2 treatment or restriction endonuclease expression [59,60]. However, yeast 

predominantly rely on the HR pathway under normal culture conditions, with NHEJ accounting 

for as little as 0.1 – 0.3% of DSB repair in wild-type haploid cells [61,62]. I suspect that SSB 

might be antagonizing longevity in yeast by interfering with HR-mediated repair, potentially by 

competing with HR factors like RPA1 for single-stranded DNA. Consequently, SSB would 

increase genomic instability under non-stressed culture conditions, leading to the observed 

decrease in replicative lifespan. However, this tradeoff between NHEJ and HR efficiency might 
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be beneficial under conditions of massively elevated DNA damage, especially since NHEJ is a 

quicker method for DSB resolution [63,64].  

This model would also explain why SSB extended lifespan and improved healthspan in 

C. elegans. In contrast to yeast, DSB repair in C. elegans somatic tissues appears to occur almost 

exclusively through NHEJ [65]. HR is unlikely to play a consequential role in DSB repair in the 

soma, highlighted by the finding that multiple C. elegans mutants (mre-11, rad-50, rad-51, rad-

54) with impaired HR activity display no difference in the frequency of deleterious phenotypes 

that occur in the somatic tissues of irradiated worms [66]. Therefore, bolstering NHEJ activity in 

this model organism would be less likely to result in genomic instability, even if there is a 

tradeoff with HR activity. HR plays a dominant role in DSB repair in the C. elegans germline 

[66], with impaired HR activity resulting in increased chromosomal fragmentation in germ cells 

and impaired fecundity [67]. However, no difference in reproductive activity was seen in SSB 

transgenic worms. This could indicate that SSB expression in C. elegans does not impair HR 

efficiency- a finding I reported in Chapter 2 in SSB-expressing human fibroblasts- or that it does 

not impair HR activity to a sufficient degree to reduce fecundity. Alternatively, SSB expression 

might be much lower in the germline as compared to the soma, as the C. elegans germline has 

enhanced silencing mechanisms for extrachromosomal DNA [68].  

These findings support the hypothesis that genomic instability is an underlying cause of 

aging across species. They also suggest that the integrity of the aging epigenome is partially 

determined by the stability of the genome. Enhancing genomic stability is therefore a promising 

strategy for mitigating epigenetic dysfunction, improving healthspan, and extending lifespan. 

However, these findings also warn that the specific mechanisms through which genomic stability 
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can be successfully enhanced might be species- or tissue-specific, particularly when modifying 

DSB repair activity.     

VI. Materials and Methods 

Immunoblotting 

For H2O2-treatment, worms were washed from NGM plates on Day 3 using M9 buffer and 

incubated in M9 media containing the indicated H2O2 concentration for one hour. After this, 

worms were washed three times with 15 mL of M9 buffer before being transferred back to NGM 

plates. All immunoblots were conducted with C. elegans whole-body lysates. Protein was 

quantified using the BCA Protein Assay Kit (ThermoFisher #23225) and 5 – 40 μg of total 

protein was loaded per lane. Proteins were separated via SDS-PAGE and transferred to a 0.45 

μm nitrocellulose membrane. The following primary antibodies were used: H3K27me3 (Sigma 

Aldrich #07-449), total H3 (Abcam #1791), and alpha-tubulin (Millipore Sigma #T5168). The 

following secondary antibodies were used: HRP-conjugated anti-Rabbit IgG antibody (VWR 

#NA934) and HRP-conjugated anti-Mouse IgG antibody (VWR #NA934). Bands were 

generated using Ashersham ECL chemiluminescent reagents (Sigma Aldrich, #RPN2209). 

  
Yeast Lifespan  

Yeast replicative lifespan experiments were conducted in the S. cerevisiae BY4742 strain. 

Experiments were conducted in the laboratory of Dr. Weiwei Dang at the University of Baylor 

College of Medicine. The experimental protocol and analysis were conducted as previously 

described [69]. Briefly, yeast cultures were loaded onto a microfluidic device comprised of a 

PDMS chip containing 16 parallel microfluidic channels to allow for media introduction and 

8,320 single-cell traps for trapping mother cells. The chip was placed on an inverted microscope 

equipped with an incubator system kept at 30oC. Yeast cultures in YPD media were passed 
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through the chip and time-lapsed microscopy was used to monitor the production of daughter 

cells. YPD media was flowed through the chip throughout the experiment to remove daughter 

cells. Time-lapse images were analyzed to record the total number of daughter cells produced by 

each mother over 96 hours. The RLS of at least 100 mother cells was assessed for each group.  

Yeast chronological lifespan experiments were conducted in the Sinclair Lab in the YDS106 

strain (Table S2). Yeast were grown to saturation in YPD media containing either 2% or 0.5% 

glucose in a 30oC shaking incubator. Upon reaching saturation and at each of the following 

timepoints, an aliquot of each culture was removed, diluted ~1:25,000 in diH2O, and 200 μL of 

each dilution was plated on four 100 mm YPD dishes and spread with autoclaved beads. Plates 

were placed in a 30oC incubator for three days, after which plates were blinded and colonies 

were counted.     

  
HMR Desilencing Assay 

Experiments took place in the S. cerevisiae YDS970 (Table S2) strain expressing the indicated 

transgenes. Yeast cultures were grown overnight in CSM-URA media in a 30oC shaking 

incubator. The next morning, cultures were backdiluted to OD600 = 0.2 in 5 mL and grew at 30oC 

for another 30 minutes. For H2O2 treatment, 5.1 μL of 30% H2O2 was added to achieve a final 

concentration of 10 mM. These tubes were then incubated at 30oC for 30 minutes, centrifuged, 

washed with 10 mL of autoclaved H2O, and resuspended in 5 mL of CSM-URA media. Cells 

were put back in 30oC shaker for four hours, after which GFP+ cells from each culture were 

quantified using a FACSCanto (BD). For heat shock treatment, cells were grown for 30oC for 

one hour after backdilution, followed by growth at 42oC for 45 minutes. Cultures were then 

transferred back to 30oC for two hours followed by quantification of GFP+ cells using the 

FACSCanto.  
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Worm Motility  

Worm motility was assessed during a time-course of an aging population of the four indicated 

worm strains. On the indicated days, ten worms from each group were randomly picked off of 

solid NGM plates and placed into M9 buffer mounted on glass coverslips. Worms were allowed 

to equilibrate for one minute, after which videos capturing movement were recorded using a 

camera-equipped Nikon Eclipse Ti microscope. At the conclusion of the experiment, videos were 

blinded and the number of body bends per minute was scored. Videos were then unblinded and 

the data was analyzed using a Two-way ANOVA. 

  
Worm Reproductive Behavior 

Worms were age-synchronized using a simultaneous 2 hour-egg lay for all strains. Five of the 

resulting offspring of each strain were individually placed on NGM plates 60 hours after the 

conclusion of the egg lay. Worms were kept on NGM plates for 24 hours, after which they were 

transferred to a new NGM plate. This was repeated throughout the 7-day egg lay. The resulting 

progeny on each plate were counted 60 hours after the adults had been removed. 

  
Worm Autofluorescence 

On the indicated days, worms from each group were randomly picked off of solid NGM plates 

and placed into M9 buffer containing 40 mM NaN3 as an anesthetic. Worms were anesthetized 

for 5 minutes, after which images were taken using the “phase” and “DAPI” settings of the 

camera-equipped Nikon Eclipse Ti microscope. Image files were blinded, followed by analysis 

of DAPI intensity. After the data was recorded, files were unblinded and the data was analyzed 

using a Two-way ANOVA.  
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Data Analysis 

All statistical analysis performed using one-way ANOVAs or two-way ANOVAs using  

GraphPad Prism 9.3.0. Dunnett’s test was applied to all one-way ANOVAs, and Tukey test 

applied to all two-way ANOVAs to control for multiple comparison testing. Asterisks signify the 

following: * (p<0.05), **(p<0.01) ***(p<0.001), ****(p<0.0001).  
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I. Future Characterization of SSB and Dps1 in Promoting Genomic Stability 

In Chapter two of this dissertation, I demonstrate that SSB and Dps1 from D. 

radiodurans enhance genomic stability across multiple species. SSB enhances genomic stability 

in mammalian cells, yeast, and worms by improving NHEJ efficiency, leading to decreased DSB 

levels following H2O2 treatment or expression of a restriction endonuclease. Dps1 reduces DSB 

levels following H2O2 treatment, likely by binding to and protecting genomic DNA from free 

radicals. Although the effects of SSB and Dps1 are not entirely unique, what makes these 

proteins valuable research tools is the likely specificity with which they improve genomic 

stability. Enhancing the efficacy of DSB repair is quite difficult, with only the overexpression or 

increased activity of SIRT6 as a reliable method for achieving this goal across species [1-3]. 

However, SIRT6 regulates many other processes linked to longevity, including inflammation [4], 

metabolism [5], and retrotransposon activity [6]. These multiple activities make SIRT6 an ideal 

longevity gene candidate, but a less than ideal candidate for testing how specifically enhancing 

genomic stability impacts aging. Although I can’t be certain that D. radiodurans SSB doesn’t 

have any functions outside of preserving genomic stability, there is currently little evidence that 

it or other bacterial SSBs play a significant role in processes other than DNA damage repair and 

replication [7]. This makes SSB a more precise tool for studying the consequences of enhancing 

genomic stability during aging. Similarly, Dps1 expression is just one of many known methods 

for reducing free radical damage to the genome, including treating cells with antioxidants [8,9] 

However, these treatments also protect lipids and proteins from free radical damage. In contrast, 

Dps1 is localized to the nucleus and binds DNA, making it less likely to have protective effects 

beyond increased genomic stability. However, future studies will be needed to determine 

whether Dps1 expression has other effects, such as reducing oxidation of nuclear proteins.    
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 There are several future lines of investigation that could be conducted to better 

characterize and understand the effects and functions of SSB and Dps1. One ongoing effort is to 

better understand the extent to which these proteins alter genomic stability during aging. Both 

proteins showed great potential in their ability to reduce high levels of acute DNA damage 

induced through treatment with genotoxic agents, but it is still unknown if and how they affect 

endogenous levels of DNA damage. To that end, the Sinclair Lab is testing how levels of DSBs 

and 8-oxo-dG change during the replicative aging of yeast expressing SSB or Dps1 and in SSB 

transgenic worms. It will be particularly interesting to see if SSB transgenic yeast experience 

higher levels of DNA lesions during aging, as this would support my hypothesis that their 

shortened lifespan is due to an impaired ability to repair DSBs under endogenous levels of DNA 

damage. This data will provide a more comprehensive understanding of the effects of Dps1 and 

SSB on genomic stability and could provide more quantitative information about how changes in 

DSB levels affect lifespan.  

 Another intriguing line of investigation is understanding the specific mechanism through 

which SSB enhances NHEJ efficiency. This is particularly vital because bolstering DSB repair 

has been historically difficult to achieve. Consequently, understanding the mechanisms 

underlying SSB’s effects on NHEJ could reveal new strategies for upregulating the efficiency of 

DSB repair. One way to further understand SSB’s mechanism of action is to conduct a pull-down 

assay at various timepoints following DSB induction. This would be especially informative if   

SSB interacts with canonical NHEJ proteins (e.g. Ku70/80 or DNA-PKcs), and would support a 

role for SSB’s direct participation in NHEJ. Although single-stranded DNA-binding proteins are 

traditionally thought to only play a key role in the HR pathway of DSB repair, the human single-

stranded DNA-binding protein RPA enhances NHEJ repair in an in vitro DNA end-joining assay 
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[10], suggesting that this class of DNA repair proteins might play an unknown role in NHEJ. 

Alternatively, SSB might not play a direct role in NHEJ, but could enhance its efficiency by 

changing the expression or localization of DSB repair proteins or by altering DNA damage 

response (DDR) signaling. These possibilities could be explored by probing for expression levels 

of key NHEJ proteins and monitoring activation of the DDR in SSB expressing yeast or 

mammalian fibroblasts following DSB induction.  

 Finally, future work should address whether the activities of D. radiodurans SSB and 

Dps1 are unique, or if similar phenotypes can be achieved using related orthologues. One of the 

main reasons D. radiodurans genes were selected for this screen is that this organism has unique 

proteins that enable it to survive extraordinarily high levels of DNA damage [11,12]. Although 

some of these unique proteins, such as DdrA and DdrB, protected human fibroblasts from H2O2 -

mediated cell death in my initial screen, only SSB and Dps1 enhanced genomic stability across 

multiple experiments. SSB and Dps1 both belong to a large family of proteins. The SSB family 

of proteins has orthologues in prokaryotes, eukaryotes, and archaea, while Dps1 orthologues are 

found in prokaryotes and archaea, but are absent from eukaryotes [13,14]. D. radiodurans Dps1 

is structurally very similar to other members of the Dps family of proteins, except that it contains 

a channel through which Fe2+ can be released. In vitro studies show that this channel is 

detrimental for genome stability, as mutant Dps1 variants lacking this channel have enhanced 

protection of naked DNA from hydroxyl-mediated damage [15]. Therefore, it’s possible that this 

mutated Dps1 or orthologues from other species would be better suited for enhancing genomic 

stability of other species.  

SSB is clearly critical for maintaining genomic stability, as the radioresistant phenotype 

of D. radiodurans is absent in strains that express ~50% less SSB, with these strains having a 
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~93% reduction in LD50 for gamma irradiation [16].  Notably, D. radiodurans SSB is the only 

known bacterial single-stranded DNA-binding protein that contains two OB-folds, the canonical 

ssDNA-binding domain associated with this family of proteins [17]. It is unclear if this unique 

structure confers differential activity that would be difficult to achieve with other single-stranded 

DNA-binding proteins. To test this, single-stranded DNA-binding proteins from other organisms, 

such as E. coli, could be tested for their ability to enhance NHEJ in mammalian cells and yeast. 

It would also be worthwhile to test if expressing a nuclear-targeted variant of the human 

mitochondrial single-stranded DNA binding proteins SSBP1 or SSBP2 affects NHEJ, as these 

are the endogenous single-stranded DNA binding proteins that are structurally most similar to 

those of prokaryotes.  

II. Understanding the Interplay Between Genomic and Epigenomic Stability 

In Chapter 3 I show that SSB protects worms against signs of epigenetic dysfunction 

during aging. Specifically, SSB protects against a decline in H3 levels, which I observed during 

aging and which is accelerated by DNA damage. Work is currently ongoing to further explore 

how SSB and Dps1 affect epigenetic integrity during aging and following DNA damage. For 

example, the Sinclair Lab is evaluating how SSB alters the epigenome in murine fibroblasts after 

endonuclease-induced DSBs. Induction of the I-PpoI endonuclease for one day is sufficient to 

cause long-lasting changes to the epigenome that closely mirror age-related epigenetic changes 

[18]. Since SSB reduces DSB levels in these cells, this will be an ideal system for further testing 

if enhancing DSB repair can stabilize the epigenome. Specifically, future work should address 

how SSB affects the DNA methylation clock, transcriptional and proteomic changes in histone 

expression, H3K27-associated posttranslational modifications, and gene expression patterns, 

which are all altered in this system and during aging [18].  
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 Another obvious line of investigation is further characterization of how SSB changes the 

aging epigenetic landscape in C. elegans, and whether Dps1 alters the aging epigenome in yeast. 

It will be especially informative to see how the preserved H3 levels of SSB transgenic worms 

influence changes in gene expression. A global loss of heterochromatin is a common 

characteristic of aging epigenomes [19], including in worms [20]. A reduction in histone levels is 

one of several mechanisms through which this heterochromatin is lost, and this loss contributes 

to age-related changes in gene expression [21]. Performing RNA-Seq on aging populations of 

SSB transgenic worms would demonstrate how SSB affects these gene expression patterns. 

Specifically, SSB may protect against the desilencing of repetitive elements that is observed 

during the aging of worms and many other species [22]. Both DNA damage [23] and loss of 

heterochromatin [24] result in desilencing of repetitive elements, so the enhanced genomic 

stability and elevated H3 levels of SSB transgenic worms could mitigate this desilencing. 

Furthermore, high-resolution H3 ChIP-SEQ could be conducted to more precisely map where 

nucleosomes are being preserved in SSB transgenic worms. This data could be used to determine 

if particular gene expression changes are associated with, and possibly caused by, the loss of H3. 

Very similar experiments can be conducted in replicatively aging cultures of yeast expressing 

Dps1, as yeast experience very similar age-related epigenetic changes, including a global loss of 

H3, desilencing of repetitive elements, and changes in gene expression patterns, some of which 

are driven by loss of H3 [21,24].  

 A more complicated future line of investigation would be to determine how critical the 

epigenetic preservation offered by SSB (and potentially Dps1) are to its impacts on lifespan and 

healthspan. As previously mentioned, there are several mechanisms other than epigenetic 

dysfunction through which genomic instability can impact aging, including increasing rates of 
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mutagenesis and inducing senescence or apoptosis. I hypothesize that the extended lifespan and 

improved healthspan of SSB transgenic worms is likely due to enhanced preservation of the 

epigenome. Although SSB transgenic worms have preserved H3 levels during aging, this finding 

is merely correlative. Experiments that uncouple the epigenetic effects of SSB from its effects on 

genomic stability would provide a more rigorous test of my hypothesis. For example, H3 could 

be partially knocked down in SSB transgenic worms via RNAi at the age when H3 levels 

normally decline in wild-type worms, followed by an analysis of healthspan and lifespan in these 

worms. Furthermore, we could test if the epigenetic effects observed in SSB transgenic worms 

are themselves sufficient to influence aging, such as by evaluating the healthspan and lifespan of 

worms overexpressing H3. Similar experiments in yeast demonstrated that declining H3 levels 

were a regulator of lifespan and age-related gene expression, as H3 overexpression robustly 

extended lifespan and resulted in a “younger” transcriptome [25]. Although no single experiment 

is likely to provide irrefutable evidence that DNA damage-induced epigenetic dysfunction is a 

major driver of aging, the cumulative evidence from these proposed experiments can add 

substantial evidence for or against this hypothesis, while also providing further insights into the 

causes and consequences of specific epigenetic changes during aging.   

III. Potential Applications of SSB and Dps1 in Aging Research  

In these studies, I used SSB and Dps1 as tools to investigate whether improved genomic 

stability impacts lifespan, healthspan, and the integrity of the epigenome. Since SSB and Dps1 

operate through different mechanisms and improve genomic stability across several different 

model organisms, they are ideal tools for future studies on the consequences of DNA damage in 

aging and age-related diseases. Specifically, they could be used to investigate whether oxidative 

DNA damage has a causal role in age-related diseases. Increased levels of oxidative DNA 
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damage are found in several age-related diseases, including type 2 diabetes [26], cardiovascular 

disease [27], rheumatoid arthritis [28], and Alzheimer’s Disease [29]. Although there is evidence 

that combatting oxidative stress can be beneficial in mouse models of some of these diseases 

[30-33], it is unclear if damage to the genome specifically plays a role in pathogenesis. SSB and 

Dps1 transgenic cells or animal models would likely lower endogenous DNA damage levels in 

these models, and consequently would help uncover the cellular and molecular consequences of 

genomic instability in these diseases. They may even provide evidence for whether or not 

therapies addressing genomic instability has therapeutic potential.  

 SSB and Dps1 would be particularly useful tools in understanding the role of oxidative 

DNA damage and DSBs in the aging brain and in neurodegenerative disorders. 8-oxo-dG lesions 

are found at higher levels in older brains [34], and are elevated in the brains of Alzheimer’s 

patients [35]. There is substantial evidence that these lesions play a role in driving molecular and 

histological features of brain aging and Alzheimer’s Disease. Accumulation of 8-oxo-dG during 

human brain aging and in the 5XFAD mouse model of Alzheimer’s Disease is responsible for 

downregulating genes that play critical roles in memory, learning, and neuronal survival [34,35]. 

Critically, pharmacological stimulation of HDAC1, a  canonical histone deacetylase, enhances 

removal of 8-oxo-dG lesions and improves cognition in both aged mice and 5XFAD mice [35]. 

This highlights a potential causal role for 8-oxo-dG accumulation in impairing cognition, 

although this result is confounded by HDAC1 having other key roles outside of regulating 8-oxo-

dG removal, including regulating gene expression [36] and controlling inflammatory responses 

[37]. Since Dps1 is highly effective at preventing oxidative DNA damage and has no known role 

outside of this activity, it could provide more reliable evidence about the role of oxidative DNA 

damage in regulating cognition in the contexts of aging and neurodegenerative disorders.    
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 Alzheimer’s Disease is also associated with increased DSB levels [39]. This is partly due 

to accumulation of αβ1-42 peptide, which increases DSB formation by increasing oxidative stress 

[40] and simultaneously impairing DSB repair [41]. Neuronal DSBs cause several deleterious 

effects at the molecular level, including dysregulation of gene expression [42] and cell death 

[43]. These DSB-mediated effects could aid the pathogenesis of Alzheimer’s Disease, as 

elevating neuronal DSB levels exacerbates many key clinical features of this disorder, including 

impaired memory and learning and decreased motor functions [44,45]. However, this evidence 

does not tell us whether DSBs play a causal role in the onset or progression of Alzheimer’s 

Disease. As with the connection between genomic instability and aging, the best test of this 

hypothesis would be to specifically lower DSB levels in an Alzheimer’s mouse model and 

observe how this affects disease pathogenesis. SSB would be an ideal candidate for this 

experiment, especially since NHEJ activity is impaired in the brains of Alzheimer’s patients [46], 

and SSB enhances NHEJ efficiency in murine and human cells. In addition to exploring SSB’s 

effect in Alzheimer’s Disease mouse models, it would be informative to test if SSB affects 

cognitive function in the Sinclair Lab’s ICE mice model, where DSBs are transiently elevated 

early in life through controlled expression of the I-PpoI endonuclease. These mice experience 

accelerated cognitive decline which includes reduced short-term memory, long-term memory, 

and altered ambulatory activity [47]. SSB accelerates DSB repair in ear fibroblasts derived from 

these mice, and thus would make an excellent candidate for testing if accelerated repair is 

sufficient to reduce cognitive decline.  

IV. Future Potential of Exogenous Genomic Screening  

Functional genomic screens are an invaluable tool for uncovering genes underlying a  
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biological activity or producing a desired phenotype. It was through a mutagenesis screen that it 

was first uncovered that aging is a genetically malleable process, with specific mutations in C. 

elegans resulting in a greater than 50% extension of median lifespan [48]. The current toolbox 

for conducting genomic screens has expanded considerably in recent years, with overexpression 

vectors, RNAi, TALENs, CRISPR, CRISPRi, and CRISPRa all commonly used techniques for 

either loss-of-function or gain-of-function screens. These techniques are largely restricted to 

probing endogenous genes, except for overexpression vectors which can express both 

endogenous and exogenous genes.  

 Expression of exogenous genes has resulted in some of the biggest advancements in 

biological research, and also shows promising therapeutic potential. GFP and other fluorescent 

proteins were among the first and most widely adopted exogenous genes to have a critical impact 

on biomedical research [49]. These fluorescent proteins have become critical tools for 

monitoring protein localization, protein-protein interactions, changes in gene expression, as well 

as labeling cells, tissues, and macromolecules [50]. Other exogenous proteins, like β-galactoside 

from E. coli, are used to monitor viral replication or infectivity and gene expression across 

different model organisms [51]. During the last twenty years, a small number of exogenous 

proteins have been utilized for much more sophisticated activities. Expressing light-activated ion 

channels from algae and bacteria in the brains of living animals, a technique called optogenetics, 

has enabled us to precisely regulate the activities of specific neuronal cell populations [52]. This 

technique has led to several breakthroughs in mice, including enhanced understanding of the 

neural circuits underpinning behaviors like fear conditioning [53]. Most recently, we have 

witnessed the rapid and widespread exogenous expression of CRISPR-Cas proteins from bacteria 

for a myriad of functions, including precise genome editing [54,55], fine-tuned control of gene 
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expression [56], recording cellular events and exposures [57], and detection of specific mutations 

or pathogen infections [58]. In addition to these research applications, CRISPR technology has 

tremendous therapeutic potential and is currently being investigated in multiple clinical trials 

involving cancer immunotherapy [59], monogenic blood and eye disorders [60,61], and bacterial 

infections [62].   

Despite the large impact that exogenous proteins have made in biomedical research, there 

are surprisingly few efforts directed at the identification of novel exogenous proteins for research 

purposes. Most of these efforts consist of functional metagenomic screens, in which genomic 

DNA is extracted from the microorganisms within a specific environment (e.g. soil sample), 

sheared, cloned into an expression vector, and then functionally screened in a host organism- 

usually a species of bacteria or yeast. While this is a powerful technique that can theoretically 

screen the genomes of thousands of different species, the applications of this technology have 

been largely limited to specifically identifying a limited number of enzymes with activities that 

have important industrial or agricultural uses [63,64]. To the best of my knowledge, no 

functional metagenomics screen has been conducted with the goal of identifying genes with 

novel functions that would make them valuable tools for biomedical research.  

 Beyond the research presented in this dissertation, I am aware of only a few published 

reports that have addressed biological research questions by identifying exogenous proteins with 

novel functions. In one example that is highly relevant to this work, researchers tested the 

hypothesis that C. elegans lifespan could be extended by accelerating the breakdown of their E. 

coli food source via overexpression of a lysozyme [65]. Notably, C. elegans lifespan was not 

extended by overexpression of the endogenous worm lysozyme Lys-1, but expression of the Lyz 

lysozyme from zebrafish led to a robust lifespan extension of 30%. The researchers speculate 
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that the zebrafish lysozyme might have enhanced activity or some unknown differential activity 

compared to the endogenous lysozyme, leading to the discrepancy in lifespan. This finding 

highlights the potential of exogenous genes to outperform endogenous genes due to novel 

activities. In another example, multiple proteins from extremotolerant organisms were recently 

reported to prevent apoptosis in human cells [66]. These proteins were identified following a 

screen of ~300 proteins from tardigrades, nematodes, and the Chinese giant salamander. Further 

analysis of the underlying mechanisms uncovered a widespread ability of these proteins to form 

condensates and sequester caspase-7, suggesting that this is a conserved mechanism through 

which certain proteins can protect cells. This work represents the largest genomic screen of 

exogenous genes in mammals currently known.       

 All of these findings highlight the utility of exogenous proteins in biomedical research. 

To build upon these findings, more large-scale exogenous genomic screens should be conducted 

to identify novel genes that impart a desired phenotype (e.g. extended lifespan or increased stress 

tolerance). One of the advantages of this approach is that the search space is virtually unlimited; 

the UniProt database of protein sequences contains approximately 190 million entries [62], and 

this likely represents only a tiny fraction of all biological proteins. Although it is currently not 

feasible to screen such a large number of candidates, the advent of ultra-low cost DNA synthesis 

has made it possible for academic labs to screen thousands or tens of thousands of candidate 

genes individually, and this number can be much higher for pooled screening approaches. This 

endeavor could be aided by a collective effort to construct overexpression libraries of exogenous 

genes that are affordable to researchers. This is similar to previous efforts that have resulted in 

the availability of affordable RNAi, CRISPRi/a, and cDNA libraries that are the workhorses of 

endogenous genomic screens. Additionally, exogenous genomic screening could be enhanced by 
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expanding the available resources for functional metagenomic screening. Functional 

metagenomic screens are not as precise as most gene overexpression approaches, as they 

typically involve cloning randomly sheared DNA fragments into expression vectors. This 

inevitably results in screening many truncated proteins and a high likelihood of screening only a 

fraction of an organism’s total genome. However, the trade-off is that metagenomic screens 

enable users to screen the genomes of thousands of organisms from a given environmental 

sample, including organisms lacking a sequenced genome. A robust toolkit already exists for 

conducting functional metagenomic screens in bacteria [68] and yeast [69], and expanding this 

toolkit to conduct screens in other organisms, particularly in human and murine cells, would 

greatly expand the feasibility of conducting large-scale exogenous genomic screens.    

 One key issue regarding the development of exogenous genomic screening systems is 

deciding which organism’s genes should be used. While the ideal choice is likely to be specific 

for the phenotype or function being screened for, research presented in this dissertation along 

with findings from other studies [66,70] suggest that the genomes of extremotolerant organisms 

are particularly fruitful reservoirs of proteins with useful applications. Extremotolerant 

organisms include species that can survive unusually harsh conditions, including high and low 

temperatures, and high levels of DNA damage, metal concentrations, salinity, acidity, or 

alkalinity. Surviving in these harsh environments frequently requires novel proteins that are 

highly unique to these organisms [71,72] or protein variants that contain unusual activity or 

features compared to orthologues from non-extremotolerant organisms [70,73]. These proteins 

would be especially useful in screens seeking to enhance stress resistance, as highlighted by the 

ability of SSB and Dps1 to protect multiple species against oxidative stress. This potential was 

further underscored by a recent publication in which a ribosomal protein (RpS23) variant found 
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in hyperthermophilic archaea was expressed in several model organisms. This protein increased 

the fidelity of protein synthesis in yeast, worms, and flies, resulting in lifespan extension in all 

three organisms [70]. With the increasing throughput and declining cost of DNA synthesis, and a 

rapidly growing synthetic biology toolkit, exogenous genomic screens are primed to become a 

vital technology for the discovery of novel proteins that can be used as tools to answer crucial 

biomedical research questions.   
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