SC H 0 I—A R S H I P AT H A RVA R D Office for Scholarly Communication

DASH.HARVARD.EDU

DIGITAL ACCESS 10
HARVARD LIBRARY

Enabling Emerging, Heterogeneous Memory
Systems

Citation
Pentecost, Lillian. 2022. Enabling Emerging, Heterogeneous Memory Systems. Doctoral
dissertation, Harvard University Graduate School of Arts and Sciences.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREP0S:37372073

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37372073
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Enabling%20Emerging,%20Heterogeneous%20Memory%20Systems&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=65bae2664a077ebab28ddc6ea711aac8&department
https://dash.harvard.edu/pages/accessibility

HARVARD UNIVERSITY

Graduate School of Arts and Sciences

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the

Harvard John A. Paulson School of Engineering and Applied Sciences
have examined a dissertation entitled:

“Enabling Emerging, Heterogeneous Memory Systems”

presented by: Lillian Coston Pentecost

Typed name: Professor D. Brooks

Signature @v‘

Typed name: Proféssdr G. Wei

Signature %ﬁw(M

Typed name: Professor G. Hills

Signature

April 22, 2022

Enabling Emerging, Heterogeneous
Memory Systems

A DISSERTATION PRESENTED
BY
LirriaNn CosTON PENTECOST
TO
THE DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocToR oF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER SCIENCE

HaARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
APRIL 2022

©2022 — L1ILLIAN COSTON PENTECOST
ALL RIGHTS RESERVED.

Thesis advisor: Professor David Brooks, Gu-Yeon Wei Lillian Coston Pentecost

Enabling Emerging, Heterogeneous Memory Systems
ABSTRACT

Optimizing data storage and data movement remain critical roadblocks to overall computing
performance and efficiency. These barriers are due to a convergence of motivating factors that
begins with the memory wall and limitations of well-established memory technologies and de-
sign paradigms, and is compounded by increasingly data-intensive applications. This shift can
and should be answered by many research thrusts to address the density and efficiency of mem-
ory systems, including technological heterogeneity in on-chip memory, increased specialization and
cross-computing-stack choices in system and device design, and re-thinking the relationship and
co-location of memory and compute resources. This thesis proposes and evaluates both specific
solutions and broad design methodologies, uncovering enormous potential for increased memory

system efficiency while unlocking numerous doors for further exploration and innovation.

iii

Contents

TrTLE PAGE

COPYRIGHT

ABSTRACT

TABLE OF CONTENTS

LisTING OF FIGURES

ACKNOWLEDGMENTS

Previous WoRrk

o INTRODUCTION

0.0
0.1
0.2

Publications & Research Experiences
Thesis Contributions e
Thesis Organization

1 BACKGROUND: MEMORY TECHNOLOGIES & How TO LEVERAGE THEM

1.0
I.I

I.2

1.3

Motivation: Limitations of Today’s Memory Systems
Motivation: Data-Intensive Applications
Embedded, Non-Volatile Memory (eNVM) Technology Landscape
Identifying Cross-Stack Design Considerations

2 RELIABILITY AS A FIRST-ORDER DESIGN CONCERN

2.0
2.1
2.2
2.3
2.4

Application-Aware Resilience Studies
Fault Modeling of Multi-Level-Cel (MLC)eNVMs
Customized, Iso-Accuracy MLC storage of DNN weights
Fault Tolerance In-the-Loop with Sparsity and Error Mitigation
MLC FeFET Memory for DNN Inference and Graph Processing

iv

ii

iii

iv

vi

ix

N AN -

10
17
22
32

3 MaAxXNVM: MAXIMIZING MEMORY EFFICIENCY FOR MLL ACCELERATORS 87

3.0 End-to-End, Co-Design Methodology for MLCeNVM 90
3.1 Maximizing Storage Density and Inference Efficiency (Evaluation) 93
3.2 MEMTI: Optimizing eNVM for Visual Multi-Task Inference 105
3.3 EdgeBERT: Optimizations for Multi-Task NLP Inference I15
4 NVMEXPLORER: CROSS-STACK MEMORY DESIGN AND OPTIMIZATION 120
4.0 An Efficient, Extensible Design Space Exploration Framework 123
4.1 Supporting DNN Inference Under Varying Operating Conditions 138
4.2 Complementing and Accelerating Graph Processing 143
4.3 Probing General-Purpose Applications: eNVMasLLC 147
4.4 Case studies in eNVM, System, and Application Co-Design I50
s CoONCLUSION: FUTURE MEMORY SYSTEM OPPORTUNITIES AND INNOVATIONS 157
s.o Themes to Unlock Future Memory Efficiency 158
5.1 Innovations on the Horizon, and How to Leverage Them 162
5.2 Summary: Cross-Computing-Stack Memory Efficiency Opportunities 165
REFERENCES 193

1.0
I.1
1.2
1.3
1.4

1.5
1.6

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22

Listing of figures

Memory Technology Hierarchy (Schematic) 12
Example Memory Array Organization (Schematic). 14
Energy and Latency of Memory Array Access, SRAM (Example). Is
Deep Neural Network Layer Schematic (Examples) 19
eNVM Publication Survey (2016-2020) Summary 28
eNVM Projected Array Comparison (2017) 31
Example of Interdependent Design Choices (Schematic). 33
Ares Method Schematic 41
Ares Fault Injection Schematico L. 42
Ares Per-DNN-Model Fault Tolerance Results 44
Resilience of Datatype of DNN Weights 47
Fault Tolerance Across DNN TrainingRuns 49
Multi-Level-Cell (MLC) CTT Test Chip 51
Multi-Level-Cell (MLC) CTT Test Chip Measurements 52
Multi-Level-Cell (MLC) Programming (Cell-Level Schematic) 53
Multi-Level-Cell (MLC) Programming (Array-Level Schematic) 55
Multi-Level-Cell (MLC) Programming Reliability Impact of the ADC 56
Multi-Level-Cell (MLC) Programming (Schematic) 59
DNN Weight Storage Results, Fixed Point Encoding 6o
DNN Weight Storage Results, Clustered Encoding 62
Index Synchronization for Bitmask Error Mitigation 67
Resilience of Sparse-Encoded Datato Faules 69
Optimal Sparse Encoding and Error Mitigation Strategies 70
FeFET Device Diagram and MLC-3 Characterization 72
FeFET Array Architecture Details 73
FeFET MLC Programming Schematic 76
FeFET MLC Programming Details 78
FeFET MLC Programming Device Resules 79
FeFET Fault Rate ShmooPlot 81
FeFET Application Accuracy 82

vi

2.23

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.0
4.1
4.2
4.3
4-4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16

FeFET Co-Design ALBERT Array Details 85

MaxNVM Methodology 91
MaxNVM Architecture Block Diagrams 94
MaxNVM On-Chip DNN Inference Memory Array Area 96
MaxNVM On-Chip DNN Inference Memory Array Read Energy 97
MaxNVM On-Chip DNN Inference Results, Performance 98
MaxNVM On-Chip DNN Inference Results, Power/Energy 99
MaxNVM Iso-Area Performance Resules 101
MaxNVM Intermittent Operation Results 103
MEMTI Architecture Block Diagram 109
MEMTT Accuracy and Energy Results 113
EdgeBERT Design Elements, Optimizations 115
EdgeBERT Memory Optimization Results. 118
NVMExplorer Methodology Overview 123
NVMExplorer Example Array Characterization 127
NVMExplorer Data Dashboard Snapshot 129
CHAMPVis DataDashboard 131
NVMExplorer Array-Level Validation 137
NVMExplorer DNN Array-Level Metrics 139
NVMExplorer DNN Power, Energy-per-Inference 140
NVMExplorer Intermittent DNN Operation 142
NVMExplorer Graph Processing Results Power 144
NVMExplorer Graph Processing Results Latency, Lifetime 145
NVMExplorer LLC Array-Level Metrics 148
NVMExplorer LLC Case Study Power 149
NVMExplorer LLC Case Study Latency, Lifetime 150
NVMExplorer BEOL FeFET Comparison ISI
NVMExplorer Area Efficiency Trade-Off 153
NVMExplorer Write BufferStudy I54
NVMExplorer MLC Comparisons 156

vii

I DEDICATE THIS WORK TO MY ENDLESSLY SUPPORTIVE FAMILY AND FRIENDS.

viii

Acknowledgments

I HAVE MANY PEOPLE to thank who have supported me over the past six years and who have help
shaped me as a researcher and a scientist.

First, thank you to my advisors, David and Gu, who have been champions of my research and
helped me build confidence and perspective throughout my PhD. You’ve given me space, time, and
guidance to explore my many interests in and out of computer architecture and encouraged me in
dabbling across research areas and projects, which has made my time as a PhD student immensely
enjoyable and made the kind of research I do uniquely possible. It has been a pleasure to work with
you both as the research group has grown and changed in exciting ways over the years.

Next, I'd like to thank Professor Gage Hills for sitting on my dissertation committee. It has been
such a treat to hear your thoughts on my work and see your success at Harvard, and I appreciate
the time and energy you bring to group meetings and research discussions. I'd also like to thank
Professors Sasha Rush and James Mickens for serving on my qualification committee and providing
feedback and encouragement at a time when I was awash in paper rejections. I've felt very fortunate
to be surrounded by knowledgeable and thoughtful researchers throughout my time at Harvard.

Next, I'd like to thank my fellow graduate students and close collaborators at Harvard who have
made my work possible and (crucially) kept me engaged, excited, and accountable in project collabo-
rations over the years. To my favorite sounding-board and close friend Udit Gupta, it has been such
ajoy to grow as researchers and figure out our goals alongside each other. Thanks for being such a
steadfast and creative collaborator, delightful co-worker, and, of course, diligent email-proofreader
as we have organized events and coordinated projects together over the years. A special thank you
also to other mentors I've been fortunate to cross paths with, namely Brandon Reagen for teach-
ing me how to be a grad student and how to have a conversation with David and Gu, and Akshitha
Sriraman for sitting me down and asking me to think critically about my research style and my re-
search goals. Thank you to Marco Donato for working closely with me on many, many projects. I
continue to learn a ton from you, and I’'m very glad to know you as a mentor, a collaborator, and a
peer. Thank you also to the many other graduate students and friends who made my time at Har-
vard productive and fun, to Thierry Tambe for being constantly impressive and generous with time
and effort, to Siming Ma for sharing expertise (and data!), to Abdulrahman Mahmoud for refresh-
ing and relatable perspectives and insights, to Brian Plancher for mind-melding about teaching and
career goals, and many, many others who I won’t list but who have shaped my last six years. I've also

ix

had the pleasure of working with numerous undergraduate researchers over the years, and I con-
tinue to be so impressed and refreshed by the perspectives they bring. And, a special thank you to
Glenn Holloway for many patient emails and direct support making this research possible.

Thank you to research collaborators across institutions as well, including the many wonderful
and insightful folks I've met through the ADA center. A special thank you to my co-first-author
buddies on some favorite collaborations over the years, namely Mehdi Sharifi at Notre Dame and
Alexander Hankin at Tufts. I'd like to especially thank Alex for all your patience and effort putting
together NVMExplorer. I appreciate your focus and your enthusiasm (the much-needed optimism
to my skepticism at times) and look forward to our continued collaboration.

I’ve been fortunate to do several research internships, from which I've collected skills, great ex-
periences, and awesome mentors. Thank you to the memory systems research team at IBM, to the
Al Silicon, and Performance team at MSR, and to NVIDIA research for incredible exposure to new
research ideas, as well as memorable summer experiences. I'd like to especially thank the team of
mentors and collaborators who I’ve grown close with in the architecture research group at NVIDIA
— Aamer Jaleel, Po-An Tsai, Angshuman Parashar, Joel Emer, and Bill Dally, who continue to push
me to be a better scientist and a more thoughtful researcher through our conversations.

I would not have been nudged towards computer systems research and, more fundamentally,
would not be the person I am today if not for the foundation and the incredible mentors I had as an
undergraduate in physics and computer science at Colgate University. A special thank you to John
Stratton, who took time to teach me how to read a research paper and how to frame a question.
Our work together helped me realize the impact that the right mentor at the right time can have
on someone’s whole trajectory, and I'm very grateful. Thank you also to Ken Segall and to Elodie
Fourquet, whose confidence in me as a student and as a scientist bolstered me in difficult times, and
who let me wrestle and have real ownership of research projects as an undergraduate.

Thank you to the Bok Center for Teaching and Learning for support, guidance, and collabora-
tion throughout my experience as a pedagogy fellow. My participation in seminars and critical dis-
cussions over the years has been so influential and informative as an academic, a researcher, and an
educator and the many ways those roles intersect. A special thank you to John Girash, a wonderful
and thoughtful mentor who was a real source of constancy and joy working and teaching together
throughout an otherwise challenging and isolating year.

A huge thank you to my family, to my parents who have supported me in every way and been lov-
ing and patient throughout. Thanks to Joe and Linda for trivia nights and fun dinners, supplying
plenty of beer and good times over the years. Thanks also to my close friends who have been such a
special part of my life for so long. There are too many more important people to name, but I'll lastly
thank my friend Allison for being a constant companion and great ranting-partner over the years of
our PhD programs, and my best friend and concert-buddy Emily for our breakfasts and cake-baking
and travels and many fun times together.

Finally, I thank my partner, Sean, for every laugh, every cup of coffee, every proofread and debug
session, and for making me so happy, inspired, and thankful through these years of hard work. Also,
I thank our precious dog, Mipha, for getting me out of the house every day, and for being the most
beautiful, energetic, and talented creature on the planet.

Previous Work

Portions of this dissertation appeared in the following works:

L. Pentecost*, A. Hankin*, M. Donato, M. Hempstead, G. Wei, D. Brooks. “NVMExplorer: A
Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories” IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA) Proceedings, April
2022. *Authors contributed equally.

L. Pentecost”, M. Sharifi*, R. Rajaei, A. Kazemi, Q. Lou, G. Wei, D. Brooks, K. Ni, X. Hu, M.
Niemier, M. Donato. “Application-Driven Design Exploration for Dense Ferroelectric Embedded
Non-Volatile Memories (eNVMs)” ACM/IEEE International Symposium on Low Power Electron-
ics and Design (ISLPED 2021), July 202.1. *Authors contributed equally.

T. Tambe, C. Hooper, L. Pentecost, T. Jia, E. Yang, M. Donato, V. Sanh, P. Whatmough, A. Rush,
D. Brooks, G. Wei. “EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-
Task Natural Language Processing Inference” MICRO-s4: s4th Annual IEEE/ACM International
Symposium on Microarchitecture, October 2021.

E. Pyne*, L. Pentecost, U. Gupta, G. Wei, D. Brooks. “Quantifying the impact of data encoding on
DNN fault tolerance” Workshop on Performance Analysis of Machine Learning Systems (FastPath
at ISPASS 2020), August 2020. *Undergraduate Mentee.

L. Pentecost*, U. Gupta®, E. Ngan*, G. Wei, D. Brooks, J. Beyer, M. Behrisch. “CHAMPVis:
Comparative Hierarchical Analysis of Microarchitectual Performance Visualization” Workshop on
Programming and Performance Visualization Tools at Supercomputing 2019 (ProTools at SC19),
November 2019. *Authors contributed equally.

M. Donato, L. Pentecost, D. Brooks, G. Wei. “MEMTI: Optimizing On-Chip Nonvolatile Storage
(eNVM) for Visual Multi-task Inference at the Edge” EEE Micro, Vol. 39, Issue 6, November 2019.

L. Pentecost, M. Donato, B. Reagen, U. Gupta, S. Ma, G. Wei, D. Brooks. “MaxNVM: Maximizing
DNN Storage Density and Inference Efficiency with Sparse Encoding and Error Mitigation” s2nd
IEEE/ACM International Symposium on Microarchitecture (MICRO-52), October 2019.

xi

B. Reagen, U. Gupta, L. Pentecost, G. Wei, and D. Brooks. “Ares: A Framework for Quantifying
the Resilience of Deep Neural Networks” Design Automation Conference (DAC) 2018, June 2018.

M. Donato, B. Reagen, L. Pentecost, U. Gupta, D. Brooks, G. Wei. “On-Chip Deep Neural Net-
work Storage with Multi-Level eNVM” Design Automation Conference (DAC) 2018, June 2018.

xii

1 was excited at something new, always liked something new, but give credit to everybody who

belped. I didn’t do anything alone.

Katherine Johnson, 2017

Introduction

DATA MOVEMENT AND DATA STORAGE remain a critical roadblock to overall computing perfor-
mance and efficiency. Data-intensive workloads, often running on increasingly heterogeneous
systems (i.e., computers that comprise more than one type of processing unit or more than just a
general-purpose CPU), would particularly benefit from drastic increases to on-chip memory ca-

pacity and storage density, as well as the energy efficiency and performance of memory access, as

discussed in detail in Chapter 1.

This thesis identifies and explores game-changing design choices that could enable substantial
gains in future memory systems, and also provides far-reaching approaches to identify additional de-
sign choices and optimizations. In a variety of application and system settings, my work reveals that
exposing and co-optimizing design choices at different levels of the computing stack (for example,
algorithmic optimizations alongside architecture and device-level choices) is the bedrock of future
efficiency gains and effective future memory system design. For example, several works presented
in this dissertation identify embedded, non-volatile memory (eNVM) technologies as a compelling
opportunity to address on-chip memory efficiency, but the design space is complex and each mem-
ory cell configuration has unique characteristics that can and should be calibrated to system needs.
This work has the dual contribution of proposing and evaluating specific memory system solutions,
often specifically designing towards optimal on-chip memory for machine learning hardware ac-
celerators, as well as providing reusable and extensible methods, tools, and takeaways to inform a

broader class of future memory systems.

0.0 PUBLICATIONS & RESEARCH EXPERIENCES

Throughout this dissertation, I will present specific system designs and evaluations and the accom-
panying methodologies and tools that enable efficient, effective future memory system design and
optimization. Much of this work is underpinned and informed by experiences early in my PhD
contributing to the design, fabrication, and testing of specialized accelerators for deep neural net-
work (DNN) inference, consistently in tandem with application-level optimizations*#***". I was
also fortunate to complete research internships in the first half of my PhD that honed deep skills in
workload characterization and hardware profiling at IBM (2016) and Microsoft Research (20138).

Additionally, I contributed in the nascent stages of MLPerf, a benchmarking effort to standardize

and democratize expectations and conditions for measuring and reporting machine learning perfor-
mance, in the form of discussions for benchmark selection and responsibilities in benchmark and
dataset testing and validation **°.

Through my development and study of various machine learning algorithms, and particularly
in managing the training and optimization of different DNN, the resilience of DNN parameters
and execution to various forms of normalization and value manipulation inspired the development
of Ares, an application-level framework for quantifying the resilience of DNNs 3. Ares proved ex-
tensible and expressive for a variety of application and fault-mode pairings, and I collaborated and
advised projects leveraging Ares to study resilience of different number representations and data for-
mats '”*, sensitivity to hyperparamters and bit-flip errors during training ' and DNN resilience to
approximate multiplication techniques**. Crucially, I also spent time early in my PhD understand-
ing and developing fault models for multi-level-cell (MLC) programmed embedded non-volatile
memory technologies. Specific programming choices (e.g., number and spacing of programmed
values into a memory cell) could be customized according to the number formats and encoding
strategies | was already studying deeply to optimize DNN weight storage ®, and Ares was once again
leveraged and extended to represent and quantify application-level impacts of difterent DNN pa-
rameter storage schemes.

After observing that cross-computing-stack interdependent design factors and sensitivities to cell-
level settings were clear determinants of potential memory solution efficiency it became clear that
a system-level evaluation and more comprehensive design study could unlock the huge potential
of MLC eNVMs, which led to the MaxNVM project 83 The building blocks of MaxNVM, in
turn, were sufficiently modular and robust, and I applied similar co-design strategies to exciting
new application spaces and system contexts (e.g., multi-task DNN inference 5%, graph processing
kernels*°4, hybrid SRAM-eNVM memory systems, and natural language processing“(’).

I continually developed and applied these building blocks, including a memory-fault-centric im-

plementation of the PyTorch Ares interface, in new contexts, revealing open research questions and
complex design considerations along the way. I realized that the versatility and efficacy of a first-
order design guidance tool could be an invaluable framework for a broader set of design studies.
This realization spurred the formalization and development of NVMExplorer '*5. My background
and experiences in data visualization platforms, including a web-based tool for visualizing microar-
chitectural performance counters "*+, made it clear that the wide adoption and accessibility of such
a design space exploration framework would be boosted by providing the users from different back-
grounds and expertise with comprehensive and interactive ways to explore, filter, and refine their
memory system design solutions. The resulting framework, NVMExplorer, in turn quickly and
effectively spurred additional collaborative efforts in optimizing device and circuit design choices

towards application-level and system-level constraints and goals **#>2¢.

o.1 THESIS CONTRIBUTIONS

Several key themes and takeaways for the broader discipline of memory systems architecture and

computer architecture will emerge and recur throughout the discussion of my PhD work:

* Reliability: Careful consideration of hardware reliability must be a first-order design consid-
eration in future memory systems, owing both to the unique properties of emerging technol-

ogy solutions and application-level definitions of program accuracy and resilience.

* Designing towards heterogeneity: Specialized hardware components communicating and
coordinating to form a single, efficient system presents unique challenges and opportunities

to the computer architect and system designer.

* Flexibility: In customizing a memory architecture towards emerging technologies, system

requirements, and application properties, the extreme efficiency made possible by specializa-

tion must be balanced by a sense of sufficient flexibility and generality to support application

changes and broader use-cases.

* Technology-aware principles and design methodologies: Numerous emerging technology
solutions hold promise for improving the efficiency of computing systems at every scale,
particularly in the context of memory solutions, but integrating them effectively will require

exposing and balancing their properties with creativity and collaboration.

* First-order design space exploration to inform and shape further study: Probing design
considerations and quantifying their impacts at many layers of the computing stack is an
intensive, complex task, demanding tools and methods to effectively and efficiently explore

such trade-offs at a high level to guide further investigation or investment.

Through the course of my PhD, I've unearthed and evaluated a selection of promising architec-
ture solutions garnering appreciable potential benefits and takeaways compared with competitive

baseline systems, a few examples of which include:

* Fault-prone, highly dense emerging memory technologies can be effectively employed to
store sparse-encoded deep neural network weights for image classification. However, there is
a tension between the two: sparse encoding increases fault vulnerability, limiting the efficacy
of a fault-prone dense memory. Employing a proposed, lightweight error mitigation scheme
with faulty, dense memory and sparse encoding can provide higher storage density than any
of the techniques in isolation, providing up to 29 x memory area reduction compared to

less-faulty memory solutions*®* (Chapter 2.3).

¢ Work presented in this thesis also probes the viability of a specific, even-less-mature memory
technology solution in multiple application contexts (image classification, natural language

processing, social network graph search) and identifies device- and circuit-level opportunities

for innovation and co-design for efficient future memory systems*°*. For example, memory
area can be reduced by over 12 x and energy-per-memory-access by 2.6 relative to a com-
petitive baseline without degrading accuracy for a natural language processing task as a result

of customizing memory device properties and programming schemes (Chapter 2.4).

* A proposed and evaluated new memory system for NVDLA*'*, an industry-grade convo-
lutional neural network (CNN) accelerator, used co-designed emerging memory technolo-
gies to unlock up to 3.5 x lower energy per image classification task and 3.2 x lower system

83

power, enabling entirely on-chip ResNetso inference in about 2mm? of total system area '

(Chapter 3.1).

* System-level performance and energy efficiency of embedded, multi-task image processing
improves dramatically by integrating a hybrid memory system of both emerging and tradi-
tional memory technologies, again made possible by tuning application optimizations and
system settings for compression and data format>°. For example, energy per input image

frame reduces by over 10 x while reducing the memory area by about 3 x (Chapter 3.2).

* Applying fault-prone, dense memory technologies towards other applications, such as nat-
ural language processing, similarly achieves significant efficiency benefits (e.g., reducing

energy-per-input-sentence due to memory access by 66, 000 x) *2

, while showing that the
intuitions and infrastructure developed in this thesis and used to evaluate emerging tech-

nologies can be eftectively generalized and empower efhicient future studies (Chapter 3.3).

These evaluations are made possible by a selection of software tools, simulation frameworks, and
benchmarking efforts I've built or contributed to over the course of my PhD, which are described
and cited throughout this thesis. Many of these contributions and evaluation efforts culminated

185

in the development of NVMExplorer '*%, a unified platform to explore the viability of emerging

memory technologies in specific application and system settings. The NVMExplorer approach
reveals cross-stack dependencies and optimization opportunities, in addition to reproducing and
expanding previous published studies, (e.g., 183 84 204), NVMExplorer similarly enables co-design
studies of application properties, system constraints, and devices in order to bridge the gap between
architects and device designers for future memory solutions. Example co-design studies in Chapter

4 reveal both opportunities and potential disconnects among current research efforts "*5.

0.2 THESIS ORGANIZATION

In Chapter 1, I present background on the fundamental costs and limitations of current on-chip
memory solutions, as well as introducing the properties and potential of a selection of eNVMs that
can be considered to address memory limitations in a variety of computing systems. Next, Chapter
2 introduces reliability as a key design consideration for the next generation of memory systems,
describing the tools and modeling efforts I have contributed to throughout my PhD to quantify
memory reliability in application-specific contexts and presenting results from several publications
that highlight interdependent choices in data format, number representation, circuit- and device-
level design choices, and algorithmic optimizations. Each of the studies in Sections 2.2-2.4 apply
application-aware reliability analysis to improve memory system efficiency.

Chapter 3 deepens the findings of Chapter 2 by carefully co-designing specific system solutions
for deep neural network inference across different application domains, optimization goals, and
operating conditions. Together with Chapter 4, Chapter 3 details system evaluations that reveal
significant energy/power benefits and increased storage density via comprehensive and technology-
aware cross-computing-stack co-design. Chapter 4 goes above and beyond the evaluation of specific
solutions by proposing and describing an open-source, modular design space exploration frame-

work (NVMExplorer) to empower future collaborations and effective memory systems research

where application experts and device designers can similarly identify and contextualize different op-
timizations and system, algorithm, and technology choices. Chapter s revisits several key themes
and takeaways, and proposes potential future contributions and research directions informed and

enabled by the work presented in this dissertation.

Background: Memory Technologies &

How to Leverage Them

EFFICIENCY AND INNOVATION in future computer systems is increasingly bound by the capabil-
ities of the memory system. The convergence of fundamental scaling limitations, increasing hard-

ware specialization and system heterogeneity, and a broad set of essential computing applications

that are voraciously data-intensive prompt consideration and investment in new memory design
strategies and technologies. In this chapter, I motivate the need for fundamental breakthroughs and
fresh approaches in improving memory systems, as well as introduce several compelling research

directions for addressing the memory needs of modern and future computing systems.

1.0 MOTIVATION: LIMITATIONS OF TODAY’S MEMORY SYSTEMS

Even before Moore’s Law waned and ended, the slowing of scaling trends has been disproportionate
in favoring the efficiency of compute vs. memory *#°. Namely, the improvement in microprocessor
speed was observed to exceed the improvement in DRAM memory speed year-over-year. In blunt
terms, the inevitable conclusion of this trend is that the fastest, most efficient possible processing
unit will result in no system-level performance benefit because it will be stalled, waiting on inter-
actions with memory. The disproportionate scaling in terms of achievable power efficiency, data
delivery, and cost-effective density is sometimes referred to as the ‘memory wall’ problem, and it
motivates much need for reinvention and careful consideration of memory system design choices.
The memory subsystem has remained a crucial performance bottleneck in the intervening years
of innovation in computing at different scales (e.g., the emerging prominence and diversity of mo-
bile phones and embedded technology, as well as datacenter-scale computing), with critical appli-
cations facing limits in terms of both the availability and utilization of memory bandwidth. The
quantity of data required by applications often out-paces the power, energy, and physical distance to
store sufficient data capacity. As such, there are broad classes of applications that can be identified
by whether their end-to-end performance is limited by the availability and utilization of compute
resources (compute-bound) versus those limited by the availability and utilization of memory re-
sources (memory-bound). The identification of compute-bound vs. memory-bound application

behavior on a given system is sometimes visualized via the Roofline Model°°, and analysis is typi-

I0

cally conducted via microarchitectural performance analysis (described in Chapter 4.0.5).

In response to the explosive number and variety of data-intensive, often memory-bound applica-
tions that are critical in computing today (from facial recognition and image processing on mobile
phones, to recommendation systems and graph processing in the datacenter, to a variety of scien-
tific computing applications), this thesis focuses on innovating and intervening in the design of
memory systems, with a particular eye towards heterogeneity in two senses: (1) the integration of
technological heterogeneity on-chip, that is, emerging and alternative memory device technologies,
and (2) customizing memory systems towards hardware accelerators and heterogeneous systems.
To understand these trends further and to motivate the solutions and methods put forth in Chap-
ters 2-4, I next provide some discussion and key terms in memory architecture and organization,
then dive into the strengths and limitations of today’s most pervasive memory technologies (SRAM
and DRAM). Then, I describe the area, latency, and energy costs of memory access with a simple
example and identify cell-level and memory architecture design trade-ofts that will recur in later de-
sign studies. Finally, this section will touch upon some compelling research and industry efforts to

address the memory wall that are outside the scope of this thesis.

1.00 SRAM, DRAM, AND THEIR LIMITATIONS

Different memory technologies find use in different parts of a traditional memory hierarchy due to
their varying characteristics and varying system requirements. What are the most common memory
technologies used in computing systems today, and how are they typically employed in memory
hierarchies? Answering these two questions will motivate and inform what the research goals are for
augmenting, replacing, or improving these technologies in future designs.

In Figure 1.0, different memory technologies and key terms are organized by their typical relative
capacity and proximity to compute units, with some relevant characteristics listed on the right going

from top to bottom. In most modern computing systems, the memory resources physically closest

II

ompute fast
Resources :
SRAM (Cache, re"atfle
Scratchpad) volatile
On-Chip
dense Off-Chip
DRAM, HBM high power
volatile
Far from super dense
Rcompute Flash, SSD, hard drive slow
esources non-volatile

Memory Technology Hierarchy

Figure 1.0: A majority of modern computing systems rely on SRAM for fast on-chip memory resources physically close
to compute resources (green), rely on additional off-chip (red) memory resources with increased density (e.g., DRAM)
during computation, and also incorporate higher-capacity, non-volatile memory sources for permanent storage, as
described in Section 1.0.0.

to compute resources is implemented using SRAM, and is integrated directly on the same chip as
compute resources for fast, efficient data access (shown in green in Figure 1.0). Higher-capacity
memory resources are accessed via an interface to another fabricated component (e.g.,a DRAM
chip or Flash memory), referred to throughout this thesis as “off-chip” (shown in pink/red in Figure
1.0). SRAM and DRAM are volatile technologies, meaning they must constantly receive power

to retain stored data values, while Flash is a non-volatile memory technology, meaning it retains
data values in memory when powered off. While the relative capacities and protocols applied to
each memory technology may vary depending on system context, the broad organization of on-
chip SRAM resources for performant memory, oft-chip DR AM for density, and a more physically
distant, slower, non-volatile resource for permanent storage is visible in mobile phones, laptops, and
datacenters alike.

SRAM provides reliable, fast on-chip memory, used as cache memory in a vast majority of mod-

I2

ern systems of varying scales. However, one can only provision so much SRAM on-chip, and there
are power and efficiency trade-ofts when doing so. When data needs outstrip the capacity of on-
chip memory, higher-capacity, oft-chip resources repopulate the on-chip resources with the more
frequently used or otherwise critical data for use by compute resources. An enormous amount of
microarchitectural design effort and system-level innovation is poured into retaining, rejecting, or
fetching the right data from off-chip at the right time in order to minimize data movement and/or
maximize overall system efficiency due to the costs (energy, time or otherwise) associated with off-
chip access. This is true both historically, in continued development of cache protocols for general-
purpose systems at varying scales, and in specialized hardware, where energy and power due to data
movement remains a key limitation to system efficiency.

The memory wall has already forced system designers to think beyond the memory technology
hierarchy in Figure 1.0, and current and future generations of computing systems will require differ-
ent tools, methods, and technologies to make meaningful breakthroughs. To achieve fundamental
future improvements, particularly for applications that are heavily memory-bound and for special-
ized systems with unique data needs, system designers must bring denser, more efficient memory

resources closer to compute resources.

1.01 MEMORY ORGANIZATION AND MEMORY ARRAY ARCHITECTURE

This section summarizes some fundamental costs of storing and retrieving data. With SRAM prop-
erties and limitations as context, we can zoom in on an example of the costs associated with data
storage and data movement in a memory array architecture. What are the area, energy, and latency
trade-offs when memory devices are organized into subarrays, banks, and arrays? This discussion
will introduce architectural design choices and trade-offs that are unique to each proposed physical
mechanism for storing bits. As alternative memory technologies for on-chip storage solutions are

introduced and evaluated in future chapters, some array architecture characteristics introduced here

13

| LA 4 Precharger
Bank 4

Memory
Cell
Array

Wordline
Driver

Mat Mat

Row Decoder

Multiplexer

Output Driver

Mat Mat B

- Predecoder

Figure 1.1: A memory array is comprised of a set of banks (left), each of which in turn may exhibit a hierarchical organi-
zation into mats and sub-arrays. Within each sub-array, there is additional periphery circuitry to read and write data in
and out of a set of memory cells (right), adapted from 6062

will be revisited and innovated in the context of optimizations that consider memory-device-level
attributes, all the way up to practical, application-level impacts.

There are a variety of architectural choices when organizing memory cells and sub-arrays into
larger blocks of accessible memory, some of which are evident in observing a basic memory array
organization in Figure 1.1. An array of individual memory devices with corresponding circuitry to
read and write data values is labeled as a sub-array, and those sub-arrays are, in turn, hierarchically
organized into mats and banks. Large cell arrays can consume significantly more power and take
more time to read/write to, so provisioning a block of memory using many smaller sub-arrays with
a network of multiplexing and routing to determine when and how to fetch data can reduce the av-
erage energy and latency per access. Hierarchical organization choices can also enable simultaneous
parallel access to multiple columns of data, sub-arrays, mats, or banks, improving the bandwidth of
the overall memory. Sub-array dimensions, column muxing and complexity of selection circuitry,
and hierarchical organization into mats and banks are just a sampling of design choices that impact
the area efficiency, latency, and energy of access to the memory array. These trade-ofts will vary
per-technology, and can be tuned according to the system setting and use case. Figure 1.1 shows a
schematic example of the memory organization considered by a previously-validated memory array

167_

simulation tool °*, applicable both in the context of an SRAM array and for embedded, non-volatile

14

rea-Optimized (1 8an' |
ReadeDP optimized [}

00 02 04 06 08 10 12 14 16 18 20 22
Energy (pJ)/Read Access

24 26

W Cells

M Precharge

B Row Decoder

B Mux Decoder
Mux

Area-Optimized

ReadEDP
ReadEDP th'm‘zed_ Optimized

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 55
Read Latency (ns)

Predecoder
Non-Mat

0.00 0.01 0.02

Area (mm2)

Figure 1.2: For a small (8KB) SRAM array under two different organization choices (simulated using NVSim ¢2), different
memory organization choices impact the area efficiency, latency, and energy of access. Organizing the 8KB array as a
single bank (Area-optimal) requires less area, while using 16 smaller sub-arrays (the read-energy-delay-product-optimal
(ReadEDP) choice) drastically reduces energy and latency of access at the cost of additional periphery circuitry and
routing from sub-array to port. The energy and latency per access can be further broken down into the contributions
from individual architecture components, as labeled in Figure 1.1.

memory technologies (eNVMs).

Figure 1.2 presents a simple example of how the components of a memory array contribute to the
access energy and latency for a simple example under two different architectural organizations. An
area-optimal array organization uses a single bank; the resulting read latency and energy-per-access
are then dominated by the subarray components. In constrast, a read-energy-delay-product-optimal
organization will drastically reduce the latency and energy of access by fracturing the array into mul-
tiple banks and subarrays. As a result, the area slightly increases due to duplicated sensing circuitry
and network overhead to route data from subarray to port, and non-subarray energy and latency
comprises a larger portion of total access costs. Thus, memory architecture choices and optimiza-
tion goals heavily determine the performance and efficiency of memory resources, and application
performance and efficiency, in turn, can be sharply impacted by these choices. The precise trade-offs
and optimal memory architectures will vary significantly depending on array capacity and optimiza-
tion goals. These design considerations are made even more complex by how periphery overheads

and cell characteristics differ for alternative, emerging memory technologies discussed in Section 1.2.

IS5

1.0.2 3-D INTEGRATED MEMORY SOLUTIONS

Another key innovation that has been deployed in several contexts is using the third dimension
(e.g., stacking chips on top of one another and connecting them vertically) to improve the effective
density and potential bandwidth of memory systems. This is a well-established technique in the
context of stacked DR AM using through-silicon-vias (e.g., Hybrid Memory Cube”%) or the pro-
liferation of High-Bandwidth-Memory (HBM) for increased bandwidth in GPU systems (graph-
ics processing units, e.g., ' 58). The radical increase in effective density and bandwidth provided by
3D-stacked memory solutions has also been applied towards specialized systems for deep neural net-
works (e.g.,”*). However, these performant, high-density solutions remain power-intensive, suffer
efficiency limitations, and many, being DR AM-based, are volatile memory solutions.
3D-integration techniques have also been demonstrated as compatible with several of the tech-
nologies presented in Section 1.2*#7#!. Though the studies presented in this thesis do not consider
3D-integrated memory solutions, typically due to the energy and power constraints of edge and
embedded computing contexts considered, there are many compelling memory system design direc-

tions left for future work described in Chapter s.

1.0.3 PROCESSING-IN-MEMORY, PROCESSING-NEAR-MEMORY ARCHITECTURES

For several of the technologies leveraged in this thesis, their analog device properties allow them to
be used effectively as processing elements 222,50,105,89 45 discussed in Section 1.2. For example, re-
searchers have crafted circuit and array architectures to add or multiple input currents as values, and
applied such systems towards neural network inference and training*>*2°*. Additionally, there is
along history of investigation towards near-data processing (i.e., co-locating compute resources or
performing computation in a memory process like DR AM to bridge the distance and unlock efhi-

ciency for data-intensive tasks'4°). While these approaches are exciting disruptions of the traditional

16

memory hierarchy (e.g., Figure 1.0) and have seen application in some targeted settings, they are
accompanied by distinct manufacturing and scaling challenges.

Processing-in-memory and near-memory will remain important and exciting paradigms in the
future, but the challenges to their scalability, capacity, and density are somewhat orthogonal to
the study of emerging materials innovations and devices as memory cells. Though understanding
and methodologies for design space exploration at the device and circuit level of emerging memory
devices, such as are presented in the following chapters, could be incredibly informative towards
in-/near-memory architectures in the future, specific evaluations fall outside the scope of the work
presented in this thesis. As the next section will highlight, the size and data-intensiveness of mission-
critical applications necessitates sheer density and energy efficiency of on-chip memory and data
delivery more broadly. Thus, the scope of this thesis aims to be creative in augmenting and improv-
ing memory systems, while keeping them distinct from compute elements, to best complement the

enormous diversity of modern heterogeneous computing systems.

1.1 MOoOTIVATION: DATA-INTENSIVE APPLICATIONS

In response to the end of Moore’s Law, architects and system designers have gravitated towards spe-
cialized hardware solutions and increasingly heterogeneous computing systems in order to achieve
the next generation of performance and power advantages over previous systems. The past decade
has seen an explosion of investment and interest in specialized hardware and heterogeneous com-
puting platforms. As this trend continues, customized memory system support will continue to be
essential. In this Section, I will begin by briefly reviewing examples of heterogeneous systems and
the importance of hardware accelerators (Section 1.1.0). Next, I describe the specific needs and on-
going architectural innovations around two broad classes of data-intensive workloads that are the

target of studies presented in this dissertation: Deep Neural Networks (DNNSs, Section 1.1.1) and

17

the processing and analytics performed on very large graphs (Section 1.1.2).

1.1.0 HARDWARE ACCELERATORS, HETEROGENEOUS SYSTEMS

Specialization allows for significant gains in compute efficiency. Identifying applications that will
benefit from specialization and whose acceleration will provide benefits to the overall system set-
ting has become a touchstone of computer architecture research and future system efhiciency.

For example, datacenter architectures now rely on a huge mix of server-class CPUs, GPUs, FP-
GA:s, other accelerators, and various network and memory interfaces to serve user requests, and
high-performance-computing has similarly benefited from the integration of hardware accelera-
tors87>11 114 Alternatively, resource-constrained and battery-powered devices (e.g., mobile phones,
deployed sensor nodes, drones, self-driving cars) have similarly shifted towards a model of many
accelerator blocks and integrated components, for example in a system-on-chip (SoC). In fact, the
number of identifiable, specialized IP blocks in Apple iPhone SoCs has increased dramatically over
the last decade, from fewer than 10 in the A4 to over 40 in the A1 1 (iPhone X), comprising a major-
ity of on-chip area*>>. These blocks need to maintain and access data, as well as communicate with
one another, and data transfer and data management become even more critical (e.g.,552).

These specialization efforts at varying scales of computing power and complexity require cus-
tomizing computing blocks (i.e., accelerators) and end-to-end systems to the needs and character-
istics of the most pervasive or otherwise bottlenecked pieces of software that will execute on these
systems. The efficiency and eftectiveness of specialized hardware accelerator blocks rely on their un-
derstanding of application-level properties (i.c., which patterns of computation, memory access, and
individual operations to support), as well as sufficient programmability and flexibility (i.e., if the
target application changes slightly in terms of size or pattern, is the accelerator still useful?). Thus,
cross-computing-stack design considerations and first-order understandings of application-level

impacts of system designs become necessary tools in the face of heterogeneous system design and

18

! =

Y | | F

-1K-1 K-1
y = Wz Yij = Z Z Wc,kw,khx(i + kw)(] + kh)
¢=0 kp=0 kyp=0
(a) Fully-Connected (FC) (b) Convolutional (CNN)

Figure 1.3: Two common types of neural network layers, either fully-connected (left) or convolutional (right) can be

summarized as operations on an input (x) using trained parameters referred to as weights (/%) to produce a transformed

output (y), adapted from 173192,

optimization.

The rise of heterogeneous computing platforms is similarly reflected in the sheer volume of aca-
demic publications, silicon-based start-ups, and industry investment in hardware accelerators for
a range of target applications (indisputably dominated by innovations and investment in machine
learning) '9*"5?. In these myriad proposals, dense data storage, efficient data movement, and min-
imizing reliance on off-chip memory resources remain essential challenges. Thus, innovation and
improved efficiency in on-chip memory would provide drastic improvement to systems with difter-

ent target applications, different design constraints, and different scales of operation.

1.1.1 DEEP NEURAL NETWORKS

Deep learning is a field of machine learning that leverages large neural networks (often referred to
as Deep Neural Networks or DNNs) to tackle challenging classification and regression tasks. In

recent years, DNNs have become essential to a huge breadth of application domains, including

I9

image recognition and detection, language processing, and translation. DNNs have two operating
modes: training and inference. Training is the process of fitting neural network parameters (weights)
to labeled data. Inference is the process of using a previously trained DNN to predict labels for new
input data. Figure 1.3 provides highlighted examples of the inputs, weights, and outputs, as well as
the equations describing the basic operations of two common types of neural network layers.
Perhaps the most prominent example of the co-development of data-intensive applications and
specialized hardware solution has been the seismic rise of acceleration of tensor operations in ma-
chine learning algorithms and in DNNs in particular. Machine learning researchers and engineers
over the past two decades realized that the computation underlying their algorithms was often de-
ployable and exhibited enormous performance benefits when offloaded to a graphics processing unit
(GPU). Where neural-network based solutions were previously impractical due to their intensity
and runtime, neural network algorithms trained using GPUs began outstripping state-of-the-art
metrics in classification and prediction tasks**7-**. GPU manufacturers like NVIDIA responded
in force by building out support and tailoring GPUs to the needs of such algorithms, leading to a
proliferation of GPU-based machine learning acceleration. This increase in popularity, together
with the continued proliferation of low-power embedded devices, has similarly motivated the design

192,111

of DNN-specific hardware accelerators . While many energy-efficient DNN hardware imple-
mentations have been proposed, a major challenge remains: the large memory requirement to store
DNN parameters. Although entirely on-chip or on-device storage would guarantee better inference
efficiency, limited on-chip SRAM capacity inevitably leads to reliance on costly oft-chip memory
accesses to DRAM or cloud-based execution of tasks like speech recognition.

An incredible body of work and many continued research efforts over the past decade have
targeted reducing the computational complexity and memory requirements of DNNs. These

techniques include innovations in data format (such as reduced precision even down to binarized

DNNs), model architectures (such as reducing depth, or removing trained parameters), and training

20

techniques (such as transfer learning, adaptive techniques) '**. However, the overarching trend of
state-of-the-art proposals is a staggering increase in memory requirements to push the boundaries
of machine intelligence, as well as sometimes unforeseeable changes in data flow and data access
that complicate deployment to existing, fixed neural network accelerators '**>>¢. Thus, the contin-
ued development and specialization of systems to support and accelerate DNN's and related, data-
intensive applications must balance flexibility in the face of future trends with the persistent need
for increased memory capacity and efficiency. Careful consideration of algorithmic advancements
and memory-reducing optimizations play a key role in maximizing the effectiveness of system and
architecture decisions, as explored in detail in future chapters.

The myriad proposals for reducing DNN size and complexity often degrade the achievable
application-level accuracy (e.g., reducing the likelihood of correctly classifying input images by up
to 10% while reducing storage requirements by an order of magnitude**). While many efforts have
considered trading accuracy for efficiency in deep learning systems, the most convincing demon-
stration of a new technique for a practical system must address and preserve a DNN’s baseline
model accuracy. One proposal for quantifying and bounding acceptable variation in the inher-
ently stochastic baseline performance of DNN’s on a given task is Iso-Training Noise (ITN) ',
which is employed in several studies presented in this dissertation (e.g.,">'%?). The intuition for
this method is that accuracy varies for DNNs repeatedly trained with identical hyperparameters.
The resulting variance in the accuracy can be used as a bound for final classification error. As long
as model alterations do not result in error exceeding this bound, they are said to be indistinguishable
from ITN and therefore iso-accuracy. Examples of ITN for different DNNs and application of ITN

as a reasonable bound on acceptable model accuracy are found in Chapters 2.0, 2.3, 2.4, and 3.1.

21

1.1.2 GRAPH PROCESSING

Analytics and processing tasks on very large graph structures underlie a variety of important and
emerging applications today, including social network analysis, data mining, computational chem-
istry, and, perhaps most recently and prominently, COVID-19 drug discovery'7-'3'352¢* There
has been a recent rash of interest and exploration of graph processing acceleration and optimiza-
tion in the systems research community 55:3:265:39:11:54:5413 _These works span system settings, from
FPGA-based acceleration of graph kernels'" to hardware accelerators 5# to general-purpose cache re-
placement policies '>. Each of these works highlights and designs towards the large memory capacity
and bandwidth required for efficient execution of graph processing 7.

The challenges of customizing the memory architecture to support graph processing in a variety
of system settings are similar to deep neural networks purely in that they are both data-intensive in
terms of bandwidth and capacity. Otherwise, at least in broad strokes, the challenges of graph pro-
cessing are quite distinct. Namely, memory access patterns exhibit much more randomness than the
embarrassingly predictable patterns when operating on a fixed neural network model architecture,
and graph-related kernels (e.g., search, extracting graph properties) tend to require a more balanced
mix of read-write traffic than DNN use cases considered in this thesis. Additionally, the resilience of
graph processing to different value manipulations and fault models is less thoroughly studied than

for DNN:Ss, as discussed and probed in Chapters 2.4 and 4.2.

1.2 EMBEDDED, NON-VOLATILE MEMORY (ENVM) TECHNOLOGY LANDSCAPE

This section briefly reviews the device physics and relevant low-level details of various embeddable,
non-volatile memory technologies. Each technology offers unique design challenges and opportu-
nities as a storage device, and are at widely varying stages of development and investment across in-

dustry and academic efforts. More detailed surveys and comparisons of subsets of these technologies

22

are helpful resources (e.g.,?") in understanding the capabilities and physical mechanisms for each
eNVM proposal. The following sections will briefly describe each technology, with an emphasis on
both promising and limiting characteristics of each technology. For more established technologies
(i.e., RRAM, PCM, and STT), I reference compelling recent examples and mention their broad
characteristics, while for more emerging solutions (i.e., FeFET, CTT), I provide some discussion

of their physical design and operation. Finally, this section also discusses the eNVM landscape as a
whole, including contextualizing the potential benefits and limitations of different technologies and

describing multi-level-cell programming.

1.2.0 REsisTIVE RAM (RRAM, RER AM)

Resistive RAM (RRAM) encompasses a wide variety of cell-design implementations that all encode
data via the variable resistance of a thin layer of material °***"'9%1°%7% ‘most frequently a metal ox-
ide 542554912829 RR AM is particularly compelling and relatively mature among eNVM proposals,
having been demonstrated by major industry fabrication facilities at relatively mature technology
nodes **77°4, Previous and contemporary work has also employed RR AM to neural network ac-
celeration*399"%3 including leveraging the variable resistance readout for analog compute capa-
bilities in neuromorphic and compute-in-memory architectures>#7:235:3%:261,162:215,141,42,201 /Gy chy
processing-in-memory implementations for deep neural networks are part of a broader class of re-
search probing the analog computation capabilities of RRAM cells '47:252:08:222:36:246:50, 149,21

There are compelling RR AM solutions using either diode access for crossbars or CMOS ac-
cess for more traditional memory array architectures. Crossbar arrays offer the best cell area (as low
as 4F2), but they are subject to higher access times than using a dedicated CMOS transistor to ac-
cess the RRAM cell *5%722:12148 The larger cell area can be overcome by increasing storage density
via multi-level-cell (MLC) programming>°%:3%251:37:189,146:269,26853 'R R AM arrays have also been

demonstrated in 3D-integrated settings (e.g., 3D-stacked dies of RR AM, vertical integration of

23

RRAM)?36153:23:96:139.138250 However, RRAM device and array design is still an area of active de-
velopment and innovation, with constantly evolving studies of reliability and endurance 7", in addi-

tion to alternative cell configurations and array architectures +5:18:203, 1804, 154,15,145,150,143,150,24 1,151

1.2.1 PHASE-CHANGE MEMORY (PCM, PCRAM)

Phase-Change Memory (PCM), like RR AM, relies on a variable resistance in a material to encode
avalue. However, PCM relies on the transition between two phases of the target material, namely
crystalline (low resistance) or amorphous (high resistance). PCM arrays have been the subject of
study and demonstration for a longer period of time than most other eNVM:s considered, and have

248:47:46,10218 ' PCM similarly requires careful

been demonstrated in 20nm-9onm technology nodes
study of reliability, endurance, and cell structure and fabrication variations 4> '5>1 18 and has been
recently probed as compatible with 3D-integration*', processing-in-memory architectures’#, and

multi-level-cell-programmed implementations 78,119,221,52

1.2.2 FERROELECTRIC-BASED MEMORY CELLs (FERAM, FEFET)

While Ferroelectric RAM (FeR AM) is a more mature memory solution with a DR AM-like struc-
ture relying on a ferroelectric capacitor '79*59, FeFET-based eNVM is an emerging, embeddable
technology that achieves much higher density by modifying a FET with a layer of ferroelectric mate-
ria] 101>58:174:166,196,175,108,231 N re precisely, the FeFET device is made by replacing the normal gate
dielectric in a MOSFET with a ferroelectric layer 198 For this reason, FeFET devices can be easily
integrated in existing CMOS processes, especially when high-£ dielectrics such as hafnium oxide can
be used as the ferroelectric layer *°'.

FeFET devices can be programmed to different values through partial polarization switching of

the ferroelectric layer, and have been demonstrated as CMOS-compatible memory devices down

24

t0 14nm 205:27:227:64124:131,132,122,70.206 Thjs 5 achieved by tuning the portions of the switched fer-
roelectric domains in a multi-domain FeFET, and this mechanism can be leveraged to program a
single FeFET as a multi-level-cell memory device 558 for analog compute capabilities 6,223,168,107

and 3D integration ®?, though these are recent efforts under active research development. Recent

works 516%168:64 s FeFETs for ultra-dense, low-leakage, and fast memories.

1.2.3 MAGNETORESISTIVE RAM (SPIN-TRANSFER, SPIN-ORBIT TORQUE)

Two popular implementations of magnetoresistive RAM (MR AM)®5¢97¢ rely on different phys-
ical mechanisms to encode data via the spin of electrons in a magnetic tunneling junction (M'T])
element ' 421%11°_Spin-Transfer-Torque (STT) is the more mature of the two, with compelling
applications for last-level-cache '72:98:7:229:177:176:196 " 5ther embedded and storage-class demonstra-
tions 1333 17357:113:25,51,23932 “and explorations into their applicability in near-memory-computing
contexts*>'°5%_ By contrast, Spin-Orbit Torque (SOT) is an emerging solution with exciting po-
tential for dense, performant storage rivaling STT characteristics and capabilities, though current
implementations tend to be less dense and their scalability is not as proven '7*9>7*. Over the past
six years, the studies in this thesis have focused on STT as a promising eNVM solution in mul-
tiple system contexts, though future work should incorporate SOT more centrally in the design
space of eNVM options. STT-RAM is under active development to verify and improve reliabil-
ity 238:4472:256:237,:217:207 and scalability ! 0422421290113, 134216215198 35 wel] as probing the pos-

sibility of different device and array architectures and MLC-programming via vertically stacked

MTJS 208,199,97,228,19,267,266

25

1.2.4 CHARGE-TRAP TRANSISTORS (CTT)

Previous work has shown that a single, standard-sized NMOS device can be used as a cost-effective

116,115,165 including multi-level-cell 7 and process-in-

embedded non-volatile memory cell *'7>
memory®* capabilities. Data is stored in the resulting memories, often referred to as charge trap
transistors (CTTs), by trapping charge in the gate oxide using hot-carrier injection, which alters

the threshold voltage of the device. Charge trapping impacting the threshold voltage is itself a well-
studied effect typically indicative of device aging "®s.

As aresult, a single transistor can be programmed to exhibit different saturation currents, which
are read out and decoded as distinct stored values, as discussed in Section 1.2.6 and studied in de-
tail in Chapter 2.1. In this way, CT'T-based memory arrays can be fabricated in industrial-grade,
cutting-edge standard CMOS technologies with zero added manufacturing cost. In addition to low
cost, CT'T has many other desirable properties: the memory arrays are analogous to programmable
NOR ROM arrays and have similar-scale read latency; devices display very low leakage currents, as
stored information is preserved in the transistor’s threshold voltage with high retention indepen-
dent of the applied voltage; and as each cell consists of only a single NMOS transistor, density can be
extremely high.

The benefits of CTTs come at the expense of two undesirable properties, limiting their deploy-
ment and rendering them ineffective for many general-purpose compute tasks: (1) extremely long
write-latencies and (2) potential for high cell fault rates. Writes involve changing the physical de-
vice properties, which takes tooms or more. Write latency is long because CT'Ts are programmed
by iteratively injecting increments of charge and reading until a desired shift is achieved. This is an
imperfect process — charge injection is a random process that inevitably leads to a spread in current
distribution, and this spread translates to increasing likelihood of misreading the stored value. Work

presented in Chapters 2 and 3 demonstrate how CTT may yet be useful for on-chip MLC weight

26

storage for DNN inference accelerators 60,183

1.2.5 OTHER MEMORY TECHNOLOGIES (EDRAM, ROM, ETC.)

There are additional alternative memory technologies with varying advantages and limitations. For
example, the storage requirements for the DNN architecture for deeply embedded inference, where
weights need not be re-written, could be met by read-only memories (ROM) as well. ROMs en-
sure the best density for storing read-only parameters. However, ROM:s also require configuring
the network at fabrication time, which makes the design less scalable and cost-effective. One-time
programmable (OTP) memories such as anti-fuse, while being amenable to post-fabrication config-
uration, are far less dense than other memory solutions, even when compared to SRAM.

Embedded DRAM (eDRAM) is another compelling response to the need for dense and per-
formant on-chip memory, and over the past 10-15 years eDRAM has seen deployment in industry
products (e.g., the XBox 3607) and, more recently, in accelerator systems for data-intensive appli-
cations?5%3. While eDR AM continues to be developed, optimized, and deployed, issues of tech-
nology scaling persist, and the complexity and power-intensiveness of DR AM refresh preclude its
use in energy-constrained devices and environments. In contrast, embedded non-volatile memories
typically have extremely low leakage and can be powered off without losing data, while still offering
increased density, adequate performance, and CMOS-compatibility. In fact, several of the eNVMs
discussed require few to no CMOS process changes compared with the complexity and potential
fabrication issues of embedding DRAM.

It is also possible to embed traditional flash memory (eFlash), which is provided as a production-
grade on-chip memory solution by top industry foundries (e.g., for IoT settings from TSMC?*3*)
despite known issues and large overheads due to reliability of eFlash technology**®*?. eFlash has
been deployed as a compelling solution for increased on-chip density in IoT and automotive appli-

cations, but has several key limitations to wider adoption and future development '#*. Most promi-

27

Ferroelectric, 18

4 eFlash, 3
CTT, 5

PCM, 12

STT, 39
SOT, 2

Figure 1.4: Number of ISSCC, VLSI, and IEDM papers published per eNVM technology, 2016-2020, showing sustained

interest in RRAM, STT, and emerging interest in ferroelectric-based devices, taken from 185,

nently, eFlash has not proved compatible with advanced technology nodes, and it exhibits markedly
higher power consumption and typically worse read/write performance than RRAM, MRAM, and

other eNVM:s considered in this work.

1.2.6 MULTI-LEVEL NVM STORAGE

Storing multiple bits in a single memory cell (multi-level-cell, MLC) is desirable for increasing stor-
age density, and has been demonstrated using many eNVM devices, including resistive random
access memories (ReR AM), phase change memories (PCMs), charge-trap transistors (CTT), and
FeFETs3%''5183 In order to discriminate among the different programmed levels, the memory sens-
ing circuit needs to perform an analog to digital conversion (ADC), decoding each detected level

of current or resistance from the memory cell to the corresponding binary word 3. However, the
relatively high area and power overhead of the ADC can limit the relative benefits of MLC imple-
mentations compared to single-level-cell (SLC) storage. Thus, MLC NVM storage, while oftering
exciting opportunities for increased density, introduces performance/power/area trade-offs and may

be accompanied by reliability issues, as studied in detail for several technologies in Chapter 2.

2.8

1.2.7 DiscussioN: OPPORTUNITIES AND LIMITATIONS

In evaluating the varied landscape of non-volatile memory devices, we are interested in identifying
implementations that achieve low read latency, high storage density, and proven ability to scale to
advanced process nodes. Figure 1.4 summarizes the number of publications pertaining to each fla-
vor of eNVM over s years of the top device and circuit conference venues, including both academic
and industry demonstrations and manufactured examples. There is clear variety and active research
in the design, optimization, and application of eNVM solutions, but there is a severe imbalance of
available data and detail across these technologies according to device maturity, corporate trans-
parency, and the potentially limited scope of demonstration in each published example.

For a sampling of memory-array-level capabilities of eNVMs, Table 1.0 shows several published
and validated examples, spanning different technology nodes (9onm to 20onm) and architectures
(crossbar vs. CMOS-access), taken from '*3. Several RR AM solutions have been demonstrated in
relatively advanced technology nodes, and CMOS-access architectures for embedded applications
indicate compelling storage density and read characteristics (i.e., lower area and comparable read
latency compared to iso-capacity SRAM). STT strictly improves storage density and read/write per-
formance compared to RRAM and PCM owing to demonstration in a more advanced technology
node (28nm) and higher area efficiency despite larger cell footprint. The advantages of PCM are less
uniform; though 4onm PCM appears to exhibit lower write latency than similar-capacity RRAM
examples, the publication lacks sufficient data to contextualize this with the achievable density and
read characteristics. This incomplete context and inconclusive comparison at the device or array
level is representative of a key research challenge in trying to identify and evaluate the most relevant
and most compelling memory solutions for a particular use case.

To better contextualize and more precisely evaluate the trade-offs among eNVM proposals,

Figure 1.5 shows simulated, iso-capacity 4MB memory array characteristics derived from pub-

29

[Reference | eNVM type | Tech. Node | Access | Cell Area | Capacity | Array Area | Read latency | Write latency |

29 RRAM 28nm CMOS 39 F2 1Mb 0.56 mm? 6.8ns 500Nns - 100Ks
128 RRAM 4onm CMOS 53 F2 1.4Mb 0.28 mm? rons —

23 RRAM 24nm diode 4F? 32Gb 130.7 mm? qous 230us

52 MLC PCM 9onm CMOS 25 F? 256Mb 120 mm? 320n$ —

47 PCM 4onm CMOS — 1Mb — — 120n8

46 PCM 2onm PRAM | diode 4+ F? 8Gb $9.4 mm? 120ns 150NS - 100/s
256 STT 28nm CMOS 75 F2 1Mb 0.214 mm? 2.8ns 20ns

Table 1.0: Characterization of several example non-volatile memory arrays circa 2017, adapted from 183,

lished characteristics, optimized for read energy-delay-product in NVSim®*. We also include an
optimistically-scaled version of a RRAM array based on a 10F? cell size as a way of evaluating the
maximum potential of promising technology advances, which is shown scaled to several process
nodes in Figure 1.5. As demonstrated in proceeding studies (e.g., Section 3.1), compromising on

the read latency may not be acceptable for DNNs and other data-intensive use cases, as this could
reduce available bandwidth. While the need to accommodate larger access devices requires some area
overhead, the arrays implemented using CMOS access devices provide read latencies more in line
with potential application requirements. Based on these iso-capacity results, we can identify a subset
of eNVM solutions that maximize density and maintain read performance in future evaluations.

To push the boundaries of dense on-chip storage, we are interested in evaluating memories with
the capability of storing multiple bits in a single cell using MLC storage. In fact, the projected mem-
ory array characterizations shown in Figure 1.5 include several MLC design points. MLCs encode
multiple bits of data per cell, which offers maximal storage density with minimal read latency and
read energy for the examples shown compared to corresponding SLC (one-bit-per-memory-cell) so-
lutions. However, MLCs come with design challenges (e.g., reliability issues, as studied in Chapter
2) and additional opportunities for optimization (Chapter 3). Both the opportunities and limita-
tions of results in Figure 1.5 lay foundation for the modeling approach that is proposed, expanded,
and developed into a more comprehensive design space exploration and evaluation framework in

Chapters 3 and 4.

30

A Memory Technology
10 * MLC-CTT [Sec. 3.2]
® MLC-RRAM, 40nm [12], 28nm [11]
©® Optimistic MLC-RRAM [Sec. 3.3]
5 A PCM[7, 14]
+ SLC-RRAM, 40nm [12], 28nm [11]
* SLC-STTRAM [16]
2 P < xBar-SLC-PCM [15]

< & xBar-SLC-RRAM [13]
£ 1 Process Node
8 M 16nm
< 20nm
05 28nm
x\ 40nm
Enerav Per Read [pJ1: 0.6 M 90nm
0.2 @— crergyperRead [pl]:2.2
0.1
0.5 1 2 5 10 20 50

Read Latency (ns)

Figure 1.5: Characterization of published and extrapolated eNVM proposals comparing area and read latency for a fixed
capacity (4MB) using read-energy-delay-product-optimized results from NVSim ?; section and citation numbers are to
references in original publication context, taken from 182,

Table 1.1 summarizes device characteristics per-eNVM extracted from surveyed publications in
2016-2020 (Figure 1.4). This data, in turn, informs a library of cell characteristics and technology
capabilities further developed and leveraged in Chapter 4. For each eNVM listed, we consider a
range of published properties of array-level and device-level characterizations. Parameter ranges for a
subset of parameters that are particularly relevant to guide system design and determine viability are
shown for illustration purposes in Table 1.1.

In Table 1.1, there are several key characteristics that an architect will care about for a memory
technology, including the range of demonstrated cell area [F?], demonstrated fabrication process
[nm], endurance [write-cycles before degradation], and data retention [s]. It is important to note
that the technology classes considered are at different levels of maturity. For example, SOT is a rel-
atively recent technology, and while it boasts very impressive write speed and lower write current
compared to STT, published data is extremely limited. We also see that endurance varies by mul-

tiple orders of magnitude across different technologies. Thus, adoption will depend on the write

31

SRAM | PCM STT SOT RRAM CTT FeRAM FeFET

Cell Area [F?] 146 25-40 14-75 [20] 453 I-12 - 4-103
Tech. Node [nm] 7-16 28-120 22-90 [1000] 16-130 14-16 40 45
Read Latency [7s] 0.5-1.5 | [1-100] 1.3-19 1.4-11 3.3-2€3 - 14 -
Write Latency [#s] | o.5-1.5 | 10-3¢4 2-200 0.35-17 s-1e5 | 6e7-2.6e9 | 14-1€3 | 0.93-1.3€3
Read Energy [p/] I.1-2.4 - 0.2I-1.2 - 1e-3 - 0.001 -
Write Energy [p/] 1.1-33 - 0.6-4.5 | [0.015-8] 0.68 - - 0.0003-0.01
Endurance [Cycles] | N/A | 10°-10" | 10°-10" - 10°-10° 1ot 1o*-10" 10’-10"
Retention [s] N/A | 10°-10" 1o’ 10 10°-10® 10t 10°-10° -

Table 1.1: High-level listing of memory cell technologies and ranges for key characteristics; recent publications are
complemented by simulation and industry references to form technology cell definitions discussed, indicated by [X],
though some emerging technologies have limited available data for certain metrics, indicated by ‘', adapted from .

intensity of target applications and system dynamics, so incorporating memory lifetime estimation
becomes a critical design consideration.

For some technologies considered, the survey of published examples 2016-2020 provided insuffi-
cient data to conduct cell-level characterization, or even to fill in some cells in Table 1.1. Insufficient
data could be for reasons of propriety from industry fabrication, waning interest in a given tech-
nology resulting in fewer up-to-date publications, or experimental constraints. However, to guide
system design, it is critical to have some concept of the possible range of values associated with these
parameters. In those cases where SPICE models for a technology are available, we used device and
circuit simulations to fill in missing parameters. Alternatively, we consider older publications (dat-
ing back to 2009) and consult with device experts to reason about cell and array parameters. This
includes identifying either optimistic or pessimistic ranges of achievable cell characteristics to estab-

lish reasonable bounds of the design space per technology, as described in Chapter 4.

1.3 IDENTIFYING CROSS-STACK DESIGN CONSIDERATIONS

Data-intensive applications such as DNNs and graph analytics have emerged as dominating work-
loads in the current computing landscape and have influenced many research efforts and advances in

computer architecture in the past few years. Specialized hardware architectures deliver outstanding

32

Image Processing (e.g.,
Object Tracking, Medical
Imaging) via Deep

o fault tolerance
e latency constraints
igh storage required

System / DNN Accelerator in a Mobile
Architecture SoC or embedded device

Hardware /]
: non-volatile
Devices technologies (ML

high storage density

(a) Simplified (b) Example (c) Important
Computing Stack Research Interests Co-Design Factors

Figure 1.6: The optimizations and opportunities, as well as the design methodologies and frameworks, proposed in
the following chapters both expose and exploit the interdependent nature of design choices at the memory device,
architecture, system, and application level of the computing stack.

performance and computational efficiency. However, the size and complexity of critical workloads
continues to outstrip available on-chip memory, making data movement and efficient on-chip stor-
age a challenge in scaling these applications. Efficient future memory systems must leverage infor-
mation across the layers of the computing stack — that is, identifying and exploiting opportunities
to alter the applications, the system architecture, and the hardware/devices in a collaborative manner
to improve end-to-end metrics like energy-efficiency, performance, and accuracy. Design consider-
ations and optimization goals become interdependent across the levels of the computing stack, as
pictured in Figure 1.6, highlighting example research interests and important factors for co-design
methods that are featured in the remainder of this thesis.

Embedded non-volatile memories offer a promising technology alternative to traditional on-
chip SRAM?'. Smaller memory cell size and the ability to store multiple bits in a single memory
cell can translate to a denser array implementation, which can be optimized to store entire DNNs

on-chip **»59. In addition to storage density improvements, non-volatility increases energy efficient

33

due to lower leakage power and the ability to retain information in power-off state for intermittent
computing. The advantages of eNVM:s are often countered by lackluster write performance and
reduced reliability, which may be exacerbated with multi-level cell programming.

In today’s varied application space, meeting different memory read and write access patterns re-
quires careful consideration of eNVM memory characteristics. An application-driven approach can
provide a clear path towards design optimization targeting a specific application and coincidentally
offer insight regarding which device-level specifications such as reliability, endurance, write perfor-
mance, and cell area should be further improved to serve a wider set of applications. Discussions in
the following chapters will present both application-driven studies to guide better device develop-
ment and careful system-level optimizations and evaluations to determine the viability of different

memory solutions in specific system contexts.

34

“Marilla, isn’t it nice to think that tomorrow is a new day with no mistakes in it yet?”

“Tll warrant you'll make plenty in it,” said Marilla. “I never saw you beat for making
mistakes, Anne.”

“Yes, and well I know it,” admitted Anne mournfully. “But have you ever noticed one
encouraging thing about me, Marilla? I never make the same mistake twice.”

“Idon’t know as that’s much benefit when you're always making new ones.”

“Ob, don’t you see, Marilla? There must be a limit to the mistakes one person can make, and

when I get to the end of them, then I'll be through with them. That’s a very comforting thought.”

L.M. Montgomery, “Anne of Green Gables”, 1908

Reliability as a First-Order Design Concern

HARDWARE IS NOT PERFECT, but conventional computing systems typically require near-perfect
execution to guarantee correctness. In the shift towards increasingly heterogeneous systems, special-
ized hardware blocks, and integration of different memory technologies, taking a critical approach
to hardware reliability and application resilience can unlock opportunities for increased efficiency.

Such a critical approach will require a re-imagining, re-examining, or even retracting of existing

35

efforts in the deep and complex field of resilience and error correction, as well as a willingness to
incorporate the unique fault and failure modes of emerging technology choices in order to extract
potential system benefits. In the context of supporting specific classes of workloads, as for hardware
accelerators or in computing systems of varying scales, driving resilience studies with a consideration
of application-specific metrics, including accuracy, performance, and fault tolerance, is a key advan-
tage of the work presented in this chapter, with a specific emphasis on the co-design of deep neural
networks (DNN5s) and emerging, embedded non-volatile memory (eNVM) technologies.

Resilience and error correction standards in general-purpose CPUs tend to be brittle and typ-

~152 This level of correctness levies

ically require fault probabilities as rare as on the order of 10
a high design cost at both the device and microarchitecture levels, but has some key advantages.
Namely, an operating application can reliably assume perfect accuracy or the hardware, and the user
or developer requires no specific awareness or understanding of potential faults or failures. How-
ever, relaxing these requirements can enable significant savings, and certain classes of emerging,
data-intensive workloads (e.g., deep neural networks) exhibit increased fault tolerance compared
to conventional workloads (e.g., one-in-every-thousand values being manipulated or mis-read '9+),
providing a plethora of optimization opportunities, particularly in specialized hardware systems.
Ample opportunities to improve performance and efficiency are possible at varying levels of the
computing stack if the requirements for absolute correctness can be relaxed. For example, at the ar-
chitecture level, conventional devices can be pushed to their operational limits by increasing clock
frequency to boost performance or reducing 7, to maximize energy efficiency. Additionally,
DNN:ss require substantial amounts of memory to store weights and intermediate values. While
modern high-density storage solutions (i.e., flash memories) require expensive redundancy and error
correction hardware, such costly safeguards may be overkill for DNNs. At the device level, many
emerging technologies promise high efficiency, but have seen little adoption in general-purpose con-

texts due to their instability and poor yield. At the fabrication level, design rules may be aggressively

36

pushed to maximize densities at the expense of reliability. These opportunities motivate us to thor-
oughly understand the extent of resilience in order to safely push the limits of DNN hardware from
architectures to devices.

This chapter first presents and describes a DNN-specific, application-level fault injection frame-
work: Ares'”?, including some background on hardware fault and prior work in fault modeling and
resilience analysis. Ares studies and simulates faults at the application level while executing DNNs
directly on GPUs, which is necessary for conducting large-scale fault studies in a timely matter as
part of a larger system design process. Traditional fault injection frameworks based on dynamic in-
strumentation can experience kernel slowdowns of up to 488 x *°, making them prohibitively slow
to sweep many fault patterns across a range of fault rates varying orders of magnitude. As such, Ares
can provide accurate, first-order design space exploration that can guide lower-level tools on where
to conduct detailed microarchitectural fault analysis. Additionally, Section 2.0.1 will review char-
acterization of DNN fault tolerance, which may be broadly applied across a range of devices and
architectures that run DNNs. This is vital because DNNs run on CPUs, GPUs, and accelerators,
and the optimal microarchitecture for each DNN hardware device is still widely debated *7*.

Next, Section 2.1 presents fault models and reliability-related characterization efforts across dif-
ferent memory technologies. These fault modeling efforts, in turn, underpin the exploration and
careful co-design of specific memory solutions paired with different application characteristics and
algorithmic optimizations.

The remainder of this chapter (Sections 2.2-2.4) will present several critical examples of the mem-
ory system benefits and fundamental device-application trade-offs that can be uncovered by taking
reliability as a first-order design concern. Namely, I will discuss multi-level-cell (MLC) encoding
strategies for optimized, dense DNN weight storage using CT'T devices (Section 2.2°), the inter-
section of MLC programming choices for both CTT and RRAM with sparse-encoded data and

sparse encoding strategies (Section 2.3 '*?), and the application of the resulting design methods to

37

maximize storage density without impacting application accuracy for FeFET-based storage for both
natural language processing and graph search workloads (Section 2.4*°4). I also leveraged the intu-
itions and methodology developed in this chapter towards a collaboration applying approximate

186

matrix multiplication methods to DNN inference and robotics kernels "*°, which is omitted from

the following discussion for brevity.

2.0 APPLICATION-AWARE RESILIENCE STUDIES

Today, deep neural networks (DNNs) are being deployed at all computing scales—from energy-
constrained IoT devices to cost-optimized data centers. Given the complexity and growing scale

of DNN deployment, work has mainly focused on optimizing performance and energy efficiency.
The initial Ares work'?? explored and quantified the inherent resilience of DNNs to hardware-level
faults, opening up new directions for design and optimization strategies.

Designing towards a specific application space (DNNs) allows us to re-examine the (possibly
overprovisioned) reliability standards and correction strategies. Alternatively, emerging memory
technologies have unique failure modes and fault models by virtue of their unique underlying
physics. The application-level impacts of various storage technologies, schemes, and systems must
be studied fresh and remain front-of-mind during system design and optimization processes for
maximum efficiency.

This section will first discuss a bit of context about hardware faults, and in understanding the
potential resilience of DNNs. Next, we present some preliminary results from Ares'?? to build
intuition about DNN fault tolerance and the impacts of application-level-resilience-aware design.
Additionally, this section will describe ways Ares has been extended and modified to support fault
injection during training and under varying number representations and data formats **. Studying

DNN resilience under more fixed definitions of hardware errors (e.g., bit-flips and power failures)

38

will prepare us to intersect these intuitions with additional application, system, and device-level

optimizations including sparse encodings and varying eNVM solutions.

2.0.0 HARDWARE FAULTS

Hardware designers have been forced to consider hardware reliability since the inception of the field.
There are many sources of faults in modern semiconductor chips and storage media; manufactur-
ing process variation, voltage noise, and temperature contribute to unpredictable circuit delays that
force designers to use worst-case margins. Attempts to minimize these wasteful margins risk the oc-
currence of timing violation faults under certain operating conditions. SRAM circuits are exposed
to large delay variation because they use smaller devices than logic cells, and there are a vast number
of cells on each chip, which increases the chance of an outlier. Similarly, heavily-scaled DRAM and
flash memory cells now store so few electrons to encode each bit that they are occasionally flipped
by common noise events. Cosmic particle strikes are a concern for some applications, as in datacen-
ters, because they result in single-event upsets. Datapaths can also fault when operating conditions
introduce excess delay. Another source of fault for both memory and datapaths can be self-induced
via approximate circuits. The Ares work focused on static faults in memory, which are pertinent to
DNNss due to the large storage requirement for weights and intermediate states '3,

Faults can be further classified into transient and static varieties. Transient faults come and go
over time and are caused by abnormal conditions or events (e.g., resonant supply voltage noise and
particle strikes). Static faults persist in the affected device and occur in cases such as “weak” SRAM
bit cells due to process variation or flash life-time wear problems. Because static fault persist in time,
we see them as a superset of transient faults, and studying their effects first provides a lower bound
on DNN fault tolerance. While there are well-known methodologies for identifying and quanti-
fying reliability per-component at an architectural level **7*3# or for application-level studies of

architectural resilience**?, Ares aims to perform fault injection and quantify fault tolerance at an

39

application-level, using an understanding of fundamental technology fault models.

2.0.1 ALGORITHMIC RESILIENCE OF DNNs

Previous work suggests DNNSs can be robust to faults . For example, eliminating individual nodes
or parameters leads to a graceful degradation in model accuracy, as also described in Chapter 1.1.1.
Furthermore, regularization and simplification techniques can also be employed to develop, bol-
ster, or otherwise reflect DNN robustness, as DNN models demonstrate correct operation with
perturbed parameters. However, these cases are not representative of how faults typically manifest
in hardware. Thus, the Ares work intersected some of the most popular DNN optimizations and
simplification techniques with bit-flip fault models and error rates to develop a fuller picture of the
fault tolerance of DNN.

The hardware community has also shown interest in understanding DNN fault tolerance. For
automotive applications, transient faults can lead to problematic image misclassifications; in or-
der to meet ISO standards, techniques to improve reliability are required '*7. Finally, Minerva '9*
proposes fault mitigation techniques to reduce SRAM supply voltage in order to save energy while

preserving inference accuracy in fully connected DNNEs.

2.0.2 ARES: A ToOL FOR QUANTIFYING THE RESILIENCE OF DNNs

We developed Ares to be a fast, scalable fault injection framework that enables rapid fault analysis
demonstrated with fully connected (FC), convolutional (CNN), and recurrent architectures such
as gated recurrent unit (GRU) based DNNs. We found that model-specific, more-aggressive data
types can provide 10X more resilience, and fault tolerance can vary across models by several orders
of magnitude. The basic methodology flow of Ares is depicted in Figure 2.0. Treating training as

a large, one-time cost that has been performed in a fault-free environment, we focus on the execu-

40

0% error
|increase

Trained DNN

Cestsot]

Fault Injection
— — Evaluate
Faulty DNN

Figure 2.0: Given a trained and quantized DNN model, Ares can simulate the impact of transient and static fault models

Training Set I
Hyperparameters

Train and
Quantize DNN

DNN Error

Fault Rate

on DNN execution, resulting in concrete application-level impacts (e.g., image classification accuracy) under varying fault
rates, adapted from 1%°.

tion of inference. We can characterize the accuracy of trained models by performing inference on a
particular set of previously unseen inputs.

The studies presented as part of the demonstration of Ares also revealed optimization opportuni-
ties by considering faults at a per-layer granularity. For example, within a DNN, the per-layer fault
tolerance can vary by up to 2781 x. We also found that increases in fault rate incur graceful degra-
dation in accuracy for FC and GRU layers, and less so for CNN layers. Additionally, the different
types of data of DNNs (i.e., weights, activations, and hidden state) exhibit different fault tolerance

behaviors; the activations of a model can be up to 50X more resilient than the weights.

2.0.3 FAULT INJECTION MECHANISMS

Ares establishes baseline classification error by executing inference on a pre-trained DNN with float-
ing point data types for all structures (defined as Iso-Training Noise, as in Chapter 1.1.1). Next,
structures are quantized to desired fixed point representation (no accuracy loss is permitted).

Ares has two modes of fault injection: static (for trained weights) and dynamic (for activations).
Static faults are injected off-line, before inference is executed. Injecting faults statically is preferred
as it introduces no performance overhead during execution. Dynamic faults are injected during the
execution of a DNN inference. In Ares, the overheads of dynamic fault injection are minimized by
using native tensor operations to emulate fault behavior. So long as the fault model under study

can be cast as an element-wise operation or a linear transformation of the state (e.g., random or

41

Construction Time

User Defined Fault Models

Activation Fault Model

State Fault Model

[samer || aRu(o)

Figure 2.1: Ares is an application-level fault injection framework for simulating both static and dynamic fault models,

W, W", W~*

incorporated in program execution either during evaluation or off-line during model construction, taken from 7.

systematic noise), it can be implemented as a tensor operation and run on a GPU. For GRU layers,
we inject faults into hidden states at each time step between state updates, as highlighted in Figure
2.1. The maximum slow down from dynamic fault injection is less than 3.5 x.

Ares performs fault injection at designated points across the weights, activations, and hidden
states, depending on the DNN topology and planned experiment. Each fault injection experiment
requires the bit error rate (BER) and faulty structures to be specified. Fault patterns are generated by
sampling a uniformly random distributed process, which identifies which bits will fault per struc-
ture. Ares models faults by using the bit-level fault pattern to mutate stored values. By sweeping
fault rates, the user can then analyze the fault tolerance of the DNN.

To further illustrate how Ares performs fault injection, Figure 2.1 lays out the network topology
and fault injection points for TiIGRU: a three layer DNN with one GRU and two FC layers. Ares

is built on top of Keras”, with an alternate PyTorch "*"'** implementation with similar scope and

42

functionality.

Fault injection is performed at two stages: construction time (static injection) and evaluation
time (dynamic injection). Once the DNN is trained, the weights are known, and Ares injects weight
faults at construction time by manipulating saved weight values. In contrast, injecting faults into
activations requires changes to the program execution. Activation and state fault injection opera-
tors are implemented as GPU-compatible element-wise tensor operations. Datapath faults can also
occur (e.g., in MAC units), which Ares models by manipulating the data before and after compute
operations. The presented results focus on memory faults at all memory fault points, as a precursor
for modified and optimized memory system solutions in the proceeding sections. To demonstrate
that Ares can accurately capture bit error behavior exhibited by real hardware, we validated simu-
lation results against measurements using a DNN accelerator capable of inducing and measuring

SRAM faults*#>'94, as detailed in '23.

2.0.4 MODELS

Six diverse DNNs are used to evaluate Ares. The datasets used to train these DNNs represent major
application domains in which DNNs are commonly used: image classification (CiFar-10, MNIST,
ImageNet) and speech classification (7/DIGITS)'*5'97. Datasets have varying sizes and models vary
greatly in depth and composition. For larger DNNS, we group clusters of similar, adjacent layers

into layer blocks (LBs) to increase interpretability and ease organization.

2.0.5 SumMMARY OF DNN INFERENCE RESILIENCE TO HARDWARE FAULTS

We use Ares to quantify the relationship between faults and accuracy in DNNs. Results reveal over
an order of magnitude variance of fault tolerance across models, between layers, and across struc-

tures. Hence, Ares enables exploration of optimizations using different aspects of DNN resilience.

43

_100 100 100

8 — Q313 8 — Q313 8

5 75t — Qa6 5 75 —Qas g7

& & &

g 50 g 50 g 50

5 5 5

< 25 < 25 < 25 —0Qs13

= 2 & —Q0212

Q 0 H H Q 0 H @] 0 —

10 1077 10 1072 107! 10 1077 10 1072 107! 10 107 10 1073 107!
Bit Error Rate Bit Error Rate Bit Error Rate
(a) MNIST-FC (b) MNIST-LeNet5 (c) TiDIGITS-GRU
1

g0 100 S 100

5 75 5 5

5 5 80 5 80

£ 50 £ g

= g 60 g 60

Eé; 25 —0313 “:; é; —0s13

2 —Q210 2 40 —0313 2 40 —Q210

o 0 HH Q H Q I

10 107 10 1073 107! 107 1077 10 1073 107! 10°° 107 10 103 107!
Bit Error Rate Bit Error Rate Bit Error Rate
(d) CIFAR10-AlexNet (e) ImageNet-ResNet50 (f) ImageNet-VGG16

Figure 2.2: The tolerable bit-error-rate (BER) before classification accuracy degrades (marked by vertical, dashed lines
per model) varies per DNN and per quantization choice, taken from 2.

We simulate the impact of bit errors at a model granularity by injecting faults across all weights in
each model. Figure 2.2 shows the resulting BER-accuracy curves, and the dashed vertical lines indi-
cate the highest tolerable BER without loss of inference accuracy. The two vertical lines show two
quantized types for each model: one using only the minimum number of bits required to run in-
terences without loss of accuracy (blue) and the other (red) a global type that is sufficiently accurate
across all DNNs considered.

All models show heavily thresholded accuracy degradation: small BERs have a negligible impact
on accuracy up to a certain threshold point. At BERs beyond this point, model accuracy degrades
exponentially. The point of 0% accuracy loss is consistently orders of magnitude lower than the
knee of this curve. Between these points, the curves typically exhibit a gradual decline in accuracy.
Depending on the application, this could be an interesting operating regime in which a loss in accu-
racy may be exchanged for efficiency gains.

Resilience varies across DNNs. There is a large spread in fault sensitivity between DNNs; de-

44

pending on the model and data type, the knee of the BER-accuracy curve can vary by multiple or-
ders of magnitude. Considering the unified data type for all models, we see that the 0% accuracy loss
can vary from 4 x 1077 (VGG16) to 6 X 10~ (LeNetCNN). These results suggest protection mech-
anisms and optimizations used (e.g., ECC and optimal voltage reduction) should be engineered on a
per-model basis.

Quantization impacts resilience. To improve efficiency, DNNs are quantized to minimize the
total number of bits. We study weight fault tolerance with two data types for each network: a uni-
fied Q313 (i.e., 3 integer and 13 fractional bits) and a per-model optimized type. Q3 13 is the minimal
type needed for no loss of accuracy across all models, with ResNetso requiring the most bits. While
a single global type would be needed to build flexible hardware that supports all 6 DNNs, model-
specific types are the most aggressive quantization per DNN without increasing baseline error.

Figure 2.2 shows that Q3 13 (red) consistently results in lower fault tolerance than model-specific
types (blue). For LeNetFC, the optimized Q> ¢ data type is 10X more fault tolerant. This is be-
cause the number of integer bits used (3 versus 2) determines the range of representable values, and
models other than ResNetso can be clipped to just 2 integer bits with no loss in accuracy. The un-
necessarily large range of possible values allows for faults of greater magnitude to occur, and hence
increases the potential impact of a fault (e.g., flipping the MSB of a near-zero valued weight results
in a greater change in value if 3 integer bits are used rather than 2). Flipped superfluous fractional
bits do not have as much of an impact on parameter value. By reducing the number of integer bits
from 3 to 2, model-specific quantizations consistently demonstrate increased fault tolerance.

Some image classes are consistently mispredicted. We found the variance of the distribution of
test-case mispredictions (i.e., the number of mispredictions for each class at a sampled fault pattern)
is positively correlated with classification error. While fault patterns with high per-class mispredic-
tion variance are outliers, it can skew the average classification error. In LeNetCNN, 100 samples

ata fault rate of 1 x 1073 resulted in an average error of 12.2% while the median was only 6.8%.

45

There are two ways a network can exhibit high class-misprediction variance: one class can constantly
be misclassified or half the classes tend to be wrong and half correct. We found the latter case had a
greater effect on model classification error. It is worth noting we also found specific fault patterns

where a single class was consistently mispredicted.

2.0.6 SENSITIVITY TO DATA FORMATS

How weights are represented in memory changes the impact of certain bit flips, potentially affecting
the model’s vulnerability. In a standard two’s complement representation, flipping the sign bit is
equivalent to subtracting the largest expressible value for positive weights. DNN weights are clus-
tered near zero, with fewer than one-in-a-million weights in CiFar1o-VGGuz2 larger than 1.5, so sign
bit flips are likely to have a large impact on the magnitude of the weight. To determine the extent
of this impact, Ares is used to simulate oracle protection to the sign bit of weights, where flips that
would occur in the sign bit are silently suppressed. Fault injections are performed on the weights of
the six baseline models used in Ares (MNIST FC, MNIST LeNets,ImageNet VGG16, ImageNet
ResNetso, CiFarto VGG12 and TIDIGITS GRU), with per-model customized quantization at
iso-accuracy, as detailed in '3,

For each model, an instance is trained, then trials are performed across so bit error rates (BER)
in the range [1e—9, 1e—3]. For each trial, the test set error after fault injection is recorded. At each
BER, 20 trials are averaged to estimate the mean model degradation at that fault rate. Taking the
model test error with no fault injections as the baseline, the maximum bit error rate with less than a
relative .5% increase in error is calculated and displayed for different NNs per data format in Figure
2.3. Compared to standard two’s complement, oracle protection of only the sign bit gives up to an
order of magnitude improvement in fault tolerance, as shown in Figure 2..3.

Unfortunately, completely protecting sign bit errors may require architectural tradeoffs, such

as storing the bits on a different memory technology or with error correction, which introduces

46

BN Two's complement
mmm Oracle sign protect
Emm Sign-magnitude

10—6 _

10—7 4

BER at .5% Error Threshold

MNIST MNIST Tidigits ImageNet Imagenet CiFarl0
FC LeNet GRU ResNet50 VGG16 VGG

Figure 2.3: Sign-magnitude encoding results in models tolerating up to 10X higher bit error rates (BERs) than two's
complement, nearly matching the effect of oracle protection of the sign bit, taken from **.

overhead. This study achieved the benefits of suppressing sign errors without special protection

by changing the bit representation of the weights to sign-magnitude (SM). In sign-magnitude en-
coding, flipping the sign bit transforms x to —x while leaving the absolute value unchanged. If M is
the largest representable value, for x such that |x| < A1/2, a sign bit error changes x by less in sign-
magnitude representation than in two’s complement. For values close to o, the effect on weight
magnitude of a sign bit error is much larger in two’s complement than sign-magnitude. For CiFar-
VGGi2, which has an approximately normal distribution of weights with mean zero and standard
deviation less than .02, for over 99.9% of weights a sign bit flip in 2¢ will have more than rox greater
impact on weight magnitude than the equivalent flip in SM.. We use Ares to analyze the same set of
model instances using sign-magnitude representation. For CiFar1o-VGG, ImageNet ResNetso and
TiDigits GRU, sign-magnitude provides equal resilience as oracle protection in terms of tolerable
bit error rate (Figure 2.3), achieving all of the benefit without special protection of sign bits. For
the MNIST FC and LeNet and ImageNet VGG 16 DNNs, the maximum sign-magnitude BER is
within 20% of that achieved with oracle protection. Thus, SM representation could allow sign bits

to be stored on the same memory as other data, while obtaining the benefit of “protecting” them

47

from error. Despite the design and implementation costs, moving to a sign-magnitude encoding for
weights could result in 1ox higher acceptable bit error rate while using the same number of bits per

weight value.

2.0.7 DNN RESILIENCE ACROSS TRAINING RUNS

Implicit in experiments that examine the fault tolerance of a single instance of a model "*7>'%3 is the
assumption that identically trained instances have equivalent fault tolerance. However, this assump-
tion does not necessarily hold. Even after isolating a specific dataset, model architecture, and train-
ing hyperparameters, we find a wide distribution of fault tolerance. Furthermore, changes to bit
representation can affect the variability of resilience to faults (i.c., how predictable the fault toler-
ance and resulting accuracy is), in addition to the absolute level of fault tolerance. As with variance
of hardware characteristics between devices, variance in the fault tolerance of models on a fixed de-
vice may result in a requirement to design for the worst case. Thus, studying the variability in fault
tolerance has implications for provisioning hardware if a specific model architecture is continually
re-trained and re-deployed*7.

This follow-on study to Ares'?" quantified the variation of fault tolerance across training runs
of a VGGr12 model on the CiFarro dataset, as summarized in Figure 2.4. Each model instance is
trained to convergence with identical hyperparameters (e.g., learning rate = o.1, L2 = 5e4) and re-

sults in classification accuracy well within previously measured bounds 9>

93, For each potential
fault rate, as in the previous study (Section 2.0.5), uniformly random bit flips are injected across all
weight values, with so trials per BER per model instance.

A key finding, made clear in Figure 2.4 is that there is nontrivial variation in fault tolerance across
identically-trained models, which should inform future quantification and analysis of DNN reli-

ability and fault tolerance. In fact, if we consider the BERs at which different model instances ex-

perience o.5% error degradation, we observed up to 4 X discrepancy for two’s complement number

48

L 114 — 2C

S SM

0

c 10 A

9

g

£ 91

0

©

S 8

R
7 I N ! L L | N T L L | N T
1077 1076 1075 1074

Bit Error Rate

Figure 2.4: Mean and min/max (indicated by shaded region) classification error across 20 instances of VGG12 trained

on CiFar10 for varying BERs and different data encodings (two’s complement, 2c, and sign-magnitude, SM). SM exhibits

slower degradation and lower variance, visible as a smoother curve, taken from w1

representation. In more concrete terms, a design target that identified a one-every-million-bits er-
ror rate permissible, if applied to another instance of an identically trained model and re-deployed,
could actually experience accuracy degradation below acceptable threshold 4 x as often as predicted.
For sign-magnitude (SM) encoding, BER at the 0.5% threshold varies by up to 2.6 . In fact, for

a CiFar-VGG instance retrained with identical hyperparameters, assuming equal fault tolerance
results in over 5% increase in missclassified images across the test set. Classification error for each
model instance initially degrades smoothly below a BER of approximately 2 x 10 for SM and

2 x 1077 for 2c, then rapidly decay (Figure 2.4).

These results suggest that the acceptable BER to minimize impact on classification accuracy dif-
fers even among identically trained instances. A given model can be associated with a specific BER
above which the model accuracy is unacceptable across all instances, but architects working at lower
error tolerances must consider per-instance variation. For situations where models must adapt on

device, or where multiple training runs sweeping fault tolerance are cost-prohibitive, sign-magnitude

49

encoding allows tighter control on the worst case error at a given bit error rate, in addition to lower
mean error. More broadly, these results reveal the sensitivity of co-design strategies to the naturally
stochastic behavior of DNN training and the important role of bringing re-training, fine-tuning,

and other algorithmic choices in-the-loop with reliability analysis and system design choices, as in-

vestigated in other studies presented in this dissertation (e.g., Chapters 3.2, 3.3).
tigated in other studies p ted in this dissertat g., Chapters 3.2, 3.3

2.1 FAULT MODELING OF MULTI-LEVEL-CELL (MLC) ENVMs

Next, we discuss the underlying physical behaviors and circuit design considerations that inform
the development of fault models for multi-level-cell programming of several compelling eNVM
technologies. These fault models, in turn, inform system-level and application-level evaluations of
eNVM memory solutions across several projects presented in this dissertation.

One key challenge in MLC storage is that an increase in number of levels is more susceptible to
device-to-device variations, making the memory less reliable. In addition, the ADC cost in terms
of area and power can limit in some cases the effectiveness of MLC implementations. In order
to discriminate among different programmed levels, the memory uses analog to digital converters
(ADCs). The ADCs translate each programmed /p target level to the corresponding binary word.
Individual circuit and device design choices have direct impacts on the resulting reliability of MLC-

programmed memory cells and memory array architectures.

2.1.0 MULTI-LEVEL CTT CHARACTERIZATION

As discussed in Chapter 1.2.4, the benefits of CTTs come at the expense of two undesirable proper-
ties, limiting their deployment and rendering them ineffective for many general-purpose compute
tasks: (1) extremely long write-latencies and (2) potential for high cell fault rates. Despite these limi-

tations, several works, including those presented in this thesis, have demonstrated CT'T-based mem-

50

Vs

’VG X
—
Scan i I
Chain 1 \Y
? l>! i D
WL P !
pulse i
Iogic—[>—

\

Figure 2.5: Test chip die photo and column schematic for Charge-Trap-Transistors (CTT), adapted from 83%7,

ories as a near-ideal solution for enabling efficient, embedded DNN inference with careful architec-
tural co-design. This is possible because deeply-embedded DNN weights are updated infrequently
and repeatedly used to make inferences, and DNNs are known to be fault tolerant.

Several projects presented in this thesis rely on direct measurements of fabricated MLC-CTT test

structures in a commercial 16nm FinFET process "**

157, A die photo of the chip is shown in Fig-
ure 2.5, which contains 36 columns of 128 cells each; internal scan chain and driver circuits mimic
wordline drivers. The bumps expose column bitlines to flexibly read and write individual cells via ex-
ternal test equipment. Figure 2.6 (left) shows the distribution of read currents at different wordline
supply voltages for 8-level programmed CTTs (a 3-bit MLC). The different colors represents unique
levels (i.e., programmed values), and each level is measured from 128 unique devices.

Figure 2.6 (right) shows a slice of the current distributions at the nominal wordline voltage of
0.8V. The yellow cluster corresponds to unprogrammed cells with intrinsic V7, variations inher-
ent to the process technology. Other program levels exhibit tighter distributions due to the itera-
tive write-and-check process. In both cases, the histograms are well approximated using a Gaussian
distribution. As more levels are encoded per cell, the current distributions tend to overlap, which

increases the probability of misreading the programmed value. This plot highlights two co-design

opportunities: first, as more levels are encoded, the current bands tend to overlap, increasing the

5I

150
100
<
= —_—
50
—
0 — -
0.2 0.4 0.6 08 ©0 20

V (V)

Figure 2.6: For programmed MLC-CTT test devices, we measure the distribution in current corresponding to each pro-
grammed level across voltage (left) and at fixed 0.8V (right), adapted from 183,157

probability of read errors. Given the wider distribution produced by intrinsic process variations, we
purposely add separation between the unprogrammed and first programmed state to minimize read

error probability of the unprogrammed state.

2.1.1 GENERALIZABLE MULTI-LEVEL-CELL FAULT MODELS

In developing a fault model for eNVM implementations, we focus on two primary sources of un-
certainty: (1) the intrinsic randomness associated with the process of setting the value of different
programmed levels in a memory cell, and (2) the effect of mismatches in the sensing circuitry.

A faultin an MLC is defined as a device being incorrectly read as a level adjacent to the intended
one. The probability of a fault occurring for a given level, L,,, is determined by two reference thresh-

olds: /o, and I..r |, ;; reference thresholds discretize current ranges of the cell. Figure 2.7 shows

efn
the current level distributions for a generic MLC. AZj; represents the distance between the mean
value of the initial state, Lo, and the mean value of the first programmed state, L;. The remaining

programmed levels are equally spaced by A]prog- These deltas are tunable and determine the fault

rate between levels, which introduces co-design opportunities.

52

I r9f4 I ref3 I rng

L; \»}j L, L L \PE L,

Figure 2.7: For a generic multi-level-programmed cell (MLC), each level can be represented as a gaussian, and the prob-
ability of mis-reading a programmed value corresponds to the overlap or intersection of adjacent programming distribu-
tions, labeled as Pg, adapted from 60

Figure 2.7 highlights the probabilities of two possible cell faults: Pg, and Pg,. We first consider
the case of a fault in a cell set to the initial state, Ly, to be incorrectly read as a cell in the first pro-
grammed state, L;. The probability of this fault (P,) occurring is given by the total probability of
the initial state’s distribution beyond the reference current 7.,

o

Trefo
Pr, = P([cell < [refo) = / Pr, (x)dx (2.1)

—00
In the case of a cell programmed to a specific level (i.e., not in the initial state), the cell could fail
by being read as either of the two adjacent levels. In Figure 2.7, this is illustrated as Pg,. Thus, the
probability of a fault is given by the sum of the probabilities of having L fall in either of the erro-

neous ranges:

Pg, = [1 — P(Icell < [refg)] + P([CCH < [ref4) (2.2)

Given Al and the number of levels per cell, a detailed fault model for CTT-MLC is con-
structed. Alprog results from partitioning the remaining Af after Aljpj¢ is allocated. This allows
us to make P, arbitrarily small in order to protect the initial state at the cost of increased fault rates

in the programmed levels. The effects of current to voltage conversion on the distribution must also

53

be taken into account.

The intrinsic distributions for the stored levels in a RR AM implementations are extracted from
published data for 3-bit MLC programming>“®. For MLC-CT'T, inter-level fault rates are deter-
mined by directly measuring the current distributions from our test chip, as shown in Figure 2.6.
For both technologies, current distributions can be modeled as gaussian distributions, and the over-
lap of level distributions determines the rate at which that value will be misread as an adjacent pro-
grammed level. In both cases, we use SPICE simulations to derive the distributions at the output
of the current-to-voltage converter. When packing many levels into a single cell, the likelihood of
misreading a programmed level can be high in both CTT and RRAM (e.g., fault rates for MLC-3
range from 1073 to 10~>). However, errors typically result in reads to an adjacent level”. By carefully
arranging how data is encoded into MLCs and exploring the impact of varying number of bits per
cell on DNN classification error, the effects of faults can be mitigated (Section 2.3). For each cell
design, we complement measured or extracted characteristics with SPICE simulations to determine
equivalent current or resistance and read voltage descriptions for each programmed level 359

The design and optimization of sensing circuitry also determines the fault rate of a multi-level-
programmed memory cell for the eNVM:s discussed. The sensing circuitry must perform the analog-
to-digital conversion from the measured cell current to the binary-valued memory array output, as
summarized in Figure 2.8. More precisely, an #-bit MLC outputs a current level of /; in the read
mode when programmed to level 7. The sense amplifier (SA) circuit detects the level (one of 2)
of the cell from 7; and outputs an z-bit signal. The designed SA circuit amplifies /;, compares it to
some quantized level, and concludes the saved level delivering an 7-bit output. The analog-to-digital
converter (ADC) employed by the SA circuit is similar to a flash-type ADC and has 2” — 1 quan-
tized levels for an 7#-bit MLC. The SA circuit, in turn, suffers from D2D variation and affects the

reliability of the memory.

"Misread probability of non-adjacent level is 1.5 X 1071 or below.

54

Conditioning Circuit

xIp

/ mazx
/

AT

Ip(AVi)
~

/ *Ip,

Row Circuit

WL[n+1]

1
i
L
NE
BL L SL

/

Ip Monte Carlo

’>

Column Circuit

J(Weights

Figure 2.8: At a memory array level, the programmed level per MLC device correlates to a current value in a fixed, pro-
grammable range, and is directed to sensing circuitry for read-out, adapted from ¢°.

Reading back the stored value requires converting the programmed analog level to a binary word,
and can be done using parallel sensing or sequential sensing schemes. Parallel sensing is similar to
using a flash ADC, and requires each bitline to have dedicated sense amplifiers for each possible
stored level. Sequential sensing uses a single sense amplifier and recovers the stored binary word
iteratively for each bit. While sequential sensing reduces the overall number of sense amplifiers, we
noticed that implementing parallel sensing with small sense amplifiers does not incur an excessive
area penalty.

Several of the works presented in this thesis focus on a specific sense amplifier (SA) design, which
is characterized by having low static power and input referred offset primarily determined by the
input differential pair of transistors (Figure 2.9, left). We characterize the input offset voltage for a
latch-based sense amplifier** through Monte Carlo SPICE simulations. For these simulations, we
swept the width of the input transistors as they are primarily responsible for setting the input offset

voltage. These results allow us to quantify the resulting inter-level fault rate per device. For example,

55

T —~
007 —— DNN Accuracy [13.0X
Ve HoAH FoV © 0.06 ITN Band 1255
< o
@ 0.05 T
Vioust Vouez = 100 cells | 120
S <
Hoy T 0.04 1150
R o
% 0.03 11.0 9
105
Voed[LM1 M2_]}oV.., 0.02 8
0.01 —————— 1000
2 4 6 8 10
e Relative Sense Amplifier Size

Figure 2.9: Example schematic for a sensing circuit for multi-level programming (left), highlighting the relative size of
M1/M2 as a determinant of fault rate, and simulated fault rate results for 3-bit MLC programming including ADC (right),
plus application-level impact on ResNet/CiFar10 image classification error, adapted from 83,

in Figure 2.9, right, varying the relative sense amplifier size has a direct impact on both the raw fault
rate and the resulting impact on classification accuracy for a workload of interest (CiFAR-10 image
classification using a ResNet model).

Based on these simulations, we choose a SA size such that the overhead incurred due to SA choice
for the overall array in our final results never exceeds 1%, and the inherent inter-level MLC fault
rates are altered by less than 2 . For the readout architecture, we consider a parallel sensing scheme,
whose operation is similar to a flash ADC: the bitline is connected to a number of SAs equal to
N — 1, where Nis the number of levels that can be stored per cell, with each SA connected to the
appropriate reference voltage. A parallel sensing scheme can decode the stored value in a single con-
version step. However, the number of required SAs increases exponentially with the number of
stored bits. This overhead is mitigated by multiplexing the memory array columns. The resulting

62

design is integrated with NVSim °* to characterize the overall memory architecture.

56

2.1.2 ARES FRAMEWORK EXTENSIONS

Several projects presented in this thesis extended Ares to model MLC eNVM faults, accommodate
sparse-encoded values, and simulate error mitigation strategies. Based on the results from Section
2.1.1, we generated a inter-level fault probability map for each MLC configuration (either CTT
or RRAM). The baseline fault probability map is modified to include the effects of the sensing
circuitry by shifting the mean of each level distribution by an amount sampled according to the
characterized input referred offset.

Fault injection is performed by first converting the weight values into an MLC representation.
Then, for each eNVM cell, we sample a gaussian random variable from the appropriate level dis-
tribution and check if the result crosses the thresholds which are used to sense the cell’s content. If
they do, a fault has occurred and the faulty memory cell’s value is updated to the value represented
by the adjacent level in Section 2.3. After determining fault locations, the modified values are used
to perform inference across the entire test dataset. Experiments are repeated over many trials, and
presented results are averaged over many unique generated fault maps.

Sparse encodings require separate fault injections on each structure (e.g., the bitmask and non-
zero weight values), and we vary the number of bits per cell used to store each structure. When im-
plementing support for ECC, we must ensure a level-to-level fault correlates to a correctable (single
bit flip) error by using Gray coding to store binarized values in the MLCs. Dynamic error correction
and mitigation strategies are integrated such that faults are detected and values are updated as appro-
priate prior to evaluating model accuracy. Ares enables the evaluation of DNN classification error
over many randomly seeded trials for various MLC eNVM configurations and encoding strategies.
From this analysis, we definitively determine the optimal number of bits stored per MLC and the
minimal number of memory cells required for each encoding strategy for each DNN such that there

is no loss in accuracy.

57

2.2 CUSTOMIZED, Iso-AccuracY MLC sTORAGE oF DNN WEIGHTS

This study describes how CTT-MLCs can be leveraged to eliminate off-chip neural network (NN)
weight accesses °°. To address the faults incurred from storing multiple bits per device, these exper-
iments leverage the fault model and fault infrastructure presented in Section 2.1 to vary how many
cells and levels per cell to use for fixed-point weight representations. To optimize this implemen-
tation, we co-design DNN weights and CTT-MLC device properties by: (i) clustering the weight
values to require fewer memory cells, (ii) using non-sequential level encodings to mitigate the effects
of faults, and (iii) pruning the network to skew weight values and leverage the non-uniformity of
fault probability in CTT-MLCs. While this sections focuses on CTT-based eNVM:s, this approach
is deepened and applied to other MLC eNVM technologies in Sections 2.2 and 2.4 and again in

Chapter 3.

2.2.0 DATA FORMATS

This study considers two types of weight quantization: fixed-point and clustering. Fixed-point
data type quantization is a well-known and eftective hardware optimization technique; reducing
the width of data types can substantially reduce area and power dissipation while improving perfor-
mance. In NN, fixed-point quantization can be aggressively applied to weights. The 32-bit floating
point types used for training weights can be reduced to use only 8-12 bits for inference without
compromising accuracy. The second weight quantization approach we consider is £-means clus-
tering "%, in which NN weights are mapped onto a set of & values on a per-layer basis. Clustering

is advantageous as only the indexes need to be stored per weight and [log #] is typically significantly
less than the number of bits required with fixed-point quantization. The overhead for storing the

look-up table of the actual £ weight values is negligible (e.g., 4-16 8bit values per NN layer).

58

Binary-Valued MLC Mapping

2-level cell 4-level cell

LA A

f
W — -1.3304—»5;_1;—»1me101

/ﬂ

VANE

8-level cell 16-level cell
Index-Based MLC Mapping 0“3
\
w =-1.3304—>,5,—>C3 i
JUU /’\/‘ J
9-level cell

Figure 2.10: In assigning DNN weight values to MLC programmed levels, data format and programming choices will
determine reliability of storage; mis-read MSBs may have outsize impact on application accuracy and may be selectively
stored reliabiliy in 2-level cells, or programming settings can be customized for clustered DNN values corresponding to
non-power-of-two number of programmed levels, adapted from¢°.

2.2.1 DATA ENCcODINGS TO MLC STORAGE

As a example, consider the conversion of the value (—1.3304)¢ and its fixed-point representation
(10.10101011)5 using two integer bits and eight fractional bits. If this value is stored using binary
encoding with CTT-SLC, then 10 cells are needed (one per bit). The same value can be stored us-
ing only 3 CT'T-MLCs if the most dense, 16 level (4 bits), cell configuration is used. This uniform
configuration reduces the area cost per bit at the expense of a higher fault rate. Since faults on higher
order bits have a disproportionate impact on the stored value, we anticipate that it is advantageous
to selectively mitigate these faults.

Figure 2.10 shows an alternative encoding to MLCs better tuned to both memory cell properties

and DNN fault tolerance: a non-uniform encoding where 4 cells are used with 2, 4, 8, and 16 levels

59

10% |} msram

- ECTT-SLC

£ 10': mcrT-MLC

€

;‘ 100 L

g

<0t}

LeNetFC LeNetCNN VGG16
Model

Figure 2.11: Area reductions for fixed-point NN weights, with no loss in DNN accuracy, for MLC-CTT storage vs. on-
chip SRAM, adapted from 60,

per cell, from most-significant-bit (MSB) to least-significant-bit (LSB). The example shows that the
sign and integer portion of the weight can be protected by using a CTT-MLC with fewer levels.
Compared to uniform encoding, this non-uniform encoding requires only one additional cell and
substantially reduces the fault rates in weight MSBs.

Storing cluster indexes (Figure 2.8, bottom) enables two optimization opportunities. The first
technique is an intra-cell optimization to protect the initial state from faults by increasing AZjpjq-
This technique is particularly effective when the majority of the parameters are assigned to a sin-
gle cluster, a property we actively enforce with weight pruning. We further consider distinct ways
to map clusters to levels to mitigate the magnitude and fault rates, varying the relative level-to-level
fault rates of the most common cluster indexes vs. ordering by corresponding weight value. The sec-
ond technique is an inter-cell, multi-cell per weight optimization. If more than one cell is required
to store the cluster index, then some clusters can be more protected via the asymmetrical fault rates

of MLC and non-uniform encoding, (a non-uniform allocation of cluster index bits across cells).

2.2.2 REDUCING WEIGHT STORAGE FOOTPRINT (EVALUATION)

In Figure 2.11, the area benefits of using CTT-MLC eNVM:s with a fixed point encoding are mea-

sured against two baselines: SRAM and CTT-SLC (storing one bit per CTT cell). We evaluate

6o

‘ Model ‘ Weights (#) ‘ Error (%) ‘ Q (int.frac) ‘ Encoding ‘ # Clusters (Max) ‘ Config (Ivls/cell) ‘ Area (mm?) ‘

FxP - 4,8,8 0.033
LeNetFC 270K 1.91% 2.6 C 16 16 0.008
P+C 12 12 0.008
FxP - 4,4,8,8 0.076
LeNetCNN 600K 0.85% 2.8 C 8 8 0.021
P+C 11 11 0.021
FxP - 4,454,4,16,16 40.53
VGG16 135M 37.8% 2.10 C 64(CNN) / 8(FC) | 2,2,4,4 (CNN)/ 8 (FC) 5.7
P+C 64(CNN)/ 9 (FC) | 4,4,4(CNN)/ 9 (FC) 4.9

Table 2.0: For each model, we report the quantization (Q) in the form integer.fractional bits, the number of clusters, and
the configurations for each encoding scheme: fixed-point (FxP), clustered (C), and pruned & clustered (P+C). For VGG16,
the two values of number of clusters, config, and level map given represent the values for CNN layers vs. FC layers,
respectively, adapted from °.

the effectiveness of CT'T devices to store the weights of three prototypical NN listed in Table 2.0:
LeNetFC is a three-layer fully-connected (FC) network, LeNetCNN is a five-layer convolutional
neural network (CNN), and VGG16 is a much larger CNN that also contains large, prunable FC
layers*'?. LeNetFC and LeNetCNN use the well-known MNIST dataset for handwritten digit
classification, and VGG16 uses the popular ImageNet dataset of colored images to be classified into
1000 possible classes 7.

The fault injection simulations are implemented using Ares'?*. For both fixed-point and cluster
representations, a corresponding encoding transform function is defined. Starting from a trained
model, the encoding transform is applied to the original parameters on a per-layer basis. Next, the
faulty cells are randomly chosen using the error probability based on the number of levels per cell
and the specific level value. The transformed parameters are used to evaluate the accuracy of the
model for a specific encoding configuration. To find the configuration that minimizes the area foot-
print while maintaining model accuracy, all possible configurations of levels per cell and number of
cells are tested for each NN and each variation of data format.

A comprehensive exploration of data encoding strategies and NN accuracy impacts identified
that fixed-point CTT-MLC encoding requires 3 transistors per parameter for LeNetFC and 6 for

VGG16, as listed in Table 2.0. Compared to an SRAM baseline, this results in a total area reduc-

61

B SRAM ECTT-MLC
ECTT-SLC ECTT-MLC + Pruned
10t ¢ 10.6x
b On-chip SRAM T
€
£ 100}
©
o
<, 51
i 13.2x
14.4x
1072
LeNetFC LeNetCNN VGG16

Model

Figure 2.12: Area reductions for clustered NN weight values, with no loss in DNN accuracy, for MLC-CTT storage vs.
on-chip SRAM, adapted from 60,

tion of up to 7.6 X, as shown in Figure 2.11. Clustering is often preferable to fixed-point quantiza-
tion because only cluster index pointers are stored. All three NN models require between 8 and 64
clusters to preserve model accuracy, which requires just 3 to 6 bits to represent each parameter, as
summarized in Table 2.0.

When encoding clustered parameters in CTT-MLC, the benefits are immediate. For LeNetFC
and LeNetCNN, each parameter can be stored in a single transistor because only 16 and 8 clusters
are needed to preserve accuracy for each model. Compared to fixed-point quantization, £-means
clustering saves 3.8 X and 3.6 area when storing LeNetFC and LeNetCNN in CTT-MLCs.
Compared to SRAM, storing the clusters in CTT-MLCs saves 14.4 x and 13.2X for LeNetFC

and LeNetCNN, respectively, as shown in Figure 2.12.

2.2.3 CuUsTOMIZING WITH PER-LAYER, PRUNED DNN WEIGHTS

One additional step of customization that unlocks significant density benefits begins with the ob-
servation that in the VGG16 network, 89.5% of the parameters are in the FC layers. These FC layers

need only 8 or 9 clustered values, while the CNN layers need up to 64 to maintain model accuracy

62

(Table 2.0). Using the same number of cells for parameters in the FC and CNN layers is wasteful as,
once again, we need a single transistor per parameter to encode the parameters in the FC layers. For

VGGi6, 1 cell is used for each FC parameter and 4 cells are used for each CNN parameter, and this

use of heterogeneous configurations saves us 3 X area. For VGG16, CTT-MLCs provide 9.8 X total
area savings compared to SRAM.

This study also leveraged the particular MLC properties of CTT devices, where the initial state
(see Figure 2.7) provides a unique opportunity for optimization: because it can be deliberately sepa-
rated from the programmed states, the fault probability can be skewed to protect the most frequent
cluster. To further leverage this protected state, the potentially high sparsity of stored weight val-
ues allows us to selectively map zero-valued weights to the less-fault-prone cell level. In VGG16, we
prune 97% of all parameters in the first FC layer, which has over 1ooM parameters. This effectively
protects a much larger proportion of the parameters compared to the unpruned network. In the
CNN layers, pruning reduces the number of cells needed to store parameters from 4 to 3, leading
to a further area reduction of 1.17 x over CTT-MLC with clustering. Resulting sparsity and corre-

sponding CTT-MLC area are reported in Table 2.0.

2.2.4 DiscussioN

The preceding results provide a concrete demonstration of the potential of concurrent optimization
of MLC eNVM and neural network storage requirements. The storage of fixed-point parameters
can be optimized using a non-uniform encoding that protects the sign and integer bits using fewer
levels per cell, and this solution provides up to 7.6 X area savings. As a further optimization, using
k-means clustering together with MLC storage requires just a single transistor for each parameter

in fully-connected NN layers. Additionally, pruning NN parameters and fine-tuning the cell level
distributions protects the most frequent stored values and allows for more aggressive encoding con-

figurations for CNN layers as well. The concurrent adoption of these optimizations reduces the

63

memory footprint of VGG16 to a total area of 4.9 mm?, which can be reasonably integrated in a
modern SoC. While this work focused on density-reliability trade-offs for a specific eNVM imple-
mentation, the interactions between fault tolerance and storage formats, as well as the co-design
methodology developed in this work, proved extendable to other system, application, and technol-

ogy settings.

2.3 FAULT TOLERANCE IN-THE-LOOP WITH SPARSITY AND ERROR MITIGATION

In this section, we will study how DNN weight resilience under MLC programming varies as we
tune application-level choices such as quantization, clustering, and sparsity. Additionally, we will
study the intersection of resilience with system-level storage choices such as selective/dynamic MLC
programming, sparse encodings, and memory allocation and partition choices. This section extends
previous demonstrations of CT'T memory using the previously described multi-level-programmed
fabricated test chip (MLC-CTT, Section 2.1.0), and our careful algorithmic and architectural co-
design can overcome the high fault rates that accompany high-density MLC storage. A more com-

prehensive system-level evaluation is reserved for Chapter 3.

2.3.0 SPARSE ENCODINGS

Employing lossless sparse encodings to reduce required storage would be strictly beneficial for tradi-
tional memory technologies like SR AM. However, sparse-encoded values are no longer particularly
fault tolerant due to the vulnerability of encoding metadata structures compared to the resilience of
weight values. Therefore, additional analysis is required to determine optimal MLC storage schemes
with sparse encodings 3.

Compressed Sparse Row Storage (CSR) uses three data structures to encode a sparse matrix: an

ordered list of all non-zero data elements by row (Weight Values), the column indexes of each non-

64

Model LeNets | VGGi2 VGG16 | ResNetso
Dataset MNIST | CiFarro | ImageNet | ImageNet
Layers 4 12 16 54
Parameters 600810 | 7899840 | 138084352 | 24585472
Classification Error 0.83% 10.38% 35.07% 31.15%
Error Bound 0.05% 0.40% 0.57% 1.02%
Cluster Index Bits 4 4 6 7
Sparsity (% zero-valued) 89.9% 40.9% 81.1% 64.84%
16b Size 1.26MB | 15.4MB 270MB 7oMB
Pruned & Clustered (P+C) | 316KB | 3.86MB 101MB 30.6MB
CSR 84KB | 3.78MB 30.2MB 25.1MB
BitMask 107KB | 3.23MB 35.sMB 11..MB

Table 2.1: DNN models for MaxNVM evaluation including baseline classification error, computed error bound, and
storage requirements under varying quantization and encoding schemes, taken from &%,

zero element (Column Index), and counters of the non-zero elements for each row in the original
matrix (Row Counter). The relative overhead of CSR varies proportionally with sparsity. Model
layers with less sparsity do not benefit from this encoding, so CSR is applied on a per-layer basis
where worthwhile. Convolution layer weights are typically 3-D (filter width, height, and channels),
and thus must be mapped to 2-D to be packed using CSR. NVDLA has specific requirements for
data formatting into the convolutional core, which dictates a 2-D mapping that can be unpacked to
be compatible with the datapath***.

BitMask Sparse Encoding Format is natively supported in the NVDLA framework, and it
utilizes an indicator bitmask for whether each weight is zero-valued and stores all non-zero data
values in packed, 128 byte aligned groups. A simple example of a bitmask-based sparse encoding is
also provided in Figure 2.13. We refer to this bitmask-based sparse encoding method as ‘BitM’, and
we maintain compatibility with the defined NVDLA sparse format*'*. The effective compression
of each encoding method is shown in Table 2.1, and the relative overhead of each method is dictated

by the sparsity of the weights.

65

2.3.1 ERROR MITIGATION

Existing, well-established schemes to mitigate the impact of faults are effective in the context of de-
tecting and correcting eNVM-related faults for DNN inference execution. However, we find that
existing schemes are often over-provisioned in light of the relative fault tolerance of stored DNN
weight values, and we explore variations as well as propose stripped-down alternative strategies for
maintaining accuracy of DNN inference under fault-prone MLC storage with minimal overhead.
Error-correcting codes (ECC) are a pervasive mechanism to detect and correct errors in stored
values. The basic mechanism is to, at the granularity of a block or page of data, maintain metadata
(e.g., Hamming-style parity bits) computed according to the correct stored values, which can then
be re-computed and validated against the data block when retrieved at another time. In this way,
ECC introduces a nominal, constant overhead in terms of storage requirements and error-checking.
Many variants of ECC exist in terms of what metadata is collected and maintained, how much
metadata is used, and whether it is hard-coded into the memory array architecture or software-
implemented. ECC may be deployed at different granularities and levels of the memory hierarchy.
Different amounts of relative ECC overhead were tested for each model in the studies that follow
based on the number of correctable errors encountered, but over many trials the lowest overhead
configuration (maintaining 2.4 parity bits for each 4KB of row counter values for CSR, for example)
is sufficient to safely allow MLC-3 to be used. The resulting ECC bit storage overhead is strictly less
than 1% per layer across all models. Additionally, ECC is single error correct, double error detect
(SEC-DED), but the probability of a DED within the row counter structure, even for the largest
model considered (ImageNet-VGG16), is on the order of 108, This probability is less than the

standards for mass-produced standard memories*, so our design accepts this risk.

66

BitMask Sparse Decoding Example | No Index Synchronization With Index Synchronization
@ Sync Index
BitMask Vectors: ﬂﬂﬂﬂﬂ Next Weight Value Index: Next Weight to Counter
‘1‘0‘0‘0‘1‘0‘0‘1‘1‘) Value Index:
0]1]2[3]4|5|6|7
IdxSync Counters: m 313 E
Retrieved Weight Values: \?Virgli\t,?/cfalues:
Next Data Values: EE ﬂ E E
Reconstruction: [0[7]0[6[3[0[0]0]0] [o]7]o]6]3]o]o]o]Bl [0[7]0]6]3]0]0][0]
[5]ofofo[2]ofo[8]7] [2lofofof8lolo @2l [5]0]o]o]2]0]0]8]7]

Figure 2.13: Introducing a lower-overhead approach to protecting bitmask-style sparse encoding than ECC; single bit-
flip errors can be catastrophic in the BitMask structure by resulting in mis-assigned data values to the entire remaining

matrix during reconstruction, but lightweight counters can prevent faults from propagating to preserve task accuracy by

periodically synchronizing the index into the vector of non-zero data values, taken from 82,

2.3.2 LIGHTER-WEIGHT ERROR MITIGATION WITH INDEX SYNCHRONIZATION

For even lighter weight error mitigation in the BitM sparse encoding, we additionally propose a
method in which we store a counter for the number of non-zero (or zero, depending on which is
lower) weight values we should have read in each 128 byte aligned block. When an error in the bit-
mask causes the wrong number of weights to be read, the counter is used to dynamically update
where to read from next in the packed data array. We refer to this dynamic error mitigation strat-
egy as Index Synchronization of the bitmask or ‘IdxSync’. Index synchronization of the bitmask
does not correct any errors within 128 byte groups-— rather, it prevents errors in previously read
values from propagating to cause additional errors during weight matrix reconstruction, as demon-

strated with a simple decoding example in Figure 2.13 and detailed in *3.

2.3.3 CROsS-STACK EVALUATION OF SPARSE ENCODING CHOICES

The model optimizations and sparse storage schemes employed to minimize the burden of storing
the DNN model parameters significantly impact the fault tolerance during inference tasks. Meta-

data structures become a significant portion of the storage needs per DNN layer, but bit errors in

67

the metadata of any of the sparse encoding formats can have catastrophic impact when decoding the
original matrix of values.

Thus, co-design with our carefully developed MLC eNVM fault models is required to enable
dense, efficient storage. This evaluation uses the Ares fault-injection framework (Section 2.0) to
quantify the impact of different encoding strategies on DNN classification error. This methodology
was also applied across a wider range of models and encoding strategies with MLC-RR AM, as fur-
ther explored in Chapter 3. The results of these experiments guide us in incorporating existing and
proposed error correction and mitigation techniques in order to maximize the effectiveness of dense

MLC eNVM storage for the execution of DNN inference.

2.3.4 VULNERABILITY OF ENCODING STRATEGIES

Sparse encoding strategies allow fewer bits to be used when storing DNN weights, but experiments
reveal that this compact data storage is in general much less tolerant of inter-level MLC faults. For
all DNNG, weights that could be safely stored by their cluster index values in MLC-3 can no longer
be safely stored in MLC-3 with sparse encoding. This is an incredibly important observation — as
an example, there are layers of ImageNet-VGG16 in which, despite CSR enabling fewer bits to be
stored, this does not overcome the area penalty of storing that layer’s parameters sparsely in SLC or
MLC-2 rather than storing them densely in MLC-3.

These instances can be explained by the extreme vulnerability of certain sparse encoding data
structures, as highlighted for MNIST-LeNets (Figure 2.14). This example demonstrates that the
row counter (RC) and column index data structure of CSR exhibit exceptionally high vulnerability
— storing with 3 bits per cell, which is equivalent to approximately one level-to-level fault in the row
counter vector, causes a pronounced degradation in DNN accuracy. This is because a single misread
RC value may cause an offset when reading from the non-zero data values such that all remain-

ing non-zero data values are incorrectly assigned during re-construction. Similarly, column index

68

CSR BitMask Encoding

Weight Values Column Index +ECC Row Counter +ECC Weight Values BitM +ECC +1dxSync
+ 80 + 80
o o
~ ~
| |
c 60 c 60
o kS
- -
© ©
2 40 2 40
= =
7] 7]
4 4
S 20 S 20
o _ o o 0
o [aV) m () N m o () [aV) m o (9] N m (9] N m o N QM v
J O U a2 U U 0O O O u O J O U O O U U uEfuc€c
(%] = - (%] - = w 7))) = w)) purr})) = w O >3 >
= = = = 4 = = 4 = = = = + SQ=9¢
™M
Y o] s 2 32
= = =

Figure 2.14: Introducing sparse encodings will have a direct impact on the resilience of our stored values. Existing,
well-established schemes to mitigate the impact of faults are effective in the context of detecting and correcting eNVM-
related faults for DNN inference execution, but a lower-overhead proposed technique (IdxSync) offers a compelling
alternative, taken from 8,

values (CI) are stored as relative indexes to the previous non-zero value within each row. Thus, a
misread CI value may offset the remaining assigned data values, though the impact will be restricted
to a particular row. The vulnerability of column indexes may be mitigated by using absolute rather
than relative column indexes, but we find that this requires strictly higher overhead than integrating
lightweight ECC. Relative to CSR, the bitmask-style sparse encoding is even more vulnerable, as
shown in the right portion of Figure 2.14. A single bit flip in the bitmask will cause all remaining
non-zero data values to be mis-assigned when reconstructing the matrix (illustrated in Figure 2.13).

Thus, the bitmask structure cannot safely be stored in MLCs without some protective technique.

2.3.5 IMPACT OF ERROR CORRECTION AND MITIGATION TECHNIQUES

Looking at the classification error for the sample model in Figure 2.14, we see that both ECC and
the IdxSync method enable the use of MLC-3 to store the bitmask without degrading model accu-
racy. The bitmask can account for a significant portion of the total storage per DNN layer (up to

65% of total bits to be stored in a given layer), so enabling denser storage of this structure can result

69

MNIST-LeNet5 CiFar10-VGG12

BitM N BitM
i + +
P+C CSR CSR+ECC BitMask dxsync P+C CSR CSR+ECC BitMask +1dxSync
o 30M
Q
o
S 2m
s
E 20M
Q
=
5 1M
@ 10M
o
5
= oM]] Hnll o
FSUEFESUESUESUESU FSUYUESUESUESUESU
§Eabzabzabzabsa SEAGEALEALEACED
Ve Yo Ye Y Yea S ¥ S Yo g«
=Y =y B B B 1] 1] B
s s s s s s s s s s
ImageNet-VGG16 ImageNet-ResNet50
P+C CSR CSR4ECC BitMask _ B P+C CSR CSR+ECC BitMask _ BiM
+ldxSync +ldxSync
800M
200M
600M 150M
200M 50M
oM =11 ™ | II II oM I II
= O O - O (O o - [(O (O (SR o
E3dbZab3d52dE23 R R
= g g o S« g g =2 8o g g«
=9 =9 B . 1 =9 - =y =9 =g
s s s s s s s s s s

Figure 2.15: The storage strategy in terms of data format, sparse encoding, and MLC programming varies per layer for
each DNN studied, with lightweight error mitigation via IdxSync corresponding to the lowest number of memory cells
required for several models by enabling use of MLC-3 at no loss in applicaiton-level accuracy, taken from %2,

in significant area benefits. For all models considered, applying IdxSync is sufficient to enable the
safe use of MLCs for the bitmask. This configuration requires less storage overhead compared to
ECC and reduces the decoder complexity compared to Hamming-style ECC.

Figure 2.15 summarizes the total number of memory cells required for each pairing of DNN
model and encoding scheme such that there is no loss in application-level accuracy (i.e., image classi-
fication accuracy). In several cases, integrating index synchronization with the bitmask-style encod-
ing results in the lowest required storage footprint by enabling use of MLC for the BitMask. How-

ever, the optimal storage strategy per DNN depends on model properties (per-layer sparsity, bits

70

per weight value) and desired optimization target (lowest area dictating fewest cells, performance,
energy) based on use case, so we continually leverage the results of these fault tolerance studies in

determining proposed memory solutions in Section 2.4 and Chapter 3.

2.4 MLC FEFET MEMoRY FOR DNN INFERENCE AND GRAPH PROCESSING

This section considers yet another MLC-capable, promising eNVM candidate (FeFETs), develops
detailed fault models and resiliency studies, and introduces several driving applications that can

be co-designed with memory device properties to maximize storage density and energy efficiency.
These studies, detailed in**4, took full advantage of the intuitions, tools, and methods described

to co-design MLC CTT and RRAM towards image classification DNNs and applied them to the
unique properties of FeFETs and additional, data-intensive applications with unique fault tolerance
properties (a DNN for natural language processing and graph processing kernels).

This work advanced the study of FeFET as a compelling eNVM solution by modeling and quan-
tifying the impact of device-level design choices such as size and programming scheme on the ac-
curacy of target workloads. FeFET memories promise dense storage with competitive read charac-
teristics, but their viability and achievable density in a realistic application use case, such as DNN
inference or graph analytics, was not previously explored. Optimizations targeting device size and
iterative programming schemes must be co-designed with application-level metrics and memory
array-level properties to maintain benefits, especially in multi-level-cell configurations.

This section begins by evaluating the device-to-device (D2D) variation for different FeFET cell
areas using a previously validated device model 58 Based on these preliminary device-level results, a
proposed, customized programming scheme can increase the programming reliability for single-level
cell (SLC) and multi-level cell (MLC) configurations. To quantify the relationship between result-

ing device characteristics and memory array performance, this work built on existing extensions of

71

b -5
@ | Gate | () 10

R

10—6<
BYe oo owl

p-Si g 1074
-
t vt 10
Interlayer
N © © (_9 °@ 10° . . .
p-Si 00 05 1.0 15

Vs (V)
Figure 2.16: (a) FeFET device schematic; (b) Transfer characteristics of a FeFET device in 8 different resistance levels for
3-bit-per-cell (MLC-3) programming, adapted from 2.
NVSim®* tool to support a FeFET cell model and MLC programming '*3. Additionally, we develop
a FeFET fault model based on the variability both at the memory and sensing circuitry level, and we
extend an application-level fault injection framework '?%*%5 to evaluate the impact of FeFET device

size and programming scheme on application accuracy.

2.4.0 FEFET DEVICE AND ARRAY ARCHITECTURE

FeFETs, like other emerging devices, suffer from device-to-device variation issues. The sensitivity to
variation increases when the number of levels increases in a multi-level-programming scenario. This
problem even gets worse in smaller FeFET devices’. In the presented results, we account for D2D
variations by employing a stochastic model of polarization switching in FeFET devices 4. This
device-level model has been previously experimentally validated 5%.

Figure 2.16 shows the progammability at 3 bits or 8 distinct levels per cell. This work employs
1FeFET AND arrays (Figure 2.17), where the source lines (SLs) connect the elements along the
columns), which are more promising than the other types of FeFET memories (e.g., NOR arrays,

where the SLs connect the elements along the rows) for two reasons: first, the cell size is equal or

72

WLl T—— -\l 4 1
= T
NVM cell \' My T my =" in 4
WL—T—1 - | PR e
T ma my; m,

Whi—T—1= 1 1 —

@) sL, s, Sl 7

Figure 2.17: (a) AND array memory architecture highlighting a single FeFET NVM cell; (b) Customized multi-level sensing

circuit for four programmed (2-bit) MLC, taken from 2.

even smaller than NOR arrays; second, the parallel bit-lines and source-lines reduce the write distur-

bance 5%19¢

. Note that the write disturbance can be further mitigated by applying a half-bias scheme
(e.g.» applying Vyupize/2 to deselected cells) .

The model uses Monte Carlo sampling on independent polarization domains in the ferroelectric
layer. In doing so, it captures the essential behaviors required to perform scalability and reliability
studies on FeFET memories, including (i) D2D variation as the cell size changes (different num-
ber of 10nm x 10nm fterroelectric domains); (ii) stochasticity of domain switching; and (iii) the
accumulation of domain switching probability when a train of pulses are applied to the gate of the
FeFET device. Thus, we can effectively project the impact of write schemes and device size on D2D
variation, and, consequently, the impact of D2D variation on application level accuracy. Using this
model and a bottom-up approach, we can effectively project the impact of D2D variation in terms
of application level accuracy.

This work employs 1FeFET AND arrays (Figure 2.17, where the source lines (SLs) connect the

elements along the columns), which are more promising than the other types of FeFET memories

73

(e.g., NOR arrays, where the SLs connect the elements along the rows) for two reasons: first, the cell
size is equal or even smaller than NOR arrays; second, the parallel bit-lines and source-lines reduce
the write disturbance $*%¢. Note that the write disturbance can be further mitigated by applying

a half-bias scheme (e.g., applying V. /2 to deselected cells) . Additionally device-level details are

provided in Chapter 1.2.2.

2.4.1 TARGET APPLICATIONS

We evaluate the impact of FeFET reliability on target applications that are (1) data-intensive in
terms of required capacity and read bandwidth and (2) have infrequent or highly batched write
accesses. In embedded and mobile SoCs, the high density and compelling efficiency of FeFET mem-
ories could be crucial in enabling on-device or otherwise power-efficient execution of these critical
applications, and performance will not be debilitated by potentially long writes.

Deep Neural Networks (DNNs) for vision tasks and natural language processing (NLP) are well-
studied driving applications that have demonstrated compatibility with multi-level-cell (MLC)
eNVM storage *#35922¢. DNN inference performance and power-efficiency benefits significantly
from increased on-chip memory density, particularly for storage of weight parameters that are infre-
quently updated. Thus, we evaluate the viability of FeFET MLC memories for two representative
DNN workloads: ResNet18 for image classification (CiFar10), and the ALBERT transformer-based
model for natural language understanding (MNLI)**2¢. Another critical category of data-intensive
workloads are those that operate on large graphs 7, such as search tasks on social network graphs,
though resilience of graph formats to MLC eNVM storage has not been addressed in prior work.
Thus, we additionally evaluate the viability of FeFET MLC memories for storing social network
graphs with sample graphs representing Wikipedia article voting patterns and anonymized social

circles from Facebook '35.

74

2.4.2 ARRAY-LEVEL MLC FEFET SIMULATION

The FeFET Monte Carlo current model allows us to characterize the behavior of FeFET memory
cells in isolation. NVMExplorer leverages extensions to NVSim ©*°4 to extrapolate our device-level
characterization study to memory array architecture, as discussed further in Chapter 4. NVSim does
not natively support FeFET memory cells, so we added a customized memory cell definition*°4.
Moreover, we modify NVSim to estimate the costs of MLC sensing circuitry.

We integrate a new memory cell definition using the energy, delay, and area results collected from
SPICE simulations. Our evaluation considers two programming schemes, which are discussed in
detail in Section 2.4.5. For the read operation of the SLC memories, we employ a simple voltage
based sense amplifier. However, for the MLC memories, we integrated the energy, area, and delay
results that we collected in HSPICE simulations for our design discussed in Section 2.1.1. For the
single-pulse programming scheme, we derive the set and reset energy and latency for different cell
sizes from HSPICE simulations. The write energy and latency for other programming schemes use
the average number of set and reset programming pulses computed by sampling 1500 FeFET cells
for D2D variation, in addition to estimated energy and latency due to write circuitry.

To model the write energy, we first obtained the energy required to program the FeFET cell for
a single reset pulse and a single set pulse with different gate sizes using SPICE simulation. Second,
we calculated the average number of sets and resets needed for 1500 FeFET cells (to have enough
data points) to reach their target levels for different programming schemes (single-pulse and write-
verify). Then, we can calculate the write energy of FeFET cells by multiplying the number of set
and reset pulses to the obtained pulse energy. An additional change to improve model fidelity is that
FeFETs fabrication requires adding a ferroelectric layer on top of a traditional MOSFET gate, so the
gate equivalent oxide thickness is increased and, therefore, the gate capacitance. We captured this in

NVSim by setting FeFET gate capacitance 1.73 x bigger than the default CMOS gate capacitance’®.

75

: —— ADC Quantized Level with Variation _
= | ® IDTargets ADC Quantized Level
=
m©
o 1
o
—

a
1 X X X X
o IS r s .
0 1

2
ID (nA)

Figure 2.18: ADC quantized levels with variation as a Gaussian function with 3¢ deviation of 5% and target currents for
3-bit FeFET MLC, taken from 2%%,

2.4.3 SENSING CIRCUIT DESIGN

For a 1-bit read operation, this work employed a simple voltage-based sense amplifier characterized
in SPICE. The same sense amplifier model is employed to build a parallel sensing scheme for MLC
FeFET operation. As discussed in Section 2.1.1, a parallel sensing scheme compares the current
from a memory cell against 2” — 1 reference levels and returns an z-bit binary word. Figure 2.17 de-
picts the circuit schematic of the sensing circuit for a 2-bit read operation. The operation is similar
to a Flash ADC and is similarly affected by D2D variation, which in turn has an impact on memory
reliability, as in the RRAM and CTT fault models developed in Section 2.1.1.

We model the effects of D2D variations on transistor dimensions, resistance values, etc., as a
Gaussian function with a 3o deviation of 5%. As a result, the quantized levels show variability pro-
portional to the threshold currents. Based on this constraint, we propose spacing the MLC pro-
gramming currents such that the sensing threshold distributions are equally spaced. This approach
uses the extra margins in low-current levels to distribute the read errors due to sensing threshold
shifts more evenly across the entire programming window;, as depicted in Figure 2.18. Figure 2.18
shows a MLC-programmed schematic at 3 bits or 8 distinct levels per cell, displaying changes in
variation per ADC quantized level over the programmable range of current values. This is distinct

behavior from the technologies considered in previous sections (i.e., CTT and RRAM), but is sim-

76

ilarly expressible as a set of normal distributions for integration with application-level resilience
analysis. The energy, latency, and area for the resulting design is incorporated in NVSim to model

sensing at the memory array architecture level.

2.4.4 CROSS-APPLICATION FAULT INJECTION FRAMEWORK

Evaluating device non-idealities at the application level requires a balance of fault model accuracy
and simulation performance. We approach this problem by building a fault-injection simulator that
integrates with existing application-level frameworks. As the focus of this work is on DNN and
graph applications, we leverage two popular Python packages, namely PyTorch'®' and SNAPpy '3
to execute representative workloads. Previous work has explored the evaluation of faults in DNN
models'?? and extended the study to eNVM errors in DNN applications *°. We extend existing
MLC eNVM fault modeling to simulate FeFET memories based on the model discussed in Section
2.1.1 and ADC quantized level variations. Moreover, we use a general input interface to process
parameters from both DNN and graph workloads, a major extension and generalization of the ca-
pabilities of Ares 193,183 For each target application, the fault injection tool reads in the application
data to be stored in FeFET-based memory and applies a quantization transform followed by MLC
encoding based on the selected configuration, quantifying application-level accuracy impacts over
many random trials.

Stored data values are assigned to FeFET current levels, and we sample the current based on the
FeFET Monte Carlo model. The currents computed in this first sampling process are then com-
pared against current sensing thresholds which are also sampled based on ADC variations. The
sensed currents are then converted back to quantized values and used to repeat workload execution

and evaluate the effect of memory faults on the target application.

77

g

Hard Reset: Vg o5 = -4
Reset PW =1us

Set: Vg ger = Vierl L]
Set PW = 100ns
[

Soft Reset: Vg oo = -4

Read cell:

Reset PW =100ns b) 4
[D<Target;qe (L Resets += 1 (b) FeFET initial state Target range upper bound
~3] .t S S— S
No No < -t
=) /
Resets > -~
ID>Target, el L] MaxReset [a) 1 Soft Reset Target range lower bound
No ez 0{_¢—> Hard Reset
P 0 5 10 15 20 25 30

Number of Pulses

Figure 2.19: (a) Proposed write-verify programming schematic; (b) Example of pulse by pulse level tuning process of an

individual FeFET device into the target range, taken from 204,

2.4.5 OPTIMIZATION STUDY - PROGRAMMING SCHEMES

We consider two approaches for programming multi-level FeFETS, (i) single pulse; and (ii) write-
verify. The single-pulse approach first performs a hard reset of the device (a -4V, 1us pulse), followed
by one pulse of amplitude dictated by the target level. An issue with this approach is that as we move
to smaller FeFET devices, (i.e., lower number of domains) the D2D variation increases to a point
where the rate at which we mis-read a programmed level will increase significantly. While appealing
in terms of simplicity, the single-pulse scheme is not robust to D2D variation for smaller FeFET
cells, as evident in the overlap of resulting current distributions in Figure 2.20 for so-domain cells.
To solve this problem and realize multi-level FeFET cells with tightened cell distribution, we
proposed a write-verify scheme described in Figure 2.19. First, we do a hard reset on the device to
make sure that the device reaches the lowest state. Next, the set voltage is chosen based on the target
level with the pulse width of 1007s. The set pulse is then applied to the gate of the FeFET device.
After the first set pulse, the cell is read and the device current is measured. If the measured current

is smaller than the lower bound of the target programmed range, another set pulse is applied to the

78

Number of Devices

B

Single Pulse

=

50 Domains

0 1

1l

Level 1
Level 2

mmm Level 3
Level 4

2o
® o N
S S o

IN
o

Number of Devices
N o
o o

o

200 Domains

2
ID (HA)

I T

Level 1

mmm Level 3

ices
-
N
o

-Z 100
80
60
40

20

Number of Dev

o

W (HA)
Write-verify

50 Domains

[
|

Level 1
Level 2

B Level 3
Level 4

200 Domains

i

Level 1
Level 2

mam Level 3
Level 4

0 1 2
D (WA

i
3

Figure 2.20: (a) Current distribution of 2-bit FeFET MLCs with single pulse programming for 1500 cells; (b) Current
distribution of 2-bit FeFET MLCs with write-verify programming for 1500 cells, taken from2%%.

gate of the FeFET. However, if the measured current is larger than the upper bound of the target

range (and we have not exceeded the maximum number of resets), a soft reset pulse is applied on the

gate of FeFET. Finally if the device is in the targeted range we stop the programming.

The write-verify scheme proposed in*** (Figure 2.19) helps combat D2D variations by produc-

ing tighter level distributions. This scheme leverages the stochastic behaviour of the FeFET do-

main switching to reach the targeted level. The advantage of this approach is that it reduces the

overhead in the write circuitry while reaching the tighter cell current targets. This scheme cannot

be employed for other emerging devices such as PCM since they need programming pulses with

increasing amplitude and width to reach the desired current targets. The soft reset pulse has two

advantages: First, its pulse width is 10 x shorter than the hard reset pulse, which will increase the

performance of the write. Second, it does not fully reset the device to the zero state because of the

shorter pulse. This gives us more control to set the device into the targeted range. A similar strategy
has been applied to RRAM devices *?, but this has never been studied for FeFETs before to the best
of our knowledge.

Our evaluation showed that only a small subset of devices (less than 0.1% for 200-domain cells)

fails to reach the target range after 10 soft reset cycles. Therefore, we fix the maximum number of

79

soft resets to prevent prohibitively long and energy-consuming programming sequences. The pro-
gramming sequence is terminated either if the measured device current is within a target range, or if
the number of applied soft reset pulses reaches its maximum count (Figure 2.19).

Figure 2.20 shows the current distribution of 1500 2-bit FeFET MLCs programmed using single-
pulse and write-verify programming schemes. Figure 2.20 shows that there are large overlapping
areas between different levels if the single-pulse scheme is used. The level distribution overlap wors-
ens when the number of domains is reduced from 200 to so. Figure 2.20 shows that using write-
verify scheme, overlaps can be mitigated for 200 domain cells. However, even with the write-verify

scheme, there is some overlap in 50 domain cells.

2.4.6 MEMORY DESIGN TRENDS

For each of the programming schemes discussed in Section 2.4.5, we carefully consider the fault
characteristics of the FeFET memory as we vary the number of programmed levels per cell and
the cell size. The highest resulting inter-level fault rate per cell design and programming scheme is
shown in Figure 2.21. Our fault model additionally captures the asymmetry of inter-level fault rates
(i.e., when it is more likely for the programmed level to be mis-read as a lower level than a higher
one), which is increasingly apparent in 2-bit and 3-bit programming. Thus, the raw maximal fault
rate alone does not capture the complexity of the potential impact of MLC FeFET behavior on
application accuracy. However, we note that the fault rates when we program 2 bits per cell , on
average, exhibit more asymmetry than 3 bits per cell (i.e., it is more likely for a cell’s value to be mis-
read as a lower value than a higher one). Figure 2.21 highlights those fault rates which are strictly
higher than similarly provisioned MLC-programmed RR AM storage as a proxy for the viability of
different FeFET memory configurations.

As discussed in Chapter 1.1, there are multiple classes of important workloads that can be tol-

erant of long write latency and would benefit immensely from increased storage density and effi-

8o

Single pulse

o[e

3-bit

50 100 150 200 250 300 400
FeFET Cell Size (# Domains)

Write-verify
1-bit
2-bit
3-bit

20 50 100 150 200 250 300 400 500
FeFET Cell Size (# Domains)

Figure 2.21: Shmoo plot of maximum read fault probability as a function of cell size and bits per cell for single pulse vs.
write-verify programming, colored according to whether the raw fault rate is higher (red), lower (green), or similar to
MLC-programmed RRAM taken from 204,

ciency. However, these workloads may exhibit different resilience to MLC fault characteristics. In
light of the relatively high error rates for MLC programming across cell size shown in Figure 2.21,
itis critical that we evaluate application-level implications to identify the densest allowable storage

scheme without degrading application accuracy.

2.4.7 APPLICATION-LEVEL EVALUATION

We evaluate two DNN workloads which differ both in terms of target application and eNVM uti-
lization. The first is image classification using ResNet18. In this case, we consider a system in which
the full model is stored in the FeFET memory. Figure 2.22 shows how application error relative

to baseline classification accuracy increases significantly as cell size decreases across programming
schemes. For 1-bit, single-pulse programming (no verify), the minimum FeFET cell size that pre-
serves inference accuracy is 300 domains. Introducing the write-verify scheme allows the memory

cell size to be scaled more aggressively, with 1- and 2-bit storage displaying minimum cell sizes of 50

81

1

4 M 1-bit Single Pulse
0.8+ 1 = M 1-bit Write-Verify
- § = §3- 2-bit Write-Verify
= 5 0.6 i 3-bit Write-Verify
% g % 221 bl
A= 0.41 Acceptable Error 8 5 el
o S 1 Error Threshold
) Threshold R oS S Sl aliens st sesaed |08
0.2 ® \
0.0 \ \
0.0 Tttt ge— 0
0 100 200 300 400 500 0 100 200 300 400 500
FeFET Cell Size [# Domains] FeFET Cell Size [# Domains]

Figure 2.22: Fault injection studies are performed per cell size and programming scheme to evaluate resulting applica-

tion error, as measured by relative degradation from baseline accuracy. The minimum cell size that keeps relative error

below the acceptable threshold dictates densest storage per scheme, taken from2%4.

and 150 domains, respectively.

The second DNN we consider is natural language inference running on ALBERT. BERT-based
DNN:ss are often re-used across multiple tasks (e.g., translation vs. sentiment analysis), so we propose
to store the shared embedding parameters in FeFET memory, while the task-specific portion of the
network is stored separately, an approach that has proven successful in maximizing energy efficiency
for multi-task DNN inference *°. In this case, the 1-bit, single-pulse configuration requires 200
domains, while for the write-verify cases, 1-, 2-, and 3-bit configurations can be scaled down to 5o,
150, and 150, respectively (summarized in Table 2.2). Compared to the relative vulnerability of 3-bit
MLC for ResNet18, partitioning ALBERT to store more vulnerable parameters in SRAM provides
the opportunity for more aggressive scaling in terms of FeFET cell size.

To determine the viability of different FeFET cell designs and programming schemes for graph
analytics tasks, we measure the average impact to the accuracy of a set of breadth-first search queries
on the example graphs as a proxy for maintaining network structure and resilience to faults 7. We
store input graphs as adjacency matrices and perform fault injection to quantify resilience to vary-

ing MLC storage and programming schemes. The relative error increase for the Facebook graph,

82

‘ BPC ‘ Programming ‘ ResNet18 ‘ ALBERT ‘ Wiki ‘ Facebook ‘

I Single Pulse 300 200 250 250
1 With Verify 50 50 50 20
2 With Verify 150 150 150 150
3 With Verify 400 150 400 200

Table 2.2: Summary of minimal cell size in number of domains per programming scheme and bits per cell (BPC) without

application accuracy degradation, adapted from 204,

for example, (Figure 2.22), demonstrates workload-specific sensitivity to FeFET fault characteris-
tics distinct from ResNet18 in terms of allowable cell size. The minimum cell size per workload and
per programming scheme is summarized in Table 2.2. For example, we see that the Wikipedia input
graph is resilient to FeFET storage at 5o domains, while both graph workloads are amenable to 2-bit
FeFET storage down to 150 domains. Due to the varying sparsity and structure of the two graph
workloads studied, we observe different fault resilience in the 3-bit configuration, and the Wikipedia
voting graph degrades in terms of average query accuracy when using a cell with fewer than 400 do-
mains. Each mis-read value in the adjacency matrix corresponds to an erasure or erroneous addition
of a connection between two graph nodes, and it is possible that each mis-read value has a dispro-
portionate impact on a graph that is less clustered and more sparsely affiliated (as in the Wikipedia
graph) than one with more disparate, strongly connected social circles (as in the Facebook graph),

but further analysis would be required to justify this argument.

2.4.8 DiscussioN

Our results show that implementations targeting inherently robust applications can lead to more
efficient memory array architectures. For example, in most of the workloads we considered in this
work, the SLC configuration using a write-verify programming scheme results in a memory array
design which has the best combined density and read performance. This result can be explained by

considering that replacing the SLC configuration with MLC2 requires increasing the cell size by 3 x

83

Storage | # Cell Area | Read Latency | Read Ener SET Latency | SET Ener:
Workload Opt. Scheme Nee(igs Domains | (mm?) (ns) ’ @/ b[t)gy (1s) ’ (// bz’t)gy
ResNet18 SLC 24MB 50 1.686 1.866 0.461 1.47 0.745
ALBERT MLC2 4MB 150 0.313 1.20 0.189 1.80 0.438
Wikipedia MLC2 6MB 150 0.682 1.268 0.278 1.80 0.422
Facebook MLC2 2MB 150 0.241 0.976 0.169 1.80 0.234
‘ SRAM (16nm) ‘ Ref. ‘ 4MB ‘ N/A ‘ 3.9 ‘ 1.3 ‘ 0.5 ‘ 0.001 ‘ 0.5

Table 2.3: Summary of optimal programming schemes, device characteristics, and resulting memory array characteristics
provisioned per workload, adapted from 2%%.

in order to preserve application-level accuracy.

Though all of the examined workloads are amenable to MLC FeFET storage, in order to derive
the most efficient FeFET storage solution per application, we must consider the achievable zero-
accuracy-loss storage density in conjunction with memory array performance, area, and energy char-
acterization. For example, we find that SLC FeFET under the write-verify scheme can be safely used
down to a cell size of 50 domains or smaller (Table 2.2), so this programming scheme consistently
provides highly dense, zero-accuracy-loss memory. On the other hand, our simulation on ALBERT
give us an opportunity to uncover the potential of MLC storage solutions for data-intensive, fault-
resilient workloads.

Figure 2.23 also demonstrates that 2-bit storage is a compelling design in terms of density and
read characteristics, with 3-bit showing competitive performance in all metrics, though not provid-
ing the pareto-optimal configuration highlighted in Figure 2.23 and summarized for each workload
in Table 2.2. The storage density achieved here is a full order of magnitude higher than that of 16nm
SRAM, in which a 4MB array requires about 4mm? according to NVSim evaluation, cited as a ref-
erence point in Table 2.3. Similarly, the observed read latency and energy per bit tends to match or
improve upon SRAM. We repeat analysis of area, latency, and read energy per bit of provisioned
memory arrays per-application to identify FeFET memory arrays that minimize latency and energy.
In this way, the FeFET arrays highlighted in Table 2.3 will cause minimal impact to workload execu-

tion time while providing high density, energy-efficient embedded storage.

84

Programming
.y 0.8 8 0.3 #i 1-bit Single Pulse
S el % <o £ * & 1-bit Write-Verify
g VY = 0.2- 2-bit Write-Verify
E * -g' ' 3-bit Write-Verify
o 0.41 p
Q X & Optimal
< 0.2 ¥ Optimal 0.1+ Array
A
0.0 FEY 0.0 &F
051 2 5 10 20 50 051 2 5 10 20 50
Read Latency (ns) Read Latency (ns)

Figure 2.23: For an example workload (ALBERT, 4MB capacity), we show key characteristics for FeFET memory arrays
with acceptable application accuracy across programming schemes and NVSim optimization targets. From these, we

select optimal array configurations summarized in Table 2.3 that minimize array area, read latency, and read energy per

access, taken from 2%,

It is important to note that these design points are not fully optimized, which indicates that even
higher density could be achieved with architectural enhancements ****5. For example, incorporat-
ing lightweight error mitigation or error correction strategies could enable use of even higher density
storage solutions, such as 3-bit MLC with smaller cell sizes. Alternatively, more sophisticated pro-
gramming schemes could be used to further tighten the current distribution of MLC FeFET config-
urations. However, more complicated programming schemes would add area, latency, and energy
overhead due to write circuitry.

This work is a demonstration of the viability of MLC-programmed FeFET eNVMs with an
application-driven evaluation of these memories in light of DNN and social network graph re-
silience and memory access patterns. The presented methodology and studies provide exposure to
the critical trade-offs among write costs, storage density, fault characteristics, and application impact
that will drive future development of highly-dense FeFET memory solutions. These results build
confidence that MLC FeFET storage could be eftectively leveraged for both deep neural network

inference and graph processing tasks, even in the absence of more involved optimizations. Yet, these

8s

results are limited by the lack of integration with system-level optimizations and a more comprehen-

sive system evaluation, which is the focus of Chapter 3.

86

1f'it’s s0 beautifully arranged on the plate, you know someone’s fingers have been all over it.

Julia Child, “The French Chef”

MaxNVM: Maximizing Memory Efficiency

for ML Accelerators

DEEP NEURAL NETWORKS (DNNGs) are a critical, driving application in a variety of systems and
domains, from object-detection and object-tracking for self-driving cars, to classification and data

analysis tasks on embedded sensor nodes and implanted devices, to diagnoses and drug discovery

87

in the medical field *9*. Particularly in deeply-embedded computing environments, efficiency is
paramount — both in terms of performance, operating power and thermal impacts, and in terms of
energy usage and potential impacts on battery life and device lifetime.

For state-of-the-art DNN hardware accelerators, fetching weights from DR AM persists as a pri-
mary performance and energy bottleneck, limiting inference efficiency '*. Ideally, DNNs weights
would be stored entirely in on-chip memory, such that DNN inference can be fully executed on-
chip without costly DR AM data fetching. However, even with aggressive weight compression and
layers of algorithmic optimization, capacity requirements of modern DNNs often remain unrealis-
tic for storage in on-chip SRAM.

Emerging, embedded non-volatile memory (eNVM) technologies are one promising solution
for eliminating DR AM inefficiencies, as described in Chapter 1. eNVMs provide high-capacity,
low read-latency storage and are significantly more dense than SRAM. Many eNVMs, including
RRAM, PCM, and CTT, also have multi-level cell (MLC) capabilities, allowing multiple bits to
be packed into a single device to further increase density. eNVMs are not perfect—two main draw-
backs are decreased reliability and high write latency. First, while single-level eNVM:s are reliable,
achieving the ultra-high densities necessary to eliminate DR AM for DNN inference requires aggres-
sive MLC designs. However, these MLC designs can incur high memory access fault rates. Second,
eNVMs offer fast read access, typically on the same order as SRAM. However, writes can be orders
of magnitude slower, as well as more costly in terms of energy or operating conditions, as they of-
ten alter the physical property of the storage material. Given DNN inference in embedded settings
often require infrequent weight updates and are implicitly fault tolerant (as explored in Chapter 2),
we identify MLC eNVMs as a potential solution to improve DNN inference efficiency by storing
weights on-chip and eliminating DR AM accesses.

With algorithm-hardware co-design, DNN inference is a near-ideal fit for MLC-eNVM as the

benefits (high density, fast read, low-power) can be had without suffering from the cons (fault-

88

prone, slow writes). This chapter focuses on the demonstration and evaluation of MLC eNVM
technologies applied towards highly-efficient DNN inference settings, in each case employing opti-
mizations that span and exhibit inter-dependencies among multiple layers of the computing stack.

As an efficient baseline, MaxNVM starts at the algorithmic level, applying clustering, prun-
ing, and sparse weight encoding (CSR and BitMask). To optimize for fault-prone MLC storage,
MaxNVM co-optimizes the sparsity of DNNs with the storage density of MLC eNVMs, which
directly impacts the reliability of the storage medium, to reduce the memory requirements with-
out sacrificing accuracy. MaxNVM unveiled that sparse-encoded weights to be more vulnerable
than dense weights, which limits MLC eNVM density, as previewed in Chapter 2.3. This chapter
pushes the limits of storage density through increasing the levels-per-cell in MLCs and by applying
protective mechanisms, ECC and IndexSync (proposed), in-the-loop with application-level metrics
like accuracy and achievable frame rate and system constraints like total on-chip area and hardware
accelerator bandwidth requirements.

To demonstrate the efficacy of our co-design approach on the actively evolving eNVM landscape,
MaxNVM conducted detailed evaluations of two fundamentally different eNVMs: RRAM and
CTT. Both are extremely dense, MLC-capable, and can be made CMOS-compatible for on-chip
integration with logic in advanced process technology nodes. CT'Ts have fast read latency and are
very low-power, but incur inordinately long write latency. Compared to CTTs, RRAM has a faster
write latency, but is less energy-efficient.

The MaxNVM project conducted a crucial first step in developing models for RRAM and
CTT, including MLC-programming, by extending NVSim ®* in ways that were, in turn, signif-
icantly generalized and expanded in other research projects I have led or contributed to over the
course of this thesis work 20459226185 RR AM cell parameters and fault models are taken from pub-

8,269,53

lished work, and MaxNVM implemented two models to represent projected 26 and demon-

strated >5»>3528 RRAM scaling to smaller technology nodes. CTT parameters and fault distribu-

89

tions are derived from a measured chip prototype 183,157

Several studies presented in this chapter leverage NVDLA —a state-of-the-art, industrial-grade
CNN accelerator. NVDLA is an open-source accelerator architecture from NVIDIA, providing
performance modeling and comprehensive documentation so as to be extendable and effective as a

system model for academic projects 212,178

. Experiments in Section 3.1 show that even large models,
e.g., VGG16 and ResNetso 213:88,197 " can reasonable fit on-chip with the MaxNVM co-design ap-
proach. CTT results in the lowest energy-per-inference design point at up to 3.2 x reduced energy
per inference. In a system where weights are updated more frequently, RR AM presents a nice com-
promise of writing weights orders of magnitude faster while sacrificing approximately 20% energy
efficiency. In a case study, we constrain all on-chip memory to fit within rmm? and sweep the per-
centage given to SRAM and eNVM. The study concludes a balance of eNVM and SRAM is ideal
to maximize performance and efficiency.

After detailing the system configurations and evaluations and discussing the compelling results of
MaxNVM, this chapter briefly summarizes two additional projects in specialized DNN accelerators
to which I have contributed. In the contexts of both Multi-Task Image Processing (MEMTI>?,
Section 3.2) and Natural Language Processing (EdgeBERT **¢, Section 3.3), total system efficiency
and on-chip storage density are significantly improved by proposals integrating multi-level-cell-

programmed eNVMs, and each system design benefited from cross-computing-stack considerations

in data format, fault tolerance, and memory technology characteristics.

3.0 END-TO-END, Co-DEsiGN METHODOLOGY FOR MLC ENVM

The MaxNVM co-design strategy incorporates optimizations and techniques at algorithmic and
architectural levels. After developing a fault model based on technology-specific device characteris-

tics and SPICE models of sensing circuitry, we use a previously-validated fault injection framework

90

Chip Measurements, Area and Energy Estimates
Circuit Simulations, Characterized eNVM Array
Previously Published Results | €NVM Fault Models Area, Energy, Performance
M Area, Energy,
; - . lemory
i Pruning + }_, Application-| Optimal Storage L and System
‘ Trained DNN Models H Clustering (P+C) Level Fault | perenvm |oharacterization Performance
! Injection (b0Yim) Evaluation
] (]Ares) Accelerator
Technology DTooIs 9 Performance
D Techniques DEvaIuation Error Correction Model (NVDLA)
and Mitigation

Figure 3.0: MaxNVM summary of the tools, optimizations, and intermediate results used in final system evaluations;

technology characteristics, specific system requirements, and a variety of application-level optimization opportunities

inform the proposed MaxNVM system designs, taken from 183,

to determine whether a given storage scheme impacts DNN accuracy "%, as described in Chapter
2. We leverage and extend well-known tools to model the energy, performance, and area of the pro-
posed systems at the memory-array °> and system-architecture '7® levels. The interaction of these

methods as they contribute to the final evaluation is summarized in Figure 3.0.

3.0.1 MODEL OPTIMIZATIONS

Proposed memory systems are evaluated against a competitive and realistic baseline by enforcing
iso-accuracy and incorporating common optimizations on the chosen DNNSs, as summarized in
Table 2.1. All presented energy, performance, and area improvements maintain model accuracy
within computed Iso-Training error bounds, as defined in *°* and briefly described in Chapter 1.1.1.
We consider DNNs of different sizes: one CNN model for the small MNIST hand-written digits
dataset, two more realistic and well-known DNN models (VGG16 and ResNetso) for the much
larger ImageNet dataset, and another VGG-like topology for the mid-size CiFar1o dataset to span

the gap between these cases >1388:125

197, Magnitude-based weight pruning with retraining is used to
sparsify DNN weights, as the models are widely known to be over-parameterized. The resulting pro-
portion of zero-valued weights is listed in Table 2.1, and further model optimizations are performed

without retraining.

One popular technique to reduce the number of bits required to store each DNN weight is to

91

reduce precision using fixed-point quantization. Depending on the dynamic range of the DNN
weight values, the number of integer and fractional bits can be drastically reduced, even to a few or a
single bit per weight at some loss in model accuracy””'#. Another way to reduce the number of bits
required to represent each weight value is to use k-means clustering for each layer of the DNN 9%,
For the models considered, we found that all the weight values within a given layer can be repre-
sented by 16 to 128 unique clustered values at no loss of accuracy. Thus, each weight can be en-
coded as a 4 to 7 bit cluster index value, with a simple look up table per layer to map indexes back to
values. We find clustering uses strictly fewer bits per weight than fixed-point quantization without

significant re-training for all DNNs (Table 2.1). For more details on model optimizations and DNN

simplification techniques, please see Chapters 1.1.1 and 2.3.
p ques, p p 3

3.0.2 ERROR CORRECTION AND MITIGATION

Vulnerability to faults changes when weights are stored using sparse encodings, as explored in Chap-
ter 2.3. A simple strategy to mitigate the increased classification error is to store more vulnerable
structures using fewer bits per cell (e.g., SLC or MLC2)*°. We additionally explore when it is benefi-
cial to incorporate Hamming-style, parity-based ECC. The configuration used is the lightest-weight
ECC considered for NAND flash memories**°. Note that if values are binary-encoded in a MLC,

a single level-to-level fault is not equivalent to a single bit flip, so for precise error detection and cor-
rection, Gray coding is used to represent ECC-protected values in MLCs. MaxNVM additionally
proposes and evaluates a lighter-weight error mitigation technique for bitmask-encoded sparse data,

which is described in fixmeSection.

92

NVSim Parameter Value NVDLA Baseline NVDLA-64 | NVDLA-1024
Data Width 8-128 Convolutional Buffer Size 128KB 256KB
Banks (rx1)-(NxN) Number of MACs 64 1024
Mats (1x1)-(NxN) SRAM Capacity s12KB 2MB
Area Frequency 1 GHz 1GHz
Read Latency Datapath Area 0.5 5mm? 2.4mm>
Optimization Targets Read EDP SRAM BW 6 GB/s 25 GB/s
Read Energy DRAM Read BW 25 GB/s
Leakage Power LPDDR4 DR AM Power 100 mW 200 mW

Table 3.0: NVSim, baseline NVDLA parameters 62.212.28 £4r use in system-level evaluation of MaxNVM, taken from 183

3.0.3 MEMORY MODELING

We integrate new memory cell definitions in NVSim using the energy, performance, and area mea-
surements from our test chip, published work, and SPICE simulations of different sensing circuitry

62 NVSim evaluates all possible memory bank configurations for a given capacity, op-

topologies
timization target, and number of bits per cell (Table 3.0). Pareto-optimal points are chosen from
NVSim outputs to fit within area, performance, and/or bandwidth constraints according to use case

in presented results.

3.1 MAXIMIZING STORAGE DENSITY AND INFERENCE EFFICIENCY (EVALUATION)

Leveraging the identification of maximal-density, accuracy-preserving MLC eNVM storage for
DNN weights in Chapters 2.2 and 2.3, this section describes the system-level evaluation and impli-

cations of integrating such a memory solution with a DNN accelerator system.

3.1.0 BASELINE ACCELERATOR DEsSIGN (NVDLA)

NVIDIA deep learning accelerator (NVDLA) is an industry-grade, open source architecture solu-
tion to accelerate DNN inference. Baseline system parameters are given in Table 3.0, and a block

diagram is shown in Figure 3.1, left 178 NVDLA supports CNN and FC layer execution, and all

93

On-Chip Memory
1MSBR_A2"MB DRAM (Off-Chip) 1MSB“_A2"MB MLC eNVM DRAM

% SRAM % eNVM (Off-Chip)

l H

L]

‘ Memory Interface Block ‘ ‘ Memory Interface Block ‘ ‘ Memory Interface Block
Convolutional Convolution Fixed DLA Convolutional Convolution Fixed DLA ‘Convolutional Convolution Fixed DLA
Buffer Core Datapath fer — ore f—— Datapath uffer — ore f— Datapath
32KB - 512 KB 32 - 2048 MACs Components 32KB - 512 KB 32 - 2048 MACs Components 32KB - 512 KB 32 - 2048 MACs ‘Components

Figure 3.1: Baseline NVDLA (left) vs. Proposed Architectures (center, right) from MaxNVM, taken from 183,

computation in MaxNVM evaluations is performed using this datapath. By demonstrating our
proposed memory integrated with this system, we highlight the opportunity for eNVM integration
with existing systems for efficient DNN inference.

By default, all DNN weights are retrieved per-layer and per-tile from oft-chip DR AM before
being staged in the convolutional buffer for computation. Any inputs to the network and interme-
diate results are read from and written to on-chip SRAM of a configurable size in the system design,
and the memory interface block manages access both to the on-chip global SRAM bufter and oft-
chip DRAM resources. Inputs and weights may be configured as 8b or 16b width. The baseline
NVDLA system optionally allows for bitmask-encoded sparse weights, and the MaxNVM work
additionally considered CSR-encoded sparse weights. Additional architectural characteristics and

design paramters are listed in Table 3.0 and described in more detail in *7%.

3.1.1 FurLy ON-CHIr DNN INFERENCE EVALUATION OVERVIEW

MaxNVM considers a completely self-contained inference accelerator that stores all of the weights
in on-chip eNVM and does not require external DR AM, as indicated in Figure 3.1, center. This
scenario would be especially important for deeply embedded applications such as IoT devices and
implanted medical devices where component cost, performance, and energy constraints can be ex-
treme, and entirely on-chip execution could additionally provide privacy benefits 56,127

To evaluate the area, energy, and performance of both CTT and RRAM on a per-model basis,

94

we use model optimization results to determine the number of bits required per encoding and per-
form fault tolerance analysis. These determine the appropriate number of bits per cell and total
number of memory cells required for a given encoding without loss in classification accuracy (cov-
ered in Chapters 1.1.1, 2.3). Next, we use our extensions of NVSim to characterize memory systems
that are sufficient to accommodate the size of each model under each encoding strategy. Finally,
pareto-optimal points for characterized memories of four different design points are identified per
model to minimize the read energy-delay-product and area. The resulting system performance is
evaluated using the NVDLA performance model and compared to the performance of a baseline
configuration relying on off-chip DR AM for weight storage in (Figure 3.1, left).

This study quantifies the increase in die area needed to store the considered DNN's entirely in
on-chip memory while maintaining competitive performance and achieving reduced power and re-
duced energy per inference. The number of cycles to execute an inference per input image (frame) is
computed using the NVDLA performance model with the characterized read bandwidth and read
latency determined by NVSim for each eNVM array. Some amount of on-chip SRAM is retained in
the NVDLA system evaluation (512KB or 2MB in our designated NVDLA configurations, Table
3.0) to manage storage of intermediate values between layers of the DNN:s, as the write latency of
CTT is prohibitively high (on the order of 725'"5) and can still be orders of magnitude higher for

MLC-RRAM than SRAM write latency (e.g., 160 — 640xs).

3.1.2 AREA AND Dynamic REaD ENERGY

An interface to eNVM replaces NVDLA’s interface to off-chip DRAM for DNN weights, and we
demonstrate that aggressive MLC configurations of both CT'T and optimistically scaled RRAM
can store the sparsely-encoded, ECC protected weights of ImageNet-VGG16 (about 32MB Capac-
ity) in 2mm? and 1.3mm?, respectively. Thus, as a result of exhaustive design space exploration

and a rigorous evaluation scheme, all DNN weights can reasonably fit in on-chip, non-volatile

95

CiFarl10 ResNet50 VGG16

[s\}

<

= R
E

© 1

D I

.

<

o
[

Optimistic
MLC-RRAM
MLC-RRAM

SLC-RRAM

Optimistic
MLC-RRAM

MLC-CTT

MLC-RRAM

SLC-RRAM

Optimistic
MLC-RRAM

MLC-CTT

MLC-RRAM

SLC-RRAM

Figure 3.2: Array-Level area of various on-chip memory solutions for storing all DNN weights in eNVM, taken from 183,

memory in an area equivalent to 1-2MB of SRAM capacity in modern process nodes. Even SLC-
programmed RRAM fits all of ResNetso (12MB capacity under sparse encoding) in under 10mm*
(Figure 3.2). With additional model optimizations, or more relaxed error bounds, MLC config-
urations could be leveraged even more aggressively at some loss in DNN classification accuracy,
depending on use case. This study strictly avoids loss of accuracy. Even so, these models consume
reasonable area for on-chip local memory storage using MLC eNVM configurations.

Figures 3.2 and 3.3 summarizes the area and dynamic read energy per access of four distinct on-
chip memory solutions. The area for each model is the read-energy-delay-product optimal point
characterized by our extensions to NVSim that will hold all the DNN parameters in the most op-
timal encoding for each memory technology as determined in Chapter 2.3. Even relative to storing
the same optimized and sparse-encoded weights in SLC-RRAM, the MLC-CTT array requires an
average of 9.6 less area while maintaining competitive performance within 10% of the NVDLA
baseline. Furthermore, our MLC extension of the SLC-RR AM achieves an average area benefit of
over 3.2 X, and the optimistically scaled MLC-RRAM (Optimistic MLC-RR AM) enables an av-

erage area benefit of 20x. The larger relative area benefit between MLC-CTT and the Optimistic

MLC-RRAM for CiFar1o-VGGr2 (Figure 3.2) derives both from the inherent storage density of

96

CiFar10 ResNet50 VGG16

~~

=

(a8

N—r

>

o 10

[0}

c

w

©

3

. L]

— |

s £ s s g5 £ = s gs £ s =
2 O = = = 0 = T T L = <
2y d e 2 9 2 a2 2 ¥ a =
Ex § o o Ex¢ Y o o Ex Y a
2y =2 9 9 88 = 9 v =88 = 9 4
o s s w Os s w Os s 0w

Figure 3.3: Array-Level read energy per access of various on-chip memory solutions for storing all DNN weights in
eNVM, taken from 18,

the Optimistic MLC-RR AM and the fact that more bits per cell can be safely used with the Opti-
mistic MLC-RRAM (consistently 3 bits per cell) than with MLC-CTT (2 bits per cell) due to their
respective fault characteristics and the impact on classification error, as exposed in Chapter 2.3.4.
The dynamic read energy for each of the memory proposals varies by orders of magnitude, even
for equivalent-capacity characterized array (Figure 3.3). MLC-CTT is consistently lower energy per
access than even the Optimistic MLC-RR AM solution by over 4 x, and also tends to maintain a

lower read latency and higher read bandwidth (up to 9 GB/s).

3.1.3 SYSTEM PERFORMANCE

Considering a real application-specific metric (frames-per-second), even the SLC consistently meets
a target of 6ofps, for example, even for the largest models. Though eNVM proposals do not surpass
the maximal FPS possible with NVDLA (e.g., Figure 3.4), the best performance for each model con-
sistently exceeds 6o frames per second with the NVDLA-1024 configuration, well above the image
processing frame rate for standard motion pictures . The latency overhead of MLC sensing tends
to negate the effective bandwidth increase of MLC storage. This is seen in Figure 3.4; SLC-RRAM

is competitive with MLC-CTT in terms of frames (i.e., inferences) processed per second. We note

97

NVDLA-64 NVDLA-1024

~

a

a 200

~

2

o 150

o

1]

(%]

f.

@ 100

-8

[}

(<]

E 50

©

-

[*

O N o B e NN

= £ E s e =
s 5z 5 3 % 3 83 5 % %
X = 7 o [4 X = o o
c E¥x g ¢ & o E¥ g o «
¥ 829 = 94 9 g BY = 49 Y
a Os s w o Os s »n
[=) o
o a
= =

Figure 3.4: Achievable frame rate (inferences-per-second) for baseline NVDLA (LPDDR4 weight memory) vs. Proposed
Architectures from MaxNVM, taken from 183

that these performance estimates do not include the decoding overheads for sparse encodings and
cluster index values. However, the overhead to reconstruct and decode weight values for both strate-
gies will be minimal and consistent in the baseline and eNVM-based systems.

Figure 3.5 compares the average power consumption and total energy per inference for ResNetso
when operating at maximum performance. We consider two fixed NVDLA baseline datapath con-

212

figurations given in Table 3.0, for which the power consumption is publicly available*'*, and as-
sume additional power consumption of LPDDR 4 DR AM running at 1GHz is 20o0mW to form a
conservative bound of potential improvements via integration of on-chip eNVM *%.

The NVDLA-64 design is representative of a resource-constrained DNN accelerator, and the en-
ergy consumption of memory accesses for weight fetches is reduced by over 100 x (DRAM vs. 1mm?
of on-chip MLC-CTT), resulting in overall average system power reduction of 3.2 x. NVDLA-
1024 provides considerably higher performance (Figure 3.4) and overall higher efficiency inference
(lower dynamic energy per inference), though the average power is higher. In this scenario, we see

similar trends in MLC-CTT reducing energy consumption due to weight fetching by up to 13.6 x.

However, due to the higher baseline power of the larger convolutional core and buffer, the total

98

NVDLA-64 NVDLA-1024 NVDLA-64 NVDLA-1024

N 10 M Weight Memory
E 5 M On-Chip SRAM E 200
§ Datapath .E.
Q S
s 6 g 300
e
£
4 @ 200
- . 4
5, 00 5
o || > 100
(] 4
c I - .
W 0 B e

=

istic

LPDDR4 DRAM
Optimistic
MLC-RRAM

MLC-CTT
MLC-RRAM
SLC-RRAM

LPDDR4 DRAM
Optimistic
MLC-RRAM

MLC-CTT
MLC-RRAM
SLC-RRAM

LPDDR4 DRAM
Optimist
MLC-RRAM

MLC-CTT
MLC-RRA
SLC-RRAM

LPDDR4 DRAM
Optimistic
MLC-RRAM

MLC-CTT
MLC-RRAM
SLC-RRAM

Figure 3.5: Total energy-per-inference and average system power for baseline NVDLA (LPDDR4 weight memory) vs.
proposed architectures from MaxNVM, taken from 3.

relative system power reduction is up to 1.6 .

Of the three evaluated MLC proposals, MLC-CTT achieves the best system performance, low-
est power, and lowest energy per inference. Compared to the optimistically scaled MLC-RRAM,
higher read bandwidth and lower energy per read result in 20% overall lower energy per inference for
MLC-CTT for NVDLA-64. These demonstrated benefits are relative to energy and performance
characteristics of convolutional models using a highly-optimized CNN accelerator datapath that
maximizes re-use of fetched values, so energy reduction due to memory fetches would be increas-
ingly beneficial in other resource-constrained contexts that exhibit less re-use of fetched parameters,
as explored further in future works, for example in Sections 3.2 and 3.3. Compared to the energy us-
age of the NVDLA datapath and SRAM in isolation for ResNetso inference, we see that the power
for the eNVM solutions are a fraction of the the compute pipeline for the aggressive MLC propos-
als (either optimistically scaled MLC-RRAM or MLC-CTT based on our fabricated test chip), and
the overall system power reduces by up to 40% with the added benefit of low leakage power and the
ability to turn off the eNVM between inferences and retain weight values. Table 3.1 gives a sum-

mary of area, energy, and performance for optimal storage for each design point.

99

‘ Model ‘ Memory Tech ‘ Encoding ‘ BPC ‘ [MB] ‘ Area [mm?] ‘ Read [ns] ‘ FPS ‘

Opt. MLC-RRAM | BitM+IdxSync | 3 4 0.12 5.1 132

CiFarto MLC-CTT BitMask 2 4 0.35 1.6 2286
MLC-RRAM BitM+IdxSync | 3 4 1.3 4.9 633
SLC-RRAM BitMask I 4 3.4 1.7 2967
Opt. MLC-RRAM | CSR+ECC 3 32 1.3 4.2 102

VGG16 MLC-CTT CSR+ECC 3 32 2.0 2.0 142
MLC-RRAM CSR+ECC 3 32 5.7 3.2 131
SLC-RRAM CSR I 32 19.2 5.2 147
Opt. MLC-RRAM | BitM+IdxSync | 2 12 0.6 2.1 147

ResNetso MLC-CTT BitM+IdxSync | 2 12 1.0 1.9 215
MLC-RRAM BitM+IdxSync | 2 12 2.8 1.4 203
SLC-RRAM BitMask 1 12 9.6 2.5 219

Table 3.1: Summary of optimal storage per eNVM proposal, characterized per DNN. ‘BPC’ is the maximum number of
bits per cell used across DNN layers, ‘MB’ is the approximate capacity, ‘FPS’ is the maximum frames per second for
NVDLA-1024, and ‘Read’ is the Read Latency of each eNVM array in 7s, taken from 183,

3.1.4 REDUCING OFF-CHIP DRAM ACCESS FOR LARGER MODEL SIZES

New DNNs tend to improve accuracy by increasing model size *7*

. To understand what happens
when a model does not fit in on-chip eNVM, we consider a hybrid solution, shown in Figure 3.1,
right. We allocate a fixed on-chip area allowance for all memory (SRAM and eNVM), and weights
and activations that do not fit on-chip are stored and fetched from DRAM.

We choose an on-chip memory area budget of 17mm*

, enough to accommodate about tMB of
SRAM under various NVSim optimization targets. With eNVM, smaller DNN fit within this area
constraint. The results in Figure 3.6 are for the largest DNN, ImageNet-VGG16, and highlight the
performance impact of incorporating varying amounts of on-chip space to eNVM, which effectively
increases on-chip memory capacity in a constrained environment. Note that the eNVM is not used
as cache for DRAM; on-chip CTT/RRAM and DR AM store mutually exclusive sets of model
weights and both are fed directly into the accelerator’s datapath. By partitioning fixed on-chip mem-

ory area between SRAM for intermediate storage and MLC eNVM for weight storage, we reduce

costly DRAM accesses while drastically increasing total on-chip memory capacity. For each possible

I00

§ 15

g

< ~
Y

£ J
g 1.0

[a

@ B MLC-CTT

9 Optimistic MLC-RRAM
(@)

2 0.5

>

2

o

Q

~ 0.0

0 10 20 30 40 50 60 70 80 90 100
% of On-Chip Memory Area Devoted to eNVM

Figure 3.6: Partitioning a fixed on-chip area between SRAM and a highly-dense eNVM solution is strictly beneficial until
the SRAM capacity becomes insufficient to store intermediate results, which sharply degrades inference performance
(e.g., at 45-60% of area devoted to eNVM), taken from 183

area partition, we use NVSim to characterize the maximal capacity and minimal read latency and
energy within that area constraint and select pareto-optimal points.

Depending on how the on-chip memory area is partitioned, inference execution could be bottle-
necked by weight retrieval from DRAM for weights not in the eNVM, or by read/write traffic of
intermediates that do not fit in SRAM. We extend the NVDLA performance model to selectively
read certain weights from eNVM rather than DR AM, and maximize eNVM benefits by greedily
selecting the weights of otherwise DR AM-bottlenecked layers to store first. There is some initial
benefit from alleviating the weight retrieval DR AM bottleneck when some amount of eNVM is
allotted, because the number of DR AM accesses reduces and the energy to access either eNVM is
orders of magnitude lower than accessing DRAM. However, performance sharply degrades when
on-chip SRAM storage can no longer hold the working set of intermediate values to feed the convo-
lutional core and execution gets increasingly bottlenecked on writing to and fetching intermediate

values from DR AM. The write characteristics of both alternatives are not sufficient to buffer inter-

I0I

mediate values or to re-write weights during inference, as explored in Section 3.1.6.

3.1.5 INTERMITTENT OPERATION; BENEFITS OF NON-VOLATILITY

As yet, we have demonstrated incredible capabilities in terms of storage density and energy efficiency
of MLC eNVM storage for on-chip DNN inference. However, we have not explicitly taken ad-
vantage of the non-volatility of the proposed embedded memories, and this property becomes
extremely beneficial in intermittent operation use cases. eNVM arrays effectively have a huge ad-
ditional energy advantage because there is no leakage power (even leakage power for sensing is at
least 100 less than SR AM leakage according to NVSim). Though we have thus far only examined
the significant benefits in terms of read dynamic energy during inference, another key advantage

of both RRAM and CTT memory is that they are non-volatile, and thus can be powered off when
not in use and need not incur any leakage power between inferences. This makes these design points
and other eNVM technologies a particularly attractive solution for edge devices, as weights can be
stored locally, off-line, and without any leakage power cost between inferences, in stark contrast to
the constant leakage power required by SRAM or power-hungry DRAM refresh.

Depending on how frequently inferences occur (i.e., required frame rate for an image process-
ing task>°+%7), eNVMs have an inherent relative benefit by virtue of not needing to reload weight
values when powered on or, alternatively, keeping DRAM and SR AM powered to avoid this cost.
Figure 3.7 summarizes how the average energy per inference of the evaluated MLC eNVM solutions
compares to the baseline system either remaining fully powered to retain DNN weights (‘DRAM
always on”) vs. waking up the system for each inference (“DR AM wake up”). Each time the base-
line system is woken up, there is an energy overhead to load the entire DNN’s weights from main
memory into DRAM and an increased inference latency to load the entire first DNN layer before
the inference task can begin computation, while these costs are not applicable to eNVM technolo-

gies that retain their values when powered off between inferences.

I02

B DRAM Always On

Security DRAM Wake up
Camera
200 iyl B MLC-CTT
— . MLC-RRAM
E % [50] Opt MLC-RRAM
- 1] -
3 \ —— SLC-RRAM
5 Conferencing VR Headset
5 50 30 FPS [51] 90 FPS [52]
L~
£
S~
>
o 20
S
[
5
. 10

(=)} ——
>
<

5

2

0 10 20 30 40 50 60 70 80 90 100
FPS

Figure 3.7: Average Energy-per-Inference for baseline NVDLA vs. proposed architectures at varying frame rates; for

typical frame rates, it is strictly beneficial to leverage eNVM storage and wake the system per-inference, taken from &%,

If the DRAM power stays constant while the frequency of inferences increases (i.c., frames pro-
cessed per second, FPS), the average energy per inference decreases as the system spends less time
idle. Conversely, if the system is woken up for each inference, the average energy per inference is
constant so long as the frequency (FPS) can be met by the NVDLA-1024 system, which Figure 3.4
showed is clearly possible for the range of FPS considered. For frame rates below 22 FPS, such as
would be relevant for object detection tasks for security camera systems 2, it is more energy efficient
to wake up the baseline system per inference, but our proposed MLC eNVM solutions maintain a
relative 5.3x (MLC-RRAM) to 7.5 x (MLC-CTT) reduced energy per inference.

Energy savings are similar for the typical range of frame rates used for video conferencing and
other standard image processing tasks (e.g., 30 FPS>°+). Though the average energy per inference
of the always-on baseline system approaches the performance of MLC eNVM alternatives at higher

frame rates, we note that even operating at the FPS mandated to support virtual reality headsets

103

‘ Model ‘ Memory Technology ‘ Approximate Total Write Time

OPTMLCRRAM Tyms

CiFarto MLCCTT 2.6 minutes
MLC RRAM o

SLC RRAM 3ms

OPTMLCRRAM L17ms

MLCCTT 15.7 minutes
ResNetso MICRRAM S
SLC RRAM 47ms
OPTMLCRRAM 254775

MLCCTT 12.2minutes
VGGI6 I LCRRAM G363
SLC RRAM 23ms

Table 3.2: Optimistic total time to write all DNN weights per eNVM solution, taken from 183,

(at least 90 FPS®7), MLC eNVM proposals achieve 1.7 x (MLC-RRAM) to 2.5x (MLC-CTT)
lower energy per inference. Thus, optimized MLC eNVM solutions are particularly compelling for
applications with lower frame-rate requirements, and these benefits would be exaggerated for deeply

embedded systems with less frequent wake-ups.

3.1.6 WRITE LATENCY

Table 3.2 gives an approximate total time to write each model’s entire set of weights to each eNVM
design point, simulating a full weight update after retraining, perhaps, based on best-case-scenario
write latency from previous work (e.g., as extracted in the survey presented in Section 1.2). Depend-
ing on a given application space and resource constraints, waiting on the order of minutes may or
may not be reasonable when re-writing of DNN weights is required. However, in sensor nodes,
mobile devices, and other constraint-driven devices in which DNN inference is a key workload, peri-
odic down-time for synchronization and charging may be permissible.

The asymmetric costs of eNVM writes and reads are further discussed, and another key approach
is to identify a subset of application data that will be less-fequently-written, but frequently read,

to maximize the benefits of on-chip eNVM storage and data reuse. This general strategy is probed

104

in order to optimize support for multi-task inference in both image-processing (Section 3.2) and

natural language processing (Secion 3.3) domains in follow-on works to MaxNVM.

3.1.7 MaxNVM SumMMARY

Table 3.1 provides the energy, area, and performance per model. The results emphasize the need
for a comprehensive co-design methodology. Considering the storage density of MLC and energy
advantages due to non-volatility, even unoptimized DNNs or other reasonably fault-tolerant appli-
cations may leverage these memories. However, choosing the optimal encoding strategy, MLC con-
figuration, and whether to include error mitigation techniques varies between models and eNVM
technologies. Thus, a rigorous evaluation of the design space per DNN, as our methodology effec-

tively executes, maximizes efﬁciency gains.

3.2 MEMTI: OrTiMi1zING ENVM FOR VisUAL MULTI-TASK INFERENCE

Embedded non-volatile memories (eNVMs) are under active consideration to provide higher den-
sity than SRAM and ameliorate the need for power-hungry DR AM storage. However, the ben-
efits of eNVMs come at the cost of larger write energy and write latency, as exposed and explored
in Section 3.1. Moreover, limited eNVM write endurance is an obstacle to the adoption of certain
technologies if DNN parameter values require frequent updates, as discussion in Chapter 1. For
instance, embedded devices for robotics or augmented reality applications often required a com-
bination of multiple inference tasks, including image classification, object detection, and action
recognition. These cases highlight the need for scalable solutions that can flexibly accommodate
DNN parameters for multiple tasks.

MEMTT>? presented a DNN model and memory co-design solution that leverages a machine

learning technique to reduce eNVM writes, while enabling systems to efficiently perform multiple

10§

inference tasks. Maximizing the reuse of the learned parameters across different DNN-dependent
vision tasks without re-training enforces the assumption of infrequent writes: parameters shared by
multiple tasks are trained and written only once, and therefore are highly suitable for eNVM stor-
age; in contrast, the remaining parameters can be re-trained to accommodate new inference tasks,
and stored in SRAM. In addition to the storage density benefits, we evaluate how the process of re-
training specific parameters can be used to recover from accuracy loss due to the adoption of denser,
fault-prone multi-level eNVM storage. To the best of our knowledge, this was the first attempt to

co-design non-volatile memories and DNN models through multi-task learning approaches.

3.2.0 TRANSFER LEARNING FOR DNN AND MEMORY CO-DESIGN

Generalizing deep learning architectures to enable different application domains and more var-

ied inference tasks serves as a way of supporting more powerful and versatile models. For example,
prior work in the machine learning community '** combined several building blocks for transla-
tion, speech, and visual inference that can be trained on all desired tasks simultaneously or on each
task separately. In either case, however, introducing new inference tasks would require updating the
entire set of model parameters. Other works have leveraged the concept of transfer learning to im-
prove the performance of a single DNN on different datasets*°. These approaches are based on the
observation that many visual inference tasks share low-level features, such as edge and shape detec-
tion, in the front-end layers, and become more task-specific as the computation moves closer to the
classification layers. However, in order to preserve inference accuracy, transfer learning approaches
either share only a limited number of front-end layers or fine-tune parameters by re-training the
transferred features from one inference task to another. A recent proposal applies transfer learning
to create a synthesizable fixed-parameter feature extractor ***. However, hard-wiring the feature ex-
tractor in logic prevents any future capability of fine-tuning the parameters, limiting the amount of

cross-task weight sharing and flexibility.

106

‘ Dataset ‘ cifarroo ‘ aircraft ‘ daimlerpedcls ‘ gtstb ‘ ucfror ‘

images soK 7K 30K 40K oK

classes 100 100 2 43 101
Full model 72.78% | 40.98% 99.88% 99.97% | 73.77%
Only adapters 79.61% | 43.8% 99.51% 99.94% | 73.16%
Parameters overhead | 10.4% 10.4% 10.1% 10.2% | 10.4%
Training speed-up 4X 2x 1.35x% 3.23%X | 4.74%

Table 3.3: Summary of dataset characteristics, and maximum training accuracy for the model trained entirely from
scratch on each dataset or using residual adapters on a pre-trained network. Pre-trained shared parameters on Ima-
geNet, with 67.65% accuracy, taken from 59,

While all these techniques enable a single DNN model to perform different inference tasks,
they still require updating a considerable portion of parameters to achieve maximum adaptation.
MEMTI pursued a specific transfer learning technique for which the learned parameters can be gen-
eralized across multiple vision inference tasks by maximizing DNN parameter reuse and enabling
efficient inference on embedded devices. The high degree of DNN parameters reuse reduces mem-
ory traffic requirements, which makes non-volatile memories a compelling solution for retaining

shared parameters on-chip without incurring costs associated with frequent memory writes.

3.2.1 MULTI-TASK LEARNING MODEL

Our design is based on the DNN architecture presented in'?%, which uses residual adapter modules
as a way to parameterize a generic ResNet network. These parametric modules are themselves resid-
ual blocks which use 1 X 1 filters and skip connection. In this setting, the number of domain-specific
parameters, which comprises adapter filters, batch normalization, and fully-connected classifier pa-
rameters, can be reduced to roughly 10% of the total model size.

For our experiments, we integrate the residual adapter modules in a ResNet26 network. The
baseline network is pre-trained on ImageNet, which is standard practice in transfer learning and
model fine-tuning techniques. The pre-trained version for ImageNet achieves top-1 accuracy of

67.65%. The ResNet26 weight parameters obtained during pre-training are the backbone of this

107

multi-task inference system as they are reused for running inference on any additional visual task.
The degree of adaptation is tested against five datasets selected to be representative of popular image
processing tasks including classification (cifarzoo, aircraft), object detection (German Traffic Signs,
Daimler pedestrian classification), and action recognition (UCF1o1 Dynamic Images).

Table 3.3 summarizes the best accuracy in the case of the model being either trained entirely from
scratch or only for the task-specific parameters. As anticipated, for all datasets, the adapters overhead
is around 10%. The accuracy of the network trained using adapters is always better than or compa-
rable to training the entire network independently for each dataset. In addition, we observe that the
modified model converges to the best accuracy in fewer training epochs, which results in training

speed-up reported in Table 3.3.

3.2.2 NON-VOLATILE MEMORY TECHNOLOGIES FOR MULTI-TASK INFERENCE

The landscape of non-volatile memories includes a wide range of emerging technologies 5031 as
highlighted in Chapter 1.2. These memories are generally characterized by high energy efficiency
and high storage density, which can be further increased by programming multiple levels in a sin-
gle cell. MEMTT focussed on a specific eNVM implementation (RRAM). Various implementa-
tions such as phase-change memories (PCM), embedded Flash (eFlash), or ferroelectric memories
(FeR AM) can also be used for MLC storage. On the other hand, STT magnetic memories (ST'T-
MR AM), while having the best write and read performance 5¢_are not as suitable because com-
pelling MLC implementations with comparable density have not been demonstrated to date, as

described in Chapter 1.2.

108

Bridge
DMA

Convolutional
Buffer
256 KB

!

Convolution
Core
1024 MACs

!

_|Activation Engine
(SDP)

A

 /

. Pooling Engine
(PDP)

Memory Interface Block

| Local Resp. Norm
"] Engine (CDP)

On-chip memory

\ /

Reshaping
Engine

Figure 3.8: NVDLA system diagram, with additional optional interface to multi-level-cell RRAM for on-chip weight
storage in a multi-task image processing setting, taken from 59,

3.2.3 MEMORY SYSTEM OVERVIEW

In order to complement the properties of residual adapter networks and dense MLC RRAM stor-
age, we propose MEMTT, a Memory system for Efficient Multi-Task Inference. A large fraction of
the parameters in a residual adapter network is shared across multiple applications, and can be efhi-
ciently stored in MLC RRAM, while application-specific parameters can be stored in SRAM. By
partitioning on-chip memory area between RRAM and SR AM, as shown in Figure 3.8, we achieve
the best trade-off between storage density for the shared parameters and fast and energy-efficient up-
dates for the task-specific parameters (SRAM). Off-chip DR AM stores multiple sets of task-specific
parameters. The resulting memory hierarchy takes advantage of RR AM non-volatility for inter-

mittent operation by powering down the system between inferences. In this scenario, only a small

109

portion of the model parameters must be written to SRAM during power up or task switching.
Moreover, storing task-specific parameters in more robust memory allows us to mask MLC RRAM

faults via retraining.

3.2.4 EVALUATION FRAMEWORK

To evaluate the proposed memory architecture, we quantify the impact of RRAM fault charac-
teristics and MLC encoding on inference accuracy, memory architecture and array properties, and
system-level performance. The fault model is derived from previous work integrating eNVM device
and circuit-level fault characteristics with DNNs evaluation frameworks to allow for extensive mem-
ory and DNN co-design space exploration 2183 We model MLC RRAM faults based on stochastic
level distribution which arise from the random nature of memristors programming. When multiple
levels are programmed in a single RRAM cell, the distributions overlap can be used to extrapolate
the read fault probabilities for each level, as described in Chapter 2.1.

To evaluate the DNN accuracy under different storage schemes, we use a version of the resid-
ual adapter architecture implemented in Py Torch'®’. We modified the existing implementation
by adding transform functions to manipulate the values according to different multi-level encod-
ing and compression techniques. The resulting error map is then integrated in a DNN evaluation
framework to simulate the impact MLC RR AM faults on inference accuracy, an extension of 3.

268 Based on

The level distributions are extrapolated from measured MLC RRAM characteristics
the MLC RRAM fault probabilities, we sample the value of the stored weight matrix based on a
predefined multi-level encoding configuration to evaluate the impact on the model accuracy. In ad-
dition, we improve the fault model by including the effects of the sensing circuitry on the read error
probability, also described in Section 2.1.

The corresponding framework is used to drive the design towards a solution that would mini-

mize the on-chip memory footprint without increasing the inference error. After identifying the

best MLC encoding without loss in accuracy, we perform a memory design space exploration us-
ing a modified version of NVSim 2, as in MaxNVM "#3. The impact of off-chip memory accesses is
quantified using a model of LPDDR 4 DR AM. Finally, we integrate the resulting memory hierarchy
with a proven CNN accelerator architecture developed by NVIDIA (NVDLA), which, combined
with NVSim results and DR AM estimates, allows us to evaluate the system energy and performance

for different application scenarios.

3.2.§ SYSTEM-LEVEL CHARACTERIZATION

As shown in Figure 3.8, the baseline NVDLA system in this particular evaluation comprises a con-
volutional core with 1024 MAC units fed by a convolutional bufter and supplemented by several
additional computational units for pooling and data transformation operations. NVDLA also
supports a memory interface block and DMA that fetches model weights per layer from oft-chip
DR AM and leverages on-chip SRAM (2MB) to bufter inputs and intermediate results of compu-
tation between layers in the DNN. We flexibly integrate MEMTT with the NVDLA performance
model as an additional memory interface to leverage for model weights, either in addition to or in
place of fetching parameters from oft-chip DR AM, reusing the more flexible performance model
interface put forth in MaxNVM 3.

For a competitive multi-task inference application, we evaluate the performance, energy, and area
for the NVDLA system when executing three inferences per input frame using three representative
visual tasks, namely image classification (cifar1oo), object detection (gtsrb), and action recognition
(UCFror). This series of tasks computed per input frame would be appropriate, for example, for
an autonomous vehicle or a drone processing sensory data to understand and interact with the sur-
rounding environment. For this application, we set the target operating frequency to 30 frames per

second (FPS), or 9o inference tasks per second, which satisfies a breadth of applications **°.

3.2.6 BASELINE, DRAM-RELIANT EVALUATION

As a baseline case, we assume that the accelerator is continuously processing input frames and fetch-
ing both shared and task-specific parameters from oft-chip DRAM for each layer’s computation.
This DR AM-only, always-on operation consumes a total power of 493mW and a peak performance
of 749FPS. The estimated power includes datapath, DR AM refresh, and on-chip SRAM leakage.
At this stage, the on-chip SRAM is exclusively used for storing the input features and intermediate

values. We compute the energy per frame at peak performance to be 1.17m].

3.2.7 PROVISIONING FOR ON-CHIP SRAM

We first show the case in which we allocate enough on-chip SRAM to store the entire set of pa-
rameters for a single task. For a system designed to run a single inference task, having the option

of storing all the network parameters on chip allows to reduce the memory access energy by 40 x.
This result demonstrates the strong impact of off-chip memory access on the entire system energy.
These high energy savings are however impractical to realize with SR AM since for a 22nm technol-
ogy node, we estimate a total area of at least 6.55mm?, over 10X larger than the on-chip SRAM
area for the baseline NVDLA configuration. Moreover, when we consider the full system energy in
the multi-task scenario described above, the periodic parameter updates and SR AM leakage power

reduce the energy savings to 0.64 X.

3.2.8 IMPROVING STORAGE DENSITY wITH ENVM

As a first step towards reducing both power consumption and memory footprint we consider stor-
ing the weights on-chip using MLC RR AM. Without applying any application-level optimization,
a multi-task operation would still require updating all the model parameters stored in RRAM when

switching to different inference tasks. While this type of operation has a clear downside dictated

2.00- @all SRAM @ MEMTI

Baseline NoTrain Retrain Adapters
@ saseine. @ Norain. @ Retran Adapters @all RRAM @ RRAM adapters

Inference accuracy
Energy/inference

cifar100 daimlerpedcls aircraft ucfl0l gtsrb 90 FPS 60 FPS 30 FPS

Figure 3.9: Accuracy Results for MEMTI (left) and Energy vs FPS for the different design configurations normalized to
the DRAM baseline (right). The power savings of the RRAM-based design for higher frame rates is exacerbated by the
frequent RRAM writes, making the design less efficient than the DRAM-based baseline. On the other hand, the energy
per inference for MEMTI and RRAM adapters is strictly better than the baseline, taken from>’.

by the RR AM write endurance, our system level evaluation exposes other limitations. Although

the overall leakage power and on-chip memory area can be reduced to 298mW and 0.347mm? re-
spectively, the energy per inference increases to 14.58m]. This is caused by the combined effect of
RRAM write energy and latency. These examples highlight the need for a solution capable of bal-

ancing on-chip memory density and write performance.

3.2.9 MEMTI FOR INTERMITTENT OPERATION

MEMTT reduces memory write costs by replacing the RR AM portion storing the task-specific pa-
rameters with SRAM. This is possible thanks to the adoption of residual adapters in the DNN
network. For the resulting design, the total system power is 362mW and the energy per inference
is 1.56mJ, which is comparable with the baseline. Isolating the costs associated with weight stor-
age compounds the benefits introduced by MEMTT: power consumption decreases by 3.9, with
an area overhead of 1.16mm?. The resulting peak performance is 429FPS, well above application
requirements. Intermittent operation is where MEMTT truly stands out by taking advantage of
non-volatility. In this scenario, we fix the operation at 30FPS and power down the system between

frames, which reduces the energy per inference by 10.65 x, as highlighted in Figure 3.9.

113

Power | Max FPS | WMem Area | Saved | On-chip | On-chip
[mW] [mm?] energy | SRAM | RRAM
all DRAM 493 749 - 1x >MB -
al SRAM 634 485 6.55 0.64x | 8.5sMB -
all RRAM 298 47 0.347 1.62x 2MB 2.2MB
MEMTI 344 429 1.16 10.65x | 2.7MB 2MB
RRAM adapters | 301 396 1 13.6% 2MB 4MB

Table 3.4: Summary of power, performance and area for the four design configurations considered in this work. The
energy savings are normalized to the all DRAM configuration for the intermittent multi-task operation over three tasks
running at 30 FPS. On-chip RRAM shows the physical memory capacity (i.e. number of cells), taken from>?.

3.2.10 A RRAM-BASED SPECIALIZED DESIGN

Alternatively, we consider the case specifically tailored for the three chosen tasks. Using residual
adapters still reduces the weights storage requirements by a factor of 2.3 x. However, based on pre-
vious results, we use SLC RRAM to store the task-specific parameters and preserve inference ac-
curacy. Therefore, we store the entire set of parameters in MLC and SLC RRAM. Removing the
need for additional SRAM reduces the overall power to 343mW, and the area to Imm?. Allocating
enough memory for storing all the parameters on chip increases the energy savings compared to the
baseline by 13.6 <, making this design the most area and energy efficient. Nonetheless, MEMTT
maintains the advantage in terms of flexibility and robustness to RRAM errors thanks to ease of
reprogrammability for the task-specific parameters, for which the memory capacity is determined
only by the network structure and therefore is independent from the breadth of tasks considered in
a specific application.

Figure 3.9, right, shows the relationship between FPS and energy per inference normalized to the
DRAM case. The all SRAM and all RRAM configurations are heavily penalized by the inability
of efficiently implement a multi-task inference system. On the other hand, a co-design of the mem-
ory and DNN model using residual adapters shows much higher energy savings compared to the

baseline. Table 3.4 summarizes the results at 30 FPS for the different configuration cases.

114

Final Classifier

Transformer Encoder
> Layer 12

7Yy

Transformer Encoder
g Layer 3

Target

Latency ™~

Early Exit
Predictor
(LuT)

Target

Entropy >

{
Transformer Encoder
+* Layer 2

Transformer Encoder
Layer 1

No

Entropy() < Te

(" Early exit off-ramp

Early Yes
Exit

Normalization
Residual Feed Forward
Connection Network

Y Network Pruning : Embedding Layer \

Floating-Point Quantization '
Y eNVM Storage Input Sentence

Resid

12x
/ Pre-Attention
| Linear Layer

Adaptive Attention Span

Pre-Mask.

Post-Mask \. 4

€€K Z 3> x
Leamable Attention
Span Parameter

Figure 3.10: EdgeBERT design elements, a comprehensive codesign intersected with the memory density and efficiency
considerations of MaxNVM to improve storage density and enable clever on-chip weight storage of ALBERT shared
weights, in conjunction with several interdependent algorithmic optimizations and stategic use of dynamic voltage and

frequency scaling (DVFS), taken from 22°.

3.3 EDGEBERT: OrTiMIZATIONS FOR MULTI-TASK NLP INFERENCE

Transformer-based language models such as BERT provide significant accuracy improvement to

a multitude of natural language processing (NLP) tasks '*°. However, their hefty computational

and memory demands make them challenging to deploy to resource-constrained edge platforms

with strict latency requirements. The EdgeBERT project“(’ proposed and evaluated an in-depth

algorithm-hardware co-design for latency-aware energy optimizations for multi-task NLP. Edge-

BERT employs several optimizations with implications across the computing stack, summarized

in Figure 3.10, including entropy-based early exit predication in order to perform dynamic voltage-

frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while ad-

hering to a prescribed target latency. Computation and memory footprint overheads are further

alleviated by employing a calibrated combination of adaptive attention span, selective network prun-

ing, and floating-point quantization, as a result of a reimagining of the data format, pruning, and

quantization in previous presented studies with the particular characteristics and optimization goals

of NLP inference tasks using the ALBERT, transformer-based DNN model 126,

Furthermore, in order to maximize the synergistic benefits of these algorithms in always-on and

I1§

intermediate edge computing settings, EdgeBERT specialized a 12nm scalable hardware accelera-
tor system, integrating a fast-switching low-dropout voltage regulator (LDO), an all-digital phase-
locked loop (ADPLL), as well as, high-density embedded non-volatile memories (eNVM:s) wherein
the sparse floating-point bit encodings of the shared multi-task parameters are carefully stored. Al-
together, latency-aware multi-task NLP inference acceleration on the EdgeBERT hardware system
generates up to 7 X, 2.5 X, and 53 X lower energy compared to the conventional inference without
early stopping, the latency-unbounded early exit approach, and CUDA adaptations on an Nvidia

Jetson Tegra X2 mobile GPU, respectively.

3.3.0 Co0-DEsIGNING MLC STORAGE FOR EDGE NLP INFERENCE

The ALBERT model’s hefty storage requirements comprise two different classes of parameters: (1)
task-specific encoder weights, and (2) word embedding parameters. Word embeddings are deliber-
ately fixed during fine-tuning and reused across different NLP tasks, making them a prime target
for dense, MLC eNVM storage with less frequent writes. The EdgeBERT methodology sought
to avoid the energy and latency costs of reloading the word embeddings from off-chip memory for
different tasks by storing these shared parameters in embedded non-volatile memories (¢eNVMs).
eNVM storage also enables energy-efficient intermittent computing because the embedding weights
will be retained if and when the system-on-chip powers off between inferences. However, despite
their compelling storage density and read characteristics, eNVMs exhibit two main drawbacks: po-
tentially high write cost and decreased reliability **.

Fortunately, the word embeddings are acting as read-only parameters on-chip, which makes them
highly suitable for eNVM storage, but previous work highlights the need to study the impacts of
faulty, highly-dense RR AM storage on DNN task accuracy '9»*>*%59_ On the other hand, encoder

weights need to be updated when switching across different NLP tasks. To prevent the energy and

latency degradation that would follow from updating the encoder weight values in eNVMs, we map

116

SLC MLC2 MLC3
mean | min | mean | min | mean min
MNLI 85.44 | 85.44 | 85.44 | 85.44 | 85.42 | 85.25
QQP 90.77 | 90.77 | 90.77 | 90.77 | 90.75 | 90.61
SST-2 92.32 | 92.32 | 92.32 | 92.32 | 91.86 | 90.83
QNLI 89.53 | 89.53 | 89.53 | 89.53 | 88.32 | 53.43
Area Density
(mm?/MB) 0.28 0.08 0.04
Read Latency
(n5) 1.21 1.54 2.96

Table 3.5: Results of fault injection simulations impact of RRAM embedding storage on overall task accuracy.
SLC=single-level cell (1 bit per cell). MLC2= 2 bits per cell. MLC3 = 3 bits per cell, adapted from 226

the natural partition of shared and task-specific parameters to eNVMs and SR AMs, respectively 7.
This work specifically considers dense, energy-efficient Resistive RAM (RRAM) arrays as an
on-chip storage solution for shared embedding parameters (see Chapter 1.2.0). RRAM:s arose as
a compelling memory solution for this use case for their relative maturity and demonstrated read
characteristics. There is a larger design space of opportunities to be explored with other emerging
MLC-capable NVMs, but it is difficult to quickly and effectively identify eNVM solutions for a
particular application and system setting, which is a research issue addressed in Chapter 4.
EdgeBERT evaluates the robustness of storing the 8-bit quantized word embeddings in MLC
RRAM storage. In order to quantify the trade-ofts between storage density and task accuracy, we
use cell characteristics of 28nm RRAM programmed with varying number of bits per cell '3, and
evaluate 100 fault injection trials per storage configuration to identify robust eNVM storage solu-
tions. Resulting per-task accuracy and memory array characteristics are summarized in Table 3.5.
After pruning, we store non-zero compressed embedding weights using a bitmask-style sparse
encoding. Previous work demonstrated that DNN weight bitmask values are vulnerable to MLC
faults, so the bitmask is protectively stored in lower-risk SLC devices, while we experiment with
MLC storage for the non-zero data values'*. Table 3.5 uncovers exceptional resilience to storing

word embeddings in MLC RRAM. Across many fault injection trials, we observe that MLCz

117

R
= i
2 ~66,000x 2
5 g
i I3
5 5
\
DRAM read + ReRAM read DRAM read + ReRAM read
SRAM write/read SRAM write/read

Figure 3.11: Replacing accesses to off-chip DRAM for word embedding storage with embedded RRAM drastically re-

duces both the memory energy (left) and latency (right) across inference tasks, taken from 226,

(RRAM programmed at 2 bits-per-cell) does not degrade accuracy across multiple tasks, while
MLC3 exhibits potentially catastrophic degradation in minimum accuracy and an appreciable de-
cline in average accuracy for the QNLI task. Based on this observation, the EdgeBERT accelerator

system leverages MLC2 ReR AMs for word embedding storage.

3.3.1 RESULTS AND DiscuUssION

Fig. 3.11 illustrates the immense gains of leveraging an MLC eNVM configuration during single-
batch inference after SoC power-on. In EdgeBERT, ALBERT embeddings would only need to
be read from the integrated ReR AM buffers due to being statically pre-loaded. The conventional
operation dictates reading the embedding weights from off-chip DR AM, then writing them to
dedicated on-chip volatile SRAM memories so they can be reused for future token identifications.
The EdgeBERT approach enforces a latency and energy advantage that is, respectively, sox and
66,000% greater than the overhead costs in the conventional operation. The non-volatility of this
embedded storage means that these benefits can further scale with the frequency of power cycles.
Though EdgeBERT conducted a more limited design space exploration than MaxNVM with

respect to eNVM storage solutions, EdgeBERT was able to quickly and efficiently leverage the in-

118

tuitions and methods of MaxNVM to identify and evaluate MLC eNVM array configurations that

satisfied the application and system requirements.

119

Even in a world of accelerating change, it is still difficult to convince people that new ways of

doing things can be better and cheaper.

Grace Hopper, “Computers in the Navy”, 1976

NVMExplorer: Cross-Stack Memory

Design and Optimization

THE WIDE ADOPTION OF data-intensive algorithms to tackle today’s computational problems in-
troduces new challenges in designing efficient computing systems to support these applications.

Hardware specialization has shown potential in supporting state-of-the-art machine learning and

I20

graph analytics across several computing platforms. However, data movement remains a major
performance and energy bottleneck. As repeated memory accesses to off-chip DRAM impose an
dominating energy cost, embedded memory systems demand increased on-chip storage density and
energy efficiency beyond what is currently possible with SRAM.

In recent years, CMOS-compatible, embedded nonvolatile memory (¢eNVM) research has transi-
tioned from articles and technical reports to manufacturing flows and product lines. These tech-
nologies hold incredible promise toward overcoming the memory wall problem. For example,
one approach inspired by these new technologies combines the advantages of highly specialized
architectures with the benefits of non-volatile memories by leveraging analog compute capabili-
ties #*»2°12155¢ On the other hand, the need for optimized on-chip storage solutions and memory
innovation applies both to specialized hardware accelerators and for general-purpose CPU systems
as well. More broadly, prior works have unveiled incredible potential improvements in storage den-
sity and energy efficiency by employing eNVMs across various architecture domains %+'°»#3. With
many publications showcasing the benefits of eNVM storage technologies, it is critical for system de-
signers to be able to explore their varying capabilities and empower efficient future on-chip storage.
Unfortunately, the architecture and broader research community lacks a holistic tool to quantify
the system and application-level implications of memory cell technologies and to make informed
decisions while navigating the vast eNVM design space.

In the past five years, consistent interest in RRAM and STT was accompanied by emerging solu-
tions with difterent physical properties such as FeFET-based memories, as discussed in Chapter 1.2.
Each published example offers compelling and distinct trade-offs in terms of read and write charac-
teristics, storage density, and reliability. In addition, the space of eNVM technologies is constantly
evolving with certain technologies moving out of fashion or into production. Given the fluidity and
complexity of this design space, application experts and system designers need to be able to evaluate

which cell technologies are most likely to provide better efficiency, higher storage density, or im-

I21

provements on other key metrics in the context of different computing demands. Similarly, device
designers and memory architects need high-level guidance to co-design their innovations toward
more practical and maximally beneficial future, heterogeneous memory systems.

NVMExplorer is an end-to-end design space exploration framework that addresses key cross-
stack design questions and reveals future opportunities across eNVM technologies under realistic
system-level constraints, while providing a flexible interface to empower further investigations*s.
For example, a user can specify constraints such as target application latency, area budget, and mem-
ory access characteristics to identify a subset of eNVM proposals which are best matched for those
design goals. Furthermore, the output of this framework can be analyzed to identify the limiting
cell-level parameters and array characteristics for each eNVM. To enable ease-of-use and iterative
studies, NVMExplorer also provides a web-based, interactive data visualizations for analyzing cell-
level properties, array-level characteristics, and application-level impacts across eNVM technologies.
Many of these data visualizations were made publicly available, and underlying evaluation tools are
open-source 5.

After describing NVMExplorer, this chapter briefly presents a related project highlighting the
potential impact of effective, accessible data visualization for efficient system design and optimiza-
tion "84, Next, this chapter reviews several application-driven case studies to explore and analyze
eNVM storage solutions for DNN inference acceleration, graph processing, and general-purpose
compute. Each eNVM is viable in certain contexts, and the most compelling eNVM is dependent
on application behavior, system constraints, and device-level choices. This finding suggests the ex-
istence of many possible architecture-device co-design opportunities, also including specialization
of application-level constraints and characteristics, which is the focus of Section 4.4. Interestingly,
the presented co-design studies reveal both opportunities and potential disconnects between the

priorities of architects and device-designers in maximizing memory efficiency in a realistic system

context.

I22

Configure Design Space » Evaluate > Explore Results

Performance | |Choose Budget/Constraints
i :
s Workload Data; iy x
g | = mRN
Accuracy Metrics Injection \ e 4 ata
Area/Power/Latency _>{ s A‘"D(';%e"'.emef » b Memory Click for More 5:(:';«’
£ | | Budget; i weep Configurations Extended [c y Lifetime Detalts o
I NVSim L Memory Arrays Model & Data -
@ ‘ WELC il { ue isualizati Application SIICK a Ff“:er ©
i i iscover efine
Choices Cell Configurations A oy)

o

Optimal eNVMs &
Co-Design Opportunities

Surveyed Cell f
Characteristics
Circuit and Fault
Cell-Level Simulation Models

Figure 4.0: NVMExplorer Overview; There are three main stages, as discussed in Section 4.0: (1) a user configures their
design space of interest, either with specific constraints and characteristics or leveraging broad, provided configurations;
(2) the evaluation automatically generates corresponding configurations, runs a backend memory array simulator and/or
application-level fault injection trials, and uses an analytical model to extrapolate results to application-level and system-
level metrics of interest; (3) a user explores results interactively, discovering opportunities for optimization and optimal
memory system configurations, as well as filtering and refining the design space, adapted from 8.

Circuits &
Devices

4.0 AN EFFICIENT, EXTENSIBLE DESIGN SPACE EXPLORATION FRAMEWORK

At a high level, NVMExplorer is a comprehensive design space exploration (DSE) framework inte-
grating application-level characteristics, system constraints, and circuit and device parameters in a
publicly-available, simple-to-use flow. The overall structure of NVMExplorer relies on three stages,

described in more details in the following subsections:

1. A comprehensive cross-stack configuration interface to specify the design space of interest.
This configuration spans the computing stack from application (blue) and system (orange)

down to circuits and devices (green).

2. An evaluation engine which automatically generates configurations, simulates memory ar-
rays, processes application behavior, computes key metrics such as performance, power, area,
accuracy, and lifetime, and generates meaningful visualizations. Evaluation steps which ex-

tend existing tools are shaded grey in Fig. 4.0.

(a) First, a modified and extended version of NVSim extrapolates cell characteristics to

memory array-level metrics

123

(b) Additionally, application data and memory fault models can be connected to an

application-level fault injection tool to quantify the impacts of memory faults

(c) Then, the analytical model estimates overall dynamic power, latency, and memory

lifetime as dictated by application use-case and system settings

3. An interactive, web-based visualization tool to aide discovering, filtering and refining eNVM

design points.

4.0.0 Cross-STACK CONFIGURATION

To evaluate and compare eNVM solutions in system settings, it is not just cell or even array-level
characteristics of a particular technology that matter. Rather, viable solutions depend on the area,
power, and latency budget of a system and how applications running on that system interact with
the memory. NVMExplorer provides a rich interface for configuring key application, system, and
circuit and device parameters.

At the application level, the user inputs information about memory traffic, which may include
the number of read and write operations, their proportion relative to the total number of memory
accesses, and how accesses are spread out over execution time. These configuration parameters may
be fixed values (e.g., characterization results of a specific workload) or provided as ranges to generate
generic memory traffic patterns. With either type of application input, NVMExplorer will analyti-
cally evaluate a given memory specification over a range of application scenarios. Some applications
may have additional demands or metrics which are tightly related to memory technology character-
istics. For example, machine learning applications or approximate computing methods may trade-
off relaxed accuracy for performance and energy, and NVMExplorer also provides an interface for
designers to study the application interactions and implications of fault-prone eNVM solutions.

At the system level, the user has the freedom to evaluate a wide variety of memory configura-

124

tion options by either setting performance, power, and area constraints and optimization goals or
by choosing memory array specifications such as capacity, multi-level programming, bank config-
uration, and more. The circuits and devices level of the design space configuration comprises per-
technology memory cell characteristics, in addition to sensing and programming circuitry choices.
NVMExplorer also provides a database of eNVM cell configurations derived from ISSCC, IEDM,
and VLSI publications, but it is also possible (and encouraged!) for users to extend the current
NVMExplorer database with new simulation-based (z.e. SPICE or TCAD models), measured, or
projected circuit and device properties. Once the full-stack specifications are set, NVMExplorer

automatically generates configuration files, which are used as input to the evaluation engine.

4.0.1 EVALUATION ENGINE

NVMExplorer natively supports a wide range of design space configurations including application
choices and generic memory traffic patterns, system constraints, and eNVM cell characteristics.
However, the user is also free to configure their own design space. Given the auto-generated cell and
system-level sweep configurations, the evaluation engine produces memory array architecture char-
acterizations and computes application- and system-level power, performance, area, and reliability
metrics. NVMExplorer combines a customized memory array simulator, an application-level fault
injection tool, and an analytical model to perform these evaluations.

To characterize memory arrays, NVMExplorer relies on a customized version of NVSim, a pre-
viously validated tool to compute array-level timing, energy, and area®?. NVMExplorer builds on
existing efforts to extend NVSim to support multi-level cells and ferroelectric-based eNVMs>+1%3,
In addition, NVMExplorer provides a more user-friendly configuration interface to ease data collec-
tion and post-processing. We introduce the capabilities of NVMExplorer in comparing eNVMs in
Section 4.0.2.

Results of cell-level and circuit-level simulations are used to parameterize fault models and per-

125

form application-level fault injection, as in Chapter 2. For performance estimations, in lieu of cycle-
accurate simulation, NVMExplorer utilizes a long-pole, bandwidth driven model that takes memory
access latency and available read/write bandwidth and compares aggregated access latency per work-
load execution and per second of execution to workload access statistics. This is similar in spirit to

performance models in ®*'7%

, and it serves the primary purpose of identifying memory solutions
that cause application slowdown, rather than predicting precise latency implications. To extract
other critical application-level metrics, such as energy, NVMExplorer aggregates the read and write
access energy based on the number of application accesses and array energy-per-access with the leak-
age power, scaling according to use-case and wake-up frequency for intermittent operation. Simi-

larly, memory lifetime is extrapolated by applying the average reported endurance to the write access

pattern per workload and the use-case.

4.0.2 ExAMPLE ARRAY-LEVEL COMPARISON

Figure 4.1 presents example array characterization output generated by NVMExplorer after evaluat-
ing various eNVM configurations implemented in a 22nm node. The design points are color-coded
to highlight optimistic (green), pessimistic (red), or reference (blue) designs across surveyed publi-
cations per cell technology, as described in more detail in Section 4.0.7. The figure also reports the
characteristics of 16nm SRAM as a comparison point. For each technology, we show array charac-
terization under different optimization goals, which result in a variety of internal array architectures
(e.g., bank arrangement and column muxing for read-out, as summarized in Chapter 1.0). For exam-
ple, we observe a wide range for the read-energy-per-bit of an iso-capacity SRAM array. This result
reflects the effect of different array optimization targets (read energy-delay product, write character-
istics, area) on the internal bank configuration and periphery overhead.

This preliminary study already provides a few key takeaways. Each eNVM is able to attain read

access characteristics competitive with SRAM, with the exception of an array characterized with

126

Memory: O FeFET A RRAM X PCM + STT * SRAM M Optimistic W Reference M Pessimistic — ax. | T
g
I~ S 1let14 M Af
= 1 x * = 10 g 250 ot
& 2 £ 2 et
= 38 é 7 + = *oole® terizy x
a lo) 2 A = =
= xO X[= + S 15 1 1et1010 X
& + 8 5 1 + + £ le) = A
5 0.14 Xl s +a 2 8 1ets
2 >Cb+A e * $ 10 e le A
i + ﬁ i 3 e
E ® £ 0.1 * 8 8 5 S let6
-3 ﬁ) = ¥ X x S e
0.01 & Gk o letd
nlislEel =
1 10 100 10 100 1000 0 1 2 3 4 w = in o
Read Latency (ns) Write Latency (ns) Area (mm~2) $|

Figure 4.1: NVMExplorer example array characterization (4MB, various optimization targets), including read and write
characteristics per access, storage density, and projected endurance based on the minimum, maximum, and average
reported endurance across survey results in Chapter 1.2, taken from 185

pessimistic underlying PCM cell characteristics. However, write access characteristics vary dramat-
ically across published eNVM examples, in addition to the range of reported endurance per tech-
nology. The tension between these properties and potential storage density (even in the absence of
multi-level cell programming) indicates that array-level comparison in isolation may guide a system
designer towards sub-optimal solutions. For example, a FeFET-based memory may seem a fitting
choice for high-density, read-performant storage, but performance and energy efficiency of those
memories are highly shaped by application traffic patterns and underlying cell assumptions. Thus,
the cross-stack nature of data exploration supported by NVMExplorer is essential in guiding system-

level choices and further investigation.

4.0.3 FAULT MODELING AND RELIABILITY STUDIES

In addition to characterizing memory performance, power, area, and lifetime, NVMExplorer ex-
tends previously validated efforts in application-level fault injection to provide an interface for

fault modeling and reliability studies "?>. Users can provide an expected error rate or more detailed,
technology-specific fault models and storage formats to perform fault injection trials on application
data stored in different eNVMs. To quantify the impact on application-specific metrics of accuracy,

the fault injection tool is tightly integrated with application libraries for data-intensive workloads,

127

including PyTorch for DNNs and SnapPY for graph processing 181,135 a5 well as numpy for generic
application data. As a demonstration, we perform SPICE simulation and extract fault characteristics

associated with single-level vs. multi-level cell (SLC vs. MLC) programming and sensing circuitry

characteristics. In this work, we consider a subset of eNVMs, namely, RRAM, CTT, and FeFET,

183,204,00 We use our ex-

whose fault characteristics could be derived from existing modeling efforts
tended fault injection framework to simulate the impact of storing workload data in SLCs vs. MLCs
and with varying sensing circuitry designs and parameters. Armed with these additional capabilities,
NVMExplorer can replicate the results of previous considerations of eNVM storage reliability 183
in addition to providing a broader platform for studying the interactions between programming

choices, cell characteristics, and application accuracy.

4.0.4 DATA VISUALIZATION AS A CORNERSTONE OF DESIGN SPACE EXPLORATION

The figures in this work are snapshots from NVMExplorer’s interactive web-based data visualiza-
tions, built using Tableau **5, many of which are freely available "*5. A screenshot of one such view is
provided in Figure 4.2. In each study, results are filtered and constrained according to system opti-
mization priorities and application use cases, as described in the text. The basic NVMExplorer data
visualization dashboard presents power, performance, area, and memory lifetime results across all
user-configured sweep results (e.g., many application traffic patterns, array provisioning choices,
and/or eNVM cell configurations) alongside array-level metrics for a holistic design exploration
experience. A user can filter results in terms of important constraints (e.g., latency or accuracy tar-
gets, power or memory area budget) and identify design points of interest. While several features of
these visualizations are evident in the figures in this work, including dynamic filtering across plots,
click-and-drag to narrow the design space, and pop-up details about results, the reader is encour-
aged to use their imagination in how they might explore and filter the data shown in alternative ways

according to their interests, questions, or confusions.

128

MemCellType
[o +

NVMExplorer (Beta):

Interactive Cross-Stack Memory Design Exploration and eNVM Comparison

1 | Data Filters

. 1e+81 [r——
0.01 | L J

) 1 Ovimstontarget

x
A RRA)
*

Lifetime [days]

Total Memory Latency [s]

Bemcremans Do

Write Accesses /s

Adpasted Capacry [W8)

System Constraints
f > pRS——

g _ -
3 a O |E. ¥
X Aa +ax ¥ 55| ® st
g P 2 |4t
& X e = % 101 ‘*_ + e Ac
2 - ok - ke e i
E * i RE 5% :

= A (—

»* X @ @ O00 x x

Write Latency (ns)

Figure 4.2: NVMExplorer dashboard summary, as appeared on live webpage in November 2021.

NVMExplorer is designed to be navigable and extensible to allow for users to conduct studies
which are relevant to the design spaces they care about. A user can easily explore tweaking difter-
ent device parameters or architecture constraints to see how it affects the results and metrics. This
holistic approach makes application-architecture-device co-design easily accessible because it di-
rectly exposes trade-offs between device parameters and architecture metrics like performance and
power for specific application settings. Using the interactive data visualization web tool, users can
quickly filter results to understand results in an intuitive way and to conduct one-off studies related
to a specific co-design target. Sections 4.1-4.3 explore different application-driven case studied us-
ing NVMExplorer, and Section 4.4, explores different architecture-device co-design opportunities.
The application-driven case studies include a case study on eNVMs for DNN inference on IoT
devices, a system agnostic graph workload study, and a study on an eNVM-based last-level cache.
These case studies demonstrated some specific questions that can be answered using NVMExplorer.

The co-design opportunities include both device-driven opportunities as well as architecture-driven

129

opportunities. The device-driven opportunities include alternative FeFET fabrication choices, trad-
ing area efficiency for increased performance, and variation in multi-level programming advantage
across technologies. The architecture-driven opportunities includes intermittent operation and

write buffering.

4.0.5 CHAMPVis: COMPARATIVE, HIERARCHICAL PERFORMANCE ANALYSIS

Effective and accessible data visualization can accelerate the process of designing and optimizing ef-
ficient computing systems. In this section, I briefly present a data visualization and analysis tool I
developed towards identifying performance bottlenecks in general-purpose systems called CHAM-
PVis ¥+, Additionally, I'll describe how the design and implementation of CHAMPVis informed
the importance of providing an accessible, interactive simulation and data visualization framework
as part of NVMExplorer.

The first step to system and algorithmic optimization is identifying performance bottlenecks.
The computer systems community has made significant strides in building tools for bottleneck
analysis. TopDown *7 records the performance impact of these events and outlines a structured,
hierarchical methodology to categorize critical bottlenecks. At the highest level, modern computers
are organized into three major stages: (1) the frontend, which determines what work to perform, (2)
the processing unit, which computes the work, and (3) backend, which stores the final output for
future use in memory. Each of these stages can be broken down into a hierarchy of sub-stages, up
to 4-levels, down to the utilization of individual hardware components (e.g., floating point vector
computation unit or L1 cache for a CPU core). This methodology was adopted in commercial tools
including Intel VTune '>. However, these tools only consider a single application and hardware
platform at a time, making comparative analysis laborious and time-consuming. CHAMPVis is
a web-based visualization platform that enables using TopDown-style hierarchical performance

analysis across multiple applications.

130

Level 1

Level 1, :1 5%,,” 4@{% % %

. 00 100 1005 1003

sesncusn Lower | v e o %0- o0+ 90
.

Level M " o e a0

View o o] 0
.
8
sacnios i @ o
e wane |
cof ') L]

- e §

wee e o
mmmmm 0 conv_small @ L

fe_small @ ®

TopDown
View

Q‘lz@%s%d Q‘(s% %Q%; & Level 1 - R
ronten = acken
. « g o [

100 100 100
conv_lage]
90 90 90 90 S
W
conv_medium | Lovel2 [- H icrocode
w ® @ 0
conv_smal l
0 0 0 — BT
fearse I Level 3 i
60 60 60 l‘l i
e_mockam
P 0 P
i
e amel I Level 4 | X87 Use || FP Scalar || FP Vector
© © w7 w© PR
® ® a6 ®
-
104

Figure 4.3: CHAMPVis representative figures; a user may flexibly explore TopDown2°” statistics across many workloads

or hardware platforms, filtering to identify and classify performance bottlenecks at a glance, taken from 184,

Supporting comparative performance analysis across applications and hardware platforms is
key for datacenter-scale optimizations. Typical datacenters contain thousands of machines which
are grouped into tens of machine types, and each essential application spans thousands of lines of
code®”. By analyzing a diverse set of applications or hardware platforms, performance optimiza-
tions can be applied to a wider range of inefficiencies. For example, Google and Facebook apply
TopDown performance analysis within their datacenters'*+*'?. These works led to solutions that
reduced total datacenter cycles by up to 2%. However, researchers are currently limited to studying
only the most abstract level in TopDown — deeper evaluations would require visualization tech-
niques tailored to datacenter-scale hierarchical comparisons.

To enable productive, efficient, and user-friendly performance comparisons, I helped to develop

131

CHAMDPVis, from which some representative images are presented in Figure 4.3. CHAMPVis
facilitates identifying similarities and differences across difterent software applications and hard-
ware platforms. CHAMPVis was developed considering several key design decisions such as how
to visually relate performance metrics at different levels of the hierarchical hardware structure, how
to guide users through the analysis process, and how to compare the performance of different ap-
plications and hardware platforms across multi-dimensional metrics. CHAMPVis allows users to
directly interact with and extract useful details from hierarchical performance analysis data while si-
multaneously making effective comparisons. This closes the loop between identifying an important
performance bottleneck and comparing results across software applications or hardware platforms.
This will enable datacenter system engineers and software application developers to more produc-
tively optimize performance. Thinking critically about how to represent and interact with data for
effective exploration and analysis in the CHAMPVis project inspired the development of openly-

available and interactive data visualizations as part of the NVMExplorer methodology.

4.0.6 COMPARISON TO, INTEGRATION WITH OTHER TOOLS AND FRAMEWORKS

Previous work in evaluating eNVM:s can be characterized as either focusing on device-level and
array-level evaluations, or providing in-depth cross-stack analysis for a particular combination of
eNVM and application target. Table 4.0 codifies the key differences between NVMExplorer and

some related works. Survey works such as the Stanford Memory Trends**°

maintain a list of key
parameters, like storage capacity and write energy, while previously validated array-level charac-
terization tools, such as NVSim %, characterize timing, energy, and area of eNVM-based memory
structures. DESTINY "*7 modifies NVSim to evaluate 3D integration.

To evaluate eNVMs in a system setting, prior work typically integrates NVSim with a system

simulator. DeepNVM/DeepNVM++ °>° enables cross-layer modeling, optimization, and de-

sign space exploration of MR AM-based technologies in the context of GPU cache for DNNs using

132

Tech. Surveys Array Simulators Arch-Specific Frameworks
IRDS'® | Trends**® | NVSim® | Destiny'"” | Neuro-Sim+** | NVMain " Deep-NVM++ % NVMExplorer

RRAM v v v v v v

STT v v v v v v v

SOT v v v
NVM PCM v v v v v v

CTT v

FeRAM v v v

FeFET v v v

MLC v v
Circuits Fault

Modeling v v
Architectural Simulator / Use Case PIM + DNNs gems GPGPU-sim + DNNs | Analytical; many included

Accuracy v v
App-Aware | Memory Lifetime v v
Evaluation | Operating Power v v v v

Latency v v v v

Table 4.0: NVMExplorer leverages existing efforts by extending NVSim, while enabling cross-stack DSE across multiple
use cases and domains, including more breadth than previous works, and providing a unified platform to explore and
iterate design, adapted from 185,

GPGPUSim. NVMain ' enables evaluation of eNVM-based main memory using gems *°. Neu-
roSim+** focuses on evaluation of processing-in-memory for DNN inference and training. While
these frameworks are great examples of domain-specific explorations and evaluations, NVMEx-
plorer can evaluate a variety of system and application domains, in addition to offering reliability
analysis, additional metrics such as memory lifetime, and a database of technology cell characteristics
and configurable device parameters.

Existing works such as these provide limited or otherwise domain-specific design space explo-
ration frameworks. The time required to sift through non-volatile memory roadmaps, learn the
growing number of NVM simulators, and piece together toolflows to answer questions about spe-
cific architectures and applications is throttling the pace of co-design between architects and de-
vice designers and inhibiting the advancement of technologically-heterogeneous memory systems.
In contrast, NVMExplorer’s cross-stack and analytical approach provides efficient evaluation of
critical application-aware metrics such as application accuracy and resulting memory lifetime with
sufficient fidelity to guide future design studies. NVMExplorer offers more breadth by including
application-, system-, and device-level considerations, and accommodating a wider range of devices

without requiring a separate system simulator.

133

NVMExplorer’s modular design allows for efficient and effective integration of other under-
lying memory characterization and simulation tools as the research space conitnues to grow and
evolve. For example, at the configuration stage, NVMExplorer can interface with profiling tools and
memory trace generators to designate application traffic rates and patterns of interest. For example,
memory access statistics generated using the Sniper Multi-Core Simulator ** are used as representa-
tive cache behavior in Section 4.3. Also at the configuration stage, NVMExplorer has to potential to
directly interface with cell, device, and circuit simulation tools (e.g., HSPICE) to configure memory
cell characteristics, programming settings, and array component properties and overheads. At the
evaluation stage, NVMExplorer is sufficiently modular that the memory array-level characteriza-
tion tool can be exchanged for alternative simulators to evaluate distinct memory solutions, such as
3D-stacked architectures using Destiny '*7 or cryogenic operation using CryoMem '3, Both array
characterization results and application-level metrics can then be harnessed at the exploration stage
to guide iteration of the design space or directly as inputs to a broader simulation framework for
more detailed evaluation (e.g., to parameterize a new memory system component in gems *°, or to

take advantage of existing tools for thermal analysis®s).

4.07 TECHNOLOGY LANDSCAPE AND EXAMPLE CELL PARAMETERIZATION

NVMExplorer provides a broad survey of published eNVM examples, which can be parameterized
so that systems experts can make meaningful, high-level comparisons across technologies despite
different underlying trade-ofts and maturity. We validated this approach per-technology against
fabricated memory arrays'%s.

This work was informed by a compilation of device-level and array-level data across eNVM tech-
nologies, as summarized in Chapter 1.2. We sourced the majority of the cell-level parameters from
ISSCC, IEDM, and VLSI publications and focus primarily on works from 2017-2020 to reflect

the most recent range of achievable behavior per technology. Previous efforts detailed the physical

134

properties and limitations per technology ', while NVMExplorer focuses on compiling sufficient
cell-level details and leaning on existing technology models to provide a broad and practical database
of cell definitions. While we hope these extracted cell definitions are helpful to the community in
calibrating the current state-of-the-art, NVMExplorer is extensible as the design space continues to
evolve, as demonstrated in Section 4.4.

Comparing eNVM:s at varying stages of development and with varying underlying physical prop-
erties is a challenging task. The case studies in this work aim to provide high-level guidance and
relative judgments about which eNVM cell technologies are worthy of further investigation under
specific system and application constraints. Thus, rather than focus in on specific, physically ac-
curate cell configurations, NVMExplorer provides the bounds of what is conceivable per eNVM
technology across the full range of published recent academic work. We liken identifying and eval-
uating these bounds per-technology to forming the poles of a tent that encompasses the full extent
of eNVM properties, so we call the extrema in terms of cell-level characteristics (i.e., smallest, lowest
read energy, best retention vs. largest cell size, lowest endurance) the device-level “tentpoles”. In an
actively evolving technology space, this approach allows us to make meaningful classifications about
which technologies are potentially adoptable solutions. These modeling choices are classified into
two fixed cell configurations for applicable technologies. We validate that the “tentpoles” of the cell-
level design space result in array-level characterization that provides coverage of published memory
array properties, as discussed in Section 4.0.8.

For the technology classes most represented in our survey, we compute which published exam-
ple has the best-case and worst-case storage density in terms of Mb/ F2, and this data serves as the
foundation of the bounds of the cell-level design space; those points which are most and least dense
across recent published examples. Any critical cell-level parameters not reported with those cell
definitions are assigned values (e.g., read characteristics and programming settings) using the best

(lowest power, highest efficiency) or worst (highest power, lowest efficiency) value per metric across

135

all other recent publications with sufficient supporting data. These best-case and worst-case tech-
nologies per class form the tentpoles of the underlying cell design space, and we label these fixed cell
definitions as “optimistic” or “pessimistic” accordingly. For the purposes of the case studies pre-

sented in published works'®S

, all array- and application-level results are produced using these fixed
underlying optimistic and pessimistic cell properties, though we note that a user of NVMExplorer
can draw either on these constructed, bounding example cells or on the full database of surveyed
configurations, or on fully customized definitions with respect to cell size, access properties, and
operating conditions (e.g.,read/write voltage, temperature). Corresponding fault models and error
rates for reliability studies are extracted after optimistic vs. pessimistic cell-level properties are fixed,
as discussed in one of the presented case studies.

This approach is helpful for many reasons: for one, these extremes help us answer exploratory
questions about what we will likely see in the near future; secondly, comparing the best-case of one
technology to the worst-case of another can help gauge less mature technologies against more ma-
ture reference points; thirdly, if such optimistic configurations are untenable or even pessimistic
configurations are attractive in a specific system setting, we can build confidence for further explo-
ration and more detailed modeling efforts without implementing and attempting to meaningfully
compare many many cell definitions with insufficient data. A limitation of this methodology is that
inherent trade-offs between certain parameters for a technology may not be linked (e.g., area, la-
tency, and retention for STT); however, this amalgam of cell properties represent the full spectrum
of achievable characteristics per technology, rather than specific fabricated results. As a point of ad-
ditional comparison, the results shown in the following studies include a reference cell configuration

128

for RRAM as a relatively mature eNVM, with parameters derived from a specific industry result

Memory: + STT M Optimistic STT ISSCC 2018 Array [39] M Pessimistic

7 + i 2 9] *
c —H— +—
< 104 a
2 + S 2
[[=)]
-+ .
5 2
2 w1 + +
& 4 g |+ +
+ + = 0.57
5 10 15 5 10 50 100
Density [MB/mm2] Write Latency (ns)

Figure 4.4: Example memory-array-level validation of reference (yeIIow)61
underlying cell ‘tentpole’ configurations; metrics of a fabricated STT array from the literature 61 fall within the bounds of

those generated using our device-level ‘tentpole’ characterization, taken from *&.

vs. optimistic (green) and pessimistic (red)

4.0.8 VALIDATION

Our array-level area, energy, and latency characterizations rely on the previously-validated proce-
dures of NVSim to extrapolate cell-level configurations and array design constraints to optimized
memory layouts and propertieséz. However, in employing our “tentpole” approach, it is critical that
we verify that array-level results using our optimistic and pessimistic underlying cell characteristics
fully cover and match expectations of existing manufactured and published eNVM solutions.
Whenever possible, we select publications with array-level characterizations for a given technol-
ogy, and compare those results to iso-capacity memory arrays modeled through our “tentpole”
approach. Figure 4.4 shows an example of such an exercise. We compare a tMB STT-RAM array
published at ISSCC in 2018°" to optimistic and pessimistic STT design points produced by NVM-
Explorer. Here, we note that our tentpole results effectively represent the range of actual array prop-
erties by producing metrics that are both higher and lower, but similar in magnitude, to the refer-
ence STT-RAM array. The studies presented in this work consider only validated configurations for
which we were able to either complete this validation exercise or run SPICE-level simulations. It is
worth noting that NVMExplorer is set up to evaluate all cell technologies in Table 1.1 (e.g., though

SOT is a compelling emerging solution, our survey found insufficient array-level data for validation,

137

so it is omitted in this Chapter’s evaluations). System validation and application characteristics are

derived from existing, state-of-the-art references.

4.1 SUPPORTING DNN INFERENCE UNDER VARYING OPERATING CONDITIONS

Prior studies have demonstrated the potential benefits of eNVM storage for Deep Neural Network
(DNN) inference accelerators #3593, albeit with limited scope in terms of eNVM technologies
and cross-stack parameters considered. NVMExplorer empowers researchers to approach a broader
set of questions that compare eNVM:s in different storage scenarios (e.g., limited to weights vs. stor-
age of DNN parameters and intermediate results) and system constraints (e.g., strict area budget, or
power budget). In this section, we consider two distinct use cases for a DNN inference accelerator:
continuous operation, as in image processing per frame of a streamed video input, and intermittent
operation, where the system is woken up per inference task and can leverage the non-volatility of

eNVM by retaining DNN parameters on-chip in power-off state between inferences.

4.1.0 CONTINUOUS OPERATION

We consider the commonly-used and well-studied NVDLA*'* as a base computing platform (as
in Chapter 3.1) and compare its 2MB SR AM with iso-capacity eNVMs. We use the NVDLA per-

formance model 178

to extract realistic memory access patterns and bandwidth requirements of the
on-chip buffer. More specifically, we evaluate the power and performance of accesses to on-chip
memory storing ResNet26 weights for single-task image classification using the ImageNet dataset vs.
multi-task image processing, comprising object detection, tracking, and classification, at a consistent

frame rate of 6o frames-per-second, as is typical for HD video. We additionally consider the impact

of storing activations in eNVM, but this ostensibly ignores endurance limitations.

O FeFET A RRAM X PCM + STT % SRAM M Opt. M Ref. M Pess
2 0.51 * ~ 81 ©

= = +

3 o E 6

= o

S,, O = X

5 0.2 = 4

i + = A X

B T xa g +

© i [|

g o1 X 8 2 o *

0.5 0.7 1 15 2 0.5 0.7 1 1.5 2
Read Latency (ns) Read Latency (ns)

Figure 4.5: Read characteristics and storage density for 2MB arrays, provisioned to replace on-chip SRAM for NVDLA,

taken from €.

4.1.1 ARRAY CHARACTERISTICS

First, we observe the read and storage density characteristics for 2MB arrays using the cell-level tent-
poles of several promising eNVM technology classes, as shown in Figure 4.5 compared with SRAM.
Notice that read energy effectively divides arrays into two tiers. STT, PCM, and RRAM ofter lower
read energies and competitive read latencies vs. SRAM. In contrast, FeFET-based eNVM:s suffer
from higher read energies, but optimistic FeFET ofters the highest storage density with low latency.
At similar low latency, optimistic STT offers 6 x higher density over SRAM. PCM and RRAM
outperform SRAM in terms of both read latency and storage density. While such comparative in-
sights can readily be extracted from this pair of plots, there are other important dimensions to also
consider, and NVMExplorer facilitates more comprehensive analyses that consider the impact of

application priorities and system-level use cases on eNVM design decisions.

4.1.2 APPLICATION-LEVEL METRICS

Figure 4.6, left, summarizes total operating power (both dynamic access and leakage power) for the

2MB memory arrays characterized in Figure 4.5 and accessed according to traffic patterns of dif-

139

Single-Weights-Only WOk X | O
Single-Weights+Acts | >\Oé >

Multi-Weights-Only Y O kO Image Class. M@ G*
Multi-Weights+Acts A 3k Multi-Task Image m@ G*
1000 10000 10 20 50 100 200 500
Total Memory Power [mW] Memory Energy / Frame (mJ)

Figure 4.6: The most energy-efficient eNVM varies under different DNN inference use cases, such as continuous (left,
operating power) vs. intermittent (right, reporting energy per input image frame); these results exclude eNVM solutions
that are unable to meet application latency and accuracy targets, taken from 185,

ferent ResNet deployment scenarios, i.e., single- vs. multi-task and weights-only vs. storing both
weights and activations. These results exclude eNVM candidates that cannot support 6o FPS oper-
ation nor maintain DNN accuracy targets. Recall NVMExplorer includes fault injection wherein
high eNVM fault rates can degrade model accuracy to unacceptable levels. While not explicitly
shown here, NVMExplorer exposes numerous additional interactions for users to probe and build
intuition. For example, while total memory power increases as the number of accesses per frame in-
creases to compute multiple tasks, the ratio of read-to-write traffic stays roughly the same. Hence,
the relative power of eNVM arrays also remains similar. In particular, PCM, RRAM, and STT all
offer over 4 x reduction in total memory power over SRAM. One important reason for this is that
SRAM leakage power will dominate compared to eNVM solutions, even under high traffic. Of
the energy-efficient solutions, STT offers best performance (lowest application latency per frame).
In contrast, optimistic FeFET offers higher storage density while maintaining 6oFPS and a 1.5-3 %

power advantage over SRAM.

4.1.3 INTERMITTENT OPERATION

Let us now consider eNVM storage for two additional use cases that alter system-level optimization

goals and corresponding eNVM selection, further highlighting the flexibility and ease of exploration

140

the NVMExplorer framework offers. A major advantage of storing DNN weights in eNVMs is that
non-volatility supports intermittent operation that powers off the accelerator between inferences.
Using SRAMs would either consume leakage power to keep the weights memory powered on or
consume power to restore the weights from off-chip memory, e.g., by incurring a latency and en-
ergy penalty by fetching from DR AM. In this use case, we provision monolithic eNVM storage to
hold all DNN weights (e.g., up to 32MB for Natural Language Processing (NLP) tasks). For image
processing, all weight memory accesses are to eNVM, eliminating the wake-up latency and power as-
sociated with loading parameters on-chip, in addition to reducing distance between compute system
and higher-capacity memory. Previous work demonstrated that careful optimization between DNN
properties and MLC eNVM storage can further increase storage density "*2>4.

Figure 4.6, right, compares the resulting memory-energy-per-inference across eNVMs for both
single-task image classification and multi-task image processing, as determined by the total number
of accesses to retrieve all DNN weights over the course of processing one input frame. The lowest-
energy technology choice differs between the single vs. multi-task inference and, perhaps more in-
teresting, both are eNVM candidates with Jower storage density (RR AM and pessimistic FeFET),
as opposed to the highest density options (STT and optimistic FeFET), which hints at a cross-stack
prioritization of read performance as opposed to cell size reduction, as probed further in Section 4.4.
We repeat this study for single task vs. multi-task natural language processing using the ALBERT
network, a relatively small-footprint, high-accuracy, transformer-based DNN 126

We find that frequency of wake-up and specific target application traffic patterns play a critical
role in selecting preferred eNVM candidates. To further study this result, we dig into the implica-
tions of intermittent operation and compare the total energy versus the number of inferences per
day, showing a continuum of wake-up frequency that may arise (e.g., deployed solar-powered agri-
cultural sensors or satellites, or a voice-enabled assistant executing NLP tasks on wake-up). The left

plot of Figure 4.7 shows total memory energy as a function of inferences per day for image classi-

141

E 1000 Oc E/
5 §§ % 1000 O
[} []
100 f XX XX XX XX X8 %
v _ i oK & X XX XX XX XX
s L kb i i 46 B 5 100
g 5 85 5 S B &b &
— 00 =
10p 00 00 OO 0O 00 00 00
le+l le+2 le+3 le+4d 1le+5 le+l le+2 le+3 le+4d le+5
ResNet26-Inference-Per-Day ALBERT-Inference-Per-Day

Figure 4.7: The eNVM storage solution (iso-capacity arrays provisioned per task, optimized for ReadEDP) that minimizes
total memory energy consumption varies according to system wake-up frequency and DNN inference task; All solutions
shown maintain application accuracy and a < 1s latency per inference, taken from 185,

fication. Here, total memory energy is presented as a proxy for device battery life. From the figure,
we observe that when the number of inferences per day is sufficiently low (less than 1e5), optimistic
FeFET yields the lowest energy. At higher wake-up frequency, optimistic STTs take over because of
the relatively lower energy-per-access. Figure 4.7, right, investigates the impact on an NLP workload.
While results are similar, optimistic STT emerges as the best technology at lower inference rates (as
compared to image classification), because because sentence classification is a particularly intensive
task, requires higher operating power than ResNet26.

Table 4.1 summarizes the preferred eNVM technology across difterent use cases and tasks, with
“Opt. eNVM?” indicating the preferred choice under optimistic underlying cell characteristics and
“Alt. eNVM?” indicating the preferred technology assuming pessimistic assumptions and reference
points, and table entries for intermittent operation are selected at a fixed wake-up rate. As shown
by these results, non-volatility of on-chip storage resources is particularly compelling for resource-
constrained systems that experience intermittent power supply (e.g., deployed solar-powered agri-
cultural sensors or satellites) or otherwise operate intermittently (e.g., a voice-enabled assistant ex-
ecuting NLP tasks on wake-up). Across a range of device wake-up frequencies and per-wake-up

compute patterns, we observe that several eNVMs become compelling, and the preferred NVM

142

Use Case ‘ Inference Task ‘ Data Storage ‘ Priority ‘ Opt. eNVM ‘ Alt. eNVM
Single-Task Weights Only Pi;:g::seilt‘y FI;;:IIE\/"IF Ié%h'l/f
- Image Classification Weights + Acts Ljow Powcfr PCM RRAM
Continuous High Density STT RRAM
I e | Oy T T orT
image Ciifeion | OB Oy R T e
Tl " gony | lawteer| et o
Int(e I?F;t)em Sentence Classification Embeddings Only L;It;?;éiiﬁ; : i?lé’lhi[R(}:{'I[}l{\/I
CIBT g | Loty STT R
TN | g || re |

Table 4.1: Summary of preferred eNVM under varying DNN use case, task, storage strategy, and optimization priority.

Several distinct eNVM solutions are best suited in different cases under either optimistic underlying cell characteristics

(“Opt eNVM”) or considering only reference and pessimistic configurations (“Alt eNVM?”), taken from 18°.

choice for further investigation varies depending on both of these factors.

4.2 COMPLEMENTING AND ACCELERATING GRAPH PROCESSING

Our second case study explores the potential benefits of using eNVMs for graph processing, which
imposes an entirely different set of constraints in terms of memory read and write characteristics.
Graph processing comprises many read-dominated tasks with less predictable data reuse than DNNs
(e.g., search kernels), but still involves write traffic and, overall, is incredibly data-intensive in terms
of memory bandwidth and capacity. As an initial exploration of compatibility and viability between
graph processing workloads and eNVM storage solutions, we consider the total power and resulting
memory lifetime per technology under generic traffic patterns covering the range of read and write
bandwidths for critical graph tasks, as described in previous workload characterization efforts'7.

As a proof of concept in a specific system, we additionally evaluate eNVM storage solutions under

143

O FeFET X PCM A RRAM %k SRAM + STT

=’ 10000 Wikipedia--BFS8MB % O :':
< « Q

2 ‘ ¥ |o

3 1000 ' g

a

€

()

2 100 i

©

§ Facebook-BFS8MB

le+7 let+8 le+9
Read Accesses/s

Figure 4.8: Memory power for traffic patterns encompassing graph processing demands, including specific graph kernels
as labeled. The lowest power solution depends on the expected read traffic, taken from .

access patterns for benchmarks executed on a domain-specific accelerator*?.

4.2.0 ANALYSIS FOR GENERIC TRAFFIC PATTERNS

We consider different memories experiencing a range of generic traffic patterns representing graph
processing kernels (i.., read access rates from 1-10GB/s and write access rates from 1-10oMB/s) '7.
NVMExplorer provides a wide array of critical metrics to compare and user-configurable visualiza-
tions to extract important trends and limitations. For example, in Figures 4.8 and 4.9, we choose
to display total memory power against read traffic, as number of read accesses becomes a dominant
factor in total power for read-dominated workloads, and total memory latency against write traffic,

as overall performance for several eNVMs is strongly determined by write traffic.

4.2.1 POWER

As shown by Figure 4.8, total memory power generally increases with read access rate and the lowest
power solution depends on the application traffic load. For applications that exhibit fewer than 10’
read accesses per second, optimistic FeFET is a clear winner, while pessimistic FeFET and RRAM

are next best candidates. On the other hand, for higher rates of read traffic (e.g., > 10%), optimistic

144

M Optimisti M Ref M Pessimisti 1

ptimistic ererence essimistic s 1e+57 '
© S A s
= Wikipedia- Facebook-- - let3q °
E BFS8MB BFS8MB ‘E‘ 4 . '
g o1 £ terile o
2 o B te1t |8 |*
s 5 sl |8
E 0014 % + le3) le

Hl=slEl=

= X & ¥ el = 7S RS
5 | P&
2 0.001- +

T T

Write Accesses /s

le+5 let+6 let+7
1e+04 I M 1e+07
Write Accesses/ s ° ' °

Figure 4.9: Memory latency and projected lifetime for traffic patterns encompassing graph processing demands, in-
cluding specific graph kernels as labeled. FeFET solutions fail to match SRAM performance. STT provides superior
performance and memory lifetime, taken from 185,

STT is best. For mid-range read access rates, PCM and RRAM are also viable solutions sometimes
offering the lowest power solution. However, this relationship alone does not dictate memory tech-

nology choice.

4.2.2 LATENCY

A slightly different and more consistent story emerges when we analyze the impact of different eN-
VMs on overall memory latency (both read and write) versus write access rates, shown by Figure 4.9.
While there is a clear preference for optimistic STT, RRAM and optimistic PCM are also worth
considering. In contrast, most pessimistic eNVM technologies and all FeFET-based solutions are
significantly inferior, even failing to match SRAM performance for many traffic patterns. When we
additionally consider projected memory lifetime, STT emerges the clear winner overall. Note that
the right chart of Figure 4.9 plots the memory lifetime assuming continuous operation at a particu-
lar write access rate. Hence, the highest write traffic always yields the lowest lifetime. While RRAM

seemed promising based on performance and power, it has the worst endurance and lowest lifetimes.

145

4.2.3 ANALYSIS FOR DOMAIN-SPECIFIC SYSTEMS

In addition to relying on generic traffic to represent the full range of expected load of graph pro-
cessing, NVMExplorer can also be leveraged to answer a more specific design question: For per-
formance targets and traffic patterns to a specific storage resource in a graph processing accelerator
system, which eNVMs offer compelling characteristics that warrant further investigation? To this
end, Figures 4.8 and 4.9 also include points, identified in pink, corresponding to memory traffic to
run breadth-first search on two different social network graphs 5. Traffic patterns are extracted
from throughput and accesses reported for the compute stream of a domain-specific graph process-
ing accelerator utilizing an 8MB eDR AM scratchpad **. In the baseline system, about 90% of the
energy is spent on the eDRAM scratchpad (not including DR AM controller energy), with an oper-
ating power of at least 3.1W at the 32nm process technology node as reported from Cacti®*. We
analyze the benefits of replacing the SMB eDR AM scratchpad with an iso-capacity eNVM array
provisioned to meet the cited latency target (1.5ns).

If we exclude RRAM due to low lifetime projections, FeFET, PCM, and STT all offer signif-
icantly lower memory power (about 2-10x lower than SRAM) and even pessimistic STT offers
consistent performance. These observations, based on a realistic graph processing use case extracted
from prior work, are consistent with the results generated using generic traffic patterns. Again, op-
timal technology choice depends on higher, system-level optimization goals, and NVMExplorer
provides critical insights in the presence or absence of a specific system simulator results.

If the high-level goal is to maximize storage density, FeFET is highly attractive, but severely lim-
ited by poor write latency (unable to meet application latency expectations under the higher range
of traffic patterns). Rather than prematurely eliminating FeFET, designers can leverage NVMEx-
plorer to study the impact of relaxing or adapting application targets or to explore co-design solu-

tions that target improvements to the underlying technology or architecture, as in Section 4.4.0.

146

4.3 PROBING GENERAL-PURPOSE APPLICATIONS: ENVM as LLC

Improved density and energy efficiency could revolutionize general-purpose on-chip storage, and re-
cent efforts have endeavored to replace high-performance memories, like caches, with eNVM-based
alternatives '*»%+*°". However, caches must handle a large volume of writes depending on the appli-
cation, so the achievable write latency and endurance per eNVM comes to the forefront of design
considerations. While the improved density and energy efficiency of eNVMs could revolutionize
general-purpose on-chip storage, the open question of achievable endurance and write access char-
acteristics per technology cannot be overlooked and needs to be a primary factor in determining a
cache technology replacement.

In this study, we consider the last-level cache (LLC) of a high-performance desktop processor,
similar to Intel’s 14nm, 8-core Skylake. The memory hierarchy includes a private 32 KiB L1I$; a
private 32 KiB L1D$; a private s 12 KiB L2$ (non-inclusive, write-back); and a shared ring 16 MiB
L3$ with 64 B line, 16 ways (inclusive and write-back). The system includes DR AM with 2 chan-
nels, 8 B/cycle/channel, 42cycles + 51 ns latency. Representative application behavior comes from
SPECrate CPU2017 (integer and floating point), and we warm-up the cache for sooM instructions
and simulate for 1-billion instructions in detail using the Sniper simulator *#**. This provides ap-
plication modeling data for a 16MB LLC (e.g., reads, writes, execution time per benchmark) that
are inputs to the application configuration interface of NVMExplorer. When replacing the last level
cache with an NVM, we use an iso-capacity configuration. Another possibility is to fill up the same
amount of physical area that an equivalent SR AM-based last level cache would consume (which

would lead to significant capacity advantage for NVMs).

147

O FeFET A RRAM X PCM + STT * SRAM M Opt. M Ref. M Pess.

3 * B I+ O

£ 13 o @ + 5 > M O

~ A ; 11 é ksk @

9 % x I 5 S + Ag
(O]

I O+ Al & 2 O

© 0.11 3

(48] =

& % %A = 0.1 * v ©

1 10 100 10 100
Read Latency (ns) Write Latency (ns)

Figure 4.10: Array access characteristics in for consideration of replacing (iso-capacity) a 16MB LLC, taken from 8.

4.3.0 ARRAY CHARACTERISTICS

First we focus on the array characteristics of the different memory technologies in isolation, as
shown in Figure 4.10. From the left plot, we note a competitive range of read energy and read la-
tency does not reveal a clear winner. For example, if read energy per access is highest priority, Fe-
FET, RRAM or even SRAM offer array configurations that trade access latency for energy efficient,
while STT and optimistic FeFET offer pareto-optimal read characteristics. For writes, a PCM-based
last level cache appears to minimize energy per access. On the other hand, only STT and RRAM
are able to beat SRAM write latency. Again, we find array characteristics in isolation do not offer
sufficient guidance to choose the best eNVM for LLC, and NVMExplorer allows us to go further.
In terms of storage density, ST'T shows over an order of magnitude reduction in area compared to
SRAM (from about 10mm? to about 1mm?* across optimization targets), though under pessimistic

underlying cell characteristics, we note that PCM or RRAM ofters higher density that STT.

O FeFET X PCM A RRAM % SRAM + STT

let+4 le+5 le+6 let+7 le+8
Read Accesses/'s

10000

1000

100

Total Mem. Power [mW]
'_\
o

D80 OB I

Figure 4.11: Memory operating power under continuous operation across SPEC benchmark traffic to a 16MB LLC
shows preferred eNVM depends on traffic demands and optimization goal. All solutions shown meet per-benchmark

read/write demands. For high-traffic benchmarks, STT provides lowest power, lowest latency, and longest projected

lifetime, taken from 185,

4.3.1 POWER, PERFORMANCE, AND LIFETIME

Now we start to focus on the effects of the actual application behavior on array characteristics in
the context of the last level cache. It s, therefore, important to also consider system-level application
behavior. Figures 4.11 and 4.12 show the resulting power, performance, and lifetime when using
different eNVM:s as LLC and assuming memory traffic from SPEC2017 benchmarks. Figure 4.11
shows total memory power versus read access rate, where each column of points corresponds to a
particular benchmark traffic pattern. We again see that the lowest power eNVM solution depends
on the traffic pattern. In broad terms, RR AM and FeFET fair better for lower read access rates
while PCM is better for higher rates until STT emerges best for the highest rates. In terms of mem-
ory access latency (Figure 4.12) with respect to write access rates, STT is usually the best choice,
though arrays unable to meet application bandwidth are excluded. Lastly, Figure 4.12, right, com-
pares lifetimes across the eNVM technologies for a range of write access rates. Again, ST'T ofters
the best longevity on average. However, depending on the use case of your desktop machine, PCM

and FeFET may also be compelling options (e.g., if read-dominated workloads such as xalancbmk

149

M Optimistic M Reference M Pessimistic — le+67 []
e]
— > |
L, 17 é © le+d l
3]
g 0.11 # %g& o let218 °|8
2 ' E |
© % .H-+ e 1e+0_] $ '
> 001 £ le21 1.
[e)) 4
= 1)
o 0.0014 %
s m
— LS| n|f
= 0.00014 i il I
o
[+

Write Accesses /s

le+4 le+5 le+6 le+7
se+03 [5e+07
Write Accesses/ s ¢ ' ¢

Figure 4.12: Memory latency and projected lifetime under continuous operation across SPEC benchmark traffic to a
16MB LLC shows preferred eNVM depends on traffic demands and optimization goal. All solutions shown meet per-

benchmark read/write demands. For high-traffic benchmarks, STT provides lowest power, lowest latency, and longest

projected lifetime, taken from 185,

dominate an end user’s desktop machine, rather than more write-intensive scientific computing
workloads). RRAM, on the other hand, does not appear viable as an LLC.

Interestingly, the winning technology is dependent on the read accesses per second seen by the
last level cache only when they are sufficiently low. Even more so is the fact that it is actually the
pessimistic ST'T technology which outperforms all others for the case where the read accesses per
second is 10*. For higher values of read accesses per second, the optimistic version of STT is the
clear winner. In terms of performance, total memory latency is consistently lowest for the optimistic

STT regardless of number of write accesses per second.

4.4 CASE STUDIES IN ENVM, SYSTEM, AND APPLICATION C0o-DESIGN

Each scenario presented so far in this chapter presented unique optimization goals and system prior-
ities and, in each case, we compare how each eNVM’s power, performance, and area fairs relative to
similarly-provisioned SRAM or DRAM in a baseline system. The first case study showed that each

eNVM candidate has distinct advantages as scratchpad memory for a DNN accelerator, depending

150

O FeFET % SRAM M Opt. FeFET BG FeFET M Pess. FeFET M Ref. (SRAM)

'g‘ 10000 Wikipedia--BFS8MB o) b3

E —~~

- 526.blender_r8MB © \% 5

[V

g 1000 * % E>; o

= ¥ ¥ £

E 3 2,

g 100 o o g

= Q Q Q

g 5 21 o

s 10 @@

letd let5 let+6 let+7 let+8 0 5 10 15

Read Accesses /s Density [MB/mm2]

o o] x ' : T 1M 3

9 g &5 !

g 0.7 : £ =

- Lo 4

s % o 07

> i 0 ey

g 0.01 W o o

o [}

§ & 2 & o5 ©

= 0.0014 X Q

© o @apedar 526.blender_r8ME S 0.41

©0.0001]

letd le+5 le+6 le+7 10 100

Write Accesses/s Write Latency (ns)

Figure 4.13: Back-gated (BG) FeFETs provide the high density and low operating power required by graph processing

benchmarks while maintaining SRAM-comparable performance, and these solutions begin to close the performance gap

between non-BG FeFET and other memory technologies across SPEC2017 benchmarks, taken from 185,

on task and use cases (Table 4.1). The second case study explored — in a system-agnostic manner —
promising eNVM:s across expected memory traffic of graph analytics tasks and reveals that STT,
PCM, and FeFET memories are all compelling solutions depending on guiding optimization target.
Third, STTs emerge as the most attractive candidate to replace SRAMs in the LLC of a modern
desktop CPU, consistent with prior studies*+9%7.

NVMExplorer enables systematic studies that traverse the immense design space and provide
navigable results, which can be progressively refined down to the most promising eNVM candi-
dates. NVMExplorer’s outputs offer insights into fundamental limitations per eNVM that may
either be addressed by innovations at the device level or architectural solutions, and such co-design

opportunities are the focus of the following discussions.

I51

4.4.0 DEVICE-DRIVEN Co-DEsIGN oF FEFET-BASED ENVM

Previous FeFET-based device characterization and modeling efforts have exhibited write pulses on
the order of 1007s-1us. However, alternative FeFET fabrication strategies in early development
stages, such as back-gated FeFETs*%, ofter compelling potential advancements in write latency
(1075 programming pulse) and projected endurance (10'?). Section 4.2 and Chapter 2.4 noted that
a primary limitation of FeFETs in the context of graph processing is an inability to meet the ap-
plication latency targets under higher write traffic. Thus, using the underlying cell properties of
back-gated FeFETs reported in*°%, we can rapidly re-examine the viability of FeFET-based memory
and probe whether this change could make a difference in the viability of FeFET-based memory for
graph processing and other workloads of interest.

Figure 4.13 shows the total memory power and total memory latency of an 8MB memory ar-
ray of back-gated FeFETS (in yellow) compared to using previous FeFET models (red, green) and
SRAM (blue). We examine these metrics under a range of read and write traffic patterns which
are inclusive of the graph benchmarks described in Section 4.2 and the SPEC benchmarks used in
Section 4.3, but here showing access patterns for an 8MB capacity LLC. Three different array orga-
nizations are tested which represent three different optimization targets: read latency, read energy,
and read energy-delay-product (EDP). The underlying array-level characterization is shown in Fig-
ure 4.13, right. From the array characterization, we observe that the back-gated FeFETs show a slight
increase in read energy per access and slight decrease in storage density compared to prior state-of-
the-art cells. However, we observe that they enable comparable application latency to SRAM across
a wide range of write traffic where previous FeFET versions fall short. Furthermore, back-gated
FeFETs results in the lowest operating power over most of the range of read accesses per second,
including for the example graph processing benchmark, Wikipedia-BFS8MB.

Based on these observations, we posit that back-gated FeFET memory may close the performance

O FeFET V MLCRRAM + STT M Opt. M Ref. M Pess.

X PCM
% 10000 * 6 g
< § > 801
S 1000 g 3 X o
= v ¥ % § 2 60 37(
- & e0d
g s % TR
S 100 * S X
© Q g
k) § < 401 d'
= \v) . ; .
le+5 le+6 let7 1e+8 0 2 4 6
Read Accesses /s Area (mm~2)
w1) = 14
o o o o XO
B § x¢ +|% os] ©
2 X + =
i fa)
® 01 § ™ §< Z_V 2
> VV >
S © X gW 4t o 0.2 i
§ 0011 X ¥ + @ oo1{ T
© v + Q
0.054
S 0.001] + + .
le+5 le+6 le+7 051 2 510
Write Accesses/s Read Latency (ns)

Figure 4.14: Results for 8MB arrays are filtered according to a maximum area efficiency (top right). Arrays with lower

area efficiency are highlighted across all views and tend to result in low memory latency and power across many traffic

scenarios, taken from 185,

gap between prior FeFETs and other memory technologies (including SRAM) and unlock addi-
tional application domains. NVMExplorer’s ability both to quickly and efficiently gauge the impact
of cell-level innovations and to match emerging device designs to compelling use cases can enable
productive future co-design collaborations. This feedback loop is mutually beneficial in providing
direct motivation for further device development and encouraging system designers to integrate

more energy-efficient, highly dense on-chip memory.

4.4.1 TRADE AREA EFFICIENCY FOR PERFORMANCE

One theme we can highlight across the architecture-driven case studies in Sections 4.1-4.3 is that

the subset of characterized results that exhibit lower area efficiency (i.c., internal array architectures

I53

Memorv O FeFET X PCM A RRAM + STT M Opt. M Ref. M Pessimistic
SPEC-CPU2017-geomean SPEC-CPU2017-geomean Facebook-Graph-BFS Facebook-Graph-BFS

_1000] FHH+++++++++] | Tt +++ —, 100071 IR

2 : ++ 2 13 1

E ®O0000000 : ESOOOO £ 70iddstdddddidt| 1 deoosdddddt

| 85388855202 % <EERBS S008I ool eunnnnd| | RARRRARARAR
100 R p 11

* & U E S e [A YRS

X 009 X ~0000 _ :

) E OO$++++++ E OO+++++++ 0 0.2 ooo 000 | jl< 00 OOOO
z 01]40+F {§0++ z 809997 coR| |§000°7 2 ae®

= e xXXX ~+ (XX XXX £ 0.4 HPP : & Ho®
3 COsnan 8 IR ana| |XEARERAMA0A

8 i AAA AAMAL XAAAAL & 0.05] g]

oot §§$A P45 B L SRR R [A TrEttt R
0% 50% 100% [0% 50% 100% 0% 50% 100% 0% 50% 100%

Write Latency Write Traffic Write Latency Write Traffic

Figure 4.15: Masking write latency or reducing write traffic via introduction of a write caching scheme could make a
broader set of eNVM technologies viable, taken from 185,

that do less amortization of periphery and sensing overhead) also tend to result in lower total mem-
ory latency across many traffic scenarios. This is perhaps counter-intuitive given the effort spent in
the devices community to manufacture very small cell sizes. We also note that in Figure 4.14, where
such design points are highlighted across the plots, that slight advantages in terms of energy-per-
access (e.g., Opt. STT and PCM compared to FeFET) tend to correlate to large total power advan-
tages in high-traffic scenarios. As such, pointing out to device designers the greater relative impact of
reduced energy per access rather than decreased cell size could usher in a more productive, product-
ready set of eNVM technologies. Additionally, we observe that reducing energy per write access

for STT and RRAM would drastically improve their relative power advantage for data-intensive

applications, even at a cost of relatively lower area efficiency or storage density.

4.4.2% WRITE BUFFERING CHANGES THE PERFORMANCE LANDSCAPE

In conjunction with technology innovations to reduce write latency, adoption of a wider set of eN-
VMs in general-purpose computing contexts could be made possible by employing existing architec-
tural techniques to mask poor write characteristics. For example, in an effort to extend memory life-

time and mask the performance impact of write access, a more performant technology (e.g., SRAM,

154

or STT) could be employed as a write-bufter. Rather than employ a costly and engineering-intensive
cycle-accurate simulator to gauge the impact of provisioning a write buffer, NVMExplorer enables
an analytical study under user-specified traffic patterns to narrow the space of eNVMs worthy of
further simulation and design effort. This approach answers high-level questions regarding whether
write-buffering could make a difference in making additional eNVMs viable for applications with
significant write traffic, and, if so, how much benefit would need to be extracted?

For illustrative purposes, we consider a simple write cache that would hold write requests to the
eNVM, write back to eNVM when the bufter is full, and allow in-place updates in the case of mul-
tiple writes to the same address before an update to eNVM. Figure 4.15 shows the results for this
study for SPEC2017 and Facebook-Graph-BES. Just buffering the writes will mask the effective
write latency experienced by the system, while a write cache that allows updates could additionally
reduce traffic and extend lifetime. In particular, we look at the effects of masking write latency and
reducing write traffic on total memory latency and power. We observe that for Facebook-Graph-
BES, if the write traffic load is reduced by at least half, FeFET emerges as a performant option, while
STT remains the lowest power solution for this particularly high-traffic workload. STT and RRAM
are still the optimal technology choices for SPEC2017 in terms of performance, but write-buffering
could empower FeFETs as a lower-power alternative if latency could be masked or write traffic to
the eNVM could be reduced by at least 25%. Write buffering could additionally benefit RRAM-
based solutions by eftectively extending the memory lifetime in the face of otherwise-problematic

endurance characteristics.

4.4.3 REVISITING FAULT MODELS, ERROR MITIGATION

While programming multiple bits per memory cell is an important strategy for increasing storage
density across many eNVMs, previous work has revealed that MLC eNVMs may exhibit signif-

icantly higher fault rates that must be carefully considered in conjunction with application re-

IS5

O FeFET A RRAM X PCM * SRAM M opt. MRef. M Pes:
O MLCFeFET V MLCRRAM + STT

3 ¥ 5150

2 14 - xg@ * E &

= o 10

P | Pgber = e

= + ¥ IR

g 04 & 0] @ 4@ *
05 1 2 5 10 5 10 15

Read Latency (ns) Area (mm~2)

Figure 4.16: When we consider multi-level cells (MLC)s and filter out memory solutions that don't provide acceptable

ResNet18 inference accuracy after fault injection, we note MLC RRAM is denser and more performant than SLC RRAM,

while MLC FeFET is only sufficiently reliable for larger cell sizes (red), taken from 185,

silience "*%

%4, NVMExplorer enables efficient and broad probing of reliability vs. storage density
by providing an application-agnostic fault injection tool and templates for technology-specific fault
models. To demonstrate, we quantify the application accuracy for ResNet18 image classification
under weight storage in SLC vs. 2-bit MLC across multiple technologies for which there exists suffi-
cient cell and circuit level data to produce detailed fault models. The density vs. reliability trade-oft
is distinct for each technology. For example, Figure 4.16 displays 8MB and 16MB characterized ar-
rays, including 2-bit MLC RRAM and 2-bit MLC FeFET, filtered such that only those arrays meet-
ing application latency requirements and maintaining image classification accuracy are included.
Note that these results replicate previous efforts that indicate that image classification inference is
robust to 2-bit MLC RR AM storage (we also verified this for CTT-based memories with fault mod-
eling details provided in '*>¢°), while we show that MLC FeFET devices only exhibit acceptable
accuracy for larger cell sizes. This is because smaller FeFETs are more difficult to program reliably
due to device-to-device variation ***. Portions of NVMExplorer were leveraged to quantify cell- and

circuit-level trade-ofts specific to MLC FeFETs in greater depth to determine optimal cell provision-

ing and writing schemes for target applications*°*.

1 never am really satisfied that I understand anything; because, understand it well as I may, my
comprebension can only be an infinitesimal fraction of all I want to understand about the many

connections and relations which occur to me.

Ada Lovelace

Conclusion: Future Memory System

Opportunities and Innovations

As TECHNOLOGY SCALING REACHES PHYSICAL LIMITS and critical applications become increas-
ingly data-intensive, fundamental improvements in efficiency are bound to effective and innova-

tive memory system design choices. This thesis has reviewed and revealed a variety of concrete de-

157

sign choices and system opportunities for improving memory density and efficiency, particularly
highlighting the promise of integrating embedded non-volatile memory solutions in a variety of
computing systems. In addition to specific system solutions and key design choices, a central con-
tribution of this work is to develop and make available methodologies and tools to empower future
exploration of technology innovations, application characteristics, system design, and the critical
intersections and interactions of these choices across the computing stack.

Several key themes have emerged in the discussion of this dissertation which will continue to
be critical to future memory system design. In this section, I will describe the themes of reliability,
flexibility, and technology-awareness and how they can and should inform future work in heteroge-
neous memory systems. Additionally, I will introduce other innovations and design considerations,
such as temperature-aware evaluation, floorplan-aware memory architecture design for accelera-
tors, environmentally-aware analysis of technology and fabrication choices, and exciting integration
choices such as 3D-stacked memory and chiplet-based systems, and describe how future opportu-
nities in these research spaces intersect and are made more immediately explorable, tangible, and

teasible by the methods, tools, and processes described in this thesis.

s.o THEMES TO UNLOCK FUTURE MEMORY EFFICIENCY

In this section, I review several over-arching design principles that emerged through the discussion
of my dissertation work, and I comment on how these themes and principles will continue to shape
the field of computer architecture, including some specific projects and studies I have considered

that are in-progress or otherwise outside the scope of this work.

5.0.0 RELIABILITY

Chapter 2 probes the many ways not only that technology-level and system-level choices (e.g., MLC
programming, data encoding) have direct and potentially catastrophic impacts on target application
(in terms of accuracy, performance, and more), but also that exposing and exploring the distinct
application-level impacts of varying system and technology reliability in the memory system can un-
lock incredible benefits in terms of increased memory density and memory system efficiency. These
findings were concretized and integrated in a broader set of memory system evaluations in Chap-
ters 3 and 4. In fact, as computing systems naturally gravitate towards increased specialization and
heterogeneity in the face of the end of Moore’s law, critical examination of reliability assumptions
prompts a huge opportunity to relax and/or customize storage settings, data formats, and technol-
ogy choices towards the specific needs and scope of particular applications and domains of interest.
This thesis has heavily focused on the cross-stack consideration of potentially decreased reliabil-
ity in emerging memory technologies in conjunction with the relative fault tolerance of deep neu-
ral network inference as an application space relevant to myriad computing domains and systems.
However, presented work in general-purpose compute settings (Chapter 4.3) and towards acceler-
ation of graph processing and broader classes of machine learning (Chapters 4.2, 3.2, 3.3) suggest
that the bleeding edge of memory efficiency in a variety of domains and system settings will require
the proposed approach to re-thinking and re-calibrating resilience analysis and mitigation strategies
in tight connection with memory technology design choices and application properties. While there
is evidence that the specific software tools for fault modeling, fault injection, and incorporating re-
liability into system-level design objectives that I've contributed to and developed through my PhD
work (namely, Ares'?? and nvmFI within NVMExplorer '*5) will continue to carry the frontier and
enable fascinating and essential future studies in memory reliability, I hope that the exposure and

discussion of the interactions between data format (including numerical representations and sparse

159

encodings) and low-level memory cell and circuit optimizations (e.g., MLC programming and sens-

ing design) will exhibit lasting impact on future memory solutions.

5.0.1 FLEXIBILITY

While a significant portion of the system solutions and memory architectures proposed throughout
this thesis are heavily customized towards a single application or a subset of an application space, an
increasingly crucial vector of any proposed architecture is the balance of customization via co-design
vs. flexibility to support a sufficient range of workloads. The identification and segmentation of a
‘sufficient range’ of supported applications or workloads is highly system-dependent, and increas-
ingly heterogeneous systems require careful consideration of not only what to accelerate and dedi-
cate computational units towards, but also where and how memory should be allocated, physically
distributed on a chip, and accessed and shared among system resources to best support end-to-end
applications. In this light, the definition of flexibility alludes not only to a range of application char-
acteristics, but also to the programmability and abstraction built into a customized system in terms
of system support (e.g., user interface, development stack, memory management protocols) and
circuit-level support (e.g., dynamic allocation and selection of programming settings, perhaps based
on reliability concerns).

Ongoing work aims to taxonomize and sufficiently standardize both the design process for the
next generation of accelerators and the appropriate dataflow, memory allocation, and scheduling
paradigms to maximize utilization and efficiency ***. However, this flavor of co-design is as yet
insufficient without critically examining data movement energy and opportunities for increased
overall energy efficiency in the form of decoupled, physically distributed memory banks that are in-
terchangeable and dynamically allocatable to emulate the memory hierarchy and partitioning that
best supports a given workload of interest at compile-time. I'm investigating such a proposal in an

orthogonal but conceptually relevant research effort that aims to identify where and when the the

160

fracturing and physical distribution of a memory array architecture is worthwhile. In this proposal,
smaller, individually accessible and addressable buffer units are cheaper per-access, but the relative
cost and lack of area efficiency of physically distributed memory resources among compute units
must be overcome by a combination of sufficiently stripped-down network routing (made possi-

182)

ble by mostly-static scheduling paradigms '°*) and eftective data mapping to maximize data reuse
to physically co-located data buffers. A key finding in this effort is that the individual bufter units,
to maximize potential efficiency, must be flexibly able to be defined and partitioned according to

application properties, and then data allocation must be optimally identified during compile-time,

through a cross-computing-stack design methodology.

5.0.2 TECHNOLOGY-AWARENESS

Across a variety of contexts and leveraging a range of underlying memory technologies, this thesis
has reviewed and evaluated concrete strategies to expose or otherwise customize lower-level design
choices (i.e., memory cell, circuit, array optimizations) to the broader system architecture and even
to the design and optimization of an application of interest to unlock striking gains. While relia-
bility and flexibility are two critical considerations that can and should be built into future design
goals and metrics, the core of computer architecture innovation and memory system efficiency in
the future will be exploring how, when, and to what extent to bring awareness of technology-level
details into the fore. The results presented throughout this thesis unearth the ways in which this is
exacerbated as one considers integrating eNVMs, but the perspective of co-design and technology-
awareness is similarly critical in understanding, adapting, and deriving benefits from advanced sys-

tem design, fabrication, and integration choices more broadly, as discussed next.

161

5.1 INNOVATIONS ON THE HORIZON, AND HOW TO LEVERAGE THEM

In this section, I briefly review opportunities and limitations for a set of broad future research
thrusts, in each case contextualizing in terms of their viability for heterogeneous future memory

systems and the efficacy of the methods and findings presented in this dissertation.

5.1.0 TEMPERATURE-AWARE SYSTEM ANALYSIS AND EVALUATION

One design parameter largely overlooked in the preceding chapters is the impact of temperature.
There are several ways in which thermal effects may impact analysis of the viability, effectiveness,
and efficiency of proposed memory system solutions. For example, recent work observed that hot-
spots and uneven heat distribution in CPUs are exacerbated at advanced technology nodes (e.g.,
7nm vs. 14nm or 16nmy), leading to performance degradation, reliability issues, and potential dam-
age to components®S. Further study is required to know whether such issues may be compounded
or possibly alleviated by replacing high-leakage-power SRAM with an eNVM, and whether sensitiv-
ity of temperature fluctuations would impact eNVM susceptibility to faults in different system con-
texts. Additionally, environmental conditions and cooling methods of the system can have signifi-
cant performance and power implications as well. In fact, recent work has proposed cryogenic op-
eration (i.e., cooling an entire chip via contact with liquid nitrogen) as a potentially power-efficient
solution for off-chip DR AM and even for the CPU, drastically reducing the effective leakage and
improving performance of the cache subsystem 163,

As additional innovations and system proposals continue to emerge, it is essential to incorporate
temperature-dependencies and to contextualize potential benefits in a broader system context. For
example, future work should investigate whether potential power overheads of cooling can be suf-
ficiently reduced to justify cryogenic operation, and how relative power benefits of cryo-operation

may compare to the energy efficiency and low leakage of eNVM solutions for the LLC.

162

5.1.1 ENVIRONMENTAL-IMPACT-AWARE SYSTEM ANALYSIS AND EVALUATION

In the face of our changing climate, the indisputably high carbon footprint of fabrication, develop-
ment, and use of technology should be front-of-mind of researchers aiming to shape and inform the
next generation of computing systems. Moore’s Law describing the number of transistors per inte-
grated chip has always, at heart, been an economic argument, in terms of justifying the research and
development towards increased density and performance, but the time is past for technology scaling
efforts and innovations to be dually justified by economic incentives and environmental impacts.
Ongoing work has identified design challenges and opportunities in quantifying carbon footprint
and designing future devices with environmental impact in-the-loop *>*#5. The modeling efforts
recently put forth to quantify environmental impacts of computing can and should be integrated
with the design tools for memory systems put forth in this thesis.

As yet, the environmental impact both in terms of embodied carbon and operation-related foot-
print of devices integrating eNVM:s has not been analyzed, and shaping optimization goals and
metrics to include minimization of carbon emissions is a crucial and imminent change in mindset.
Quantifying and justifying changes to manufacturing, procurement of unique materials, and inte-
gration choices become central questions in judging the viability, promise, and limitations of each
of the eNVMs studied in this thesis. For example, one proposal to elide the costs and ensuing car-
bon footprint of fabrication in advanced technology nodes is to instead roll back to a less advanced
node (e.g., 22nm-4s5nm) for the dual benefit of reduced complexity and resources in manufacturing,
as well as research and development, and lower power density during operation. Considering the
open questions in terms of efficient scaling across memory technologies and system solutions, there
is much ground to cover and many delicate, cross-computing-stack interactions to consider in re-
ducing carbon footprint of end-to-end systems. Namely, increasing conversation and collaboration

from materials engineers and industry fabrication plants up to computer architects and application

163

developers could change future computing systems by leveraging device-workload interactions and
identifying potential concessions in the hallowed metrics of performance and cost in order build

greener technology.

5.1.2 3D-INTEGRATED MEMORY

3D-stacked dies as well as monolithic 3D integration of memory (either standalone or integrated
with compute layers) exhibits exciting potential performance and density benefits, but comes with
design challenges*'73. Probing this trade-oft per-memory-technology is a critical first step, but real-
istic analysis of end-to-end scalability, efficiency, and environmental impact will be needed. Many
proposals already exist in this space and enable dramatic bandwidth and significant performance,
but such systems must be carefully calibrated to identify when and where it is an appealing design
choice (e.g., in light of potential thermal implication, potential additional costs, and more). There
are ample, near-future opportunities to identify co-design choices in the space of 3D-stacked and
monolithic 3D implementations of various memory technologies to augment the memory subsys-

tem of both general purpose and highly specialized computing systems.

5.1.3 CHIPLETS — IMPLICATIONS FOR MEMORY DESIGN SPACE EXPLORATION

There are many well-documented limitations of large, monolithic chip designs, both in terms of
yield and fabrication process at advanced technology nodes and in the drastically increasing com-
plexity, time, and engineering effort involved to design and validate such a design. Multi-Chip
Modules (MCMs), is a compelling emerging alternative design paradigm comprised of individually
designed and fabricated chiplets, then integrated into a larger system *°*. A chiplet-based design in-
troduces challenges in the efficiency of inter-chiplet communication, but has been demonstrated to

scale well in supporting applications requiring beefy compute and high on-chip memory capacity, as

for deep neural network inference.

A chiplet-based integration strategy is also an opportunity to combine and communicate among
distinct chip designs, including those fabricated with different processes or those dedicated for dif-
ferent designs and purposes (e.g., a subset of distributed chiplets for technologically heterogeneous
memory resources, such as those integrating different NVM technologies). For this reason, MCMs
are a compelling design paradigm for integrating and making efficient use of tightly-coupled eNVM
resources in a large system, and the proposed tools and methodologies in this dissertation could be
extended to model the interactions and access properties of a chiplet-based design. The relevance of
varying reliability, flexibility, and technology-awareness are heightened in this context. The critical
intersections of application access characteristics, data formats, and network properties unveiled in

this work will remain relevant to these critical design space explorations and system developments.

5.2 SUMMARY: CROSS-COMPUTING-STACK MEMORY EFFICIENCY OPPORTUNITIES

Future memory system efficiency will clearly be guided by reliability, flexibility, and technology-
awareness. The work presented in this dissertation can be effectively complemented by improved
metrics and methodologies (e.g., quantifying environmental impact of design choices, incorporating
temperature-awareness and integration innovations). Continuing the attitudes and design meth-
ods developed in this thesis will be critical to transformations and efficiency gains in future memory
systems. In particular, exposing technology characteristics to higher levels of the computing stack
necessitates conversation and approachable methods for collaborative design among application ex-
perts, system architects, circuit designers, device physicists, and more. Building accessible, extensible,
and thoughtful frameworks and software tools for design space exploration and technology model-
ing is a bridge towards a more diverse and creative era of memory architecture solutions, to which

I’'m excited to shape and contribute as a researcher.

165

[1]
2]

(3]

(4]

(5]

(6]

(7]

References

(2015). Keras: The python deep learning library.

(2017). Solid state drive (ssd) requirements and endurance test method. https://www.
jedec.org/standards-documents/focus/flash/solid-state-drives.

Aggarwal, S., Almasi, H., DeHerrera, M., Hughes, B., Ikegawa, S., Janesky, J., Lee, H. K.,

Lu, H., Mancoff, F. B., Nagel, K., Shimon, G., Sun, J. J., Andre, T., & Alam, S. M. (2019).
Demonstration of a reliable 1 gb standalone spin-transfer torque mram for industrial applica-
tions. In JEEE International Electron Devices Meeting (IEDM).

Alayan, M., Vianello, E., Navarro, G., Carabasse, C., Barbera, S. L., Verdy, A., Castellani,
N., Levisse, A., Molas, G., Grenouillet, L., Magis, T., Aussenac, F., Bernard, M., DeSalvo,
B., Portal, J. M., & Nowak, E. (2017). In-depth investigation of programming and reading
operations in rram cells integrated with ovonic threshold switching (ots) selectors. In JEEE
International Electron Devices Meeting (IEDM).

Ali, T., Polakowski, P., Kuhnel, K., Czernohorsky, M., Kampfe, T., Rudolph, M., Patzold, B.,
Lehninger, D., Muller, F., Olivo, R., Lederer, M., Hoftmann, R., Steinke, P., Zimmermann,
K., Muhle, U., Seidel, K., & Muller, J. (2019). A multilevel fefet memory device based on
laminated hso and hzo ferroelectric layers for high-density storage. In IEEE International
Electron Devices Meeting (IEDM).

Ali, T,, Seidel, K., Kuhnel, K., Rudolph, M., Czernohorsky, M., Mertens, K., Hoffmann,

R., Zimmermann, K., Muhle, U., Muller, J., Van Houdyt, J., & Eng, L. M. (2020). A novel
dual ferroelectric layer based mfmfis fefet with optimal stack tuning toward low power and
high-speed nvm for neuromorphic applications. In JEEE Symposium on VLSI Technology.

Alzate, J. G., Arslan, U, Bai, P, Brockman, J., Chen, Y. J., Das, N, Fischer, K., Ghani, T.,
Heil, P., Hentges, P, Jahan, R., Littlejohn, A., Mainuddin, M., Ouellette, D., Pellegren, J.,
Pramanik, T., Puls, C., Quintero, P., Rahman, T., Sekhar, M., Sell, B., Seth, M., Smith, A.].,
Smith, A. K., Wei, L., Wiegand, C., Golonzka, O., & Hamzaoglu, F. (2019). 2 mb array-level
demonstration of stt-mram process and performance towards l4 cache applications. In JEEE
International Electron Devices Meeting (IEDM).

166

https://www.jedec.org/standards-documents/focus/flash/solid-state-drives
https://www.jedec.org/standards-documents/focus/flash/solid-state-drives

(8]

[9]
[10]

[x1]

[12]

[13]

[14]

[15]

[x6]

[17]

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., Ikebe, M., Asai, T,
Takamaeda-Yamazaki, S., Kuroda, T., & Motomura, M. (2017). Brein memory: A 13-layer
4.2 k neuron/0.8 m synapse binary/ternary reconfigurable in-memory deep neural network
accelerator in 65 nm cmos. In zo17 Symposium on VLSI Circuits.

Andrews,]. & Baker, N. (2006). Xbox 360 system architecture. JEEE Micro, 26(2), 25-37.

Arnaud, F., Zuliani, P., Reynard, J. P., Gandolfo, A., Disegni, F., Mattavelli, P., Gomiero, E.,
Samanni, G., Jahan, C., Berthelon, R., Weber, O., Richard, E., Barral, V., Villaret, A., Kohler,
S., Grenier, J. C., Ranica, R., Gallon, C., Souhaite, A., Ristoiu, D., Favennec, L., Caubet, V.,
Delmedico, S., Cherault, N., Beneyton, R., Chouteau, S., Sassoulas, P. O., Vernhet, A., Le
Friec, Y., Domengie, F., Scotti, L., Pacelli, D., Ogier, J. L., Boucard, F., Lagrasta, S., Benoit,
D., Clement, L., Boivin, P., Ferreira, P., Annunziata, R., & Cappelletti, P. (2018). Truly
innovative 28nm fdsoi technology for automotive micro-controller applications embedding
16mb phase change memory. In IEEE International Electron Devices Meeting (IEDM).

Asiatici, M. & Ienne, P. (2021). Large-scale graph processing on fpgas with caches for thou-
sands of simultaneous misses. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA) (pp. 609—622.).

Baek, J., Kim, S., Park, J., Park, J., & Kwon, K. (2015). A reliable cross-point mlc reram with
sneak current compensation. In zors IEEE International Memory Workshop (IMV).

Balaji, V., Crago, N, Jaleel, A., & Lucia, B. (2021). P-opt: Practical optimal cache replace-
ment for graph analytics. In zoz1 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (pp. 668—681).

Bankman, D., Yang, L., Moons, B., Verhelst, M., & Murmann, B. (2018). An always-on cifar-
10 mixed-signal binary cnn processor with all memory on chip in 28nm cmos. In 2018 IEEE
International Solid - State Circuits Conference - (ISSCC).

Barlas, M., Grossi, A., Grenouillet, L., Vianello, E., Nolot, E., Vaxelaire, N., Blaise, P., Traoré,
B., Coignus, J., Perrin, F., Crochemore, R., Mazen, F., Lachal, L., Pauliac, S., Pellissier, C.,
Bernasconi, S., Chevalliez, S., Nodin, J. F., Perniola, L., & Nowak, E. (2017). Improvement
of hfoz based rram array performances by local si implantation. In JEEE International Elec-
tron Devices Meeting (IEDM).

Bayram, I, Eken, E., Kline, D., Parshook, N., Chen, Y., & Jones, A. K. (2016). Modeling
stt-ram fabrication cost and impacts in nvsim. In z016 Seventh International Green and
Sustainable Computing Conference (IGSC).

Beamer, S., Asanovic, K., & Patterson, D. (2015). Locality exists in graph processing: Work-
load characterization on an ivy bridge server. In IEEE International Symposium on Workload
Characterization.

167

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Belmonte, A., Radhakrishnan, J., Goux, L., Donadio, G. L., Kumbhare, P., Redolfi, A., Del-
hougne, R., Nyns, L., Devulder, W., Witters, T., Covello, A., Vereecke, G., Franquet, A.,
Spampinato, V., Kundu, S., Mao, M., Hody, H., & Kar, G. S. (2019). Co active electrode
enhances cbram performance and scaling potential. In JEEE International Electron Devices
Meeting (IEDM).

Bi, X., Mao, M., Wang, D., & Li, H. H. (2017). Cross-layer optimization for multilevel cell
stt-ram caches. JEEE Transactions on Very Large Scale Integration (VLSI) Systems.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J.,
Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill,
M.D., & Wood, D. A. (2011). The gems simulator. SIGARCH Comput. Archit. News,

39(2), 1-7.

Bojnordi, M. N. & Ipek, E. (2016). Memristive boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA).

Boujamaa, E. M., Ali, S. M., Wandji, S. N., Gourio, A., Pyo, S., Koh, G., Song, Y., Song, T.,
Kye,]., Vial,]. C., Sowden, A., Rathor, M., & Dray, C. (2020). A 14.7mb/mm2 28nm fdsoi
stt-mram with current starved read path, s20hm/sigma offset voltage sense amplifier and
tully trimmable ctat reference. In JEEE Symposium on VLSI Circuits.

Bricalli, A., Ambrosi, E., Laudato, M., Maestro, M., Rodriguez, R., & Ielmini, D. (2016).
Siox-based resistive switching memory (rram) for crossbar storage/select elements with high
on/oft ratio. In JEEE International Electron Devices Meeting (IEDM).

Bucek, J., Lange, K.-D., & v. Kistowski,]. (2018). Spec cpu2o17: Next-generation compute
benchmark. In ACM/SPEC International Conference on Performance Engineering.

Carboni, R., Ambrogio, S., Chen, W,, Siddik, M., Harms,]., Lyle, A., Kula, W., Sandhu,
G., & Ielmini, D. (2016). Understanding cycling endurance in perpendicular spin-transfer
torque (p-stt) magnetic memory. In JEEE International Electron Devices Meeting (IEDM).

Carlson, T. E., Heirman, W., Eyerman, S., Hur, I., & Eeckhout, L. (2014). An evaluation of
high-level mechanistic core models. ACM Transactions on Architecture and Code Optimiza-
tion (TACO).

Chan, C.Y,, Chen, K. Y, Peng, H. K., & Wu, Y. H. (2020). Fefet memory featuring large
memory window and robust endurance of long-pulse cycling by interface engineering using
high-k alon. In JEEE Symposium on VLSI Technology.

Chandrasekar, K., Weis, C., Li, Y., Goossens, S., Jung, M., Naji, O., Akesson, B., Wehn, N., ,
& Goossens, K. (2012). Drampower: Open-source dram power and energy estimation tool.
http://www.drampower.info.

168

[29] Chang, M., Wu,], Chien, T,, Liu, Y., Yang, T., Shen, W., King, Y., Lin, C., Lin, K., Chih,
Y., Natarajan, S., & Chang, J. (2014). 19.4 embedded 1mb reram in 28nm cmos with o.27-
to-1v read using swing-sample-and-couple sense amplifier and self-boost-write-termination
scheme. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC).

[30] Chang, T., Chiu, Y, Lee, C., Hung, J., Chang, K., Xue, C., Wu, S., Kao, H., Chen, P.,
Huang, H,, Teng, S., & Chang, M. (2020). A 22nm rmb 1024b-read and near-memory-
computing dual-mode stt-mram macro with 42.6gb/s read bandwidth for security-aware
mobile devices. In JEEE International Solid- State Circuits Conference - (ISSCC).

[31] Chen, A.(2016). A review of emerging non-volatile memory (nvm) technologies and appli-
cations. Solid-State Electronics. Extended papers selected from ESSDERC 2015.

[32] Chen, E., Apalkov, D., Diao, Z., Driskill-Smith, A., Druist, D., Lottis, D., Nikitin, V., Tang,
X., Watts, S., Wang, S., Wolf, S. A., Ghosh, A. W., Lu, J. W,, Poon, S. J., Stan, M., Butler,
W. H., Gupta, S., Mewes, C. K. A., Mewes, T., & Visscher, P. B. (2010). Advances and future
prospects of spin-transfer torque random access memory. JEEE Transactions on Magnetics.

[33] Chen,]., Wu, H., Gao, B., Tang, J., Hu, X. S., & Qian, H. (2020). A parallel multibit pro-
graming scheme with high precision for rram-based neuromorphic systems. /EEE T-ED.

[34] Chen, P, Peng, X., & Yu, S. (2017a). Neurosim+: An integrated device-to-algorithm frame-
work for benchmarking synaptic devices and array architectures. In JEEE International
Electron Devices Meeting (IEDM).

[35] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In ASPLOS.

[36] Chen, W, Lin, W,, Lai, L., Li, S., Hsu, C,, Lin, H., Lee, H., Su, J., Xie, Y., Sheu, S., & Chang,
M. (2017b). A 16mb dual-mode reram macro with sub-14ns computing-in-memory and
memory functions enabled by self-write termination scheme. In JEEE International Electron
Devices Meeting (IEDM).

[37] Chen, W, Lu, W, Long, B., Li, Y., Gilmer, D., Bersuker, G., Bhunia, S., & Jha, R. (2015).
Switching characteristics of w/zr/hfo 2 /tin reram devices for multi-level cell non-volatile
memory applications. Semiconductor Science and Technology.

[38] Chen, W. H., Li, K. X, Lin, W. Y., Hsu, K. H., Li, P. Y., Yang, C. H., Xue, C. X,, Yang,
E. Y, Chen, Y. K,, Chang, Y. S, Hsu, T. H,, King, Y. C, Lin, C.], Liu, R. S., Hsich, C. C,,
Tang, K. T., & Chang, M. F. (2018). A 6snm 1mb nonvolatile computing-in-memory reram
macro with sub-16ns multiply-and-accumulate for binary dnn ai edge processors. In JEEE
International Solid - State Circuits Conference - (ISSCC).

169

[39] Chen, X, Huang, T., Xu, S., Bourgeat, T., Chung, C., & Arvind (2021). FlexMiner: A
Pattern-Aware Accelerator for Graph Pattern Mining. IEEE Press.

[40] Cheng, H. Y., Chien, W. C., Kuo, I. T, Lai, E. K., Zhu, Y., Jordan-Sweet, J. L., Ray, A.,
Carta, F., Lee, F. M., Tseng, P. H., Lee, M. H., Lin, Y. Y., Kim, W, Bruce, R., Yeh, C. W.,
Yang, C. H., BrightSky, M., & Lung, H. L. (2017). An ultra high endurance and thermally
stable selector based on teasgesise chalcogenides compatible with beol ic integration for cross-
point pcm. In JEEE International Electron Devices Meeting (IEDM).

[41] Cheng, H.Y,, Kuo, I. T., Chien, W. C., Yeh, C. W,, Chou, Y. C., Gong, N., Gignac, L.,
Yang, C. H., Cheng, C. W., Lavoie, C., Hopstaken, M., Bruce, R. L., Buzi, L., Lai, E. K.,
Carta, F., Ray, A., Lee, M. H,, Ho, H. Y,, Kim, W., BrightSky, M., & Lung, H. L. (2020).
Si incorporation into assege chalcogenides for high thermal stability, high endurance and
extremely low vth drift 3d stackable cross-point memory. In IEEE Symposium on VLSI
Technology.

[42] Chi, P, Li, S, Xu, C., Zhang, T., Zhao,], Liu, Y., Wang, Y., & Xie, Y. (2016). Prime: A novel
processing-in-memory architecture for neural network computation in reram-based main

memory. ACM SIGARCH Computer Architecture News.

[43] Chien, W. C., Cheng, H. Y., BrightSky, M., Ray, A., Yeh, C. W., Kim, W., Bruce, R., Zhu,
Y., Ho, H. Y., Lung, H. L., & Lam, C. (2016). Reliability study of a 128 mb phase change
memory chip implemented with doped gasbge with extraordinary thermal stability. In JEEE
International Electron Devices Meeting (IEDM).

[44] Chih, Y, Shih, Y, Lee, C., Chang, Y., Lee, P., Lin, H., Chen, Y., Lo, C., Shih, M., Shen, K.,
Chuang, H., & Chang, T. J. (2020). A 22nm 32mb embedded stt-mram with 1ons read
speed, 1m cycle write endurance, 1o years retention at 1s5oc and high immunity to magnetic
field interference. In IEEE International Solid- State Circuits Conference - (ISSCC).

[45] Chiu, Y.-C., Hu, H.-W.,, Lai, L.-Y., Huang, T.-Y., Kao, H.-Y., Chang, K.-T., Ho, M..-S., Chou,
C.-C,, Chih, Y.-D., Chang, T.-Y., & Chang, M.-F. (2019). A 4onm 2mb reram macro with
85% reduction in forming time and 99% reduction in page-write time using auto-forming
and auto-write schemes. In Symposium on VLSI Technology.

[46] Choi, Y., Song, I., Park, M., Chung, H., Chang, S., Cho, B., Kim, J., Oh, Y., Kwon, D., Sun-
woo,J., Shin, J., Rho, Y,, Lee, C., Kang, M. G, Lee, J., Kwon, Y., Kim, S., Kim, J., Lee, Y.,
Wang, Q., Cha, S., Ahn, S., Horii, H., Lee, J., Kim, K., Joo, H., Lee, K., Lee, Y., Yoo,]., &
Jeong, G. (2012a). A 20nm 1.8v 8gb pram with 40omb/s program bandwidth. In 2072 IEEE
International Solid-State Circuits Conference.

[47] Choi, Y., Song, I., Park, M. H., Chung, H., Chang, S., Cho, B., Kim, J., Oh, Y., Kwon, D.,
Sunwoo, J., Shin, J., Rho, Y,, Lee, C., Kang, M. G, Lee, J., Kwon, Y., Kim, S., Kim, J., Lee,
Y.]J., Wang, Q., Cha, S., Ahn, S., Horii, H., Lee, J., Kim, K., Joo, H., Lee, K., Lee, Y. T, Yoo,

170

(48]

[49]

[s0]

[s1]

[52]

[53]

[54]

[55]

[s6]

[57]

J., & Jeong, G. (2012b). A 20nm 1.8v 8gb pram with 40mb/s program bandwidth. In zozz
IEEE International Solid-State Circuits Conference.

Chou, C,, Lin, Z., Lai, C., Su, C., Tseng, P., Chen, W., Tsai, W., Chu, W., Ong, T., Chuang,
H., Chih, Y., & Chang, T. (2020). A 22nm 96kx144 rram macro with a self-tracking refer-
ence and a low ripple charge pump to achieve a configurable read window and a wide operat-
ing voltage range. In IEEE Symposium on VLSI Circuits.

Chou, C,, Lin, Z., Tseng, P., Li, C., Chang, C., Chen, W., Chih, Y., & Chang, T. J. (20138).
An n40 256kx 44 embedded rram macro with sl-precharge sa and low-voltage current limiter

to improve read and write performance. In JEEE International Solid - State Circuits Confer-
ence - (ISSCC).

Chou, T, Tang, W., Botimer, J., & Zhang, Z. (2019). Cascade: Connecting rrams to extend
analog dataflow in an end-to-end in-memory processing paradigm. In Proceedings of the 5 2nd
Annual IEEE/ACM International Symposium on Microarchitecture.

Chung, S., Kishi, T., Park, J. W., Yoshikawa, M., Park, K. S., Nagase, T., Sunouchi, K.,
Kanaya, H., Kim, G. C., Noma, K., Lee, M. S., Yamamoto, A., Rho, K. M., Tsuchida, K.,
Chung, S.].,Yi,]. Y., Kim, H. S., Chun, Y. S., Oyamatsu, H., & Hong, S.]. (2016). 4gbit
density stt-mram using perpendicular mtj realized with compact cell structure. In JEEE
International Electron Devices Meeting (IEDM).

Close, G. F., Frey, U., Morrish, J., Jordan, R., Lewis, S. C., Maffitt, T., BrightSky, M. J., Ha-
gleitner, C., Lam, C. H., & Eleftheriou, E. (2013). A 256-mcell phase-change memory chip
operating at2+bit/cell. IEEE Transactions on Circuits and Systems I: Regular Papers.

Cong Xu, Dimin Niu, Muralimanohar, N, Jouppi, N. P., & Yuan Xie (2013). Understand-
ing the trade-offs in multi-level cell reram memory design. In Design Automation Conference

(DAC).

Dadu, V., Liu, S., & Nowatzki, T. (2021). Polygraph: Exposing the value of flexibility for
graph processing accelerators. In 2021 ACM/IEEE 48th Annual International Symposinm
on Computer Architecture (ISCA) (pp. 595-608).

Dadu, V., Liu, S., & Nowatzki, T. (2022). Systematically understanding graph accelerator
dimensions and the value of hardware flexibility. JEEE Micro, (pp. 1-1).

Daly, D. C., Fujino, L. C., & Smith, K. C. (2018). Through the looking glass - the 2018 edi-
tion: Trends in solid-state circuits from the 65th isscc. JEEE Solid-State Circuits Magazine,
10(1), 30-46.

Datta, D., Dixit, H., Agarwal, S., Dasgupta, A., Tran, M., Houssameddine, D., Chauhan,
Y.S., Shum, D., & Benistant, F. (2017). Quantitative model for switching asymmetry in

171

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[e6]

[67]

[68]

perpendicular mtj: A material-device-circuit co-design. In IEEE International Electron
Devices Meeting (IEDM).

Deng, S., Yin, G., Chakraborty, W., Dutta, S., Datta, S., Li, X., & Ni, K. (2020). A compre-
hensive model for ferroelectric fet capturing the key behaviors: Scalability, variation, stochas-
ticity, and accumulation. In JEEE Symposium on VLSI Technology.

Donato, M., Pentecost, L., Brooks, D., & Wei, G. (2019). Memti: Optimizing on-chip non-
volatile storage for visual multitask inference at the edge. JEEE Micro.

Donato, M., Reagen, B., Pentecost, L., Gupta, U., Brooks, D., & Wei, G.-Y. (2018). On-chip
deep neural network storage with multi-level envm. In Proceedings of the s sth Annual Design
Automation Conference.

Dong, Q., Wang, Z., Lim, J., Zhang, Y., Shih, Y., Chih, Y., Chang, J., Blaauw, D., & Sylvester,
D. (2018). A 1mb 28nm stt-mram with 2.8ns read access time at 1.2v vdd using single-cap

offset-cancelled sense amplifier and in-situ self-write-termination. In /EEE International
Solid - State Circuits Conference - (ISSCC).

Dong, X., Xu, C., Xie, Y., & Jouppi, N. P. (2012). Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

Du, Y, Du, L., Gu, X., Wang, X., & Chang, M. F. (2017). A memristive neural network
computing engine using cmos-compatible charge-trap-transistor (CTT). CoRR.

Dunkel, S., Trentzsch, M., Richter, R., Moll, P., Fuchs, C., Gehring, O., Majer, M., Wittek,
S., Muller, B., Melde, T., Mulaosmanovic, H., Slesazeck, S., Miiller, S., Ocker, J., Noack, M.,
Léhr, D. ., Polakowski, P., Muller, J., Mikolajick, T., Hontschel, J., Rice, B., Pellerin, J., &
Beyer, S. (2017). A fefet based super-low-power ultra-fast embedded nvm technology for
22nm fdsoi and beyond. In JIEEE International Electron Devices Meeting (IEDM).

Endoh, T., Honjo, H., Nishioka, K., & ITkeda, S. (2020). Recent progresses in stt-mram and
sot-mram for next generation mram. In JEEE Symposium on VLSI Technology.

Esmacilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., & Burger, D. (2011). Dark sili-
con and the end of multicore scaling. In 38th Annual International Symposium on Computer
Architecture (ISCA).

Facebook Technologies (2019). Oculus guidelines for virtual reality performance optimiza-
tion. https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-performance-

guidelines/.

Feng, X., Li, Y., Wang, L., Yu, Z. G., Chen, S., Tan, W. C., Macadam, N., Hu, G., Gong,
X., Hasan, T., Zhang, Y. W., Thean, A. V. Y., & Ang, K. W. (2019). First demonstration

172

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

of a fully-printed mosarram on flexible substrate with ultra-low switching voltage and its
application as electronic synapse. In Symposium on VLSI Technology.

Florent, K., Pesic, M., Subirats, A., Banerjee, K., Lavizzari, S., Arreghini, A., Di Piazza, L.,
Potoms, G., Sebaai, F., McMitchell, S. R. C., Popovici, M., Groeseneken, G., & Van Houdkt,
J. (2018). Vertical ferroelectric hfo2 fet based on 3d nand architecture: Towards dense low-
power memory. In JEEE International Electron Devices Meeting (IEDM).

Fujii, S., Kamimuta, Y., Ino, T., Nakasaki, Y., Takaishi, R., & Saitoh, M. (2016). First
demonstration and performance improvement of ferroelectric hfoz-based resistive switch
with low operation current and intrinsic diode property. In JEEE Symposium on VLSI Tech-
nology.

Fukami, S., Anekawa, T., Ohkawara, A., Zhang, C., & Ohno, H. (2016). A sub-ns three-
terminal spin-orbit torque induced switching device. In IEEE Symposium on VLSI Technol-

0gy.

Gallagher, W. J., Chien, E., Chiang, T., Huang, J., Shih, M., Wang, C. Y., Weng, C., Chen,
S., Bair, C,, Lee, G., Shih, Y., Lee, C., Lee, P., Wang, R., Shen, K. H., Wu, J. J., Wang, W,
& Chuang, H. (2019). 22nm stt-mram for reflow and automotive uses with high yield,
reliability, and magnetic immunity and with performance and shielding options. In /JEEE
International Electron Devices Meeting (IEDM).

Gao, M., Pu,], Yang, X., Horowitz, M., & Kozyrakis, C. (2017). Tetris: Scalable and ef-
ficient neural network acceleration with 3d memory. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’17.

Giannopoulos, L., Sebastian, A., Le Gallo, M., Jonnalagadda, V. P., Sousa, M., Boon, M. N,,
& Eleftheriou, E. (2018). 8-bit precision in-memory multiplication with projected phase-
change memory. In JEEE International Electron Devices Meeting (IEDM).

Gokhale, M., Lloyd, S., & Macaraeg, C. (2015). Hybrid memory cube performance char-
acterization on data-centric workloads. In Proceedings of the sth Workshop on Irregular
Applications: Architectures and Algorithms, 1A3 15 New York, NY, USA: Association for
Computing Machinery.

Golonzka, O., Alzate, J., Arslan, U., Bohr, M., Bai, P., Brockman, J., Buford, B., Connor,
C., Das, N,, Doyle, B., Ghani, T., Hamzaoglu, F., Heil, P., Hentges, P., Jahan, R., Kencke,
D, Lin, B., Lu, M., Mainuddin, M., Meterelliyoz, M., Nguyen, P., Nikonov, D., O’brien,
K., Donnell, J. O., Oguz, K., Ouellette, D., Park, J., Pellegren, J., Puls, C., Quintero, P., Rah-
man, T., Romang, A., Sekhar, M., Selarka, A., Seth, M., Smith, A. J., Smith, A. K., Wei, L.,
Wiegand, C., Zhang, Z., & Fischer, K. (2018). Mram as embedded non-volatile memory so-
lution for 22ffl finfet technology. In IEEE International Electron Devices Meeting (IEDM).

173

[77]

(78]

[79]

[80]

[81]

[82]

(83]

[84]

[85]

[8¢6]

Golonzka, O., Arslan, U., Bai, P., Bohr, M., Baykan, O., Chang, Y., Chaudhari, A., Chen, A.,
Clarke, J., Connor, C., Das, N., English, C., Ghani, T., Hamzaoglu, F., Hentges, P., Jain, P.,
Jezewski, C., Karpov, I, Kothari, H., Kotlyar, R., Lin, B., Metz, M., Odonnell, J., Ouellette,
D., Park, ., Pirkle, A., Quintero, P., Seghete, D., Sekhar, M., Gupta, A. S., Seth, M., Strutt,
N., Wiegand, C., Yoo, H. J., & Fischer, K. (2019). Non-volatile rram embedded into 221
finfet technology. In Symposium on VLSI Technology.

Gong, N., Chien, W., Chou, Y., Yeh, C,, Li, N., Cheng, H., Cheng, C., Kuo, L, Yang, C.,
Bruce, R., Ray, A., Gignac, L., Lin, Y., Miller, C., Perri, T., Kim, W., Buzi, L., Utomo, H.,
Carta, F., Lai, E., Ho, H., Lung, H., & BrightSky, M. (2020). A no-verification multi-level-
cell (mlc) operation in cross-point ots-pcm. In ZEEE Symposium on VLSI Technology.

Goux, L., Belmonte, A., Celano, U., Woo, J., Folkersma, S., Chen, C. Y., Redolfi, A., Fantini,
A., Degraeve, R., Clima, S., Vandervorst, W., & Jurczak, M. (2016). Retention, disturb

and variability improvements enabled by local chemical-potential tuning and controlled
hour-glass filament shape in a novel wwo3al2o3cu cbram. In JEEE Symposium on VLSI
Technology.

Gupta, U, Kim, Y. G,, Lee, S., Tse, J., Lee, H. S., Wei, G., Brooks, D., & Wu, C.
(2020). Chasing carbon: The elusive environmental footprint of computing. CoRR,
abs/2011.02839.

Gupta, U,, Reagen, B., Pentecost, L., Donato, M., Tambe, T., Rush, A. M., Wei, G.-Y., &
Brooks, D. (2019). Masr: A modular accelerator for sparse rans. In 2019 28th International
Conference on Parallel Architectures and Compilation Technigues (PACT) (pp. 1-14).

Haldas, M. (2019). Cctv camera recording video frame rate comparison.
https://www.cctvcamerapros.com/CCTV-Video-Frame-Rate-Comparison-s/739.htm.

Ham, T. J., Wu, L., Sundaram, N., Satish, N., & Martonosi, M. (2016). Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

Hankin, A., Shapira, T., Sangaiah, K., Lui, M., & Hempstead, M. (2019). Evaluation of non-
volatile memory based last level cache given modern use case behavior. In JEEE International
Symposium on Workload Characterization (IISWC).

Hankin, A., Werner, D., Amiraski, M., Sebot, J., Vaidyanathan, K., & Hempstead, M.
(2021). Hotgauge: A methodology for characterizing advanced hotspots in modern and
next generation processors. In 2021 IEEE International Symposium on Workload Character-

ization (IISWC) (pp. 163-175).

Hari, S. K. S., Tsai, T., Stephenson, M., Keckler, S. W., & Emer, J. (2017). Sassifi: An
architecture-level fault injection tool for gpu application resilience evaluation. In 2017 IEEE

174

(87]

(88]

[89]

[90]

[o1]

[92]

(93]

[94]

[os]

[96]

International Symposium on Performance Analysis of Systems and Software (ISPASS) (pp.
249-258).

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M., Jia,
B., Jia, Y., Kalro, A., Law,]., Lee, K., Lu, J., Noordhuis, P., Smelyanskiy, M., Xiong, L., &
Wang, X. (2018). Applied machine learning at facebook: A datacenter infrastructure per-

spective. In 2018 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
CoRR.

He, Z., Angizi, S., & Fan, D. (2017). Exploring stt-mram based in-memory computing
paradigm with application of image edge extraction. In 2017 IEEE International Confer-
ence on Computer Design (ICCD).

Hennessy, J. L. & Patterson, D. A. (2012). Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 5 edition.

Hewlett Packard (2017). Cacti 7.0.

Ho, C., Chang, S., Huang, C., Chuang, Y., Lim, S., Hsieh, M., Chang, S., & Liao, H. (2017).
Integrated hfoz-rram to achieve highly reliable, greener, faster, cost-effective, and scaled de-
vices. In IEEE International Electron Devices Meeting (IEDM).

Honjo, H., Nguyen, T. V. A., Watanabe, T., Nasuno, T., Zhang, C., Tanigawa, T., Miura,
S., Inoue, H., Niwa, M., Yoshiduka, T., Noguchi, Y., Yasuhira, M., Tamakoshi, A., Natsui,
M., Ma, Y., Koike, H., Takahashi, Y., Furuya, K., Shen, H., Fukami, S., Sato, H., Ikeda, S.,
Hanyu, T., Ohno, H., & Endoh, T. (2019). First demonstration of field-free sot-mram
with 0.35 ns write speed and 7o thermal stability under 400c thermal tolerance by canted
sot structure and its advanced patterning/sot channel technology. In IEEE International

Electron Devices Meeting (IEDM).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
& Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861.

Hsieh, E., Zheng, X., Nelson, M., Le, B., Wong, H., Mitra, S., Wong, S., Giordano, M., Hod-
son, B., Levy, A., Osekowsky, S., Radway, R., Shih, Y., Wan, W., & Wu, T. (2019). High-
density multiple bits-per-cell 1t4r rram array with gradual set/reset and its effectiveness for
deep learning. In IEEE International Electron Devices Meeting (IEDM).

Hsueh, F. K., Shen, C. H., Shieh, J. M., Li, K. §., Chen, H. C., Huang, W. H., Wang, H. H,,
Yang, C. C., Hsieh, T. Y,, Lin, C. H., Chen, B. Y,, Shiao, Y. S., Huang, G. W., Wong, O. Y,,

175

[97]

[98]

[99]

[ro0]

[ro1]

[ro2]

[103]

[104]

[ros]

Chen, P. H., & Yeh, W. K. (2016). First fully functionalized monolithic 3d iot chip with o.5 v
light-electricity power management, 6.8 ghz wireless-communication vco, and 4-layer vertical
reram. In JEEE International Electron Devices Meeting (IEDM).

Hu, G., Gottwald, M. G., He, Q., Park, J. H., Lauer, G., Nowak, J.J., Brown, S. L., Doris,
B., Edelstein, D., Evarts, E. R., Hashemi, P., Khan, B., Kim, Y. H., Kothandaraman, C.,
Marchack, N., O’Sullivan, E. J., Reuter, M., Robertazzi, R. P., Sun, J. Z., Suwannasiri, T.,
Trouilloud, P. L., Zhu, Y., & Worledge, D. C. (2017). Key parameters affecting stt-mram
switching efficiency and improved device performance of 400c-compatible p-mtjs. In JEEE
International Electron Devices Meeting (IEDM).

Hu, G., Nowak, J. J., Gottwald, M. G., Brown, S. L., Doris, B., D’Emic, C. P., Hashemi, P.,
Houssameddine, D., He, Q., Kim, D., Kim, J., Kothandaraman, C., Lauer, G., Lee, H. K,
Marchack, N., Reuter, M., Robertazzi, R. P., Sun, J. Z., Suwannasiri, T., Trouilloud, P. L.,
Woo, S., & Worledge, D. C. (2019). Spin-transfer torque mram with reliable 2 ns writing for
last level cache applications. In JEEE International Electron Devices Meeting (IEDM).

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neu-
ral networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems z9.

IEEE (2020). International roadmap for devices and systems (IRDS) 2020 edition.

Inci, A, Isgenc, M. M., & Marculescu, D. (2020a). DeepNVM++: cross-layer model-
ing and optimization framework of non-volatile memories for deep learning. preprint
arXiv:2012.0455 9.

Inci, A. F., Meric Isgenc, M., & Marculescu, D. (2020b). Deepnvm: A framework for mod-
eling and analysis of non-volatile memory technologies for deep learning applications. In
Design, Automation Test in Europe Conference Exhibition (DATE).

Intel Corporation (2018). Intel vtune. https://software.intel.com/en-us/vtune.

Jain, P., Arslan, U., Sekhar, M., Lin, B. C., Wei, L., Sahu, T., Alzate-vinasco,]., Vangapaty,
A., Meterelliyoz, M., Strutt, N., Chen, A. B., Hentges, P., Quintero, P. A., Connor, C,,
Golonzka, O., Fischer, K., & Hamzaoglu, F. (2019). 13.2 2 3.6mb 10.1mb/mm2 embed-
ded non-volatile reram macro in 22nm finfet technology with adaptive forming/set/reset

schemes yielding down to o.5v with sensing time of sns at o.7v. In JEEE International Solid-
State Circuits Conference - (ISSCC).

Jain, S., Ranjan, A., Roy, K., & Raghunathan, A. (2018). Computing in memory with spin-
transfer torque magnetic ram. /EEE Trans. Very Large Scale Integr. Syst.

https://software.intel.com/en-us/vtune

[106] Jan,G., Thomas, L., Le, S., Lee, Y., Liu, H., Zhu, J., Iwata-Harms, J., Patel, S., Tong, R.,
Serrano-Guisan, S., Shen, D., He, R., Hagq, J., Teng, J., Lam, V., Annapragada, R., Wang, Y.,
Zhong, T., Torng, T., & Wang, P. (2016). Achieving sub-ns switching of stt-mram for future
embedded llc applications through improvement of nucleation and propagation switching
mechanisms. In ZEEE Symposium on VLSI Technology.

[107] Jerry, M., Chen, P., Zhang, J., Sharma, P., Ni, K., Yu, S., & Datta, S. (2017). Ferroelectric
fet analog synapse for acceleration of deep neural network training. In JEEE International
Electron Devices Meeting (IEDM).

[108] Jerry, M., Dutta, S., Kazemi, A., Ni, K., Zhang, J., Chen, P.-Y., Sharma, P, Yu, S., Hu, X. S.,
Niemier, M., & Datta, S. (2018). A ferroelectric field effect transistor based synaptic weight
cell. Journal of Physics D: Applied Physics.

[109] Jiang, Z., Wang, Z., Zheng, X., Fong, S., Qin, S., Chen, H. Y., Ahn, C,, Cao, J., Nishi, Y., &
Wong, H. P. (2016). Microsecond transient thermal behavior of hfox-based resistive random
access memory using a micro thermal stage (mts). In JEEE International Electron Devices

Meeting (IEDM).

[110] Jin, Y., Shihab, M., & Jung, M. (2014). Area, power, and latency considerations of stt-mram
to substitute for main memory. In Proc. ISCA.

[111] Jouppi, N. P, Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,
Boden, N, Borchers, A., Boyle, R., Cantin, P.-1., Chao, C., Clark, C., Coriell, J., Daley, M.,
Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D,, Ibarz, J., Jaftey, A., Jaworski, A.,
Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N, Lacy, S., Laudon, J., Law, J.,
Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M.,
Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M.,
Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma,
H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., & Yoon, D. H. (2017). In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th An-
nual International Symposinm on Computer Architecture, ISCA17.

[112] Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J.
(2017). One model to learn them all. CoRR, abs/1706.05137.

[113] Kan,].]., Park, C., Ching, C., Ahn,J., Xue, L., Wang, R., Kontos, A., Liang, S., Bangar,
M., Chen, H., Hassan, S., Kim, S., Pakala, M., & Kang, S. H. (2016). Systematic validation
of 2x nm diameter perpendicular mtj arrays and mgo barrier for sub-10 nm embedded stt-
mram with practically unlimited endurance. In IEEE International Electron Devices Meeting

(IEDM).

177

[114]

[x15]

[116]

[117]

[r18]

[x19]

[120]

[121]

[122]

[123]

Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G.-Y., & Brooks,
D. (2015). Profiling a warehouse-scale computer. In International Symposinm on Computer
Architecture (ISCA) (pp. 158-169).

Khan, F., Cartier, E., Kothandaraman, C., Scott, J. C., Woo, J. C. S., & Iyer, S. S. (2016). The
impact of self-heating on charge trapping in high-k-metal-gate nfets. JEEE Electron Device
Letters, 37(1), 88—91.

Khan, F., Cartier, E., Woo, J. C. S., & Iyer, S. S. (2017). Charge trap transistor (ctt): An
embedded fully logic-compatible multiple-time programmable non-volatile memory for
high-k-metal-gate cmos technologies. JEEE Electron Device Letters.

Khan, F., Moy, D., Anand, D., Schroeder, E. H., Katz, R., Jiang, L., Banghart, E., Robson,
N., & Kirihata, T. (2019). Turning logic transistors into secure, multi-time programmable,
embedded non-volatile memory elements for 14 nm finfet technologies and beyond. In
Symposium on VLSI Technology.

Khwa, W., Chang, M., Wu, J., Lee, M., Su, T., Yang, K., Chen, T., Wang, T., Li, H., Bright-
sky, M., Kim, S., Lung, H., & Lam, C. (2017). A resistance drift compensation scheme to
reduce mlc pcm raw ber by over 100 x for storage class memory applications. JEEE Journal of
Solid-State Circuits.

Khwa, W.S., Chang, M. F., Wu, J. Y., Lee, M. H,, Su, T. H., Yang, K. H., Chen, T. F., Wang,
T.Y, Li, H. P, BrightSky, M., Kim, S., Lung, H. L., & Lam, C. (2016). 7.3 a resistance-drift
compensation scheme to reduce mlc pcm raw ber by over 100x for storage-class memory
applications. In JEEE International Solid-State Circuits Conference (ISSCC).

Kim, S. G., Lee,J. C., Ha, T.]., Lee, J. H., Lee, J. Y., Park, Y. T., Kim, K. W., Ju, W. K., Ko,

Y. S., Hwang, H. M., Lee, B. M., Moon, J. Y., Park, W. Y., Gyun, B. G., Lee, B., Yim, D., &
Hong, S. (2017). Breakthrough of selector technology for cross-point 25-nm reram. In /EEE
International Electron Devices Meeting (IEDM).

Kim, W., Hardtdegen, A., Rodenbiicher, C., Menzel, S., Wouters, D. J., Hoffmann-Eifert,
S., Buca, D., Waser, R., & Rana, V. (2016). Forming-free metal-oxide reram by oxygen ion
implantation process. In JEEE International Electron Devices Meeting (IEDM).

Kobayashi, M., Ueyama, N., Jang, K., & Hiramoto, T. (2016). Experimental study on
polarization-limited operation speed of negative capacitance fet with ferroelectric hfoz. In
IEEE International Electron Devices Meeting (IEDM).

Korgaonkar, K., Bhati, I, Liu, H., Gaur, J., Manipatruni, S., Subramoney, S., Karnik, T.,
Swanson, S., Young, I, & Wang, H. (2018). Density tradeoffs of non-volatile memory as
a replacement for sram based last level cache. In ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA).

178

[124]

[r25]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Krivokapic, Z., Rana, U., Galatage, R., Razavieh, A., Aziz, A., Liu, J., Shi, J., Kim, H.],
Sporer, R., Serrao, C., Busquet, A., Polakowski, P., Miiller, J., Kleemeier, W., Jacob, A.,
Brown, D., Knorr, A., Carter, R., & Banna, S. (2017). 14nm ferroelectric finfet technol-
ogy with steep subthreshold slope for ultra low power applications. In JEEE International
Electron Devices Meeting (IEDM).

Krizhevsky, A. (2016). Learning Multiple Layers of Features from Tiny Images. Technical
Report.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A
lite bert for self-supervised learning of language representations. ArXiv, abs/1909.11942.

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., & Kawsar, F. (2015). An carly
resource characterization of deep learning on wearables, smartphones and internet-of-things
devices. In Proceedings of the zo15 International Workshop on Internet of Things Towards
Applications, IoT-App ’15.

Lee, C., Lin, H., Lien, C., Chih, Y., & Chang, J. (2017). A 1.4mb 40-nm embedded reram
macro with o.o7uma2 bit cell, 2.7ma/100mhz low-power read and hybrid write verify for high
endurance application. In 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC).

Lee, K., Bak, J. H., Kim, Y. J., Kim, C. K., Antonyan, A., Chang, D. H., Hwang, S. H., Lee,
G. W, Ji, N. Y., Kim, W.J., Lee, J. H., Bae, B. J., Park, J. H., Kim, I. H,, Seo, B. Y., Han,
S.H,Ji, Y, Jung, H. T., Park, S. O., Kwon, O. I, Kye, J]. W,, Kim, Y. D., Pae, S. W., Song,
Y.].,Jeong, G. T., Hwang, K. H., Koh, G. H., Kang, H. K., & Jung, E. S. (2019). 1gbit high
density embedded stt-mram in 28nm fdsoi technology. In IEEE International Electron De-
vices Meeting (IEDM).

Lee, K., Chao, R., Yamane, K., Naik, V. B,, Yang, H., Kwon, J., Chung, N. L., Jang, S. H.,
Behin-Aein, B., Lim, J. H., K, S., Liu, B., Toh, E. H., Gan, K. W., Zeng, D., Thiyagarajah,
N., Goh, L. C,, Ling, T., Ting,]. W., Hwang, J., Zhang, L., Low, R., Krishnan, R., Zhang,
L., Tan, S. L., You, Y. S, Seet, C. S., Cong, H., Wong, J., Woo, S. T., Quek, E., & Siah, S. Y.
(2018). 22-nm fd-soi embedded mram technology for low-power automotive-grade-l mcu
applications. In JEEE International Electron Devices Meeting (IEDM).

Lee, M. H,, Chen, P,, Fan, S., Chou, Y., C.Kuo, Tang, C., Chen, H., Gu, S., Hong, R,
Wang, Z., Chen, S., Liao, C., Chen, K., Chang, S. T,, Liao, M., Li, K., & Liu, C. W. (2017).
Ferroelectric al:hfo2 negative capacitance fets. In JEEE International Electron Devices Meet-
ing (IEDM).

Lee, M. H,, Fan, S., Tang, C., Chen, P., Chou, Y., Chen, H., Kuo, J., Xie, M., Liu, S., Liao,
M., Jong, C., Li, K., Chen, M., & Liu, C. W. (2016). Physical thickness 1.x nm ferroelectric
hfzrox negative capacitance fets. In JEEE International Electron Devices Meeting (IEDM).

179

[133]

[134]

[139]

[140]

[141]

[142]

[143]

Lee, T., Yamane, K., Kwon, J., Naik, V., Otani, Y., Zeng, D., Lim,]., Sivabalan, K., Chiang,
C.,Huang, Y,, Jang, S., Hau, L., Chao, R., Chung, N., Neo, W., Khua, K., Thiyagarajah,
N., Ling, T., Goh, L., & Siah, S. (2020). Fast switching of stt-mram to realize high speed
applications. In JEEE Symposium on VLSI Technology.

Lee, Y, Song, Y., Kim, J., Oh, S., Bae, B.-]., Lee, S., Lee,]., Pi, U., Seo, B., Jung, H., Lee, K,
Shin, H., Jung, H., Pyo, M., Antonyan, A, Lee, D., Hwang, S., Jang, D., Ji, Y., & Jung, E.
(2018). Embedded stt-mram in 28-nm fdsoi logic process for industrial mcu/iot application.
In Symposium on VLSI Technology.

Leskovec, J. & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.

Leskovec, J. & Sosi¢, R. (2016). Snap: A general-purpose network analysis and graph-mining
library. ACM TIST.

Li, G., Hari, S., Sullivan, M., Tsai, T., Pattabiraman, K., Emer, J., & Keckler, S. W. (2017a).
Understanding error propagation in deep learning neural network (dnn) accelerators and
applications. In SC.

Li, H, Li, K. S, Lin, C. H.,, Hsu, J. L., Chiu, W. C., Chen, M. C., Wu, T. T., Sohn,]., Ery-
ilmaz, S. B., Shieh, . M., Yeh, W. K., & Wong, H. P. (2016a). Four-layer 3d vertical rram
integrated with finfet as a versatile computing unit for brain-inspired cognitive information
processing. In JEEE Symposium on VLSI Technology.

Li, H., Wu, T. F.,, Rahimi, A,, Li, K. S., Rusch, M., Lin, C. H., Hsu, J. L., Sabry, M. M., Ery-
ilmaz, S. B., Sohn, J., Chiu, W. C., Chen, M. C., Wu, T. T., Shieh, J. M., Yeh, W. K., Rabaey,
J. M., Mitra, S., & Wong, H. P. (2016b). Hyperdimensional computing with 3d vrram in-
memory kernels: Device-architecture co-design for energy-efficient, error-resilient language
recognition. In JEEE International Electron Devices Meeting (IEDM).

Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., & Xie, Y. (2017b). Drisa: A dram-
based reconfigurable in-situ accelerator. In Proceedings of the s oth Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-50’17.

Li, Z., Chen, P. Y., Xu, H.,, & Yu, S. (2017¢). Design of ternary neural network with 3-d
vertical rram array. JEEE Transactions on Electron Devices.

Liao, Y., Pan, C., & Naeemi, A. (2020). Benchmarking and optimization of spintronic mem-
ory arrays. I[EEE Journal on Exploratory Solid-State Computational Devices and Circuits.

Lin, C., Hung,]., Lin, W,, Lo, C., Chiang, Y., Tsai, H., Yang, G., King, Y., Lin, C. J., Chen,
T., & Chang, M. (2016). A 256b-word length reram-based tcam with 1ns search-time and
14x improvement in word length-energy efficiency-density product using 2.st1r cell. In
IEEE International Solid-State Circuits Conference (ISSCC).

180

[144]

[145]

[148]

[149]

[150]

[x51]

Lin, C. S., Huang, W. T., Huang, A., Yang, Y. H., Hsu, Y. L., Yang, S. K., Liu, J., Tseng,

H. W., Huang, J., Chou, B. Y., Huang, K., Chang, W. K., Chang, D., Chien, C. H., Yeh, H.,
Liu, P. W., Hsieh, C. D., Chuang, H., & Kalnitsky, A. (2020). An approach to embedding
traditional non-volatile memories into a deep sub-micron cmos. In IEEE Symposium on
VLSI Technology.

Lin, Y. H., Ho, Y. H,, Lee, M. H., Wang, C. H,, Lin, Y. Y., Lee, F. M., Hsu, K. C,, Tseng,
P.H., Lee, D. Y., Chiang, K. H., Wang, K. C,, Tseng, T. Y, & Lu, C. Y. (2017). A compre-
hensive study of 3-stage high resistance state retention behavior for tmo rerams from single
cells to a large array. In JEEE International Electron Devices Meeting (IEDM).

Liu, J., Hsu, C., Wang, I, & Hou, T. (2015). Categorization of multilevel-cell storage-class
memory: An rram example. JEEE Transactions on Electron Devices.

Liu, Q., Gao, B,, Yao, P., Wu, D., Chen, J., Pang, Y., Zhang, W., Liao, Y., Xue, C., Chen, W,
Tang, J., Wang, Y., Chang, M., Qian, H., & Wu, H. (2020). A fully integrated analog reram

based 78.4tops/w compute-in-memory chip with fully parallel mac computing. In /EEE
International Solid- State Circuits Conference - (ISSCC).

Liu, T., Yan, T. H., Scheuerlein, R., Chen, Y., Lee, J. K., Balakrishnan, G., Yee, G., Zhang,
H., Yap, A., Ouyang, J., Sasaki, T., Addepalli, S., Al-Shamma, A., Chen, C., Gupta, M.,
Hilton, G., Joshi, S., Kathuria, A., Lai, V., Masiwal, D., Matsumoto, M., Nigam, A, Pai, A.,
Pakhale, J., Siau, C. H., Wu, X, Yin, R., Peng, L., Kang, J. Y., Huynh, S., Wang, H., Nagel,
N., Tanaka, Y., Higashitani, M., Minvielle, T., Gorla, C., Tsukamoto, T., Yamaguchi, T,
Okajima, M., Okamura, T., Takase, S., Hara, T., Inoue, H., Fasoli, L., Mofidi, M., Shrivas-
tava, R., & Quader, K. (2013). A 130.7mm lt;sup gt;2 lt;/sup gt; 2-layer 32gb reram memory
device in 24nm technology. In 2013 IEEE International Solid-State Circuits Conference
Digest of Technical Papers.

Liu, Y., Wang, Z., Lee, A, Su, F., Lo, C., Yuan, Z., Lin, C., Wei, Q., Wang, Y., King, Y., Lin,
C., Khalili, P., Wang, K., Chang, M., & Yang, H. (2016). A 65nm reram-enabled nonvolatile
processor with 6x reduction in restore time and 4x higher clock frequency using adaptive
data retention and self-write-termination nonvolatile logic. In 2016 IEEE International

Solid-State Circuits Conference (ISSCC).

Liu, Y., Wang, Z., Lee, A., Su, F., Lo, C. P., Yuan, Z,, Lin, C. C., Wei, Q., Wang, Y., King,
Y. C,, Lin, C. J., Khalili, P., Wang, K. L., Chang, M. F., & Yang, H. (2016). A 65nm reram-
enabled nonvolatile processor with 6x reduction in restore time and 4x higher clock fre-

quency using adaptive data retention and self-write-termination nonvolatile logic. In JEEE
International Solid-State Circuits Conference (ISSCC).

Lo, C. P, Chen, W. H., Wang, Z., Lee, A., Hsu, K. H,, Su, F., King, Y. C., Lin, C.], Liu,
Y., Yang, H., Khalili, P., Wang, K. L., & Chang, M. F. (2016). A reram-based single-nvm

181

[152]

[153]

[r54]

[155]

[157]

[160]

nonvolatile flip-flop with reduced stress-time and write-power against wide distribution in
write-time by using self-write-termination scheme for nonvolatile processors in iot era. In
IEEE International Electron Devices Meeting (IEDM).

Lung, H. L., Ho, Y. H., Zhu, Y., Chien, W. C., Kim, S., Kim, W., Cheng, H. Y, Ray, A.,
Brightsky, M., Bruce, R., Yeh, C. W, & Lam, C. (2016). A novel low power phase change
memory using inter-granular switching. In JEEE Symposium on VLSI Technology.

Luo, Q., Xu, X., Gong, T., Lv, H., Dong, D., Ma, H., Yuan, P., Gao,]., Liu, J., Yu, Z., Li,
J.,Long, S., Liu, Q., & Liu, M. (2017). 8-layers 3d vertical rram with excellent scalability
towards storage class memory applications. In JEEE International Electron Devices Meeting
(IEDM).

Lv, H., Xu, X,, Yuan, P., Dong, D., Gong, T,, Liu, J., Yu, Z., Huang, P., Zhang, K., Huo,
C., Chen, C,, Xie, Y., Luo, Q., Long, S., Liu, Q., Kang, J., Yang, D., Yin, S., Chiu, S., & Liu,
M. (2017). Beol based rram with one extra-mask for low cost, highly reliable embedded
application in 28 nm node and beyond. In IEEE International Electron Devices Meeting

(IEDM).

Lyons, M. J., Hempstead, M., Wei, G.-Y., & Brooks, D. (2012). The accelerator store: A
shared memory framework for accelerator-based systems. ACM Trans. Archit. Code Optim.,

8(4)-

Ma,]., Chai, Z., Zhang, W., Govoreanu, B., Zhang, J. F., Ji, Z., Benbakhti, B., Groeseneken,
G., & Jurczak, M. (2016). Identify the critical regions and switching/failure mechanisms
in non-filamentary rram (a-vmco) by rtn and cvs techniques for memory window improve-
ment. In JEEE International Electron Devices Meeting (IEDM).

Ma, S., Donato, M., Lee, S. K., Brooks, D., & Wei, G.-Y. (2019). Fully-cmos multi-level
embedded non-volatile memory devices with reliable long-term retention for efficient storage
of neural network weights. JEEE Electron Device Letters, 40(9), 1403—1406.

Macri, J. (2015). Amd’s next generation gpu and high bandwidth memory architecture:
Fury. In zor5 IEEE Hot Chips 27 Symposium (HCS) (pp. 1-26).

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson, D., Tang, H.,
Wei, G.-Y., Bailis, P., Bittorf, V., Brooks, D., Chen, D., Dutta, D., Gupta, U., Hazelwood, K.,
Hock, A., Huang, X., Kang, D., Kanter, D., Kumar, N., Liao, J., Narayanan, D., Oguntebi,
T., Pekhimenko, G., Pentecost, L., Janapa Reddi, V., Robie, T., St John, T., Wu, C.-J., Xu, L.,
Young, C., & Zaharia, M. (2020). Mlperf training benchmark. In Proceedings of Machine
Learning and Systems, volume 2 (pp. 336-349).

Microsoft (2019). Understanding frames per second.

182

[161] Mikolajick, T., Schroeder, U., & Slesazeck, S. (2018). Hafnium oxide based ferroelectric
devices for memories and beyond. In VLSI-TSA (pp. 1-2).

[162] Milo, V., Pedretti, G., Carboni, R., Calderoni, A., Ramaswamy, N., Ambrogio, S., &
Ielmini, D. (2016). Demonstration of hybrid cmos/rram neural networks with spike
time/rate-dependent plasticity. In JEEE International Electron Devices Meeting (IEDM).

[163] Min, D, Byun, I, Lee, G.-H., Na, S., & Kim, J. (2020). CryoCache: A Fast, Large, and Cost-
Effective Cache Architecture for Cryogenic Computing, (pp. 449—464). Association for Com-
puting Machinery: New York, NY, USA.

[164] Miura, S., Nishioka, K., Naganuma, H., Nguyen, T. V. A., Honjo, H., Ikeda, S., Watanabe,
T., Inoue, H., Niwa, M., Tanigawa, T., Noguchi, Y., Yoshiduka, T., Yasuhira, M., & Endoh,
T. (2020). Scalability of quad interface p-mtj for 1x nm stt-mram with 10 ns low power write
operation, 10 years retention and endurance 1o11. In JEEE Symposium on VLSI Technology.

[165] Miyaji, K., Shinozuka, Y., & Takeuchi, K. (2012). Zero Additional Process, Local Charge
Trap, Embedded Flash Memory with Drain-Side Assisted Erase Scheme Using Minimum
Channel LengthWidth Standard Complemental Metal-Oxide-Semiconductor Single Transis-
tor Cell. Jpn. J. Appl. Phys., s1.

[166] Mo, F., Tagawa, Y., Jin, C., Ahn, M., Saraya, T., Hiramoto, T., & Kobayashi, M. (2019). Ex-
perimental demonstration of ferroelectric hfo2 fet with ultrathin-body igzo for high-density
and low-power memory application. In Symposium on VLSI Technology.

[167] Mukherijee, S., Weaver, C., Emer,]., Reinhardt, S., & Austin, T. (2003). A systematic
methodology to compute the architectural vulnerability factors for a high-performance
microprocessor. In Proceedings. 3 6th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-3 6. (pp. 29—40).

[168] Mulaosmanovic, H., Ocker, J., Miiller, S., Noack, M., Miiller, J., Polakowski, P., Mikolajick,
T., & Slesazeck, S. (2017). Novel ferroelectric fet based synapse for neuromorphic systems. In
Symposium on VLSI Technology.

[169] Naik, V. B, Lim, J. H., Yamane, K., Zeng, D., Yang, H., Thiyagarajah, N., Kwon, J., Chung,
N.L, Chao, R., Ling, T., & Lee, K. (2019). Superior endurance performance of 22-nm
embedded mram technology. In JEEE International Reliability Physics Symposium (IRPS).

[170] Naik, V. B., Yamane, K., Lim, J. H., Lee, T. Y., Kwon, J., Aecin, B., Chung, N. L., Hau, L. Y,,
Chao, R., Zeng, D., Otani, Y., Chiang, C., Huang, Y., Pu, L., Thiyagarajah, N., Jang, S. H.,
Neo, W. P, Dixit, H., Aris, S. K., Goh, L. C., Ling, T, Hwang, J., Ting, J]. W., Zhang, L.,
Low, R., Balasankaran, N., Seet, C. S., Ong, S., Wong, J., You, Y. S., Woo, S. T., & Siah, S. Y.
(2020). A reliable tddb lifetime projection model verified using 4omb stt-mram macro at sub-

ppm failure rate to realize unlimited endurance for cache applications. In JEEE Symposium
on VLSI Technology.

183

[171]

[172]

[173]

[174]

[175]

[177]

[180]

Nail, C., Molas, G., Blaise, P., Piccolboni, G., Sklenard, B., Cagli, C., Bernard, M., Roule,
A., Azzaz, M., Vianello, E., Carabasse, C., Berthier, R., Cooper, D., Pelissier, C., Magis, T.,
Ghibaudo, G., Vallée, C., Bedeau, D., Mosendz, O., De Salvo, B., & Perniola, L. (2016). Un-
derstanding rram endurance, retention and window margin trade-oft using experimental
results and simulations. In JEEE International Electron Devices Meeting (IEDM).

Natsui, M., Tamakoshi, A., Honjo, H., Watanabe, T., Nasuno, T., Zhang, C., Tanigawa, T.,
Inoue, H., Niwa, M., Yoshiduka, T., Noguchi, Y., Yasuhira, M., Ma, Y., Shen, H., Fukami, S.,
Sato, H., Ikeda, S., Ohno, H., Endoh, T., & Hanyu, T. (2020). Dual-port field-free sot-mram
achieving 9o-mhz read and 6o-mhz write operations under §5-nm cmos technology and 1.2-v
supply voltage. In JEEE Symposium on VLSI Circuits.

Nguyen, V. D., Sabon, P., Chatterjee, J., Tille, L., Coelho, P. V., Auffret, S., Sousa, R., Pre-
jbeanu, L., Gautier, E., Vila, L., & Dieny, B. (2017). Novel approach for nano-patterning
magnetic tunnel junctions stacks at narrow pitch: A route towards high density stt-mram
applications. In IEEE International Electron Devices Meeting (IEDM).

Ni, K., Chakraborty, W., Smith, J., Grisafe, B., & Datta, S. (2019). Fundamental under-
standing and control of device-to-device variation in deeply scaled ferroelectric fets. In Sym-
posinm on VLSI Technology.

Ni, K., Li, X., Smith, J. A,, Jerry, M., & Datta, S. (2018). Write disturb in ferroelectric fets
and its implication for 1t-fefet and memory arrays. JEEE Electron Device Letters.

Noguchi, H., Ikegami, K., Abe, K., Fujita, S., Shiota, Y., Nozaki, T., Yuasa, S., & Suzuki, Y.
(2016a). Novel voltage controlled mram (vem) with fast read/write circuits for ultra large last
level cache. In IEEE International Electron Devices Meeting (IEDM).

Noguchi, H., Ikegami, K., Takaya, S., Arima, E., Kushida, K., Kawasumi, A., Hara, H.,
Abe, K., Shimomura, N., Ito, J., Fujita, S., Nakada, T., & Nakamura, H. (2016b). 4mb
stt-mram-based cache with memory-access-aware power optimization and write-verify-write
read-modify-write scheme. In IEEE International Solid-State Circuits Conference (ISSCC).

NVIDIA (2017). Nvidia deep learning accelerator (nvdla): a free and open architecture that
promotes a standard way to design deep learning inference accelerators. nvdla.org.

Okuno, J., Kunihiro, T., Konishi, K., Maemura, H., Shuto, Y., Sugaya, F., Materano, M., Ali,
T., Kuehnel, K., Seidel, K., Schroeder, U., Mikolajick, T., Tsukamoto, M., & Umebayashi, T.
(2020). Soc compatible 1tic feram memory array based on ferroelectric hfoszrosoz. In JEEE
Symposium on VLSI Technology.

Pang, Y., Wu, H., Gao, B., Wu, D., Chen, A., & Qian, H. (2017). A novel puf against ma-
chine learning attack: Implementation on a 16 mb rram chip. In IEEE International Elec-
tron Devices Meeting (IEDM).

184

[181]

[182]

[183]

[186]

[190]

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 3 2.

Pellauer, M., Shao, Y. S., Clemons, J., Crago, N., Hegde, K., Venkatesan, R., Keckler, S. W,
Fletcher, C. W., & Emer, J. (2019). Buftets: An efficient and composable storage idiom for
explicit decoupled data orchestration. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19 (pp. 137-151). New York, NY, USA: Association for Computing Machinery.

Pentecost, L., Donato, M., Reagen, B., Gupta, U., Ma, S., Wei, G.-Y., & Brooks, D. (2019a).
Maxnvm: Maximizing dnn storage density and inference efficiency with sparse encoding and
error mitigation. In Proceedings of the s 2nd International Symposium on Microarchitecture.

Pentecost, L., Gupta, U., Ngan, E., Beyer, J., Wei, G.-Y., Brooks, D., & Behrisch, M. (2019b).
Champvis: Comparative hierarchical analysis of microarchitectural performance. Inzorg
IEEE/ACM International Workshop on Programming and Performance Visualization Tools
(ProTools) at Super Computing (SC19) (pp. 55—61).

Pentecost, L., Hankin, A., Donato, M., Hempstead, M., Wei, G.-Y., & Brooks, D. (2022).
Nvmexplorer: A framework for cross-stack comparisons of embedded non-volatile memory
solutions. In The 28th IEEE International Symposium on High-Performance Computer

Architecture (HPCA-28).

Plancher, B., Brumar, C. D., Brumar, I, Pentecost, L., Rama, S., & Brooks, D. (2019). Ap-
plication of approximate matrix multiplication to neural networks and distributed slam. In
2019 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-7).

Poremba, M., Mittal, S., Li, D., Vetter, J., & Xie, Y. (2015). Destiny: A tool for modeling
emerging 3d nvm and edram caches. In Design, Automation Test in Europe Conference Exhi-
bition (DATE).

Poremba, M. & Xie, Y. (2012). Nvmain: An architectural-level main memory simulator for
emerging non-volatile memories. In JEEE Computer Society Annual Symposinm on VLSI.

Prakash, A., Park, J., Song, J., Woo, J., Cha, E., & Hwang, H. (2015). Demonstration of low
power 3-bit multilevel cell characteristics in a taox-based rram by stack engineering. /EEE
Electron Device Letters.

Puglisi, F. M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., & Lanza, M. (2016). 2d hbn
based rram devices. In IEEE International Electron Devices Meeting (IEDM).

185

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

Pyne, E., Pentecost, L., Gupta, U., Wei, G.-Y., & Brooks, D. (2020). Quantifying the impact
of data encoding on dnn fault tolerance. In International Workshop on Performance Analysis
of Machine Learning Systems (FastPath ISPASS 2020).

Reagen, B., Adolf, R., Whatmough, P., Wei, G.-Y., & Brooks, D. (2017). Deep Learning for
Computer Architects. Synth. Lect. Comput. Archit., 12(4), 1-123.

Reagen, B., Gupta, U, Pentecost, L., Whatmough, P., Lee, S. K., Mulholland, N., Brooks,
D., & Wei, G. (2018). Ares: A framework for quantifying the resilience of deep neural net-
works. In 5 5th Design Automation Conference (DAC).

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S. K., Hernandez-Lobato,
J. M., Wei, G.-Y., & Brooks, D. (2016). Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. In ISCA.

Rebufh, S.-A., Bilen, H., & Vedaldi, A. (2017). Learning multiple visual domains with resid-
ual adapters. In Advances in Neural Information Processing Systems.

Reis, D., Ni, K., Chakraborty, W., Yin, X., Trentzsch, M., Diinkel, S. D., Melde, T., Miiller,
J., Beyer, S., Datta, S., Niemier, M. T., & Hu, X. S. (2019). Design and analysis of an ultra-
dense, low-leakage, and fast fefet-based random access memory array. [EEE Journal on Ex-
ploratory Solid-State Computational Devices and Circuits.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV).

Saida, D., Kashiwada, S., Yakabe, M., Daibou, T., Hase, N., Fukumoto, M., Miwa, S., Suzuki,
Y., Noguchi, H., Fujita, S., & Ito, J. (2016). Sub-3 ns pulse with sub-100 microa switching of
1x—2x nm perpendicular mtj for high-performance embedded stt-mram towards sub-20 nm
cmos. In IEEE Symposium on VLSI Technology.

Sato, H., Honjo, H., Watanabe, T., Niwa, M., Koike, H., Miura, S., Saito, T., Inoue, H.,
Nasuno, T., Tanigawa, T., Noguchi, Y., Yoshiduka, T., Yasuhira, M., Ikeda, S., Kang, S. Y.,
Kubo, T., Yamashita, K., Yagi, Y., Tamura, R., & Endoh, T. (2018). 14ns write speed 128mb
density embedded stt-mram with endurance 1oro and 1oyrs retention 85c using novel low
damage mtj integration process. In JEEE International Electron Devices Meeting (IEDM).

Semiconductor, C. (2017). What types of ecc should be used on flash memory?

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M.,
Williams, R. S., & Srikumar, V. (2016). Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News.

186

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B., Kline-
felter, A., Pinckney, N., Raina, P., Tell, S. G., Zhang, Y., Dally, W. J., Emer, J., Gray, C. T,
Khailany, B., & Keckler, S. W. (2019). Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the s 2nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’s2 New York, NY, USA: Association for
Computing Machinery.

Shao, Y. S., Reagen, B., Wei, G.-Y., & Brooks, D. (2015). The aladdin approach to accelerator
design and modeling. JEEE Micro, 35(3), 58-70.

Sharifi, M. M., Pentecost, L., Rajaei, R., Kazemi, A., Lou, Q., Wei, G.-Y., Brooks, D., Ni,
K., Hu, X. S, Niemier, M., & Donato, M. (2021). Application-driven design exploration
for dense ferroelectric embedded non-volatile memories. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED ’21).

Sharma, A. A., Doyle, B., Yoo, H.], Tung, I. C., Kavalieros, J., Metz, M. V., Reshotko, M.,
Majhi, P., Brown-Heft, T., Chen, Y.]., & Le, V. H. (2020). High speed memory operation
in channel-last, back-gated ferroelectric transistors. In IEEE International Electron Devices
Meeting (IEDM).

Shibayama, S., Xu, L., Migita, S., & Toriumi, A. (2016). Study of wake-up and fatigue prop-
erties in doped and undoped ferroelectric hfo2 in conjunction with piezo-response force
microscopy analysis. In JEEE Symposium on VLSI Technology.

Shih, M., Wang, C,, Lee, Y., Wang, W., Thomas, L., Liu, H., Zhu,], Lee, Y., Jan, G., Wang,
Y., Zhong, T., Torng, T., Wang, P, Lin, D., Chiang, T., Shen, K., Chuang, H., & Gallagher,
W.]J. (2016). Reliability study of perpendicular stt-mram as emerging embedded memory
qualified for reflow soldering at 260c. In JEEE Symposium on VLSI Technology.

Shih, Y, Lee, C., Chang, Y., Lee, P, Lin, H., Chen, Y., Lin, K., Yeh, T., Yu, H., Chuang,
H., Chih, Y., & Chang, J. (2018). Logic process compatible 4onm 16mb, embedded
perpendicular-mram with hybrid-resistance reference, sub-microa sensing resolution, and
17.5ns read access time. In JEEE Symposium on VLSI Circuits.

Shim, W,, Seo, J.-s., & Yu, S. (2020). Two-step write-verify scheme and impact of the read
noise in multilevel rram-based inference engine. Sem:. Sci. Tech.

Shin, H., Kim, J., Kang, S., & Kwak, S. (2020). A 28nm romb embedded flash memory for
iot product with ultra-low power near-1v supply voltage and high temperature for grade 1
operation. In IEEE Symposium on VLSI Circuits.

Shum, D., Houssameddine, D., Woo, S. T., You, Y. S., Wong, J., Wong, K. W., Wang, C. C,,
Lee, K. H., Yamane, K., Naik, V. B., Seet, C. S., Tahmasebi, T., Hai, C., Yang, H. W., Thiya-
garajah, N, Chao, R., Ting, J. W,, Chung, N. L, Ling, T., Chan, T. H,, Siah, S. Y., Nair, R,

187

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

Deshpande, S., Whig, R., Nagel, K., Aggarwal, S., DeHerrera, M., Janesky, J., Lin, M., Chia,
H., Hossain, M., Lu, H., Ikegawa, S., Mancoff, F. B., Shimon, G., Slaughter, J. M., Sun, J.].,
Tran, M., Alam, S. M., & Andre, T. (2017). Cmos-embedded stt-mram arrays in 2x nm
nodes for gp-mcu applications. In Symposium on VLSI Technology.

Sijstermans, F. (2018). The nvidia deep learning accelerator. In Hot Chips.

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition.

Slaughter, J. M., Nagel, K., Whig, R., Deshpande, S., Aggarwal, S., DeHerrera, M., Janesky,
J., Lin, M., Chia, H. J., Hossain, M., Ikegawa, S., Mancoft, F. B., Shimon, G., Sun,]. J., Tran,
M., Andre, T., Alam, S. M., Poh, F., Lee,]. H., Chow, Y. T,, Jiang, Y., Liu, H. X., Wang,

C. C,, Noh, S. M., Tahmasebi, T., Ye, S. K., & Shum, D. (2016). Technology for reliable
spin-torque mram products. In JEEE International Electron Devices Meeting (IEDM).

Song, L., Qian, X., Li, H., & Chen, Y. (2017). Pipelayer: A pipelined reram-based acceler-
ator for deep learning. In IEEE International Symposium on High Performance Computer
Architecture (HPCA): IEEE.

Song, Y.]., Lee, J. H., Han, S. H., Shin, H. C,, Lee, K. H., Suh, K, Jeong, D. E., Koh, G. H.,
Oh, S. C,, Park, J. H,, Park, S. O., Bae, B.]., Kwon, O. I., Hwang, K. H., Seo, B. Y,, Lee,

Y. K., Hwang, S. H., Lee, D. S, Ji, Y., Park, K. C,, Jeong, G. T, Hong, H. S., Lee, K. P,
Kang, H. K., & Jung, E. S. (2018a). Demonstration of highly manufacturable stt-mram
embedded in 28nm logic. In JEEE International Electron Devices Meeting (IEDM).

Song, Y.], Lee, J. H., Shin, H. C,, Lee, K. H., Suh, K., Kang, J. R., Pyo, S. S., Jung, H. T,,
Hwang, S. H., Koh, G. H., Oh, S. C., Park, S. O., Kim, J. K., Park, J. C., Kim, J., Hwang,

K. H., Jeong, G. T., Lee, K. P., & Jung, E. S. (2016). Highly functional and reliable 8mb stt-
mram embedded in 28nm logic. In JEEE International Electron Devices Meeting (IEDM).

Song, Z. T., Cai, D. L., Li, X., Wang, L., Chen, Y. F., Chen, H. P., Wang, Q., Zhan, Y. P,, & Ji,
M. H. (2018b). High endurance phase change memory chip implemented based on carbon-
doped geasbates in 40 nm node for embedded application. In IEEE International Electron
Devices Meeting (IEDM).

Sriraman, A., Dhanotia, A., & Wenisch, T. F. (2019). Softsku: optimizing server architec-
tures for microservice diversity at scale. In Proceedings of the 46th International Symposium
on Computer Architecture (pp. 513—526).: ACM.

Stanford Nanoelectronics Lab (2020). Stanford memory trends.

Stanisavljevic, M., Pozidis, H., Athmanathan, A., Papandreou, N., Mittelholzer, T., & Eleft-
heriou, E. (2016). Demonstration of reliable triple-level-cell (tlc) phase-change memory. In
2016 IEEE 8th International Memory Workshop (IMV).

188

[222]

[227]

[228]

[229]

[230]

[231]

Su, F., Chen, W. H., Xia, L., Lo, C. P, Tang, T., Wang, Z., Hsu, K. H., Cheng, M., Li,]. Y,
Xie, Y., Wang, Y., Chang, M. F., Yang, H., & Liu, Y. (2017). A 462g0ps/j rram-based non-
volatile intelligent processor for energy harvesting ioe system featuring nonvolatile logics and
processing-in-memory. In Symposium on VLSI Technology.

Sun, X., Wang, P., Ni, K., Datta, S., & Yu, S. (2018). Exploiting hybrid precision for training
and inference: A 2t-1fefet based analog synaptic weight cell. In JEEE International Electron
Devices Meeting (IEDM).

Sze, V., Chen, Y.-H., Yang, T.-]., & Emer, J. S. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.

Tableau (2022). Tableau: Business intelligence and analytics software.

Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.-Y., Donato, M., Sanh, V., What-
mough, P., Rush, A. M., Brooks, D., & Wei, G.-Y. (2021). Edgebert: Sentence-level en-
ergy optimizations for latency-aware multi-task nlp inference. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’21 New York, NY,
USA: Association for Computing Machinery.

Tan, A. J., Pesic, M., Larcher, L., Liao, Y. H., Wang, L. C., Bae, J. H., Hu, C., & Salahuddin,
S.(2020). Hot electrons as the dominant source of degradation for sub-snm hzo fefets. In
IEEE Symposium on VLSI Technology.

Thomas, L., Jan, G,, Le, S., Serrano-Guisan, S., Lee, Y., Liu, H., Zhu, J., Iwata-Harms, .,
Tong, R., Patel, S., Sundar, V., Shen, D,, Yang, Y., He, R., Haq, J., Teng, Z., Lam, V., Liu, P.,
Wang, Y., Zhong, T., & Wang, P. (2017). Probing magnetic properties of stt-mram devices
down to sub-20 nm using spin-torque fmr. In JEEE International Electron Devices Meeting

(IEDM).

Thomas, L., Jan, G., Serrano-Guisan, S., Liu, H., Zhu, J., Lee, Y., Le, S., Iwata-Harms, J.,
Tong, R., Patel, S., Sundar, V., Shen, D,, Yang, Y., He, R., Haq, J., Teng, Z.,, Lam, V., Liu, P,
Wang, Y., Zhong, T., Fukuzawa, H., & Wang, P. (2018). Stt-mram devices with low damping
and moment optimized for llc applications at ox nodes. In IEEE International Electron
Devices Meeting (IEDM).

Tillie, L., Nowak, E., Sousa, R. C., Cyrille, M., Delaet, B., Magis, T, Persico, A., Langer, .,
Ocker, B., Prejbeanu, I., & Perniola, L. (2016). Data retention extraction methodology for
perpendicular stt-mram. In JEEE International Electron Devices Meeting (IEDM).

Trentzsch, M., Flachowsky, S., Richter, R., Paul, J., Reimer, B., Utess, D., Jansen, S., Mu-
laosmanovic, H., Miiller, S., Slesazeck, S., Ocker, J., Noack, M., Miiller, J., Polakowski, P.,
Schreiter, J., Beyer, S., Mikolajick, T., & Rice, B. (2016). A 28nm hkmg super low power em-
bedded nvm technology based on ferroelectric fets. In JEEE International Electron Devices
Meeting (IEDM).

189

[232]

[233]

(234]

[235]

[236]

[237]

[239]

[240]

TSMC (2019). eflash documentation
https://www.tsmc.com/english/dedicatedfoundry/technology/specialty/eflash.

Venkatagiri, R., Mahmoud, A., Hari, S. K. S., & Adve, S. V. (2016). Approxilyzer: Towards
a systematic framework for instruction-level approximate computing and its application to

hardware resiliency. In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO) (pp. 1-14).

Walcott, K. R., Humphreys, G., & Gurumurthi, S. (2007). Dynamic prediction of architec-
tural vulnerability from microarchitectural state. SIGARCH Comput. Archit. News, 35(2),
516—527.

Wan, W., Kubendran, R., Eryilmaz, S. B., Zhang, W, Liao, Y., Wu, D., Deiss, S., Gao, B.,
Raina, P., Joshi, S., Wu, H., Cauwenberghs, G., & Wong, H. P. (2020). A 74 tmacs/w cmos-
rram neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable

weights for probabilistic graphical models. In IEEE International Solid- State Circuits Con-
ference - (ISSCC).

Wang, C., McClellan, C., Shi, Y., Zheng, X., Chen, V., Lanza, M., Pop, E., & Wong, H. P.
(2018). 3d monolithic stacked rt1r cells using monolayer mos2 fet and hbn rram fabricated
at low (150c) temperature. In JEEE International Electron Devices Meeting (IEDM).

Wang, C., Shih, M, Lee, Y., Wang, W., Thomas, L., Lee, Y., Liu, H., Zhu, J., Jan, G., Wang,
A., Zhong, T., Wang, P., Lin, D., Chen, C., Chang, C., Weng, C., Chiang, T., Shen, K., Gal-
lagher, W. J., & Chuang, H. (2017). Impact of external magnetic field on embedded per-
pendicular stt-mram technology qualified for solder reflow. In JEEE International Electron
Devices Meeting (IEDM).

Wang, C. Y, Shih, M. C., Weng, C. H., Chen, C. H., Chang, C. Y., Wang, W., Chiang,
T. W, Hung, A., Chuang, H., & Gallagher, W. J. (2020). Reliability demonstration of

reflow qualified 22nm stt-mram for embedded memory applications. In JEEE Symposium on
VLSI Technology.

Wang, Z., Li, Z., Xu, L., Dong, Q., Su, C. I, Chu, W. T., Tsou, G., Chih, Y. D, Chang, T.
Y.]J., Sylvester, D., Kim, H. S., & Blaauw, D. (2020). An all-weights-on-chip dnn accelerator
in 22nm ull featuring 24x1 mb erram. In 2020 IEEE Symposium on VLSI Circuits.

Wei, L., Alzate, J. G., Arslan, U., Brockman, J., Das, N., Fischer, K., Ghani, T., Golonzka, O.,
Hentges, P., Jahan, R, Jain, P,, Lin, B., Meterelliyoz, M., O’Donnell, J., Puls, C., Quintero,
P., Sahu, T., Sekhar, M., Vangapaty, A., Wiegand, C., & Hamzaoglu, F. (2019). A 7mb stt-
mram in 22ff] finfet technology with 4ns read sensing time at 0.9v using write-verify-write

scheme and offset-cancellation sensing technique. In JEEE International Solid- State Circuits
Conference - (ISSCC).

190

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[249]

[250]

Wei, Z., Katoh, Y., Ogasahara, S., Yoshimoto, Y., Kawai, K., Ikeda, Y., Eriguchi, K., Ohmori,
K., & Yoneda, S. (2016). True random number generator using current difference based on

a fractional stochastic model in 40-nm embedded reram. In IEEE International Electron
Devices Meeting (IEDM).

Whatmough, P. N, Lee, S. K., Brooks, D., & Wei, G. (2018). Dnn engine: A 28-nm timing-
error tolerant sparse deep neural network processor for iot applications. JEEE Journal of
Solid-State Circuits.

Whatmough, P. N,, Lee, S. K., Donato, M., Hsueh, H.-C,, Xj, S., Gupta, U., Pentecost, L.,
Ko, G. G., Brooks, D., & Wei, G.-Y. (20192). A 16nm 25mma2 soc with a 4.5x flexibility-
efficiency range from dual-core arm cortex-as 3 to efpga and cache-coherent accelerators. In

2019 Symposium on VLSI Circuits (pp. C34-C3).

Whatmough, P. N., Zhou, C., Hansen, P., Venkataramanaiah, S. K., Seo, J., & Mattina, M.
(2019b). Fixynn: Energy-efficient real-time mobile computer vision hardware acceleration
via transfer learning. In Proceedings of Machine Learning and Systems zo1 9, MLSys.

Wu, C., Raghavendra, R., Gupta, U,, Acun, B., Ardalani, N., Maeng, K., Chang, G.,
Behram, F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Can-
dido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H. S., Akyildiz, B., Balandat, M., Spisak, J.,
Jain, R., Rabbat, M., & Hazelwood, K. (2021). Sustainable AI: environmental implications,
challenges and opportunities. CoRR, abs/2111.00364.

Wu, H., Yao, P., Gao, B., Wu, W., Zhang, Q., Zhang, W., Deng, N., Wu, D., Wong, H. P.,
Yu, S., & Qian, H. (2017). Device and circuit optimization of rram for neuromorphic com-
puting. In IEEE International Electron Devices Meeting (IEDM).

Wu,J., Mo, F., Saraya, T., Hiramoto, T., & Kobayashi, M. (2020). A monolithic 3d inte-
gration of rram array with oxide semiconductor fet for in-memory computing in quantized
neural network ai applications. In JEEE Symposium on VLSI Technology.

Wu,]. Y, Chen, Y. S, Khwa, W. S., Yu, S. M., Wang, T. Y., Tseng, J. C., Chih, Y. D., & Diaz,
C. H. (2018). A 4onm low-power logic compatible phase change memory technology. In
IEEE International Electron Devices Meeting (IEDM).

Wulf, W. A. & McKee, S. A. (1995). Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News, 23(1), 20—24.

Xu, X., Luo, Q., Gong, T., Lv, H,, Long, S., Liu, Q., Chung, S. S., Li, J., & Liu, M. (2016).
Fully cmos compatible 3d vertical rram with self-aligned self-selective cell enabling sub-snm
scaling. In JEEE Symposium on VLSI Technology.

191

[251]

[252]

[253]

[254]

[255]

[257]

[258]

[259]

[260]

Xu, X., Tai, L., Gong, T., Yin, J., Huang, P., Yu,]., Dong, D. N., Luo, Q., Liu, J., Yu, Z,,
Zhu, X., Wu, X. L, Liu, Q., LV, H., & Liu, M. (2018). 40x retention improvement by elim-
inating resistance relaxation with high temperature forming in 28 nm rram chip. In /EEE
International Electron Devices Meeting (IEDM).

Xue, C., Huang, T, Liu, J., Chang, T., Kao, H., Wang, J., Liu, T., Wei, S., Huang, S., Wei,
W., Chen, Y., Hsu, T., Chen, Y., Lo, Y., Wen, T,, Lo, C,, Liu, R., Hsiech, C., Tang, K., &
Chang, M. (2020). A 22nm 2mb reram compute-in-memory macro with 121-28tops/w for

multibit mac computing for tiny ai edge devices. In IEEE International Solid- State Circuits
Conference - (ISSCC).

Yamauchi, T., Yamaguchi, Y., Kono, T., & Hidaka, H. (2016). Embedded flash technology
for automotive applications. In JEEE International Electron Devices Meeting (IEDM).

Yang, C. F., Wu, C. Y, Yang, M. H., Wang, W., Yang, M. T., Chien, T. C,, Fan, V., Tsai, S. C,,
Lee, Y. H.,, Chu, W. T, & Hung, A. (2020a). Industrially applicable read disturb model and
performance on mega-bit 28nm embedded rram. In JEEE Symposium on VLSI Technology.

Yang, J., Xue, X, Xu, X., Lv, H,, Zhang, F., Zeng, X., Chang, M., & Liu, M. (2020b). A
28nm 1.5mb embedded rt2r rram with 14.8 mb/mma2 using sneaking current suppression
and compensation techniques. In JEEE Symposium on VLSI Circuits.

Yang, T., Li, K., Chiang, Y., Lin, W,, Lin, H., & Chang, M. (2018). A 28nm 32kb embedded
2t2mtj stt-mram macro with 1.3ns read-access time for fast and reliable read applications. In
IEEE International Solid - State Circuits Conference - (ISSCC).

Yasin, A. (2014). A top-down method for performance analysis and counters architecture.
ISPASS 2014.

Yasuda, S., Ohba, K., Mizuguchi, T,, Sei, H., Shimuta, M., Aratani, K., Shiimoto, T, Ya-
mamoto, T, Sone, T., Nonoguchi, S., Okuno, J., Kouchiyama, A., Otsuka, W., & Tsutsui,
K. (2017). A cross point cu-reram with a novel ots selector for storage class memory applica-
tions. In Symposium on VLSI Technology.

Yoo, H. K., Kim, J. S., Zhu, Z., Choi, Y. S., Yoon, A., MacDonald, M. R., Lei, X., Lee, T. Y.,
Lee, D., Chae, S. C,, Park, J., Hemker, D., Langan, J. G., Nishi, Y., & Hong, S. J. (2017).
Engineering of ferroelectric switching speed in si doped hfo for high-speed 1t-feram applica-
tion. In JEEE International Electron Devices Meeting (IEDM).

Yosinski, J., Clune, J., Bengio, Y., & Lipsons, H. (2014). How transferable are features in
deep neural networks? In Proceedings of the 2 7th International Conference on Neural Infor-
mation Processing Systems - Volume z, NeurIPS 14 (pp. 3320-3328). Cambridge, MA, USA:
MIT Press.

192

[261]

[262]

[268]

[269]

Yu, S., Li, Z., Chen, P., Wu, H., Gao, B., Wang, D., Wu, W, & Qian, H. (2016). Binary
neural network with 16 mb rram macro chip for classification and online training. In JEEE
International Electron Devices Meeting (IEDM).

Zeng, X., Song, X., Ma, T., Pan, X., Zhou, Y., Hou, Y, Zhang, Z., Li, K., Karypis, G., &
Cheng, F. (2020). Repurpose open data to discover therapeutics for covid-19 using deep
learning. Journal of Proteome Research, 19(11), 462.4—4636.

Zhang, F., Zhang, H., Shrestha, P. R., Zhu, Y., Maize, K., Krylyuk, S., Shakouri, A., Camp-
bell, J. P., Cheung, K. P, Bendersky, L. A., Davydov, A. V., & Appenzeller, J. (2018). An

ultra-fast multi-level mote2-based rram. In JEEE International Electron Devices Meeting
(IEDM).

Zhang, X., Xu, Y., Hu, H,, Liu, Y, Guo, Z., & Wang, Y. (2013). Modeling and analysis of
skype video calls: Rate control and video quality. JEEE Transactions on Multimedia.

Zhang, Y., Liao, X., Jin, H., He, L., He, B, Liu, H., & Gu, L. (2021). Depgraph: A
dependency-driven accelerator for efficient iterative graph processing. In 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA) (pp. 371-384).

Zhang, Y., Zhang, L., Wen, W, Sun, G., & Chen, Y. (2012). Multi-level cell stt-ram: Is it
realistic or just a dream? In 2012 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD,).

Zhao, H., Xue, L., Chi, P., & Zhao, J. (2017). Approximate image storage with multi-level
cell stt-mram main memory. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD).

Zhao, L., Chen, H.-Y,, Wu, S.-C,, Jiang, Z., Yu, S., Hou, T.-H., Wong, H. . P., & Nishi, Y.
(2014a). Improved multi-level control of rram using pulse-train programming. In Proceed-

ings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and
Application (VLSI-TSA).

Zhao, L., Chen, H.-Y,, Wu, S.-C,, Jiang, Z., Yu, S., Hou, T.-H., Wong, H.-S. P., & Nishi, Y.
(2014b). Multi-level control of conductive nano-filament evolution in hfoz reram by pulse-
train operations. Nanoscale.

193

	Introduction
	Publications & Research Experiences
	Thesis Contributions
	Thesis Organization

	Background: Memory Technologies & How to Leverage Them
	Motivation: Limitations of Today's Memory Systems
	Motivation: Data-Intensive Applications
	Embedded, Non-Volatile Memory (eNVM) Technology Landscape
	Identifying Cross-Stack Design Considerations

	Reliability as a First-Order Design Concern
	Application-Aware Resilience Studies
	Fault Modeling of Multi-Level-Cell (MLC) eNVMs
	Customized, Iso-Accuracy MLC storage of DNN weights
	Fault Tolerance In-the-Loop with Sparsity and Error Mitigation
	MLC FeFET Memory for DNN Inference and Graph Processing

	MaxNVM: Maximizing Memory Efficiency for ML Accelerators
	End-to-End, Co-Design Methodology for MLC eNVM
	Maximizing Storage Density and Inference Efficiency (Evaluation)
	MEMTI: Optimizing eNVM for Visual Multi-Task Inference
	EdgeBERT: Optimizations for Multi-Task NLP Inference

	NVMExplorer: Cross-Stack Memory Design and Optimization
	An Efficient, Extensible Design Space Exploration Framework
	Supporting DNN Inference Under Varying Operating Conditions
	Complementing and Accelerating Graph Processing
	Probing General-Purpose Applications: eNVM as LLC
	Case studies in eNVM, System, and Application Co-Design

	Conclusion: Future Memory System Opportunities and Innovations
	Themes to Unlock Future Memory Efficiency
	Innovations on the Horizon, and How to Leverage Them
	Summary: Cross-Computing-Stack Memory Efficiency Opportunities

	References

