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RATE-AMPLIFYING DEMAND AND THE

EXCESS SENSITIVITY OF LONG-TERM RATES∗

SAMUEL G. HANSON

DAVID O. LUCCA

JONATHAN H. WRIGHT

Abstract

Long-term nominal interest rates are surprisingly sensitive to high-frequency (daily or
monthly) movements in short-term rates. Since 2000, this high-frequency sensitivity has grown
even stronger in U.S. data. By contrast, the association between low-frequency changes (at 6-
or 12-month horizons) in long- and short-term rates, which was also strong before 2000, has
weakened substantially. This puzzling post-2000 pattern arises because increases in short rates
temporarily raise the term premium component of long-term yields, leading long rates to tem-
porarily overreact to changes in short rates. The frequency-dependent excess sensitivity of
long-term rates that we observe in recent years is best understood using a model in which (i)
declines in short rates trigger “rate-amplifying” shifts in investor demand for long-term bonds
and (ii) the arbitrage response to these demand shifts is both limited and slow. We study, both
theoretically and empirically, how such rate-amplifying demand can be traced to mortgage re-
financing activity, investors who extrapolate recent changes in short rates, and investors who
“reach for yield” when short rates fall. We discuss the implications of our findings for the
validity of event-study methodologies and the transmission of monetary policy.
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I. INTRODUCTION

The sensitivity of long-term interest rates to movements in short-term rates is a central feature of the
term structure and plays a crucial role in the transmission of monetary policy. Short-term nominal
interest rates are determined by current monetary policy and its near-term expected path. Shocks
to real interest rates are generally thought to be short-lived, so long-term nominal rates should
not be highly sensitive to changes in nominal short rates if long-run inflation expectations are well
anchored and the expectations hypothesis holds (Shiller, 1979). In fact, long-term nominal rates are
surprisingly sensitive to high-frequency changes in short rates (Shiller et al., 1983; Cochrane and
Piazzesi, 2002; Gürkaynak et al., 2005; Giglio and Kelly, 2018). The deeper forces underpinning
this puzzling degree of high-frequency sensitivity, and its evolution, remain poorly understood.

We provide evidence that, in the past two decades, the sensitivity of long rates has grown even
stronger at high frequencies (daily or monthly), but has weakened substantially at lower frequen-
cies (6 or 12 month horizons)1. As a result, the sensitivity of long rates to changes in short rates
has become highly frequency-dependent since 2000. Between 1971 and 1999, a daily regression
of changes in 10-year U.S. Treasury yields on changes in 1-year yields delivers a coefficient of
0.56; and the analogous regression using 12-month changes gives nearly the same coefficient. Be-
tween 2000 and 2019, the coefficient from the daily regression jumps to 0.87, while the coefficient
from the corresponding 12-month regression drops to 0.23. Figure I, which plots the sensitivity
of 10-year yields to changes in 1-year yields as a function of horizon in both the pre-2000 and
post-2000 samples, summarizes this key finding. This pattern is not specific to the U.S.: we find
similar results for Canada, Germany, and the U.K.

What explains this puzzling post-2000 tendency of short- and long-term rates to move together
at high but not low frequencies? Statistically, this pattern arises because recent increases in short
rates predict a subsequent flattening of the yield curve, as well as declines in long-term yields and
forward rates, in the post-2000 data. These predictable reversals in long rates are linked to a new
form of short-lived bond return predictability: since 2000, the expected returns on long-term bonds
(in excess of those on short-term bonds) are temporarily elevated following increases in short rates.
Thus, relative to an expectations-hypothesis baseline, long rates temporarily overreact to changes
in short rates, exhibiting what Mankiw and Summers (1984) dubbed “excess sensitivity.” In the
post-2000 data, we estimate that 10-year yields rise by 66 basis points in response to a 100 bps
monthly increase in 1-year yields. Over the next 6 months, 10-year yields are expected to fall by
36 bps, reversing over half of the initial response.

What deeper forces underpin the evolving sensitivity of long rates to movements in short rates?

1We do not mean to argue that there was a discrete change in the underlying data-generating process around 2000.
Instead, our reading of the evidence is that the underlying data-generating process has changed gradually over time.
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Gürkaynak et al. (2005) note that the strong sensitivity of long-term nominal rates could be consis-
tent with the expectations hypothesis if one adopts the view that long-run inflation expectations are
unanchored and are being continuously updated—i.e., if there are large shocks to trend inflation as
in Stock and Watson (2007). This narrative is a good explanation for the high degree of sensitivity
observed before 2000. Consistent with the expectations-hypothesis logic of this explanation, in
the pre-2000 data, we find no evidence that the reaction of long yields to movements in short rates
tends to predictably reverse.

However, in the post-2000 period, the high-frequency sensitivity of long-term nominal rates
primarily reflects the sensitivity of long-term real rates to nominal short rates, rather than the sen-
sitivity of break-even inflation (Beechey and Wright, 2009; Hanson and Stein, 2015). To the extent
that one shares the widespread view that expected future real rates at distant horizons do not fluctu-
ate meaningfully at high frequencies (see Gürkaynak et al., 2005), this makes it hard to square the
strong post-2000 sensitivity at high frequencies with expectations-hypothesis logic. Hanson and
Stein (2015) argue that the strong post-2000 sensitivity works through the term premium compo-
nent of long-term yields: shocks to short rates move term premia in the same direction. Consistent
with this view, we find that the reaction of long yields to movements in short rates tends to pre-
dictably reverse in the post-2000 data, giving rise to short-lived shifts in the expected returns to
holding long-term bonds.

How can we best understand our finding that, in recent decades, the sensitivity of long rates to
changes in short rates declines steeply with horizon? Because it reflects a form of short-lived return
predictability, the most natural explanations involve temporary supply-and-demand imbalances in
financial markets (De Long et al. (1990), Shleifer and Vishny (1997), and Duffie (2010)). We
develop a model of these imbalances that emphasizes the role of what we call “rate-amplifying”
shocks to the supply-and-demand for long-term bonds. Our model builds on Greenwood and
Vayanos (2014) and Vayanos and Vila (2020) who stress the limited risk-bearing capacity of
the specialized fixed-income arbitrageurs who must absorb shocks to the net supply of long-term
bonds. In our model, risk-averse bond arbitrageurs can invest in either short- or long-term nominal
bonds. While monetary policy pins down the interest rate on short-term bonds, long-term bonds
are available in a net supply that varies over time. This net supply, which arbitrageurs must hold in
equilibrium, equals the gross supply of long-term bonds net of the amount inelastically demanded
by other, non-arbitrageur investors. To induce risk-averse arbitrageurs to absorb an increase in net
supply of long-term bonds, the expected return on long-term bonds in excess of that on short-term
bonds must rise, lifting the term premium component of long-term yields.

Our explanation adds two novel ingredients to this familiar setup: (i) “rate-amplifying” shifts
in the supply or demand for long-term bonds and (ii) a slow-moving arbitrage response. First, we
assume that shocks to the net supply of long-term bonds are positively correlated with shocks to
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short rates. This positive correlation can obtain either because increases in short rates are associ-
ated with increases in the gross supply of long-term bonds or with non-standard reductions in the
demand of other, non-arbitrageur investors. Since arbitrageurs’ risk-bearing capacity is limited,
this implies that increases in short rates are associated with increases in the term premium com-
ponent of long rates, generating “excess sensitivity” relative to the expectations hypothesis. This
reduced-form assumption is consistent with several distinct rate-amplification mechanisms that we
detail below, each rooted in well-known institutional frictions and facets of investor psychology,
that have arguably grown in importance recent decades.

The second ingredient is that arbitrage capital is slow-moving as in Duffie (2010). As a result,
these rate-amplifying demand shocks encounter a short-run arbitrage demand curve that is steeper
than the long-run arbitrage demand curve, generating a short-lived imbalance in the market for
long-term bonds. This slow-moving capital dynamic implies that the shifts in term premia triggered
by movements in short rates are transitory. As a result, the excess sensitivity of long rates is
greatest when measured at high frequencies. Furthermore, we show that frequency-dependent
excess sensitivity is most pronounced when the underlying rate-amplifying demand shocks are
themselves short-lived. In summary, the combination of rate-amplifying demand shocks and slow-
moving arbitrage capital enables our model to match the frequency-dependent sensitivity of long
rates observed since 2000.

We explore three rate-amplification channels: (i) shifts in the effective gross supply of long-
term bonds due to mortgage refinancing waves (Hanson, 2014; Malkhozov et al., 2016), (ii) shifts
in the demand for long-term bonds from biased investors who extrapolate recent changes in short
rates (Giglio and Kelly, 2018; D’Arienzo, 2020), and (iii) shifts in the demand from investors who
“reach for yield” when short rates fall (Hanson and Stein, 2015). For each channel, we first show
how it can be used to microfound rate-amplifying shocks to the net supply of long-term bonds
similar to those we previously assumed in reduced-form. Next, we discuss why the strength of
each channel may have grown in recent decades: the key underlying trend here is the increasing
financialization of interest-rate risk. Finally, by looking at the relationship between bond yields and
different financial quantities, we empirically assess the extent to which each channel contributes to
the frequency-dependent sensitivity of long-term rates we observe since 2000. We find evidence
that mortgage refinancing and investor extrapolation both help explain why long yields rates have
temporarily overreacted to short rates since 2000 in the U.S. By contrast, we find less evidence that
reaching-for-yield plays an important role in driving our key empirical findings.

A vast literature demonstrates that, contrary to the expectations hypothesis, the expected excess
returns on long-term bonds vary meaningfully over time (Fama and Bliss, 1987; Campbell and
Shiller, 1991; Cochrane and Piazzesi, 2005). In contrast to most of the existing literature on bond
return predictability which focuses on business-cycle frequency variation in expected returns, our
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findings point to a new, short-lived form of return predictability that has emerged in recent decades.
Our findings have important implications for how economists should interpret event-study evi-

dence based on high-frequency changes in long-term bond yields. Macroeconomic news, including
news about monetary policy, is lumpy, and the short-run change in long-term rates around news
announcements is often used as a measure of the expected longer-run impact of news shocks on
short rates. Nakamura and Steinsson (2018) is a prominent recent example of this increasingly
popular approach to identification in macroeconomics. But, if some of the impact of a news shock
on long-term rates wears off quickly over time, then a shock’s short- and long-run impact are quite
different. And event-studies only captures the short-run impact. For instance, it is common for
news announcements to cause large jumps in 10-year forward rates, but since a large portion of
these jumps are due to transient shifts in term premia, event-studies are likely to provide biased
estimates of the longer-run impact on short rates.

Our results also have implications for monetary policy transmission. In the textbook New Key-
nesian view (Gali, 2008), the central bank adjusts short-term nominal rates. This affects long-term
rates via the expectations hypothesis, which in turn influences aggregate demand. Stein (2013)
points out that the excess sensitivity of long-term yields, whereby shocks to short rates move term
premia in the same direction, should strengthen the effects of monetary policy relative to the text-
book view. Stein (2013) refers to this as the “recruitment” channel of monetary transmission. We
find that the behavior of interest rates does not conform to the textbook New Keynesian view in
which term premia are constant. Nonetheless, our findings suggest that the recruitment channel
may not be as strong as Stein (2013) speculates since a portion of the resulting shifts in term pre-
mia are transitory and, thus, likely to have only modest effects on aggregate demand. We do not
argue that there is no recruitment channel, just that it is smaller than one might conclude based
on the high-frequency response of term premia to policy shocks documented in Hanson and Stein
(2015), Gertler and Karadi (2015), and Gilchrist et al. (2015).

In Section II., we document our key stylized facts about the changing high- and low-frequency
sensitivity of long-term interest rates. In Section III., we show that past increases in short rates
predict a future reversals in long-term yields in the post-2000 data, reflecting a new form of bond
return predictability. Section IV. develops the model we use to interpret our findings. We build
on this framework in Section V. where we explicitly microfound three specific rate-amplification
mechanisms—mortgage refinancing, extrapolation, and reaching-for-yield—and then assess em-
pirically the extent to which each mechanism helps explain our key findings. Section VI. discusses
the implications of our findings for event-study identification strategies that exploit high-frequency
movements in long-term yields, the transmission of monetary policy, bond market “conundrums,”
and affine term structure models. Section VII. concludes.
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II. THE SENSITIVITY OF LONG-TERM RATES TO SHORT-TERM RATES

Between 1971 and 2000, the sensitivity of long-term rates to changes in short-term rates was simi-
larly strong at both high- and low-frequencies. Since 2000, the association between high-frequency
changes in short- and long-term interest rates has grown even stronger. By contrast, the association
between low-frequency changes in short- and long-term rates has weakened substantially. As a re-
sult, the sensitivity of long-term rates has become surprisingly frequency-dependent since 2000.
We first document these basic facts for the U.S. We then contrast the patterns we see in the post-
2000 data with those observed in the U.S. prior to the 1970s. Finally, we show that the sensitivity
of long-term rates has evolved in a similar fashion in Canada, Germany, and the U.K.

Baseline findings for the U.S. We begin by regressing changes in 10-year Treasury yields or
forward rates on changes in 1-year nominal Treasury yields. Specifically, we estimate regressions
of the form:

(1) y(10)
t+h − y(10)

t = αh +β h(y
(1)
t+h− y(1)t )+ ε t,t+h

and

(2) f (10)
t+h − f (10)

t = αh +β h(y
(1)
t+h− y(1)t )+ ε t,t+h,

where y(n)t is the continuously compounded n-year zero-coupon yield in period t and f (n)t is the n-
year-ahead instantaneous forward rate. We obtain data on the nominal and real U.S. Treasury yield
curve from Gürkaynak et al. (2007) and Gürkaynak et al. (2010). We decompose nominal yields
into real yields and inflation compensation, defined as the difference between nominal and real
yields derived from Treasury Inflation-Protected Securities (TIPS). Our sample begins in August
1971, which is when reliable data on 10-year nominal yields first become available and ends in
December 2019. For real yields and inflation compensation, we only study the post-2000 sample,
since data on TIPS are not available until 1999. All data are measured as of the end of the relevant
period—e.g., the last trading day of each month.

In standard monetary economics models, the central bank sets overnight nominal interest rates,
and other rates are influenced by the expected path of overnight rates. A large literature argues
that central banks in the U.S. and abroad have increasingly relied on communication—implicit or
explicit signaling about the future path of overnight rates—as an active policy instrument (Gurkay-
nak et al., 2005). To capture news about the near-term path of policy that would not impact the
current overnight rate, we take the short rate to be the 1-year nominal Treasury rate which follows
approaches in the recent literature (Gertler and Karadi, 2015; Gilchrist et al., 2015; Hanson and
Stein, 2015).
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Panel A in Table I reports estimated coefficients β h in equation (1) for zero-coupon nominal
yields, real yields, and inflation compensation using daily data and end-of-month data with h = 1,
3, 6, 12 months—i.e., for daily, monthly, quarterly, semi-annual, and annual changes in yields.2

The results are shown for the pre-2000 and post-2000 samples separately. We base this sample
split on a number of break-date tests that we will discuss shortly. Figure I plots the estimated
coefficients β h in equation (1) for nominal yields versus monthly horizon h for the pre-2000 and
post-2000 samples.

Since we use overlapping h-month changes in equation (1) when h > 1, we report Newey and
West (1987) standard errors using a lag truncation parameter of d1.5×he; when h = 1, we report
heteroskedasticity-robust standard errors. To address the tendency for statistical tests based on
Newey and West (1987) standard errors to over-reject in finite samples, we compute p-values using
the asymptotic theory of Kiefer and Vogelsang (2005) which gives more conservative p-values and
has better finite-sample properties than traditional Gaussian asymptotic theory.

Panel A shows that, prior to 2000, there was a strong tendency for short- and long-term yields
to rise and fall together at both high- and low-frequencies. While the high-frequency relationship
has grown even stronger since 2000, the low-frequency relationship has weakened significantly.
Specifically, the daily coefficient for 10-year yields has risen from β day = 0.56 in the pre-2000
sample to β day = 0.87 in the post-2000 sample and this increase is statistically significant (p-
val< 0.001). By contrast, the coefficient for h = 12-month changes in 10-year yields has fallen
from β 12 = 0.56 before 2000 to β 12 = 0.23 in the post-2000 sample and this decline is also highly
significant (p-val < 0.001).

Combining these observations, Figure I shows our main finding: in the post-2000 sample, the
β h coefficients decline steeply with the horizon h. By contrast, β h is a relatively constant function
of h in the pre-2000 sample. Furthermore, Table I shows that the majority of the decline in β h as a
function of h in the post-2000 sample is due to the real component of long-term yields.

This is a surprising result: one would not expect β h to vary strongly with monthly horizon
h as in the post-2000 data. In a standard term-structure models with a single factor, we have
y(10)

t = α +β · y(1)t for some β ∈ (0,1), implying that β h = β for all h, regardless of whether the
expectations hypothesis holds. More generally, even accounting for multiple risk factors, term
premia only fluctuate at business-cycle frequencies in conventional asset-pricing models, implying
that β h should be quite stable across monthly horizons h. And, as detailed in Section IV. below,
if there are both persistent and transient shocks to short rates, the expectations hypothesis implies
that β h should be slightly increasing in h as it was in the pre-2000 data. Thus, our finding that
β h is a steeply decreasing function of horizon h since 2000 suggests that term structure dynamics

2Bond maturities are in years and time periods are in months, except when we estimate regressions at a daily
frequency.
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have shifted in an important way.
Panel B of Table I reports the corresponding β h coefficients in equation (2) using changes

in instantaneous forwards as the dependent variable. Like 10-year yields, the sensitivity of 10-
year forward rates to changes in short-term rates has risen at high frequencies, but has declined
markedly at low frequencies.

We use two approaches to date the timing of the break and both approaches suggest that there
was a break around 2000. First, we estimate equations (1) and (2) using 10-year rolling windows.
The estimated coefficients for h = 12-month changes are shown in Figure II for 10-year yields
and forwards. These β 12 coefficients decline substantially in more recent windows. The second
approach is to test for a structural break in equations (1) and (2) for h = 12-month changes, allow-
ing for an unknown break date. We use the test of Andrews (1993) who conducts a Chow (1960)
test at all possible break dates, and then takes the maximum of the Wald test statistics. Figure III
plots the Wald test statistic for each possible break date in equations (1) and (2) along with the
Cho and Vogelsang (2017) critical values for a null of no structural break. The strongest evidence
for a break is in 1999 or 2000 in both equations (1) and (2) and the break is highly statistically
significant.3

To clarify, we do not intend to argue that there was a discrete change in the underlying data-
generating process in 2000. Instead, consistent with the rolling-window regressions shown in
Figure II, our reading of the data is that the underlying data-generating process has changed gradu-
ally over time—a gradual change which then becomes discernible when we compare the behavior
of yields in across different samples. Nonetheless, throughout the remainder of the paper, we will
adopt the heuristic of simply splitting the data into two samples: pre- and post-2000.

Robustness. In the Internet Appendix, we conduct a battery of robustness checks on our key find-
ings. First, we show that similar results obtain if we use long-term private yields as the dependent
variable in equation (1). We examine long-term corporate bond yields with Moody’s ratings of
Aaa and Baa, the 10-year swap yield, and the yield on mortgage-backed-securities. For all of these
long rates, the sensitivity to changes in 1-year Treasury rates was similar irrespective of frequency
before 2000. After 2000, the sensitivity at high frequencies increases while the sensitivity at low
frequencies declines significantly.

Second, we obtain similar results using different proxies for the short-term rate—i.e., using
changes in 3-month, 6-month, or 2-year Treasury yields—as the independent variable in equation
(1).

Third, one might be concerned about our use of overlapping changes in equations (1) and (2)

3In the Internet Appendix, we date the emergence of the frequency-dependent sensitivity of long rates. We report
10-year rolling estimates of β 1− β 12 for 10-year yields and find that β 1− β 12 turns significantly negative around
2000.
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when h > 1. Instead of computing Newey and West (1987) standard errors with a lag truncation
parameter of d1.5×he, we find that one would draw almost identical inferences using Hansen and
Hodrick (1980) standard errors with a lag truncation parameter equal to h. Going further, we show
the estimates and our inferences are similar if we simply use non-overlapping h-month changes.

Finally, one might wonder if our dating of this break is due to distortions stemming from the
2009–2015 period when overnight nominal rates were stuck at the zero lower bound. Our use of 1-
year rates as the independent variables in equations (1) and (2) limits any distortions since 1-year
yields continued to fluctuate from 2009 to 2015. Indeed, even if we end our sample in 2007 or
2008, we still detect a break around 2000. For instance, if the post-2000 sample ends in December
2008, we find a daily β day = 0.77 and a yearly β 12 = 0.20, which are essentially indistinguishable
from the numbers in Table I.

U.S. evidence prior to the Great Inflation. A natural explanation for the strong sensitivity of long-
term nominal rates during the 1971-1999 sample is that this was a period when long-run inflation
expectations became unanchored and were being continuously revised (Gürkaynak et al., 2005).
Since inflation expectations have become firmly moored in recent decades, it is useful to compare
the post-2000 patterns to the those pre-dating the Great Inflation, which ran from the late 1960s
to the early 1980s. In the Internet Appendix, we examine the sensitivity of long-term Treasury
yields to changes in short-term yields from 1953 (when the data become available) to 1968 (when
inflation expectations began to drift up). Consistent with the view that inflation expectations were
better-anchored prior to the Great Inflation, the 1953-1968 coefficients are lower than the 1971-
1999 coefficients. However, while the level of β h coefficients is lower in the 1953-1968 sample, we
do not see the strong dependence on horizon h that is so evident in the post-2000 data. In summary,
while the unanchoring and reanchoring of long-run inflation expectations may help explain shifts
in the level of β h over time, the strongly frequency-dependent sensitivity of long-term rates that
we see since 2000 appears to be something new under the sun.

International evidence. Our focus is on the U.S., but it is useful to consider whether these same
patterns are also observed in other large, highly-developed economies. In the Internet Appendix,
we report estimates of equation (1) for the U.K., Germany, and Canada for both pre-2000 and
post-2000 samples. Our data for Canada, Germany, and the U.K. begin in 1986, 1972, and 1985,
respectively. We find similar patterns for Canada, Germany, and the U.K. Specifically, for all three
countries, β h is strongly decreasing in h in the post-2000 data, but not in the pre-2000 data.

III. YIELD-CURVE DYNAMICS AND BOND RETURN PREDICTABILITY

We now pinpoint the term-structure dynamics that account for the stronger high-frequency sensi-
tivity and weaker low-frequency sensitivity of long rates that we see in the post-2000 data. We
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show that this frequency-dependent sensitivity arises because, all else equal, past increases in
short rates predict a subsequent flattening of the yield curve, as well as a subsequent decline in
long-term yields and forwards. Statistically, this means that post-2000 yield curve dynamics are
“path-dependent” or “non-Markovian”: it is not enough to know the current shape of the yield
curve; instead, to form the best forecast of future bond yields and returns, one also needs to know
how the yield curve has shifted in recent months. These non-Markovian dynamics are themselves a
reflection of a new short-lived form of bond return predictability. Since 2000, the expected excess
returns on long-term bonds are temporarily elevated following past increases in short rates. Thus,
relative to an expectations-hypothesis baseline, long-term yields exhibit excess sensitivity at high
frequencies and temporarily overreact to changes in short rates.

III.A. Non-Markovian yield-curve dynamics

We first show that strong horizon-dependence of β h in the post-2000 period arises because yield
curve dynamics have become non-Markovian.

Predicting level and slope. When examining term structure dynamics, it is useful to study the
dynamics of yield-curve factors, especially level and slope factors (Litterman and Scheinkman,
1991). We define the level factor as the 1-year yield (Lt ≡ y(1)t ) and the slope factor as the 10-year
yield less the 1-year yield (St ≡ y(10)

t −y(1)t )—a.k.a., the “term spread.” Most term structure models
are Markovian with respect to current yield curve factors, meaning that the conditional mean of
future yields depends only on today’s yield-curve factors. However, our key finding—the post-
2000 horizon-dependence of the relationship between long- and short-term yields—suggests that
it may be useful to include lagged factors when forecasting yields. This idea has proven useful
in other contexts, including in Cochrane and Piazzesi (2005) and Duffee (2013). Specifically, we
consider the following system of predictive monthly regressions:

Lt+1 = δ 0L +δ 1LLt +δ 2LSt +δ 3L(Lt−Lt−6)+δ 4L(St−St−6)+ εL,t+1(3a)

St+1 = δ 0S +δ 1SLt +δ 2SSt +δ 3S(Lt−Lt−6)+δ 4S(St−St−6)+ εS,t+1.(3b)

These regressions include level and slope as well as their changes over the prior six months, which
is a simple way of allowing for longer lags without estimating too many free parameters.

Table II reports estimates of equations (3a) and (3b) for both the pre-2000 and post-2000 sam-
ples. We include specifications omitting all lagged changes, omitting lagged changes in slope, and
including all predictors. Based on the Akaike information criterion (AIC) or Bayesian information
criterion (BIC), the model in column (1) with no lagged changes is chosen in the pre-2000 sample,
while the model in column (5) with lagged changes in level is selected in the post-2000 sample. In
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the post-2000 sample, the lagged change in level is a highly significant negative predictor of the
future slope—i.e., increases in the level of yields predict subsequent yield-curve flattening. For
example, as shown in column (5), a 100 basis point increase in the level over the prior 6-months
is associated with a 11 basis per-month decline in slope in the post-2000 sample (p-val < 0.001).
By contrast, as shown in column (2), the coefficient on Lt −Lt−6 in the pre-2000 sample is zero.
And, we can easily reject the hypothesis that the coefficients on Lt−Lt−6 in the pre- and post-2000
samples are equal (p-val < 0.001).

The model in equations (3a) and (3b) can match the puzzling post-2000 horizon-dependent
behavior of β h that we documented above. This model can be written as a restricted vector au-
toregression (VAR) in yt = (Lt ,St)

′ of the form: yt+1 = µ +A1yt +A2yt−6 + ε t+1. Let Γi j(h)

denote the i jth element of the autocovariance of yt at a lag of h months—i.e., the i jth element of
Γ(h) = E[(yt−E [yt ]) (yt−h−E [yt−h])

′]. Given the estimated parameters from equations (3a) and
(3b), we can work out Γi j(h) to obtain the VAR-implied values of β h in equation (1):

(4) β h =
Var(Lt−Lt−h)+Cov(St−St−h,Lt−Lt−h)

Var(Lt−Lt−h)
= 1+

2Γ12(0)−Γ12(h)−Γ12(−h)
2(Γ11(0)−Γ11(h))

.

In the pre-2000 sample, Table I reported estimates of β 1 = 0.46 and β 12 = 0.56. In the post-2000
sample, the estimates are β 1 = 0.66 and β 12 = 0.23. Table II reports the VAR-implied values of
β 1 and β 12 from equation (4). In the pre-2000 data, all of the VAR models can roughly match
both β 1 and β 12. In the post-2000 sample, all models can match β 1, but only the models that
include lagged changes in level—i.e., models that allow for non-Markovian dynamics—can match
the sharp decline in β 12. Specifically, if the post-2000 VAR does not include lagged changes as in
column (4), the VAR-implied values of β 12 would be 0.59 and would be nowhere near what we
observe in the data.

Predictable reversals in long-term rates. These post-2000 non-Markovian dynamics imply that
there are predictable reversals in long rates following past increases in short rates. In Table III
we estimate specifications that are reminiscent of the Jorda (2005) “local projection” approach
to estimating impulse-response functions. Specifically, we predict the future changes in 10-year
yields and forwards from month t to t + h using the current level (Lt) and slope (St) of the yield
curve as well as the prior month’s change in level (Lt−Lt−1) and slope (St−St−1):

(5) zt+h− zt = δ
(h)
0 +δ

(h)
1 Lt +δ

(h)
2 St +δ

(h)
3 (Lt−Lt−1)+δ

(h)
4 (St−St−1)+ ε t→t+h.

Table III reports estimates of equation (5) for zt = y(10)
t and f (10)

t in the pre- and post-2000 samples
for h = 3-, 6-, 9-, and 12- month changes. In Figure IV, we plot the coefficients δ

(h)
3 on Lt −Lt−1

for h = 1,2, ...,12, tracing out the expected future change in zt from month t to t +h in response to
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an unexpected change in the level of rates between t−1 and t.
In the post-2000 data, there are predictable reversals in both 10-year yields and forwards fol-

lowing an increase in short rates. However, there is no such reversal in the pre-2000 data. For
10-year yields, Table III reports that δ

(6)
3 = −0.36 (p-val = 0.07) after h = 6-months in the post-

2000 data. (The difference between δ
(6)
3 in the pre- and post-2000 data is significant with a p-value

of 0.04.) Table I showed that, since 2000, a 100 bps increase in short-rates in month t is associated
with a 66 bps contemporaneous rise of long-term yields. Thus, Table III suggests that 36 bps—or
more than half—of this initial response is expected to reverse within 6 months. As in Table I, the
post-2000 reversion in 10-year forwards is even larger in magnitude and is statistically stronger.
For 10-year forwards, we have δ

(6)
3 =−0.52 (p-val < 0.01) and the difference between δ

(6)
3 in the

pre- and post-2000 data is highly significant (p-val < 0.01). In summary, Table III and Figure IV
show that long rates appear to temporarily overreact to changes in short rates in the post-2000 data,
but there was no such tendency before 2000.

To better understand these results, we decompose 10-year yields into the sum of a level com-
ponent and a slope component as in Table II—i.e., y(10)

t = Lt + St—and plot the coefficients δ
(h)
3

versus h for both level (zt = Lt) and slope (zt = St). Consistent with Table II, Table III shows that
the predictable reversals in long-term yields reflects the juxtaposition of two opposing forces in
the post-2000. First, past increases in short-term rates predict subsequent increases in short-term
rates in the post-2000 data, perhaps owing to the Fed’s growing desire to gradually adjust short
rates (Stein and Sunderam, 2018). However, past increase in short rates strongly predict a subse-
quent flattening of the yield curve since 2000. Since the latter effect outweighs the former, we see
predictable reversals in long-term yields post-2000.

III.B. Predicting bond returns

We show that our main finding—the fact that, in recent years, β h declines rapidly as a function of
horizon h—reflects a new form of bond return predictability. Namely, this result arises because past
increases in the level of rates lead to temporary rise in the expected excess returns on long-term
bonds.

Results for 10-year bonds. The k-month log excess return on 10-year bonds over the riskless
return on k-month bills, (k/12)y(k/12)

t , is:

(6) rx(10)
t→t+k ≡ (k/12)(y(10)

t − y(k/12)
t )− (10− k/12)(y(10−k/12)

t+k − y(10)
t ).

We forecast the k-month excess return on 10-year zero-coupon bonds using level, slope, and the
6-month past changes in these two yield-curve factors:

(7) rx(10)
t→t+k = δ 0 +δ 1Lt +δ 2St +δ 3(Lt−Lt−6)+δ 4(St−St−6)+ ε t→t+k.
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In Table IV, we report the results from estimating these predictive regressions for k = 1, 3, and
6-month returns. Panel A reports the results for the pre-2000 sample and Panel B shows the post-
2000 results.

In the post-2000 data, Table IV shows the past change in the level of rates is a robust predictor
of the excess returns on long-term bonds. However, there is no such predictability in the pre-2000
data. For instance, in column (6) of Panel B, we see that, all else equal, a 100 bps increase in
short-term rates over the prior 6 months is associated with a δ 3 = 166 bps (p-val < 0.01) increase
in expected 3-month bond returns and the difference between δ 3 in the pre- and post-2000 data
is statistically significant (p-val < 0.01). In untabulated results, we find that the post-2000 return
predictability associated with past increases in the level of rates is short-lived and generally dissi-
pates after k = 6 months. In other words, past increases in the level of rates lead to a temporary
increase in the risk premia on long-term bonds.4

Results for other bond maturities. In the Internet Appendix, we examine the predictability for
bond maturities other than n = 10 years. If, as we argue, past increases in short rates temporarily
raise the compensation that investors require for bearing interest-rate risk, this should have a larger
impact on the expected returns of long-term bonds than intermediate bonds. However, such a short-
lived increase in the compensation for bearing interest rate risk should have relatively constant
or even a hump-shaped effect on the yield and forward curves. The intuition is that the impact
on bond yields equals the effect on a bond’s average expected returns over its lifetime. As a
result, a temporary rise in the compensation for bearing interest rate risk can have a greater impact
intermediate-term yields than on long-term yields. Indeed, this is precisely what we find in the
post-2000 data.

In summary, since 2000, term premia on long-term bonds are temporarily elevated following
increases in short rates. This implies that, relative to an expectations-hypothesis baseline, long
rates temporarily overreact to movements in short rates and exhibit “excess sensitivity” at high
frequencies.

III.C. Interpreting the evidence

Before developing our economic modelling framework, we pause to interpret our results. Our
findings all point towards the view that, in recent years, the term premium on long-term bonds is
increasing in the recent change in short rates, all else equal. This simple non-Markovian assump-
tion can match the facts that, in the post-2000 data, (i) the sensitivity of long rates β h declines
with horizon h and (ii) that, controlling for current yield curve factors, past changes in short rates

4Consistent with the predictable curve flattening discussed above, the Internet Appendix shows that the predictabil-
ity we find for 10-year bond returns is related to predictability for portfolios that locally mimic changes in the slope
factor.
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predict future yield-curve flattening, declines in long rates, and high excess returns on long-term
bonds.

To develop these ideas, we shift notation slightly. Rather than identifying specific maturities,
we now refer to the long-term yield as yt and the short rate as it . We split the long-term yield
into an expectations-hypothesis component, eht , that reflects expected future short-term rates and
a term premium component, t pt , that reflects expected future bond risk premia: yt = eht + t pt .
Thus, by definition, β h—the total sensitivity of long-term yields at horizon h—is the sum of the
expectations-hypothesis, β

eh
h and the term premium, β

t p
h , components:

(8)

β h︷ ︸︸ ︷
Cov [yt+h− yt , it+h− it ]

Var [it+h− it ]
=

β
eh
h︷ ︸︸ ︷

Cov [eht+h− eht , it+h− it ]
Var [it+h− it ]

+

β
t p
h︷ ︸︸ ︷

Cov [t pt+h− t pt , it+h− it ]
Var [it+h− it ]

.

First, consider the expectations-hypothesis piece. For now, assume the short-rate follows a uni-
variate AR(1) process, implying eht =αeh+β

eh · it and β
eh
h = β

eh for all h. Next, consider the term
premium piece. In conventional asset-pricing theories, term premia only vary at business-cycle fre-
quencies, so one would not expect β

t p
h to vary strongly with monthly horizon h. Thus, conventional

theories suggest that t pt ≈ α t p +β
t p · it , implying that β

t p
h = β

t p and β h =
(

β
eh +β

t p
)

for all h.
In other words, it is difficult for conventional theories to match the strong horizon-dependence of
β h seen in the post-2000 data.

To generate horizon-dependent sensitivity, consider, instead, the following non-Markovian
assumption:

(9) t pt = α
t p +β

t p · it +δ
t p · (it− it−1) ,

where δ
t p > 0. This assumption implies that term premia depend on the current level of short rates

and the recent change in short rates. Under this assumption, one can show that:

(10) β h = β
eh +β

t p +δ
t p · (1− γh) where γh ≡

Cov [it+h−1− it−1, it+h− it ]
Var [it+h− it ]

.

The key is then to note that γh—the coefficient from a regression of (it+h−1− it−1) on (it+h− it)—
is an increasing function of h. When δ

t p > 0, this in turn explains why β
t p
h is decreasing in h.5

Furthermore, when δ
t p > 0, controlling for current level of short rates, the past change in short

rates predicts future yield curve flattening, declines in long-term yields, and high excess returns on
long-term bonds.

5For instance, if it follows an AR(1) of the form it+1 − ı̄ = ρ i (it − ı̄) + ε i,t+1, then γh =(
2ρ i−ρ

h−1
i −ρ

h+1
i

)
/
(
2−2ρh

i
)
. We have γ1 = −(1−ρ i)

2 /(2−2ρ i) < 0 and limh→∞ γh = ρ i > 0. And,
treating γh as continuous in h, we have ∂γh/∂h > 0.
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IV. A MODEL OF TEMPORARY BOND MARKET OVERREACTION

Because our key finding reflects a form of short-lived return predictability, the most natural ex-
planations involve temporary supply-and-demand imbalances in financial markets (De Long et al.
(1990), Shleifer and Vishny (1997), and Duffie (2010)). Our model emphasizes what we call “rate-
amplifying” shocks to the supply and demand for long-term bonds. In Section V., we build on this
framework and explicitly microfound three rate-amplification mechanisms—mortgage refinancing
waves, investor extrapolation, and investor reaching-for-yield—and assess empirically the extent
to which each mechanism helps explain our key finding. The model here emphasizes the common
underlying structure and shared asset-pricing implications of these rate-amplification mechanisms.
By contrast, Section V. emphasizes the idea that different amplification mechanisms have implica-
tions for different financial quantities.

Model setting. Time is discrete and infinite. Risk-averse bond arbitrageurs can hold either risky
long-term nominal bonds or riskless short-term nominal bonds. The interest rate on short-term
bonds follows an exogenous stochastic process. Long-term bonds are available in a given net sup-
ply that must be absorbed by bond arbitrageurs. Since the risk-bearing capacity of these specialized
bond arbitrageurs is limited, shifts in the net supply of long-term bonds impact the term premium
component of long-term yields as in Greenwood and Vayanos (2014) and Vayanos and Vila (2020).

We add two novel ingredients to this familiar setup. First, there are rate-amplifying supply-
and-demand shocks: shocks to the net supply of long-term bonds are positively correlated with
shocks to short rates. To induce arbitrageurs to absorb these supply shocks, the term premium
component of long yields must increase when short rates rise, generating “excess sensitivity” of
long-term yields relative to the expectations hypothesis baseline.

Second, arbitrage capital is slow-moving as in Duffie (2010): these net supply shocks walk
down a short-run demand curve that is steeper than the long-run demand curve.6 Thus, an increase
in short rates leads to a temporary supply-and-demand imbalance in the market for long-term
bonds and, thus, a short-lived increase in bond risk premia. As a result, the excess sensitivity of
long rates is greatest at short horizons. Furthermore, this frequency-dependent excess sensitivity is
most pronounced when the underlying rate-amplifying net supply shocks are themselves transitory.

The model can match our key finding in Section II.—that β h has fallen for large h and risen for
small h post-2000—if (i) shocks to short-term nominal rates have become less persistent and (ii)
the kinds of rate-amplification mechanisms we emphasize have grown in importance. We argue
that (i) is justified by the strong evidence that shocks to the persistent component of inflation have
become less volatile since the mid-1990s (Stock and Watson, 2007). We argue that (ii) is justified

6Our model is related to Greenwood et al. (2018), who incorporate slow-moving capital into a model of the term
structure.
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since these rate amplification mechanisms appear to have become more powerful over time.

Short- and long-term nominal bonds. At time t, investors learn that short-term bonds will earn a
riskless log return of it in nominal terms between time t and t +1. Short-term nominal bonds are
available in perfectly elastic supply at this interest rate. One can think of the short-term nominal
interest rate as being determined outside the model by monetary policy.

Long-term nominal bonds are available in a given net supply st that must be absorbed by the
arbitrageurs in our model. The long-term nominal bond is a perpetuity. To generate a tractable
linear model, we use the well-known Campbell and Shiller (1988) log-linear approximation to the
return on this perpetuity. The log excess return on long-term bonds over short-term bonds from t

to t +1 is approximately:

(11) rxt+1 ≡ ln(1+Rt+1)− it ≈
1

1−φ
yt−

φ

1−φ
yt+1− it ,

where yt is the log yield-to-maturity on long-term bonds, φ ∈ (0,1), and D = 1/(1−φ) is the
bond’s duration—i.e., the sensitivity of the bond’s price to its yield. Iterating equation (11) forward
and taking expectations, the yield on long-term bonds is:

(12) yt =

eht︷ ︸︸ ︷
(1−φ)∑

∞

j=0 φ
jEt
[
it+ j
]
+

t pt︷ ︸︸ ︷
(1−φ)∑

∞

j=0 φ
jEt
[
rxt+ j+1

]
.

The long yield is the sum of an expectations hypothesis piece, eht , that reflects expected future
short rates and a term premium, t pt , reflecting expected future excess returns on long bonds over
short bonds.

Arbitrageurs. There are two groups of specialized bond arbitrageurs, each with identical risk
tolerance τ , who differ solely in the frequency with which they can rebalance their bond portfolios.

The first group of arbitrageurs are “fast-moving” and are free to adjust their holdings of long-
term and short-term bonds each period. Fast-moving arbitrageurs are present in mass q and we
denote their demand for long-term bonds at time t by bt . Fast-moving arbitrageurs have mean-
variance preferences over 1-period portfolio log returns. Their demand for long-term bonds at
time t is:

(13) bt = τ
Et [rxt+1]

Vart [rxt+1]
.

The second group of arbitrageurs are “slow-moving” and can only rebalance their holdings of
long-term and short-term bonds every k≥ 2 periods. Slow-moving arbitrageurs are present in mass
1− q. A fraction 1/k of slow-moving arbitrageurs are active each period and can rebalance their
portfolios, but then cannot trade again for the next k periods. As in Duffie (2010), this is a reduced-
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form way to model the forces, whether due to institutional frictions or limited attention, that limit
the speed of arbitrage capital flows. Since they only rebalance every k periods, slow-moving
arbitrageurs have mean-variance preferences over their k-period cumulative portfolio excess return.
Thus, the demand for long-term bonds from the subset of slow-moving arbitrageurs who are active
at time t is:

(14) dt = τ
Et [∑

k
j=1 rxt+ j]

Vart [∑
k
j=1 rxt+ j]

.

Holders of long-term bonds face two different types of risk. First, they are exposed to short rate

risk. they will suffer a capital loss on their long-term bond holdings if short-term rates unexpectedly
rise. Second, they are exposed to supply risk: there are shocks to the net supply of long-term
bonds that impact the term premium component of long-term bond yields. We make the following
assumptions about the evolution of these two risk factors.

Short-term nominal interest rates. The short-term nominal interest rate is the sum of a highly
persistent component iP,t and a more transient component iT,t :

(15) it = iP,t + iT,t .

A natural interpretation is that the persistent component reflects long-run inflation expectations and
the transient component reflects cyclical variation in short-term real rates and expected inflation.
The persistent component iP,t follows an exogenous AR(1) process:

(16) iP,t+1 = ı̄+ρP (iP,t− ı̄)+ εP,t+1,

where 0 < ρP < 1 and Vart [εP,t+1] = σ2
P. The transient component iT,t also follows an exogenous

AR(1):

(17) iT,t+1 = ρT iT,t + εT,t+1,

where 0 < ρT ≤ ρP < 1 and Vart [εT,t+1] = σ2
T .

If ρT < ρP and σP is large relative to σT , then short-term nominal rates will be highly per-
sistent. As a result, long-term nominal rates will be highly sensitive to movements in short-term
nominal rates due to standard expectations-hypothesis logic. Indeed, a large value of σP is a good
explanation for the high sensitivity of long-term rates observed in the 1970s, 1980s, and the 1990s
when long-run inflation expectations were not well-anchored (Gürkaynak et al., 2005). However,
long-run inflation expectations have become firmly anchored in recent decades and there is strong
evidence that shocks to the persistent component of nominal inflation have become far less volatile
since the mid-1990s.
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Rate-amplifying shocks to the net supply of long-term bonds. Long-term nominal bonds are avail-
able in an exogenous, time-varying net supply st that must be held in equilibrium by arbitrageurs.
This net supply equals the gross supply of long-term bonds minus the demand from other, non-
arbitrageur investors outside the model who have inelastic demands. We assume that st follows an
AR(1) process:

(18) st+1 = s+ρs (st− s)+CεP,t+1 +CεT,t+1 + εs,t+1,

where 0 < ρs ≤ ρT < 1, C ≥ 0, and Vart [εs,t+1] = σ2
s .

When C > 0, there are rate-amplifying net supply shocks—shocks to short rates are positively
associated with shocks to net bond supply—and C parameterizes the strength of these amplification
mechanisms. Equation (18) is a reduced-form way of capturing three different rate-amplification
mechanisms that we detail in Section V.: (i) mortgage refinancing waves, (ii) investors who ex-
trapolate recent changes in short rates, and (iii) investors who “reach for yield” by buying more
long-term bonds when short rates are low. Rate-amplifying net supply shocks can arise either be-
cause increases in short rates are associated with increases in the gross supply of long-term bonds
(as in the mortgage refinancing channel) or because they are associated with reductions in the de-
mands of other, non-arbitrageur investors (as in the investor extrapolation and reaching-for-yield
channels). The εs,t+1 shocks in (18) capture forces that are unrelated to short rates which also im-
pact the net supply of long-term bonds. While the model can be solved for any arbitrary correlation
structure between the εP,t+1, εT,t+1, and εs,t+1 shocks, we assume, for simplicity, that these three
shocks are mutually orthogonal.

The difference between the persistence of these rate-amplifying net supply shocks and that of
the underlying shocks to short-term rates plays an important role in our model’s ability to generate
excess sensitivity that is most pronounced at high frequencies. To see why, note that equation (18)
implies that the net supply of long-term bond is given by

st = s+C[(iP,t− ı̄)− (ρP−ρs)∑
∞
j=0 ρ

j
s
(
iP,t− j−1− ı̄

)
](19)

+C[iT,t− (ρT −ρs)∑
∞
j=0 ρ

j
s iT,t− j−1]+ [∑∞

j=0 ρ
j
sεs,t− j].

When ρs < ρT , the rate-amplifying net supply shocks are less persistent than the underlying short
rate shocks. As a result, net bond supply is increasing in the differences between the current level
of each component of the short rate and a geometric moving-average of its past values. Thus, when
ρs < ρT , st will be high when short rates have recently risen. By contrast, if ρs = ρT = ρP, st will
be just as persistent as short rates. In this case, st = s+C(it − ı̄)+ [∑∞

j=0 ρ
j
sεs,t− j] and only the

current level of short rates—as opposed to recent changes in short rates—impacts net bond supply.
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Equilibrium yields. At time t, there is a mass q of fast-moving arbitrageurs, each with demand
bt , and a mass (1−q)k−1 of active slow-moving arbitrageurs who rebalance their portfolios, each
with demand dt . These arbitrageurs must accommodate the active net supply of long-term bonds,
which is the total net supply st less any supply held by inactive slow-moving arbitrageurs who do
not rebalance at time t, (1−q)k−1

∑
k−1
j=1 dt− j. Thus, the market-clearing condition for long-term

bonds at time t is:

(20)

Fast demand︷︸︸︷
qbt +

Active slow demand︷ ︸︸ ︷
(1−q)k−1dt =

Total net supply︷︸︸︷
st −

Inactive slow holdings︷ ︸︸ ︷
(1−q)(k−1

∑
k−1
j=1 dt− j).

We conjecture that equilibrium yields yt and the demands of active slow-moving arbitrageurs
dt are linear functions of a state vector, xt , that includes the steady-state deviations of both com-
ponents of short-term nominal interest rates, the net supply of long-term bonds, and holdings
of bonds by inactive slow-moving arbitrageurs. Formally, we conjecture that the yield on long-
term bonds is yt = α0 +α ′1xt and that slow-moving arbitrageurs’ demand for long-term bonds
is dt = δ 0 + δ

′
1xt , where the (k+2)× 1 dimensional state vector, xt , is given by xt = [iP,t − ı̄,

iT,t , st − s,dt−1− δ 0, · · · ,dt−(k−1)− δ 0]
′. These assumptions imply that the state vector follows a

VAR(1) process xt+1 =Γxt +ε t+1, where Γ depends on the parameters δ 1 governing slow-moving
arbitrageurs’ demand.

In the Internet Appendix, we show how to solve for equilibrium yields in this setting. A ra-
tional expectations equilibrium of our model is a fixed point of a specific operator involving the
“price-impact” coefficients, (α ′1), which show how the state variables impact bond yields, and the
“demand-impact” coefficients, (δ ′1), which show how these variables impact the demand of active
slow-moving investors. Specifically, let ω = (α ′1,δ

′
1)
′ and consider the operator f(ω0) which gives

(i) the price-impact coefficients that will clear the market for long-term bonds and (ii) the demand-
impact coefficients consistent with optimization on the part of active slow-moving investors when
agents conjecture that ω = ω0 at all future dates. A rational expectations equilibrium of our model
is a fixed point ω∗ = f(ω∗). Solving the model involves numerically finding a solution to a system
of 2k non-linear equations in 2k unknowns.

An equilibrium solution only exists if arbitrageurs are sufficiently risk tolerant (i.e., for τ suf-
ficiently large). When an equilibrium exists, there can be multiple equilibria. Equilibrium non-
existence and multiplicity of this sort are common in overlapping-generations, rational-expectations
models such as ours where risk-averse arbitrageurs with finite investment horizons trade an infinitely-
lived asset that is subject to supply shocks. Different equilibria correspond to different self-
fulfilling beliefs that arbitrageurs can hold about the price-impact of supply shocks and, hence,
the risks of holding long-term bonds. However, we always find a unique equilibrium that is stable
in the sense that equilibrium is robust to a small perturbation in arbitrageurs’ beliefs regarding
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the equilibrium that will prevail in the future. Consistent with the “correspondence principle” of
Samuelson (1947), this unique stable equilibrium has comparative statics that accord with standard
economic intuition. We focus on this unique stable equilibrium in our analysis. See Greenwood
et al. (2018) for an extensive discussion of these issues.

The sensitivity of long-term yields. We now explain the factors that shape the sensitivity of long-
term rates in our model and how this sensitivity depends on horizon. Consider the model-implied
counterpart of the empirical regression coefficient in equation (1). In the model, the coefficient β h

from a regression of yt+h− yt on it+h− it is:

(21) β h =
Cov [yt+h− yt , it+h− it ]

Var [it+h− it ]
=

α ′1(2V−ΓhV−V(Γ′)h)e
e′(2V−ΓhV−V(Γ′)h)e

,

where V =Var [xt ] denotes the variance of the state vector xt and e denotes the (k+2)× 1 vec-
tor with ones in the first and second positions and zeros elsewhere.7 We can then establish the
following result:

Proposition 1. The dependence of the coefficient β h on time horizon h is governed by (i) the
persistence ρx of the three shocks x ∈ {s,T,P}, (ii) the volatilities of the two short-rate shocks,
σT and σP, (iii) the strength of the rate-amplification mechanisms C, and (iv) the degree to which
capital is slow moving q.

1. When there are no rate-amplifying net supply shocks (C = 0), changes in term premia are
unrelated to shifts in short rates and long-term yields do not exhibit excess sensitivity. Fur-
thermore,

(a) if ρT = ρP, β h is independent of h, σT , and σP.

(b) if ρT < ρP, β h is increasing in h; the level of β h falls with σT and rises with σP for all
h.

2. When there are rate-amplifying net supply shocks (C > 0), changes in term premia are pos-
itively correlated with changes in short rates and long-term yields exhibit excess sensitivity.
Furthermore,

(a) if ρs = ρT = ρP, and all capital is fast-moving (q = 1), then β h is independent of h;

(b) if ρs ≤ ρT = ρP and either (i) supply shocks are transient (ρs < ρT ) or (ii) capital is
slow-moving (q < 1), then β h is decreasing in h;

(c) if ρs ≤ ρT < ρP, β h can be non-monotonic in h.

Proof. See the Internet Appendix for all proofs.

7To derive this expression, note that yt+h− yt = α ′1 (xt+h−xt) and it+h− it = e′ (xt+h−xt). Since the state-vector
xt follows a VAR(1) process xt+1 = Γxt + ε t+1, we have Var [xt+h−xt ] = 2V−ΓhV−V(Γ′)h and the result follows.
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When there are no rate-amplifying net supply shocks (C = 0), long rates are not excessively
sensitive to short rates when judged relative to the expectations hypothesis. If short rates contain
both a transient and a more persistent component (ρT < ρP), one should actually expect the β h co-
efficients to increase in horizon h when C = 0. This effect arises since movements in the persistent
short rate component are associated with larger movements in long rates by standard expectations-
hypothesis logic and because the persistent component dominates changes in short rates at longer
horizons. Furthermore, when ρT < ρP, the level of β h for any horizon h depends on σT and σP.
For instance, an increase in σP raises the fraction of total short-rate variation that is due to the
persistent component. Since shocks to the persistent component of short rates have a larger impact
on long rates, an increase in σP raises β h for all h.

Rate-amplifying net supply shocks (C > 0) generate excess sensitivity. However, Part 2.(a) of
Proposition 1 shows that rate-amplification (C > 0) need not generate horizon-dependent excess
sensitivity—i.e., temporary overreaction of long rates when judged relative to the expectations
hypothesis. To generate β h coefficients that decline with h, Part 2.(b) clarifies that either (i) the
rate-amplifying net supply shocks must be less persistent than the underlying short-rate shocks
(ρs < ρT ) or (ii) these rate-amplifying shocks must be met by a slow-moving arbitrage response
(q < 1). Under either of these conditions, shifts in short rates trigger a short-lived supply-and-
demand imbalance in the market for long-term bonds, leading long rates to temporarily overreact
to short rates. In practice, we suspect that both transitory rate-amplifying net supply shocks and
slow-moving capital play a role in explaining why β h declines steeply with h in the recent data.
Furthermore, these two mechanisms reinforce one another: it is easier to quantitatively match the
steep decline in β h as a function of h in calibrations that feature both elements.8

Model calibration. Our main findings are that β h has risen at high frequencies (low h) but has
fallen at low frequencies (high h) in recent decades, leading β h to decline steeply with horizon h in
the post-2000 data. Guided by Proposition 1, we discuss how to understand the changing sensitivity
of long rates. We focus on the role of changes in the volatility of persistent short rate shocks (σP)
and the strength of any rate-amplifying mechanisms (C). Our model can match the data if (1)
shocks to the persistent component of short-term nominal rates have become less volatile in the
post-2000 period (σP has fallen) and (2) the rate-amplifying supply-and-demand mechanisms we

8Technically, when capital is slow-moving (q< 1) and ρs≤ ρT = ρP, β h is only guaranteed to be locally decreasing
in h for h ≤ k—i.e., for horizons shorter than over which all slow-moving arbitrageurs will have rebalanced their
portfolios. While we always have β h < β h−1 for h ≤ k, we can have β h > β h−1 for h > k. However, even when
there are local non-monoticities, β h is globally decreasing in the sense that limh→∞ β h < β 1. What explains the
potential for these local non-monoticities? As in Duffie (2010), the gradual adjustment of slow-moving arbitrageurs
can gives rise to modest echo effects for h > k, generating a series of damping oscillations that converge to limh→∞ β h.
These oscillations arise because the slow-moving arbitrageurs who reallocate soon after a supply shock lands take
large opportunistic positions. These positions temporarily reduce the active supply of long-term bonds and need to be
re-absorbed in later periods.
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emphasize have become more important in recent decades (C has risen).
We consider an illustrative calibration of the model in which each period is a month. We

assume the following parameters were the same in the 1971-1999 and post-2000 periods:

• Persistence: ρP = 0.995, ρT = 0.96, and ρs = 0.80. These parameters imply that shocks
to the persistent short rate component have a half-life of 11.5 years, shocks to the transient
component have a half-life of 1.4 years, and shocks to the net supply of long bonds have a
half-life of 3 months.

• Slow-moving capital: q = 30% and k = 12. Thus, 1− q = 70% of the arbitrageurs are
slow-moving and only rebalance their bond portfolios every 12 months. These assumptions
capture the idea that many large institutional investors only rebalance their portfolios annu-
ally.

• Volatility of the transient component of short rates: σ2
T = 0.15%.

• No independent net supply shocks: σ2
s = 0. This assumption is without loss of generality.

• Other parameters: τ = 0.5 and φ = 119/120, so the duration of the perpetuity is 10 years—
i.e., D = 1/(1−φ) = 120 months.

For the pre-2000 period, we assume:

• A large persistent component of short rates: σ2
P = 0.15%. The implied volality of the

short rate is 4.12% which compares with a volatility of 1-year yields of 2.63% in the 1971-
1999 sample.

• No rate-amplifying net supply shocks: C = 0.

By contrast, for the post-2000 period, we assume:

• A small persistent component of short rates: σ2
P = 0.012%. The implied standard devia-

tion of the short rate is 1.77% which is similar to the post-2000 volatility of 1-year yields of
1.85%.

• Net supply shocks induced by short rate shocks: C = 0.55. Thus, we assume a meaningful
increase in the strength of rate-amplifying supply-and-demand mechanisms.

The first graph in Figure V plots the model-implied regression coefficients β h from equation
(21) against monthly horizon h for the pre- and post-2000 calibrations. In the pre-2000 calibration
where σP is large and C = 0, β h is high and largely independent of h. In fact, β h rises gradually
with h—as it does in the pre-2000 data—because the more persistent component of short rates
dominates when changes are computed at longer horizons. By contrast, in the post-2000 calibration
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where σP is smaller and C is large, β h declines steeply with h. And, since σP is lower, β h reaches
a lower level for large h.

β h declines with h in the post-2000 calibration because short rate shocks give rise to transient
rate-amplifying shocks to the net supply of long-term bonds (C > 0 and ρs < ρT ) that encounter
a short-run demand curve that is steeper than the long-run demand curve due to slow-moving
capital (q < 1), triggering short-lived market imbalances. The second graph in Figure V shows
that β h only declines moderately with h in our post-2000 calibration if we drop the assumption
that arbitrage capital is slow-moving. Thus, transient rate-amplifying net supply shocks and slow-
moving capital are both helpful for quantitatively matching the fact that β h declines so steeply with
h in the post-2000 data.

Another way of understanding the mechanism is to study the model-implied impulse response
functions following a surprise increase to short rates. We carry out this exercise in the Internet
Appendix. To summarize, an initial positive shock to short rates leads to a rise in term premia.
Thus, relative to the expectations-hypothesis, long rates are excessively sensitive to short rates.
However, the rise in term premia wears off quickly, explaining our key finding that β h declines
sharply with horizon h. Furthermore, the initial rise in short rates predicts future yield curve
flattening and future reversals in long rates.

In addition to matching the fact that β h declines steeply with h in the post-2000 period,
the model can also match the related empirical findings documented above. First, the model is
consistent with our return forecasting evidence: in the post-2000 calibration, bond risk premia
Et [rxt+1] = τ−1V (1)bt are elevated when short-term rates have recently risen. Intuitively, if rate-
amplifying net supply shocks (C > 0) are either transient (ρs < ρT ) or are met by a slow-moving
arbitrage response (q < 1), then fast-moving arbitrageurs must bear greater interest-rate risk when
short rates have recently risen—bt will be higher—and they will require additional compensation
for bearing this extra risk

Second, let Lt = it and St = yt − it denote the model-implied level and slope factors. If we
estimate equation (3b) in data simulated from the model, we find that past increases in the level
of rates predict a flattening of the yield curve in the post-2000 calibration but not in the pre-
2000 calibration. In the post-2000 calibration, past increases in the level of rates are associated
with a higher current risk premium on long-term bonds. Since the risk premium is Et [rxt+1] =

St −φ (1−φ)−1 (Et [∆St+1]+Et [∆Lt+1]), all else equal, Et [∆St+1] is lower when short rates have
recently risen.

V. RATE-AMPLIFICATION MECHANISMS

We now explore three rate-amplification mechanisms—mortgage refinancing, extrapolation, and
reaching for yield—that may help explain why increases in short rates trigger temporary supply-
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and-demand imbalances in the market for long-term bonds. For each mechanism, we show how
it microfounds rate-amplifying net supply shocks like those we introduced in reduced-form in
Section IV. and then embed it the modelling framework developed above.9 Next, we discuss why
the strength of each channel may have increased in recent decades. Finally, by examining the
relationship between bond yields and different financial quantities, we assess empirically the extent
to which each channel contributes to the frequency-dependent sensitivity of long-term rates we
observe after 2000.

V.A. Mortgage refinancing

Negative shocks to short-term rates trigger mortgage refinancing waves in the U.S. that lead to
temporary reductions in the effective gross supply of long-term bonds and, thus, temporary de-
clines in bond term premia (Hanson, 2014; Malkhozov et al., 2016). The mortgage refinancing
channel is only relevant in countries such as the U.S. where fixed-rate mortgages with an embed-
ded prepayment option are an important source of mortgage financing. However, Domanski et al.
(2017) point to a similar rate-amplification mechanism—one that may be more important in the
Eurozone—stemming from the desire of insurers and pensions to dynamically match the duration
of their assets and liabilities.

Modeling the mechanism. Most fixed-rate, residential mortgages in the U.S. give the borrower
the option to prepay at any time without a penalty (Boyarchenko et al., 2019). When rates fall, the
option to prepay and refinance older, higher-coupon mortgages becomes more attractive to borrow-
ers. Households exercise their prepayment options only gradually after a decline in rates, leading
the effective maturity or “duration” of outstanding mortgages—i.e., the sensitivity of mortgage
prices to changes in interest rates—to decline when long-term rates fall. And, the amount of ex-
pected mortgage refinancing activity varies significantly over time: depending on the past path of
rates, there are times when many households move from being far from refinancing to being close
and vice versa. The resulting shifts in expected refinancing activity trigger large changes to the
total quantity of interest rate risk that must be borne by bond market investors, leading to transient,
but sizable fluctuations in bond term premia .

This mortgage refinancing channel can be used to micro-found a specification for the net sup-
ply of long-term bonds that is similar to equation (19). Following (Malkhozov et al., 2016), we
assume that (i) there is a constant quantity M of outstanding fixed-rate mortgages with an em-
bedded prepayment option; (ii) the primary mortgage rate, yM

t , equals the long-term yield, yt ,
plus a constant spread; (iii) the average coupon on outstanding mortgages evolves according to
cM

t+1−cM
t =−η ·(cM

t −yM
t ), where (cM

t −yM
t ) is the “refinancing incentive” at time t and η ∈ [0,1]

is the sensitivity of cM
t+1 to the refinancing incentive at t; (iv) the average “duration” or effective

9The Internet Appendix provides additional details and illustrative calibrations of these three microfounded models.
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maturity of outstanding mortgages is DURM
t = DURM −N ·

(
cM

t − yM
t
)
, where DURM

> 0 and
N > 0 is the “negative convexity” of the average mortgage; and (v) the effective gross supply of
long-bonds at time t is st = M ·DURM

t .
Each of these assumptions captures a well-known and reliable empirical regularity about the

U.S. mortgage market. In particular, assumption (iii) captures the fact that, when the refinancing
incentive (cM

t − yM
t ) is higher, more households refinance their existing high-coupon mortgages at

time t, leading the average coupon to fall from t to t + 1. Assumption (iv) captures the fact that,
when the refinancing incentive is higher, more households are expected to refinance their existing
mortgages in the near future, implying that the average outstanding mortgage behaves more like
a short-term bond. These assumptions imply that the effective gross supply of long-term bonds at
time t is:

(22) st = M ·DURM
+MN · (yt−η ∑

∞
j=0 (1−η) j yt−1− j).

Thus, the mortgage refinancing channel implies that bond investors must bear greater interest rate
risk when long-term rates have recently risen. And, the strength of this channel is given by the
product MN.

There have been two structural shifts that are relevant for the strength of the refinancing chan-
nel. First, mortgage-backed securities (MBS) have become a larger share of the U.S. bond market
over time. In the language of the model, this means that M has risen. From 1976 to 1999, MBS on
average accounted for 21% of the value of the Bloomberg-Barclays Aggregate Index, a proxy for
the broad U.S. bond market. From 2000 to 2019, the corresponding figure was 33%. As a result,
movements in the duration of the outstanding mortgages (DURM

t ) now generate far larger shifts
in the effective supply of long-term bonds when judged relative to the overall U.S. bond market.
Second, due a secular decline in refinancing costs, mortgage refinancing has become more interest-
rate elastic over time (Bennett and Peristiani, 2001; Fuster et al., 2019). More elastic refinancing
corresponds to a rise in both N and η . As a result, the association between DURM

t and recent
changes in long rates has grown stronger. Together these changes suggest that the strength of the
mortgage refinancing channel has grown in recent decades.

To solve our model of mortgage refinancing, we substitute the expression for supply in (22)
into the market-clearing condition in (20) from Section IV.. As above, fraction q of investors are
fast-moving with demands given by equation (13) and fraction (1−q) are slow-moving and only
rebalance their portfolios every k ≥ 2 periods with demands given by (14). We can then establish
the following proposition:

Proposition 2. Mortgage refinancing model. For simplicity suppose ρT = ρP. When MN > 0,
long-term yields are excessively sensitive to short rates. When MN > 0 and η = 0, this excess
sensitivity is only horizon-dependent—i.e., the model-implied regression coefficients β h in equation
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(21) only decline with horizon h—when arbitrage capital is slow moving (q< 1). By contrast, when
MN > 0 and η > 0, β h declines with horizon h even if all arbitrage capital is fast-moving (q = 1).

When η > 0, shocks to short rates trigger shifts in effective bond supply that are less persis-
tent than the underlying short rate shocks, giving rise to horizon-dependent excess sensitivity even
without slow-moving capital. However, we are best able to quantitatively match the post-2000
behavior of the β h coefficients using calibrations of this model in which (i) MN has risen sub-
stantially from the pre-2000 level and (ii) the resulting rate-amplifying supply shocks are met by a
gradual arbitrage response. In addition, our model of mortgage refinancing predicts that (1) mort-
gage duration DURM

t is high when interest rates have recently risen and (2) the level of mortgage
duration positively predicts future excess returns on long-term bonds (i.e., Et [rxt+1] is high when
DURM

t is high).

Evidence from mortgage-related quantities. To assess the contribution of the refinancing channel
to our findings, we use two proxies for the impact of mortgage refinancing on the effective supply
long-term bonds. The first is yM

t − cM
t , the mortgage refinancing disincentive. Here yM

t is the aver-
age primary rate for 30-year, fixed-rate mortgages from Freddie Mac’s Primary Mortgage Market
Survey and cM

t is the average outstanding coupon of MBS in the Bloomberg-Barclays U.S. MBS
index. The index covers pass-through MBS backed by conventional fixed-rate mortgages that are
guaranteed by Fannie Mae, Freddie Mac, and Ginnie Mae. This refinancing disincentive measure,
which is associated with a higher duration on outstanding mortgages, is available beginning in Jan-
1976. The second is the duration-to-worst of the Bloomberg-Barclays U.S. MBS index, DURM

t , a
measure of the sensitivity of MBS prices to changes in long-term yields. This MBS duration mea-
sure is available on a monthly basis beginning in Jan-1976.10 The correlation between yM

t − cM
t

and DURM
t is 0.55 from 1976 to 1999 and 0.66 in the post-2000 sample.

Using each of these proxies (Xt) for mortgage duration, we first estimate

(23) Xt = γ0 + γ1Lt + γ2St + γ3(Lt−Lt−6)+ γ4(St−St−6)+ ε
MBS
t ,

for the pre- and post-2000 samples. We are interested in the coefficient on Lt −Lt−6, which tells
us how MBS duration responds to recent changes in the level of short rates. Second, we estimate

(24) rx(10)
t→t+3 = δ 0 +δ 1Lt +δ 2St +δ 3(Lt−Lt−6)+δ 4(St−St−6)+δ 5Xt + ε

(10)
t→t+3,

for the pre-2000 and post-2000 samples. That is, we run horse race regressions to assess whether
10Barclays uses its proprietary prepayment model to estimate the expected cashflows for each MBS. Yield-to-worst

is the internal rate of return that equates MBS price and the present value of expected cash flows. Barclays computes
the Macaulay duration of MBS treating these expected cashflows as given and index duration is the valued-weighted
average of security-level durations. Beginning in 1989, Barclays reports the option-adjusted duration measure used in
Hanson (2014). In the post-2000 sample, this slightly more sophisticated measure has a correlation of 0.84 with the
measure we use.
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mortgage waves help explain why past changes in short rates forecast excess bond returns in the
post-2000 data. We are interested in the coefficients on Xt and Lt−Lt−6 and how these coefficients
change when these two variables are included jointly as opposed to one at a time.

Panel A of Table V shows the results from estimating (23) using the refinancing disincentive
(Xt = yM

t − cM
t ) and shows that it is responsive to past changes in level. Comparing columns

(3) and (6), we see that it has become more responsive to past changes in level since 2000 (p-
value = 0.06). Panel B reports the results for estimating this same equation using the duration
of the Barclays MBS index (Xt = DURM

t ) and delivers a similar message. Panel C reports the
results from estimating (24) using the refinancing disincentive and suggest that the refinancing
channel helps explain why past changes in the level of rates predict high excess returns on long-
term bonds in the post-2000 data. In Panel C column (5), we see that yM

t − cM
t attracts a positive

and significant coefficient when forecasting 3-month excess bond returns after 2000. By contrast,
the corresponding coefficient in column (2) for the pre-2000 sample is near zero and insignificant.
And, the difference between the coefficients in columns (2) and (5) is significant (p-value < 0.01).
However, when we use both (yM

t − cM
t ) and (Lt − Lt−6) to forecast rx(10)

t→t+3 in column (6), the
coefficients on both variables decline noticeably relative to those in columns (4) and (5) where
they are considered in isolation. This is precisely what we should expect if the refinancing channel
plays an important role in explaining the short-lived excess sensitivity that we see in the post-2000
data.11 Panels D shows that DURM

t also strongly forecasts rx(10)
t→t+3 in the post-2000 sample with

the expected signs.

V.B. Investor extrapolation

Several recent papers, including Cieslak (2018), Giglio and Kelly (2018), Brooks et al. (2019) and
D’Arienzo (2020) argue that some bond investors make biased forecasts of future interest rates.
Positive shocks to short rates lead extrapolative investors to overestimate the future path of short
rates and demand fewer long-term bonds. As a result, the quantity of bonds that must be held by
unbiased investors rises when short rates rise, leading to an rise in term premium and generating
excess sensitivity. If these expectational errors are transitory or if the arbitrage response is slow,
extrapolation will create a short-lived market imbalance, leading long rates to temporarily overreact
to changes in short rates.

Modeling the mechanism. We assume that some investors have “diagnostic expectations” about
short rates in the sense that they “overweight future outcomes that have become more likely in

11If mortgage refinancing was the only source of rate amplification in the U.S. bond market and there was no slow-
moving arbitrage capital, then (yM

t − cM
t ) should be a sufficient statistic for bond risk premia and should completely

drive out (Lt −Lt−6) in a horse race specification. However, if mortgage refinancing was one of several amplification
mechanisms, or if arbitrage capital was slow moving, then one expected both (yM

t − cM
t ) and (Lt − Lt−6) to attract

meaningful coefficients.
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light of incoming data” (Bordalo et al., 2017). In contrast to most recent work on diagnostic
expectations—which takes a representative agent approach—we adopt a heterogenous agent ap-
proach, enabling us to study the dynamic arbitrage response of unbiased bond investors to these
rate-amplifying demand shocks.

We assume that fraction f of investors have diagnostic expectations about short rates. Diagnos-
tic investors’ demand for long-term bonds is ht = τ(ED

t [rxt+1]/VarD
t [rxt+1]) where ED

t [·] denotes
diagnostic investors’ biased expectations. Fraction (1− f ) of a bond investors have fully rational
expectations about short-term interest rates. Of these rational investors, fraction q are fast-moving
with demands given by equation (13) and fraction (1−q) are slow-moving with demands given by
(14). We assume the gross supply of long-term bonds is constant over time at st = s. Following
Maxted (2020), we assume that diagnostic investors’ expectation of the transient component of
short-term rates (iT,t) is

(25) ED
t [iT,t+1] = ρT iT,t +θ · [iT,t− (ρT −κT )∑

∞

j=0 κ
j
T iT,t− j−1],

where θ ≥ 0 and κT ∈ [0,ρT ]. The parameter θ governs the extent to which diagnostic expecta-
tions depart from rationality (θ = 0) and κT governs the persistence of investors’ mistaken beliefs
about short rates.12 When θ > 0 and κT < ρT , equation (25) says that diagnostic investors over-
estimate iT,t+1 when iT,t has recently risen. Thus, extrapolation leads to a model that is similar to
the reduced-form specification for net bond supply in equation (19). We adopt an analogous spec-
ification for diagnostic investors’ expectations of the persistent component of short rates (iP,t), but
assume for simplicity that diagnostic investors form rational forecasts of all other state variables.

The strength of this extrapolation channel is given by f θ—i.e., the mass of diagnostic in-
vestors ( f ) times the extent to which their expectations depart from rationality (θ ). Why might
f θ have risen in recent decades? While many bond investors may have a tendency to extrap-
olate past changes in interest rates, it is natural to think that this tendency is most pronounced
amongst investors in bond mutual funds. Indeed, there is a long literature arguing that mutual fund
investors—who are predominantly households and smaller institutions—tend to be more prone
to common psychological biases than larger institutional investors (Barberis et al., 1998; Dichev,
2007; Frazzini and Lamont, 2008). Furthermore, mutual funds have become more important play-
ers in the U.S. bond market in recent decades. Based on data from Federal Reserve’s Financial
Accounts, mutual funds’ share of Treasury and MBS holdings has gradually risen from 5% in the
early 1990s to nearly 10% today. And, mutual funds have rapidly gained share in the corporate
bond market, rising from a 7% share in early 2009 to over 20% today. Thus, even if individual

12In the limit where κT = 0, ED
t [iT,t+1] = ρT iT,t + θεT,t , so investors’ mistakes (θεT,t ) are serially uncorrelated

over time. In the opposite limit where κT = ρT , ED
t [iT,t+1] = ρT iT,t +θ iT,t , so investors’ mistakes (θ iT,t ) are just as

persistent as iT,t .
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mutual fund investors have not become more extrapolative since 2000 (i.e., if θ has not changed),
this group of extrapolation-prone investors has become more important in the bond market (corre-
sponding to a rise in f ). In this setting, we can demonstrate the following result:

Proposition 3. Investor extrapolation model. For simplicity suppose ρT = ρP and κT = κP.
When f θ > 0, long rates are excessively sensitive to short rates. When f θ > 0 and κT = ρT , this
excess sensitivity is only horizon-dependent—i.e., the regression coefficients β h only decline with
horizon h—when unbiased arbitrage capital is slow moving (q < 1). By contrast, when f θ > 0
and κP < ρT , β h declines with horizon h even if all arbitrage capital is fast-moving (q = 1).

When f θ > 0 and κP < ρP, extrapolation generates transitory rate-amplifying demand shocks,
giving rise to frequency-dependent excess sensitivity even without slow-moving capital. How-
ever, this frequency-dependent excess sensitivity becomes more pronounced when these demand
shocks are met by a gradual arbitrage response from unbiased investors. Thus, we are best able to
quantitatively match the post-2000 behavior of the β h coefficients using calibrations of our extrap-
olation model in which (i) f θ has risen from its pre-2000 level and (ii) arbitrage is gradual. Our
extrapolation model also predicts that: (1) the bond holdings of extrapolative investors, ht , are low
when interest rates have recently risen and (2) the level of extrapolative investors’ bond holdings
negatively predicts excess returns on long bonds.

Evidence from bond mutual fund flows. To assess whether investor extrapolation contributes to
high-frequency excess sensitivity, we obtain monthly data from 1984 to 2019 on the total net
assets of taxable bond mutual funds and the net dollar flows into these funds from the Investment
Company Institute. We then compute the 3-month cumulative percentage flow into bond funds,
%FLOWt−3→t . Using bond fund flows as a proxy for the rate-amplifying demand of extrapolative
investors in our model (ht), we first estimate equation (23) with Xt = %FLOWt−3→t for the pre-
2000 and post-2000 samples. The results are presented in Panel A of Table VI and show that
bond mutual funds tend to suffer investor outflows when short-term interest rates decline. This
result is consistent with the vast literature on return-chasing behavior by mutual fund investors
(Warther, 1995; Sirri and Tufano, 1998). Interesting, this relationship is actually stronger in the
pre-2000 sample than in the post-2000 sample, consistent with other evidence that mutual fund
flows have become less performance sensitive in recent years. However, the importance of mutual
funds within the bond market has increased meaningfully since 2000.

In Panel B, we estimate equation (24) with Xt = %FLOWt−3→t for the pre- and post-2000
samples. As shown in column (5), past mutual fund flows predict low future excess returns on
10-year bonds in the post-2000 data. By contrast, as shown in column (2), there are no such
relationships in the pre-2000 sample. However, when we use both (Lt −Lt−6) and %FLOWt−3→t

to forecast returns in column (6), the coefficients on both variables decline meaningfully relative
to those shown in columns (4) and (5) where they are considered in isolation. As above, this is
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what one would expect if extrapolation plays a role in explaining why long-term yields temporarily
overreact to short rates in the post-2000 data.

V.C. Investors who reach for yield

Investors who “reach for yield” when short rates decline are a final potential source of rate-
amplifying demand. According to the reaching-for-yield channel, negative shocks to short rates
boost the demand for long-term bonds from “yield-seeking investors.” Holding fixed the gross
supply, the net supply of long-term bonds that must be held by fast- and slow-moving arbitrageurs
declines when short rates fall, leading term premia to decline when short rates fall.

Modeling the mechanism. We assume that fraction f of bond investors are “yield-seeking” and
have non-standard preferences as in Hanson and Stein (2015). The idea is that, for either behavioral
or institutional reasons, these investors only care about the current yield on their portfolios instead
of their expected portfolio returns. Yield-seeking investors’ demand for long-term bonds is:

(26) ht = τ
yt− ii

Vart [rxt+1]
.

Since Et [rxt+1] = (yt− ii)− (φ/(1−φ)) ·Et [yt+1− yt ], equation (26) means that yield-seeking
investors neglect any expected capital gains or losses from holding long-term bonds. And, because
expectations-hypothesis logic implies that long-term yields are expected to rise when short rates are
low, this implies that these investors have an elevated demand for long bonds when short rates are
low. As above, the gross supply of long-term bonds is constant. A mass (1− f ) of a bond investors
are expected-return-oriented and have standard mean-variance preferences. Of these, fraction q are
fast-moving with demands given by (13) and fraction (1−q) are slow-moving with demands given
by (14). And, prior research suggests the reaching-for-yield channel may have grown stronger—
corresponding to a rise in f —in recent years as interest rates have reached historically low levels.13

Using this model, we can then show:

Proposition 4. Investor reaching for yield model. Suppose ρT = ρP. When f > 0, long rates
are excessively sensitive to short rates. However, this excess sensitivity is only horizon-dependent
when arbitrage capital is slow moving (q < 1).

Our model of reaching-for-yield also predicts that: (1) the bond holdings of yield-seeking investors,
ht , are low when interest rates are high and (2) the level of yield-seeking investors’ bond holdings
negatively predicts future excess returns on long-term bonds.

13Lian et al. (2017) provide experimental evidence that the tendency to take on greater risk when short rates decline
becomes more pronounced when the level of short rates is already low. Building on Prospect Theory (Kahneman and
Tversky, 1979), they argue that this yield-seeking behavior becomes more pronounced as rates fall further below some
reference level that investors are accustomed to based on past experience.
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Since these rate-amplifying shifts in demand are tied to the level of short rates as opposed
to recent changes in short rates, reaching for yield generates persistent shifts in demand. Thus,
while reaching-for-yield can generate excess sensitivity, in the absence of gradual arbitrage, this
excess sensitivity is not horizon-dependent. And, while the combination of reaching-for-yield and
gradual arbitrage generates horizon-dependent sensitivity, our calibrations of this model struggle to
quantitatively match the profile of β h seen in the post-2000 data. Thus, it is not clear that reaching-
for-yield can explain why excess sensitivity has become so pronounced at high frequencies. Going
further, reaching-for-yield itself may be a slow-moving phenomenon: investors may only gradually
take on greater risk following a decline in short rates. If true, this would further weaken the ability
of reaching-for-yield to explain why the excess sensitivity of long rates has become so horizon-
dependent.

Evidence from sectoral bond market flows. We use quarterly data from the Federal Reserve’s Fi-
nancial Accounts on the aggregate net bond acquisitions by insurers, pension funds, and banks to
construct proxies for the bond demand of yield-seeking investors, ht . We focus on these interme-
diaries since prior research argues that they are likely to be concerned about the current yield on
their portfolios and, thus, to reach for yield when interest rates fall.14 For intermediaries in sector i,
we compute bond flows in quarter t as %FLOWi,t = FLOWi,t/HOLDi,t−1, where FLOWi,t denotes
net bond acquisitions in quarter t and HOLDi,t−1 is prior bond holdings. Bonds include the sum
of U.S. Treasuries, agency debt and GSE-guaranteed mortgage-backed securities, and corporate
bonds.

In the Internet Appendix, we estimate quarterly regressions that are analogous to equations (23)
and (24) using these bond flows %FLOWi,t as Xt . In the post-2000 data, we find little evidence that
increases in short rates lead to reductions in bond purchases by insurers, pensions, and banks.
Furthermore, bond purchases by these intermediaries do not predict low excess returns on long-
term bonds.

In summary, we find evidence that mortgage refinancing and investor extrapolation both help
explain why long yields rates have temporarily overreacted to short rates since 2000. However, we
find little evidence that reaching-for-yield plays a major role in driving the temporary overreaction
of long rates.15

14Insurers and banks are generally not required to include any changes in mark-to-market value in their reported
earnings, potentially leading to yield-seeking behavior. For prior work on reaching-for-yield by insurers, see Becker
and Ivashina (2015). For banks, see Maddaloni and Peydró (2011) and Hanson and Stein (2015). For pensions, see Lu
et al. (2019).

15This need not imply that reaching-for-yield plays an unimportant role in determining financial risk premia more
generally.
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VI. IMPLICATIONS

VI.A. High-frequency identification

Our findings have clear implications for identification approaches based on the high-frequency
responses of long-term yields to macroeconomic news and policy announcements. Papers in the
vast event-study literature often implicitly assume that one can directly infer the expected long-
run effects of news shocks on future fundamentals by looking at the high-frequency reactions of
long-term asset prices (MacKinlay, 1997). And, several recent papers—e.g., Hördahl et al. (2015)
and Nakamura and Steinsson (2018)—have made this assumption more explicitly. Intuitively,
if changes in long rates in a tight window around a macro announcement are governed by the
expectations hypothesis—e.g., because bond risk premia only vary at lower frequencies, then the
high-frequency reaction of long rates directly reveals the expected long-run effect of the news
shock on future short rates. For instance, if the 10-year forward rate fell by 20 basis points in a
short window around an FOMC announcement, one would infer that this led expected short rates
in 10 years to drop by 20 basis points.

Our evidence casts serious doubt on this assumption. If, as we argue, a large portion of the
impact of news shock on long rates reflects rapidly-reverting shifts in term premia, then the short-
run impact of news shocks on long rates will differ meaningfully from their expected long-run
impact on future short rates. As a result, the high-frequency responses of long rates are likely to
provide a highly biased estimate of the longer-run impact of announcements. Fortunately, it is
relatively straightforward to eliminate this bias: one needs to use an methodology that does not
assume that we can directly infer the expected long-run effects of news shocks simply by looking
the high-frequency reactions of long-term asset prices.16 Of course, these unbiased approaches
lead to far less precise estimates, so economists face a steep bias-variance trade-off. The short-run
market impact of news on long rates can be estimated very precisely, but these are likely to be
biased estimates of the longer-run impact that is typically of greatest interest.

Still, it is possible that changes in 1-year yields that coincide with macro announcements are
different, and do not trigger movements in term premia, as argued by Hördahl et al. (2015) and
Nakamura and Steinsson (2018). To provide some direct evidence, we form an macro news index
for month t, Newst , by cumulating daily changes in 1-year yields within month t on days with im-
portant announcements. Our data on announcement timing is from Money Market Services/Action
Economics and begins in 1980. The announcements we consider are: FOMC announcements, the

16For instance, one could estimate the long-run effects of a shock using a Structural VAR in which high-frequency
asset prices movements are used as external instruments for monetary policy or other shocks. And, then IV-estimates
of the SVAR would be used to trade out the long-run dynamic effects of the shock—see, e.g., Gertler and Karadi
(2015) and Eberly et al. (2020). Similarly, one could estimate the long-run effects of news shocks using Jorda (2005)
style “local projections” in which one regresses outcomes at future horizons on high-frequency market reactions to
news.
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employment situation report, retail sales, durable goods orders, new and existing home sales, hous-
ing starts, CPI, and PPI. We then estimate the following predictive regression for the subsequent
change in 10-year forward rates:

(27) f (10)
t+h − f (10)

t = δ 0 +δ 1Lt +δ 2St +δ 3(Lt−Lt−1)+δ 4(St−St−1)+λ ·Newst + ε t+h,

where Lt and St denote the level and slope of the yield curve at the end of month t. Thus, equation
(27) adds Newst to the Jorda (2005) projections we previously estimated in equation (5). Table VII
shows the results for both pre- and post-2000 samples and for h = 3-, 6-, 9-, and 12- month future
changes.

In Panel A, we omit Newst , so the estimates are the same as those in Table III. As previously
shown, past increases in short-term rates are associated with predictable future declines in long-
term forward rates in the post-2000 data, but there is no such tendency in the pre-2000 data. In
Panel B, we add Newst , but omit the prior changes in level and slope. We see that positive values
of the news index predict subsequent declines in long-term forwards in the post-2000 data. Indeed,
the coefficients on Newst in Panel B are similar to those on Lt−Lt−1 in Panel A.

In Panel C, we include Newst as well as the prior changes in level and slope. The goal is to see
if shifts in short rates on announcement and non-announcement days have different implications.
Once we control for the total change in short rates in month t, Lt−Lt−1, we find that the coefficient
on Newst is small and insignificant, indicating that the response of long-term forwards rates on
announcement days is just as likely to reverse as the response on non-announcement days.

In Panel D, we break Newst into two pieces—one reflecting changes in short rates on FOMC
announcement days and one for all other announcements—to see if FOMC announcements differ
from other macro announcements. We exclude the 1980-81 monetary targeting regime and thus
FOMC announcement dates begin in 1982. As in Panel C, we include Lt −Lt−1 as an indepen-
dent variable. If anything, Panel D suggests that, since 2000, changes in short rates on FOMC
announcement days are more likely to be followed by reversals in long-term forward rates than
changes on non-announcement days.

VI.B. Monetary policy transmission

Our results also have important implications for the transmission of monetary policy. Central
banks conduct conventional monetary policy by adjusting short-term nominal rates. According to
the standard New Keynesian view (Gali, 2008), changes in nominal short rates affect real short
rates because of nominal rigidities. And, the resulting shifts in real short rates affects long-term
real rates via the expectations hypothesis, which then influence household consumption and firm
investment. Stein (2013) points out that the excess sensitivity of long-term yields—whereby shocks
to short rates move term premia in the same direction—should strengthen the effects of monetary
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policy relative to the canonical view. Stein (2013) refers to this as the “recruitment” channel of
monetary transmission.

In our framework from Section IV., the strength of this recruitment channel at business-cycle
frequencies (e.g., over a 1 to 3-year horizon) depends on (i) the strength of the demand-based
amplification mechanisms (i.e., the size of C) and (ii) the persistence of the associated demand
shocks. When ρs is well below ρT as under the mortgage refinancing interpretation of C, the
associated shifts in term premia would be quite transient and would likely have only modest effects
on investment and consumption at medium-run frequencies. (A caveat here is that reductions
in short rates that trigger mortgage refinancing waves may only temporarily lower term premia,
but the effect of refinancing waves on distribution of household disposable income, and hence
consumption, may persist long after term premia have reverted in heterogeneous agent settings.17)
By contrast, when ρs ≈ ρT as under the reaching-for-yield interpretation, the shifts in term premia
would be more persistent and have larger effects on aggregate demand.

Our results indicate that a significant part of the influence of short rates on term premia is quite
transitory, suggesting that recruitment channel may be smaller than one would conclude based on
a simple extrapolation of the high-frequency response of term premia to policy shocks documented
by Hanson and Stein (2015), Gertler and Karadi (2015), and Gilchrist et al. (2015). More generally,
our findings suggest that central banks should heed the way that monetary policy impacts financial
conditions at business-cycle frequencies, but should focus less on the immediate market response
to their announcements since much of the latter may be quite transitory. In this way, our findings
lend support to the argument in Stein and Sunderam (2018) that the Fed has become too focused
on high-frequency asset price movements.

VI.C. Bond market “conundrums”

Our findings help explain the rising prevalence of episodes like the one Greenspan (2005) famously
called the “conundrum”—the period after June 2004 when short rates rose and long rates fell. Con-
sistent with the weaker low-frequency sensitivity of long rates, “conundrum” episodes—defined
as 6-month periods where short and long rates move in opposite directions—have grown increas-
ingly common. Since 2000, 1- and 10-year yields have moved in the opposite direction in 37%
of all 6-month periods. By contrast, from 1971 to 1999, this figure was 18%, and the difference
is significant (p-val < 0.001). In the Internet Appendix, we show that the non-Markovian dynam-
ics documented in Section III. help explain several noteworthy “conundrums” episodes, including
Greenspan’s 2004 “conundrum,” 2008, and 2017. In each case, 1-year and 10-year yields moved
in opposite directions, but, if the slope of the yield curve had not responded to past changes short

17To the extent that mortgage refinancing plays an important role in U.S. monetary policy transmission as in recent
heterogeneous agent models (Beraja et al., 2018; Berger et al., 2018; Wong, 2019), then even short-lived excess
sensitivity may make monetary policy more potent than in a world where long rates are not excessively sensitive.
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rates, 10- and 1-year yields would have moved in the same direction.

VI.D. Affine term structure models

Finally, we explore the implications for affine term structure models which are a widely-used,
reduced-form tools for understanding the term structure of bond yields (Duffie and Kan, 1996;
Duffee, 2002). In these models, the n-year zero coupon yield is y(n)t = α0(n)+α ′1(n)xt , where xt is
a vector of state variables and the α0(n) and α1(n) coefficients satisfy a set of recursive equations. In
the Internet Appendix, we fit affine term structure models using the first K principal components
of 1- to 10-year yields as the state variables xt . We show that standard affine models—models
that are Markovian with respect to these current yield-curve factors—cannot fit the fact that β h

declines so strongly with horizon h in the post-2000 data. This remains so even if we estimate
models that include many (e.g., K = 5) yield-curve factors as state variables. However, we show
that our key finding is consistent with non-Markovian term structure models in which past lags of
the yield-curve factors are treated as “unspanned state variables.”18

VII. CONCLUSION

The strong sensitivity of long-term interest rates to changes in short rates is a long-standing puzzle.
We have shown that since 2000 this sensitivity has become even stronger at high frequencies, but
has weakened significantly at low-frequencies. As a result, in the post-2000 data, the sensitivity of
long rates to changes in short rates declines steeply with the horizon over which these changes are
computed.

Before 2000, long rates were quite sensitive to short rates because inflation expectations were
relatively unanchored, making short rates highly persistent. Since 2000, the sensitivity of long rates
has become horizon-dependent and arises because past increases in short rates temporarily raise
the term premium, leading long rates to temporarily overreact to changes in short rates. Consistent
with this view, we show that, controlling for current yields, past changes in short rates predict
future yield-curve flattening, declines in long-term yields and forwards, and high excess returns on
long-term bonds after 2000.

We proposed a model that can explain this puzzling post-2000 pattern. The tendency of long
rates to temporarily overreact to changes in short rates is due to the combination of (i) rate-
amplifying shifts in the demand for long-term bonds and (ii) a limited and slow arbitrage re-
sponse to these demand shifts. We presented evidence that two specific rate-amplifying demand
mechanisms—mortgage refinancing waves and extrapolation of past changes in short rates—each

18An unspanned state variable is a variable that is useful for forecasting future bond yields and returns but that has
no impact on the current yield curve (Duffee, 2002). To be clear, we do not argue that the past increase in the level
of rates is literally unspanned. Instead, as discussed in the Internet Appendix, we think this variable is close to being
unspanned.
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help explain this post-2000 pattern.
Our findings have important implications for the recruitment channel of monetary policy trans-

mission (Stein, 2013). In recent years this channel appears far more short-lived than one might
conclude from high-frequency evidence alone: Part of the high-frequency response of long rates to
shocks to short rates represents transitory term premium movements. Lastly, it is important to re-
member that event-study approaches only measure high-frequency responses of long-term rates to
news; the impact may be more muted at the lower frequencies that are typically of greatest interest
to economists and policymakers.
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TABLE I
Regressions of changes in long-term rates on short-term

PANEL A. 10-year zero coupon yields and IC
(1) (2) (3) (4)

Nominal Nominal Real IC

Daily 0.56∗∗∗ 0.87∗∗∗ 0.54∗∗∗ 0.33∗∗∗

[0.02] [0.03] [0.03] [0.02]
Monthly 0.46∗∗∗ 0.66∗∗∗ 0.38∗∗∗ 0.26∗∗∗

[0.04] [0.11] [0.09] [0.09]
Quarterly 0.48∗∗∗ 0.44∗∗∗ 0.22∗∗ 0.22∗

[0.04] [0.07] [0.10] [0.12]
Semi-annual 0.50∗∗∗ 0.34∗∗∗ 0.21∗∗ 0.13

[0.04] [0.07] [0.08] [0.09]
Yearly 0.56∗∗∗ 0.23∗∗∗ 0.15∗∗ 0.08

[0.05] [0.05] [0.06] [0.05]

Sample 1971-1999 2000-2019 2000-2019 2000-2019

PANEL B. 10-year instantaneous forward yields and IC
(1) (2) (3) (4)

Nominal Nominal Real IC

Daily 0.39∗∗∗ 0.49∗∗∗ 0.31∗∗∗ 0.17∗∗∗

[0.03] [0.04] [0.03] [0.03]
Monthly 0.29∗∗∗ 0.26∗ 0.18∗∗ 0.06

[0.04] [0.14] [0.08] [0.09]
Quarterly 0.31∗∗∗ 0.06 0.09∗ -0.03

[0.05] [0.09] [0.05] [0.05]
Semi-annual 0.33∗∗∗ -0.02 0.04 -0.06

[0.06] [0.08] [0.04] [0.05]
Yearly 0.39∗∗∗ -0.13∗∗ -0.02 -0.11∗∗

[0.07] [0.06] [0.04] [0.04]

Sample 1971-1999 2000-2019 2000-2018 2000-2019

Notes: This table reports the estimated regression coefficients from equations (1) and (2) for each reported sample.
The dependent variable is the change in the 10-year U.S. Treasury zero-coupon yield or forward rate, either nominal,
real or their difference (IC, or inflation compensation). The independent variable is the change in the 1-year nominal
U.S. Treasury zero-coupon yield in all cases. Changes are considered with daily data, and with monthly data using
monthly (h = 1), quarterly (h = 3), semi-annual (h = 6) and annual (h = 12) horizons. In the 1971-1999 monthly
sample, time t runs from Aug-1971 to Dec-1999 and the number of monthly observations is 341 irrespective of h. In
the 2000-2019 monthly sample, t runs from Jan-2000 to Dec-2019, so the number of monthly observations runs 239
from for h = 1 to 228 for h = 12. For h > 1, we report Newey-West (1987) standard errors are in brackets, using a
lag truncation parameter of d1.5×he; for h = 1, we report heteroskedasticity robust standard errors. Significance:
∗p < 0.1, ∗∗ p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer and Vogelsang
(2005) which has better finite sample properties than traditional asymptotic theory.
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TABLE II
Estimates of predictive equations for level and slope

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Dependent Variable: Level
Lt 0.98∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 0.98∗∗∗

[0.02] [0.02] [0.02] [0.01] [0.01] [0.01]
St 0.00 -0.01 -0.02 -0.02∗ -0.01 -0.00

[0.04] [0.04] [0.04] [0.01] [0.01] [0.01]
Lt−Lt−6 -0.01 0.05 0.08∗∗∗ 0.06∗∗

[0.04] [0.05] [0.03] [0.03]
St−St−6 0.13∗ -0.03∗

[0.07] [0.02]

Dependent Variable: Slope
Lt 0.01 0.01 0.01 0.00 -0.01 -0.01

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
St 0.96∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 0.96∗∗∗ 0.96∗∗∗

[0.03] [0.02] [0.03] [0.02] [0.02] [0.02]
Lt−Lt−6 0.00 -0.03 -0.11∗∗∗ -0.12∗∗∗

[0.02] [0.03] [0.02] [0.03]
St−St−6 -0.08 -0.02

[0.05] [0.03]

N 341 335 335 239 239 239
Implied β 1 0.46 0.46 0.46 0.66 0.71 0.71
Implied β 12 0.52 0.51 0.58 0.59 0.38 0.30
AIC -5720.3 -5607.9 -5608.7 -4529.0 -4567.0 -4565.6
BIC -5697.3 -5577.4 -5570.5 -4508.1 -4539.2 -4530.8
Sample 1971-1999 1972-1999 1972-1999 2000-2019 2000-2019 2000-2019

Notes: This table reports the estimated regression coefficients from monthly predictive equations (3a) and (3b) for
the Aug-1971 to Dec-1999 and Jan-2000 to Dec-2019 samples. Dependent variables are the level (Lt ≡ y(1)t ) and
slope (St ≡ y(10)

t − y(1)t ) of the U.S. Treasury zero-coupon yield curve. Heteroskedasticity robust standard errors are
in brackets. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. The table also shows AIC and BIC values (to be
minimized) for each possible specification of the system of two equations. Lastly, the implied β 1 and β 12 coefficients
from equation (4) for each possible specification of the system are reported.
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TABLE III
Predictable yield-curve dynamics following an impulse to short-term interest rates

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Dep. var with h 3 6 9 12 3 6 9 12

Dependent variable: y(10)
t+h − y(10)

t

Lt−Lt−1 -0.03 0.10 0.04 0.23∗ -0.11 -0.36∗ -0.41∗ -0.20
[0.12] [0.13] [0.11] [0.12] [0.13] [0.19] [0.20] [0.20]

St−St−1 0.03 0.30 0.34 0.55∗∗ -0.09 -0.16 -0.11 -0.16
[0.18] [0.19] [0.20] [0.26] [0.15] [0.17] [0.15] [0.20]

Lt -0.06∗ -0.11∗ -0.17∗ -0.23∗∗ -0.07∗∗ -0.14∗∗∗ -0.19∗∗∗ -0.23∗∗∗

[0.03] [0.06] [0.08] [0.10] [0.03] [0.05] [0.06] [0.07]
St -0.13∗ -0.27∗∗ -0.45∗∗∗ -0.62∗∗∗ -0.10∗∗ -0.20∗∗ -0.28∗∗ -0.35∗∗

[0.07] [0.11] [0.16] [0.19] [0.05] [0.09] [0.11] [0.12]

Adj.R2 0.03 0.08 0.14 0.20 0.05 0.11 0.16 0.20

Dependent variable: f (10)
t+h − f (10)

t

Lt−Lt−1 -0.08 0.09 -0.05 0.12 -0.30∗∗∗ -0.52∗∗∗ -0.71∗∗∗ -0.74∗∗∗

[0.12] [0.11] [0.10] [0.12] [0.11] [0.17] [0.14] [0.15]
St−St−1 0.01 0.18 0.16 0.34 -0.14 -0.11 -0.02 -0.17

[0.18] [0.19] [0.20] [0.22] [0.16] [0.20] [0.19] [0.21]
Lt -0.04 -0.09 -0.14∗ -0.19∗∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.05] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.16∗∗ -0.31∗∗∗ -0.48∗∗∗ -0.66∗∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.06] [0.11] [0.15] [0.19] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.04 0.10 0.17 0.24 0.04 0.09 0.17 0.23

Dependent variable: Lt+h−Lt

Lt−Lt−1 0.07 0.26 0.18 0.60∗∗∗ 0.66∗∗∗ 0.86∗∗ 1.33∗∗ 1.70∗∗∗

[0.24] [0.21] [0.20] [0.19] [0.17] [0.38] [0.53] [0.59]
St−St−1 0.13 0.64∗∗ 0.57∗ 1.07∗∗ -0.23∗∗ -0.38∗ -0.59∗ -0.58

[0.30] [0.30] [0.31] [0.49] [0.11] [0.21] [0.29] [0.39]
Lt -0.09∗ -0.18∗∗ -0.26∗∗ -0.36∗∗∗ -0.08∗∗ -0.19∗∗ -0.28∗∗∗ -0.38∗∗

[0.05] [0.08] [0.11] [0.12] [0.03] [0.07] [0.11] [0.15]
St -0.00 -0.09 -0.24 -0.33 -0.03 -0.07 -0.04 -0.01

[0.11] [0.15] [0.20] [0.25] [0.04] [0.09] [0.15] [0.21]

Adj.R2 0.03 0.08 0.12 0.17 0.20 0.26 0.36 0.42

Dependent variable: St+h−St

Lt−Lt−1 -0.10 -0.16 -0.14 -0.37∗∗∗ -0.77∗∗∗ -1.23∗∗∗ -1.74∗∗∗ -1.90∗∗∗

[0.16] [0.12] [0.12] [0.11] [0.16] [0.33] [0.39] [0.51]
St−St−1 -0.10 -0.34∗ -0.23 -0.51 0.14 0.22 0.48∗ 0.43

[0.17] [0.18] [0.16] [0.30] [0.12] [0.22] [0.27] [0.32]
Lt 0.03 0.07∗ 0.10∗∗ 0.13∗∗∗ 0.01 0.05 0.09 0.15

[0.03] [0.03] [0.04] [0.04] [0.03] [0.07] [0.10] [0.14]
St -0.12∗ -0.18∗ -0.21∗ -0.29∗∗ -0.07∗ -0.13 -0.24 -0.34

[0.07] [0.10] [0.11] [0.13] [0.04] [0.09] [0.13] [0.20]

Adj.R2 0.08 0.16 0.20 0.28 0.16 0.24 0.37 0.43
N 340 340 340 340 237 234 231 228
Sample 1971-1999 1971-1999 1971-1999 1971-1999 2000-2019 2000-2019 2000-2019 2000-2019

Notes: This table reports the estimated regression coefficients in equation (5) for the Aug-1971 to Dec-
1999 and Jan-2000 to Dec-2019 samples. For h = 3, 6, 9, and,12-months changes, we show results for
10-year yields (zt = y(10)

t ), 10-year forward rates (zt = f (10)
t ), level (zt = Lt ), and slope (zt = St ). We

report Newey-West standard errors in brackets using a lag truncation parameter of d1.5×he. Significance:
∗p < 0.1, ∗∗ p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer and
Vogelsang (2005) which has better finite sample properties than traditional asymptotic theory.
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TABLE IV
Estimates of predictive equations for bond excess returns

(1) (2) (3) (4) (5) (6) (7) (8) (9)

rx(10)
t→t+k for k = 1 1 1 3 3 3 6 6 6

Panel A: Pre-2000

Lt 0.17 0.18 0.22∗ 0.53∗ 0.54 0.65∗ 0.99∗ 1.01 1.25∗∗

[0.13] [0.13] [0.12] [0.31] [0.33] [0.34] [0.57] [0.62] [0.60]
St 0.55∗∗ 0.61∗∗ 0.66∗∗∗ 1.57∗∗ 1.91∗∗∗ 2.07∗∗∗ 3.17∗∗∗ 3.62∗∗∗ 3.98∗∗∗

[0.24] [0.24] [0.24] [0.64] [0.65] [0.64] [1.04] [1.13] [1.09]
Lt−Lt−6 0.10 -0.18 0.59 -0.22 0.79 -1.00

[0.19] [0.29] [0.49] [0.54] [0.69] [0.90]
St−St−6 -0.57 -1.67∗∗ -3.67∗∗∗

[0.44] [0.81] [1.30]

Adj.R2 0.02 0.01 0.02 0.05 0.06 0.07 0.11 0.12 0.17
N 341 335 335 341 335 335 341 335 335
Sample 1971-1999 1972-1999 1972-1999 1971-1999 1972-1999 1972-1999 1971-1999 1972-1999 1972-1999

Panel B: Post-2000

Lt 0.30∗∗∗ 0.32∗∗∗ 0.28∗∗ 0.73∗∗∗ 0.81∗∗∗ 0.71∗∗ 1.37∗∗∗ 1.50∗∗∗ 1.34∗∗

[0.11] [0.11] [0.11] [0.27] [0.28] [0.30] [0.44] [0.47] [0.51]
St 0.56∗∗∗ 0.63∗∗∗ 0.53∗∗ 1.41∗∗∗ 1.65∗∗∗ 1.42∗∗ 2.71∗∗∗ 3.07∗∗∗ 2.73∗∗∗

[0.21] [0.20] [0.21] [0.48] [0.52] [0.58] [0.83] [0.93] [0.95]
Lt−Lt−6 0.33 0.62∗ 0.98∗∗ 1.66∗∗∗ 1.33∗ 2.39∗∗

[0.24] [0.33] [0.46] [0.61] [0.73] [1.07]
St−St−6 0.48 1.12 1.76

[0.35] [0.72] [1.22]

Adj.R2 0.03 0.03 0.03 0.08 0.10 0.12 0.16 0.18 0.20
N 239 239 239 237 237 237 234 234 234
Sample 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019

Notes: This table reports the estimated regression coefficients in equation (7) using monthly data from the Aug-1971
to Dec-1999 and Jan-2000 to Dec-2019 samples. We report results various return forecast horizon (k). The yield on
k-month Treasury bills, y(k/12)

t , is from the yield curve estimates in Gürkaynak et al. (2007). However, this curve
is based on coupon securities with at least three months to maturity and does not fit the very short end of the curve
well in the pre-2000 data. Therefore, we take the 1-month bill yield from Ken French’s website for the pre-2000
sample. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. For k = 1-month returns, we report heteroskedasticity robust
standard errors are in brackets. For k = 3 and 6-month returns, we report Newey and West (1987) standard errors
in brackets, using a lag truncation parameter of 5 and 9 months, respectively. In this case, p-values are computed
using the asymptotic theory of Kiefer and Vogelsang (2005) which has better finite sample properties than traditional
asymptotic theory.
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TABLE VI
The role of investor over-extrapolation: Evidence from bond mutual fund flows

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Dependent Variable: FLOWt−3→t

Lt 1.96∗∗ 2.15∗∗∗ 2.24∗∗∗ 0.06 0.01 0.04
[0.89] [0.67] [0.69] [0.23] [0.20] [0.23]

St 4.08∗∗ 3.24∗∗ 3.92∗∗ 0.60 0.44 0.51
[1.64] [1.27] [1.45] [0.37] [0.36] [0.39]

Lt−Lt−6 -4.00∗∗∗ -5.29∗∗∗ -0.77∗∗ -1.00∗∗

[1.04] [1.29] [0.32] [0.46]
St−St−6 -4.31∗∗ -0.38

[2.15] [0.45]

Adj.R2 0.24 0.43 0.50 0.09 0.16 0.16
N 189 189 189 240 240 240

Dependent Variable: rx(10)
t→t+3

Lt 1.27∗∗∗ 1.13∗∗∗ 1.04∗∗∗ 0.71∗∗ 0.76∗∗∗ 0.72∗∗

[0.30] [0.29] [0.35] [0.30] [0.27] [0.31]
St 1.88∗∗∗ 1.37∗∗ 1.47∗ 1.42∗∗ 1.63∗∗∗ 1.55∗∗

[0.66] [0.64] [0.74] [0.58] [0.50] [0.60]
Lt−Lt−6 -0.01 0.54 1.66∗∗∗ 1.42∗∗

[0.61] [0.89] [0.61] [0.64]
St−St−6 -1.01 -0.56 1.12 1.02

[0.88] [0.98] [0.72] [0.73]
FLOWt−3→t 0.07 0.10 -0.34∗∗ -0.24

[0.08] [0.11] [0.14] [0.15]

Adj.R2 0.16 0.17 0.17 0.12 0.10 0.12
N 189 189 189 237 237 237
Sample 1984-1999 1984-1999 1984-1999 2000-2019 2000-2019 2000-2019

Notes: Data on flows into taxable bond mutual funds is from the Investment Company Institute. Letting %FLOWt =

FLOWt/T NAt−1 denote the percentage flow in month t, the 3-month cumulative percentage flow is %FLOWt−3→t =

(1 + %FLOWt)(1 + %FLOWt−1)(1 + %FLOWt−2)− 1. Panels A reports the estimated regression coefficients for
equation (23) using Xt = %∆FLOWt−3→t . Panels B and C report the estimated regression coefficients when we use
Xt = %∆FLOWt−3→t in equation (24) to forecast 3-month returns. We estimate these regressions using monthly data
for the Apr1984 to Dec-1999 and Jan-2000 to Dec-2019 subsamples. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
We report Newey and West (1987) standard errors in brackets, using a lag truncation parameter of 9 months in Panel
A and 5 months in Panel B. p-values are computed using the asymptotic theory of Kiefer and Vogelsang (2005) which
has better finite sample properties than traditional asymptotic theory.
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TABLE VII
Economic news and subsequent changes in forward rates

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6) (7) (8)

f (10)
t+h − f (10)

t with h 3 6 9 12 3 6 9 12

Panel A

Lt−Lt−1 -0.09 0.11 -0.04 0.12 -0.30∗∗∗ -0.52∗∗∗ -0.71∗∗∗ -0.74∗∗∗

[0.12] [0.12] [0.12] [0.13] [0.11] [0.17] [0.16] [0.15]
St−St−1 0.03 0.29 0.19 0.35 -0.14 -0.11 -0.02 -0.17

[0.19] [0.20] [0.22] [0.24] [0.16] [0.20] [0.20] [0.21]
Lt -0.04 -0.08 -0.13 -0.18∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.11 -0.24∗ -0.37∗∗ -0.52∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.07] [0.13] [0.17] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.02 0.05 0.09 0.14 0.04 0.09 0.17 0.23

Panel B

Newst -0.29 -0.12 -0.80∗∗∗ -0.46 -0.45∗∗ -0.63∗ -0.82∗∗∗ -0.67∗∗

[0.21] [0.30] [0.24] [0.26] [0.18] [0.34] [0.27] [0.30]
Lt -0.04 -0.08 -0.12 -0.17∗ -0.04 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.10 -0.23∗ -0.37∗ -0.52∗∗ -0.10∗∗ -0.18∗∗ -0.26∗∗ -0.35∗∗

[0.07] [0.12] [0.17] [0.20] [0.04] [0.08] [0.11] [0.13]

Adj.R2 0.02 0.05 0.11 0.14 0.04 0.08 0.15 0.21

Panel C

Newst -0.11 -0.11 -0.99∗∗ -0.72∗∗ -0.28 -0.05 0.15 0.38
[0.34] [0.35] [0.42] [0.29] [0.29] [0.47] [0.36] [0.29]

Lt−Lt−1 -0.06 0.14 0.19 0.29 -0.19 -0.50∗ -0.77∗∗∗ -0.89∗∗∗

[0.16] [0.15] [0.16] [0.17] [0.17] [0.24] [0.22] [0.18]
St−St−1 0.03 0.29 0.23 0.38 -0.15 -0.11 -0.02 -0.15

[0.19] [0.20] [0.20] [0.23] [0.16] [0.20] [0.18] [0.21]
Lt -0.04 -0.08 -0.12 -0.17∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.11 -0.24∗ -0.37∗ -0.52∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.07] [0.13] [0.17] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.01 0.05 0.10 0.14 0.04 0.08 0.16 0.23
N 240 240 240 240 237 234 231 228
Sample 1980-1999 1980-1999 1980-1999 1980-1999 2000-2019 2000-2019 2000-2019 2000-2019

Panel D

Newst,FOMC 0.11 -0.01 -1.89 -0.44 -0.99∗∗ -0.74∗ -1.18 0.09
[0.77] [1.04] [1.56] [1.56] [0.46] [0.39] [0.75] [0.56]

Newst,Other -0.25 -0.17 -0.45 -0.32 -0.02 0.21 0.65 0.49
[0.33] [0.45] [0.48] [0.43] [0.29] [0.57] [0.41] [0.41]

Lt−Lt−1 0.09 0.03 0.03 -0.00 -0.20 -0.51∗∗ -0.79∗∗∗ -0.89∗∗∗

[0.18] [0.21] [0.24] [0.27] [0.16] [0.24] [0.20] [0.18]
St−St−1 0.20 0.30 0.33 0.55∗∗ -0.17 -0.13 -0.05 -0.16

[0.24] [0.27] [0.23] [0.25] [0.16] [0.20] [0.18] [0.21]
Lt -0.07∗ -0.13∗ -0.18∗ -0.20∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.09] [0.10] [0.03] [0.05] [0.06] [0.07]
St -0.07 -0.17 -0.28 -0.42∗ -0.10∗∗ -0.18∗ -0.28∗∗ -0.36∗∗

[0.07] [0.14] [0.19] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.03 0.08 0.14 0.16 0.05 0.09 0.18 0.23
N 216 216 216 216 237 234 231 228
Sample 1982-1999 1982-1999 1982-1999 1982-1999 2000-2019 2000-2019 2000-2019 2000-2019

Notes: This table reports the regression coefficents in equation (27) using monthly data from the Aug1971 to Dec-
1999 and Jan-2000 to Dec2019 samples. Newey-West (1987) standard errors are in brackets, using a lag truncation
parameter of d1.5×he. Significance: ∗p< 0.1, ∗∗p< 0.05, ∗∗∗p< 0.01. Significance is computed using the asymptotic
theory of Kiefer and Vogelsang (2005) which has better finite sample properties than traditional asymptotic theory.
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FIGURE I
Regressions of changes in long-term yields on short-term rates

This figure plots the estimated regression coefficients β h from equation (1) versus hori-
zon (h) for the pre-2000 and post-2000 sample: y(10)

t+h − y(10)
t = αh + β h(y

(1)
t+h− y(1)t )+

ε t,t+h. The dependent variable is the h-month change in the 10-year nominal zero-coupon
U.S. Treasury yield and the independent variable is the h-month change in the 1-year
nominal zero-coupon U.S. Treasury yield. Changes are considered with daily data (plot-
ted as h = 0 in the figure) and with monthly data using h = 1, ..., 12-month changes.
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FIGURE II
Rolling regression estimates of equations (1) and (2)

This figure plots rolling estimates of the slope coefficients in equations (1) and (2) with
h = 12-month changes using 10-year rolling windows for estimation. Results are plot-
ted against the midpoint of the 10-year rolling window. 95% confidence intervals are
included (shaded areas), formed using Newey-West standard errors with a lag truncation
parameter of 18 and 95% critical values from the asymptotic theory of Kiefer and Vo-
gelsang (2005). Specifically, the 95% confidence interval is ±2.41 times the estimated
standard errors as opposed to ±1.96 under traditional asymptotic theory.
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FIGURE III
Break tests for equations (1) and (2)

This figure plots the Wald test statistic for each possible break date in equations (1) and
(2) with h = 12-month changes from a fraction 15% of the way through the sample to
85% of the way through the sample. The horizontal red dashed lines denote 10%, 5%,
and 1% critical values for the maximum of these Wald statistics as in Andrews (1993).
Our Wald tests use a Newey and West (1987) variance matrix with a lag truncation pa-
rameter of 18. To address the tendency for tests based on the Newey-West variance
estimator to over-reject in finite samples, we use the Cho and Vogelsang (2017) critical
values for a null of no structural break. The Cho and Vogelsang (2017) critical values are
based on the asymptotic theory of Kiefer and Vogelsang (2005) and are slightly larger
than the traditional critical values from Andrews (1993).
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FIGURE IV
Predictable yield-curve dynamics following an impulse to short-term interest rates

The figures plot the coefficients δ
(h)
3 versus horizon h from estimating equations (5) for various horizons

h = 1...,12-months in the pre-2000 and post-2000 samples. We show results for 10-year yields (zt = y(10)
t ),

10-year forward rates (zt = f (10)
t ), level (zt = Lt ) and slope (zt = St ). 95% confidence intervals are shown

as dashed lines, formed using Newey-West standard errors and 95% critical values from the asymptotic
theory of Kiefer and Vogelsang (2005). We use a Newey-West lag truncation parameter of 0 for h = 1 and
d1.5×he for h > 1.
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FIGURE V
Model-implied coefficients β h versus horizon (h) in months

The first figure shows the model-implied β h coefficients from equation (21) for the pre-
2000 and post-2000 calibrations discussed in the text. The second figure isolates the role
of slow-moving capital in the post-2000 calibration, alternately setting q = 100% (“No
slow-moving capital”) and q = 30% (“With slow-moving capital”).
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