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Abstract

Many modern applications seek to understand the relationship between different variables. For

example, scientists want to infer the dependence between an outcome variable and a covariate in the

presence of a (possibly high-dimensional) confounding variable. In the context of graphs and net-

works, it is also interesting to learn the underlying discrete structures. This dissertation focuses on

designing uncertainty assessment methodologies for nonparametric targets and discrete graph struc-

tures to reveal complex patterns in the underlying data-generating distributions. Chapter 1 focuses

on the variable importance problem: it proposes a new approach called floodgate and applies it to

the minimummean squared error gap, an interpretable and sensitive model-free measure of variable

importance. Floodgate can leverage any working regression function chosen by the user to construct

asymptotic lower confidence bounds, and its adaptivity and robustness are also discussed. Chapter

2 delivers a regression inference framework: it uses the mMSE gap with respect to a closed linear

subspace or a convex cone to define a diverse range of inferential targets; it utilizes the floodgate idea

to conduct inference in a unified way. To demonstrate the generality and flexibility of floodgate, it

presents the computation details of implementing floodgate for multiple statistical problems, in-

cluding nonlinearity, interactions, deviation from shape constraints and many others. Chapter 3

studies the hub, a particular type of discrete structure. It proposes the StarTrek filter to select hub

nodes over the networks and establishes FDR control guarantees in high-dimensional models. As

core techniques for such FDR control problems, novel probabilistic results, i.e., Cramér-type Gaus-

sian comparison bounds, are developed in this chapter.
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0
Introduction

Canonical statistical methods often assume a parametric model and answer interesting statistical

questions based on the parameter estimation and inference results. Many parametric targets are of-

ten continuous functionals of the data-generating distribution. Nowadays, lots of real-world prob-

lems in genetics, neuroscience, and finance usually come with large-scale datasets Johnstone & Tit-

terington (2009) involving high-dimensionality, nonlinearity, and heterogeneity. Those problems

seek a good understanding of the complex patterns in the underlying data-generating distributions.
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They can involve a diverse range of targets, including variable importance, interactions, nonlinear-

ity, heterogeneity, deviations from shape constraints, discrete graph structures in the network anal-

ysis, and many others. Parametric assumptions can fail in some practical examples; those methods

thus suffer from invalidity and inaccuracy (Janson, 2017; Candès et al., 2018a). As for targets en-

coding discrete structures, existing approaches are not even applicable since they are often designed

for continuous (and local) functionals. This dissertation tackles the aforementioned challenges and

focuses on two types of problems: inferring nonparametric targets in regression and discovering

network hub structures.

Given a response variable and some covariates, the first question people usually ask is the im-

portance of a given covariate or a given group of covariates in the conditional relationship between

the response variable and the covariates. This question is answered through conducting hypothesis

tests or constructing confidence bounds with some chosen notions of variable importance. When

assuming a parametric model, variable importance can be defined in terms of the model parame-

ters. Hypothesis tests and confidence bounds for those parameters have been sufficiently studied

in the literature (Bühlmann et al., 2013; Nickl et al., 2013; Zhang & Zhang, 2014; Van de Geer

et al., 2014; Javanmard &Montanari, 2014a; Bühlmann et al., 2015; Dezeure et al., 2017; Zhang

& Cheng, 2017). More recently, there have been works considering semi-parametric or nonpara-

metric approaches (Berk et al., 2013; Taylor et al., 2014; Robins et al., 2008, 2009; Li et al., 2011;

Huang et al., 2020b; Williamson et al., 2019, 2020). The validity of those approaches often relies

on the conditional relationship being estimated sufficiently well, e.g., a certain rate consistency of

the mean squared error (MSE) of estimating the true regression function (Williamson et al., 2019,

2020). Such requirements limit the generality and flexibility of the methodologies. To avoid the

limitations, we introduce a new statistical idea called floodgate to conduct model-free inference.

Chapter 1, summarizing the work in Zhang & Janson (2020), considers an interpretable estimand,

the minimummean squared error (mMSE) gap, which measure the variable importance in a way

2



that does not depends on any modelling assumptions, and is sensitive to nonlinearities and interac-

tions. The application of floodgate to the variable importance problem produces confidence bounds

for the mMSE gap, by leveraging a user-chosen working regression function (allowing the use of

modern machine learning algorithms or the incorporation of qualitative domain knowledge). It is

shown that the validity of floodgate inference does not depend on particular sets of assumptions

about the underlying distributions or the quality of the working regression function. For example,

two different types of assumptions (the model-X (Candès et al., 2018a) assumption and the double

robustness (Chernozhukov et al., 2018a) assumption) can both guarantee the coverage of the flood-

gate confidence bounds. The adaptivity and robustness of floodgate and some interesting exten-

sions are also discussed. In addition to variable importance, there are also many other targets such

as nonlinearity (Kotchoni, 2018), interactions (Egami & Imai, 2018), heterogeneity (Angrist, 2004)

and deviations from shape-constraints (Chetverikov, 2019). Inference for them is insufficiently ex-

plored, let alone model-free inference. To solve these problems, Chapter 2 presents a new regression

inference framework based on the floodgate idea. Specifically, it defines the mMSE gap with respect

to a closed linear subspace to characterize a class of interpretable model-free targets and provides the

computation details of running floodgate in multiple examples, including nonlinearity, interactions,

and many others.

Variable selection on large-scale networks has been studied a lot and applies to fields such as so-

cial networks, neuroscience and genetics (Newman et al., 2002; Luscombe et al., 2004; Rubinov

& Sporns, 2010). Existing literature mainly focuses on continuous and local functionals especially

the graph edges (Cai &Ma, 2013; Cai & Zhang, 2016; Janková & van de Geer, 2017; Yang et al.,

2018; Feng &Ning, 2019; Liu, 2013; Xia et al., 2018). However, discrete structures in networks

like hubs can arise frommany real-world examples such as brain networks (Shaw et al., 2008) and

gene co-expression networks (Yuan et al., 2017). Discovering the hubs can provide scientists and

practitioners with a better understanding of the underlying patterns in those networks. We for-

3



mulate this as a combinatorial variable selection problem where we would like to select nodes with

degrees larger than a prespecified thresholding level on the graph with false discovery rate (FDR)

control guarantees. This problem brings new challenges in two aspects. First, it is unclear how to

construct appropriate test statistics for testing the degree of a single node. Second, simultaneously

testing all the nodes unavoidably gives rise to complicated dependence that is hard to quantify. This

is because the computation of any reasonable test statistic for a single node has to involve the whole

graph. Chapter 3, summarizing the work in Zhang & Lu (2021), tackles the challenges. In method-

ology, it proposes the StarTrek filter involving the maximum statistics and their quantile estimates

via the Gaussian multiplier bootstrap (Chernozhukov et al., 2013). In theory, it establishes asymp-

totic FDR control in high dimensions via proving accurate bounds on the approximation errors of

the quantile estimates and characterizing the dependence structures among the test statistics. Such

results build on our novel probabilistic results, two different Cramér-type Gaussian comparisons

bounds. These comparison bounds differ from the Kolmogorov distance bounds in Chernozhukov

et al. (2015) and concern the relative difference between the distribution functions of two high-

dimensional Gaussian random vectors. To demonstrate the idea, we also apply the StarTrek filter to

two specific high-dimensional settings: Gaussian graphical models and multi-task regression with

linear models.
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Floodgate: Inference for Model-free

Variable Importance

contribution

This chapter is based on a manuscript Zhang & Janson (2020), jointly with Prof. Lucas Janson.
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Abstract

Many modern applications seek to understand the relationship between an outcome variable Y and

a covariateX in the presence of a (possibly high-dimensional) confounding variableZ . Although

much attention has been paid to testing whether Y depends onX givenZ , in this paper we seek to

go beyond testing by inferring the strength of that dependence. We first define our estimand, the

minimummean squared error (mMSE) gap, which quantifies the conditional relationship between

Y andX in a way that is deterministic, model-free, interpretable, and sensitive to nonlinearities

and interactions. We then propose a new inferential approach called floodgate that can leverage any

working regression function chosen by the user (allowing, e.g., it to be fitted by a state-of-the-art ma-

chine learning algorithm or be derived from qualitative domain knowledge) to construct asymptotic

confidence bounds, and we apply it to the mMSE gap. We additionally show that floodgate’s accu-

racy (distance from confidence bound to estimand) is adaptive to the error of the working regression

function. We then show we can apply the same floodgate principle to a different measure of variable

importance when Y is binary. Finally, we demonstrate floodgate’s performance in a series of sim-

ulations and apply it to data from the UK Biobank to infer the strengths of dependence of platelet

count on various groups of genetic mutations.

Keywords. Variable importance, effect size, model-X, heterogeneous treatment effects, heritability.

1.1 Introduction

1.1.1 Problem Statement

Scientists looking to better-understand the relationship between a response variable Y of inter-

est and a covariateX in the presence of confounding variablesZ = (Z1, . . . , Zp−1) often start

by asking how importantX is in this relationship. Although this question is sometimes simplified
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by statisticians to the binary question of ‘isX important or not?’, a more informative and useful

inferential goal is to provide inference (i.e., confidence bounds) for an interpretable real-valued mea-

sure of variable importance (MOVI). The canonical approach of assuming a parametric model for

Y | X,Z will usually provide obvious MOVI candidates in terms of the model parameters, but the

simple models for which it is known how to construct confidence intervals (e.g., low-dimensional

or ultra-sparse generalized linear models) often provide at best very coarse approximations to the

true Y | X,Z (as evidenced by the marked predictive outperformance of nonparametric machine

learning methods in many domains), resulting in undercoverage due to violated assumptions and

lost power due to insufficient capacity to capture complex relationships. This raises the motivating

question for this paper: what is an interpretable, sensitive, and model-free measure of variable

importance and how can we provide valid and narrow confidence bounds for it?

1.1.2 Our contribution

The main contribution of this paper is to introduce floodgate, a method for inference of the mini-

mummean squared error (mMSE) gap, which satisfies the following high-level objectives which we

believe are fairly universal for the task at hand.

(Sensitivity) The mMSE gap is strictly positive unless E [Y |X,Z]
a.s.
= E [Y |Z], and is large whenever

X explains a lot of the variance in Y not already explained byZ alone, making it sensitive to

arbitrary nonlinearities and interactions in Y ’s relationship withX .

(Interpretability) The mMSE gap has simple predictive, explanatory, and causal interpretations for Y ’s rela-

tionship withX , is a functional of only the joint distribution of (Y,X,Z), and is exactly

zero when Y ⊥⊥ X | Z .

(Validity) We first prove floodgate’s asymptotic validity assuming the user knows the distribution of

X | Z , but with essentially no other assumptions (in particular we require no smoothness,
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sparsity, or other constraints on E [Y |X,Z] that would ensure its learnability at any geo-

metric rate). However, to emphasize that the floodgate idea is not tied to such assumptions,

we also provide a version of floodgate valid under double-robustness-type assumptions.

(Accuracy) Floodgate derives accuracy from flexibility by allowing the user to estimate E [Y |X,Z] in

whatever way they like, and we prove that the accuracy of inference is adaptive to the mean

squared error (MSE) of that estimate.

In a bit more detail, we (in Section 1.2) define the mMSE gap as an interpretable and model-free

MOVI (Section 1.2.1) and present a method, floodgate, to construct asymptotic lower confidence

bounds for it that provides the user absolute latitude to leverage any domain knowledge or advanced

machine learning algorithms to make those bounds as tight as possible (Section 1.2.2). We consider

upper confidence bounds (Section 1.2.3), address computational considerations (Section 1.2.4),

theoretically characterize the width of floodgate’s confidence bounds (Section 1.2.5), and briefly

address some immediate generalizations (Section 1.2.6).

We then proceed to extensions of floodgate (Section 1.3), first presenting an alternative MOVI

that we can similarly construct asymptotic confidence bounds for when Y is binary (Section 1.3.1).

Second, we present a modification of floodgate that, for certain models, allows asymptotic inference

even whenX ’s distribution is only known up to a parametric model (Section 1.3.2) and apply it to

multivariate Gaussian (Section 1.3.2) and discrete Markov chain (Section 1.3.2) covariate models.

Finally we demonstrate floodgate’s performance and support our theory with simulations (Sec-

tion 1.4) and an application to data from the UK Biobank (Section 1.5). We end with a discussion

of the future research directions opened by this work (Section 1.6). All proofs are deferred to the

appendix.

1.1.3 Relatedwork
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Many existing works considermarginal variable importance, i.e., not accounting for the presence of

Z in the relationship between Y andX (Hirschfeld, 1935; Gretton et al., 2005, 2007; Székely et al.,

2007; Székely & Rizzo, 2013; Heller et al., 2013; Shao & Zhang, 2014; Wang et al., 2017; Chatterjee,

2021; Deb & Sen, 2021), including some that measure that importance via differences in condi-

tional means in a way resembling our mMSE gap (Shao & Zhang, 2014). Such approaches address a

very different statistical question, and so we focus our literature review on works that, like us, con-

sider conditional variable importance.

The standard approach to conditional statistical inference in regression is to assume a parametric

model for Y | X,Z , often a generalized linear model (GLM) or cousin thereof. With Y | X,Z

so parameterized, it is usually straightforward to define a parametric MOVI and a large body of lit-

erature is available to provide asymptotic inference for such parametric MOVIs (see, for example,

Bühlmann et al. (2013); Nickl et al. (2013); Zhang & Zhang (2014); Van de Geer et al. (2014); Ja-

vanmard &Montanari (2014a); Bühlmann et al. (2015); Dezeure et al. (2017); Zhang & Cheng

(2017)). However, when the parametric Y | X,Z model is misspecified even slightly, the associated

parametric MOVI becomes ill-defined, reducing its interpretability. Furthermore, many Y | X,Z

models are too simple to capture or detect nonlinearities that may be present in real-world data sets.

One approach to addressing the shortcomings of parametric inference is to generalize the param-

eters of common parametric models to be well-defined in a much larger nonparametric model class.

For example, under mild moment conditions one can generalize the parameters in a linear model for

Y | X,Z as parameters in the least-squares projection to a linear model of any Y | X,Z distribution

(Berk et al., 2013; Taylor et al., 2014; Buja & Brown, 2014; Buja et al., 2015; Rinaldo et al., 2019a;

Lee et al., 2016; Buja et al., 2019a,b). Such a linear projectionMOVI can be hard to interpret be-

cause it will in general have a non-zero value even when Y ⊥⊥ X | Z ; see Appendix A.2 for a simple

example. Another example of a generalized parameter is the expected conditional covariance func-

tional E [Cov (Y,X |Z)] (see, for example, Robins et al. (2008, 2009); Li et al. (2011); Robins et al.
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(2017); Newey & Robins (2018); Shah & Peters (2020); Chernozhukov et al. (2018b); Liu et al.

(2019a); Katsevich & Ramdas (2020)), which represents a generalization of the linear coefficient in

a partially linear model. E [Cov (Y,X |Z)] always equals zero when Y ⊥⊥ X | Z , but it shares the

shortcoming of linear projectionMOVIs that it lacks sensitivity to capture nonlinearities or interac-

tions in Y ’s relationship withX . That is, bothMOVIs mentioned in this paragraph will assign any

non-null variable that influences Y nonlinearly or through interactions with other covariates a value

that can severely underrate that variable’s true importance, and can even assign a variable the MOVI

value zero when Y is a deterministic non-constant function of it.

A second approach has been to infer model-free MOVIs defined through machine learning algo-

rithms fitted to part of the data itself (Lei et al., 2018; Fisher et al., 2019; Watson &Wright, 2019).

By leveraging the expressiveness of machine learning, such aMOVI can be made sensitive to non-

linearities and interactions but is itself random and depends both on the data and the choice of

machine learning algorithm. This poses a challenge for interpretability and in particular for replica-

bility, since even identical analyses run on two independent data sets that are identically-distributed

will provide inferences for differentMOVI values.

Another line of work (Castro et al., 2009; Štrumbelj & Kononenko, 2014; Owen & Prieur, 2017;

Lundberg et al., 2020; Covert et al., 2020; Williamson & Feng, 2020) considers MOVIs based on

the classical form of the Shapley value (Shapley, 1953; Charnes et al., 1988), which in general assigns

a non-zero MOVI value to covariatesX with Y ⊥⊥ X | Z , making it hard to interpret its value

mechanistically or causally (though it has some appealing properties for a predictive interpretation).

An interesting new proposal for a model-free MOVI was made in Azadkia & Chatterjee (2019).

Their MOVI has the distinction that it equals zero if and only if Y ⊥⊥ X | Z and it attains the max-

imum value 1 if Y is almost surely a measurable function ofX givenZ . More recently, Huang et al.

(2020b) proposed a larger class of MOVIs satisfying the same properties. However, both papers

focus on consistent estimators and do not provide confidence bounds for their MOVIs.
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As we will detail in Section 1.2.1, the MOVI we provide inference for, the mMSE gap, does not

suffer from the drawbacks of the MOVIs described in the previous paragraphs, and indeed the same

MOVI has been considered before. In the sensitivity analysis literature it is called the “total-effect

index” (Saltelli et al., 2008) but to our knowledge its inference (confidence lower- or upper-bounds)

is not considered there. In one of the Shapley value papers (Covert et al., 2020) a generalization of

the mMSE gap is used as the input to the Shapley value calculation, but again inferential results

(for the mMSE gap or its Shapley version) are not considered in that paper. Otherwise, Williamson

et al. (2019) appears to be the first to consider inference for the mMSE gap (this inference is then

used with neural networks in Feng et al. (2018)), but the asymptotic normality theory their cover-

age guarantee relies on fails at the boundary of the parameter space, i.e., the important case of when

the mMSE gap is zero, or the variable is unimportant. A recent follow-up work (Williamson et al.,

2020) addresses this limitation by combining estimators on two disjoint subsets of the data (though

their inference still requires the groupmMSE gap of the entire covariate vector to be positive). Our

different approach avoids altogether this issue when the mMSE gap is zero so that our inference is

valid for any value of the mMSE gap (group or otherwise), and although we also use data splitting,

we do so in a way that seems to lead to significantly reduced variance (and hence more accurate in-

ference) relative toWilliamson et al. (2020), as we show in Section 1.4.4.

1.1.4 Notation

For two random variablesA andB defined on the same probability space, let PA |B denote the con-

ditional distribution ofA | B. Denote the (1 − α)th quantile of the standard normal distribution

by zα. Let χ2 (P‖Q) denote the χ2 divergence
∫
Ω(

dP
dQ − 1)2dQ between two distributions P,Q

on the probability spaceΩ. Let [n] denote the set {1, . . . , n}.
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1.2 Methodology

1.2.1 Measuring variable importance with the mMSE gap

We begin by defining the MOVI that we will provide inference for in this paper.

Definition 1.2.1 (Minimummean squared error gap). Theminimummean squared error (mMSE)

gap for variableX is defined as

I2 = E
[
(Y − E [Y |Z])2

]
− E

[
(Y − E [Y |X,Z])2

]
(1.2.1)

whenever all the above expectations exist.

Wewill at times refer to either I2 or I as the mMSE gap when it causes no confusion. Although

the sameMOVI has been used before (see Section 1.1.3), we provide here a number of equivalent

definitions/interpretations which we have not seen presented together before.

• Equation (1.2.1) has a direct predictive interpretation as the increase in the achievable or

minimumMSE for predicting Y whenX is removed.

• The mMSE gap can also be interpreted as the decrease in the explainable variance of Y with-

outX :

I2 = Var (E [Y |X,Z])−Var (E [Y |Z]) . (1.2.2)

• WhenX is viewed as a treatment level for Y andZ is a set of measured confounders, I can

be seen as an expected squared treatment effect:

I2 =
1

2
Ex1,x2,Z

[
(E [Y |X = x1, Z]− E [Y |X = x2, Z])2

]
. (1.2.3)

where x1 and x2 are independently drawn from PX|Z in the outer expectation.
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• We can also rewrite the mMSE gap as:

I2 = E
[
(E [Y |Z]− E [Y |X,Z])2

]
(1.2.4)

and interpret I as the $2 distance between the two regression functions E [Y |Z] and E [Y |X,Z].

• Lastly, we remark that I2 also admits a very compact (if less immediately interpretable) ex-

pression:

I2 = E [Var (E [Y |X,Z] |Z)] . (1.2.5)

In light of these multiple alternative expressions, we find the mMSE gap remarkably interpretable.

Note that it only requires the existence of some low-order conditional and unconditional moments

of Y to be well-defined, and its value is invariant to any fixed translation of Y and to the replace-

ment ofX orZ by any fixed bijective function of itself. Furthermore, the mMSE gap is zero if and

only if E [Y |X,Z]
a.s.
= E [Y |Z], and in particular it is exactly zero when Y ⊥⊥ X | Z and strictly

positive if E [Y |X,Z] depends at all onX , allowing it to fully capture arbitrary nonlinearities and

interactions in E [Y |X,Z].

Note that I has the same units as Y , which can help interpretation when Y ’s units are mean-

ingful (much like it does for the average treatment effect in causal inference). However, if a unitless

quantity is preferred, such as for comparison betweenMOVIs across Y s with different units, we can

also measure variable importance by and extend our methodology to a standardized version of I2,

namely, I2/Var (Y ). In fact, with some more work, we can even extend our inferential results to a

version of the mMSE gap which is invariant to transformations of Y , or versions that are zero if and

only if Y ⊥⊥ X | Z ; see Section 1.2.6 and Appendix A.6 for details, with Appendix A.6.2 extending

our results to the kernel partial correlation of Huang et al. (2020b).
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1.2.2 Floodgate: asymptotic lower confidence bounds for the mMSE gap

As can be seen by Equation (1.2.5), the mMSE gap is a nonlinear functional of the true regression

function µ!(x, z) := E [Y |X = x, Z = z]. Hence if we had a sufficiently-well-behaved estimator

µ̂ for µ! (e.g., asymptotically normal or consistent at a sufficiently-fast geometric rate), there would

be a number of existing tools in the literature (e.g., the delta method, influence functions) that we

could use to provide inference for the mMSE gap. But such estimation-accuracy assumptions are

only known to hold for a very limited class of regression estimators, and in particular preclude most

modern machine learning algorithms and methods that integrate hard-to-quantify domain knowl-

edge, which are exactly the types of powerful regression estimators we would most like to leverage

for accurate inference.

However, given the centrality of µ! in the definition of the mMSE gap, it seems we need to at

least implicitly estimate it with some working regression function µ. And even if we avoid assump-

tions on µ’s accuracy, if we want to provide rigorous inference then we ultimately still need some

way to relate µ to I , which is a function of µ!. We address this issue in the context of constructing

a lower confidence bound (LCB) for the mMSE gap. The key idea proposed in this paper is to use a

functional, which we call a floodgate, to relate any µ to I . In particular, we will shortly introduce a

f(µ) such that for any µ,

(a) f(µ) ≤ I

(b) we can construct a lower confidence boundL for f(µ).

Then by constructionLwill also constitute a valid LCB for I . The term floodgate comes from

metaphorically thinking of constructing a LCB as preventing flooding (L > I , i.e., miscoverage)

by keeping the water level (L) below a critical threshold (I) under arbitrary weather conditions (µ,

or more specifically, µ’s error, which we may not expect to be able to control well). Then by con-
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trollingL below I for any µ, f acts as a floodgate, and we also use the same name for the inference

procedure we derive from f .

In particular, for any (nonrandom) function µ : Rp → R, define

f(µ) :=
E [Cov(µ!(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
, (1.2.6)

where by convention we define 0/0 = 0 so that f(µ) remains well-defined when the denominator

of (1.2.6) is zero. It is not hard to see that f tightly satisfies the lower-bounding property (a) and we

formalize this in the following lemma which is proved in Appendix A.1.1.

Lemma 1.2.2. For any µ such that f(µ) exists, f(µ) ≤ I , with equality when µ = µ!.

In order to establish property (b) of f , we first take amodel-X approach (Janson, 2017; Candès

et al., 2018a): we assume we know PX|Z but avoid assumptions on Y | X,Z . We start with such

a model-X assumption because its simplicity helps elucidate the key ideas underlying the floodgate

method, but floodgate is not tied to such assumptions, and indeed we present alternative versions

of floodgate that operate under different assumptions later in the paper (Section 1.3.2’s version

somewhat relaxes the assumed knowledge of PX|Z without requiring any new assumptions and

Remark 1.2.3.1’s version relies on a double-robust set of assumptions). That said, the model-X as-

sumption is sometimes reasonable and has been used before in a number of applications (see Ap-

pendix A.4 for elaboration and examples), including in genomics like in the application presented

in Section 1.5, and we theoretically (Appendix A.5) and numerically (Section 1.4.5) characterize

model-X floodgate’s robustness to misspecification of PX|Z . Knowing PX|Z and µmeans that,

given data {(Xi, Zi, Yi)}ni=1, we also know {Vi := Var(µ(Xi, Zi) |Zi)}ni=1 which are i.i.d. and

unbiased for the squared denominator in (1.2.6). And if we rewrite the numerator as

E [Cov(µ!(X,Z), µ(X,Z) |Z)] = E
[
Y
(
µ(X,Z)− E [µ(X,Z) |Z]

)]
, (1.2.7)
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then we see we also know {Ri := Yi
(
µ(Xi, Zi) − E [µ(X,Zi) |Zi]

)
}ni=1 which are i.i.d.

and unbiased for the numerator. Thus for any given µ, we can use sample means ofRi and Vi to

asymptotically-normally estimate both expectations in Equation (1.2.6), and then combine said esti-

mators through the delta method to get an estimator of f(µ)whose asymptotic normality facilitates

an immediate asymptotic LCB. This strategy is spelled out in Algorithm 1 and Theorem 1.2.3 estab-

lishes its asymptotic coverage. We pause to mention a simple but important point: when µ(X,Z)

does not depend onX at all, then f(µ) = 0 and all the Vi andRi are zero with probability 1, mak-

ing floodgate’s LCB computed in Algorithm 1 deterministically zero as well. This implies that when

the regression algorithm for obtaining µ is sparse, in the sense that it only depends on a fraction of

its inputs, then floodgate will produce LCBs of zero for many of the covariates. For those covariates,

coverage will hold deterministically, and hence floodgate will have average coverage even higher than

the nominal 1− α, as observed in some simulations in Section 1.4.

Algorithm 1 Floodgate
Input: Data {(Yi, Xi, Zi)}ni=1, PX|Z , a working regression function µ : Rp → R, and a

confidence level α ∈ (0, 1).
ComputeRi = Yi

(
µ(Xi, Zi) − E [µ(Xi, Zi) |Zi]

)
and Vi = Var (µ(Xi, Zi) |Zi) for

each i ∈ [n], and their sample mean (R̄, V̄ ) and sample covariance matrix Σ̂, and com-

pute s2 = 1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
.

Output: Lower confidence bound Lαn(µ) = max
{

R̄√
V̄
− zαs√

n , 0
}
, with the convention

that 0/0 = 0.

Theorem 1.2.3 (Floodgate validity). For any given working regression function µ : Rp → R and

i.i.d. data {(Yi, Xi, Zi)}ni=1, if E[Y 4], E[µ4(X,Z)] <∞, thenLαn(µ) from Algorithm 1 satisfies

lim inf
n→∞

P (Lαn(µ) ≤ I) ≥ 1− α.
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The proof of Theorem 1.2.3 can be found in Appendix A.1.1. Fourth moments (as opposed to

the usual second moments for the CLT) are required because the estimand itself involves the ex-

pectations of Y µ(X,Z) and µ2(X,Z). With higher moment conditions, we can apply relatively

recent Berry–Esseen-type results for the delta method (Pinelis et al., 2016) to strengthen the point-

wise asymptotic coverage of Theorem 1.2.3 to have a rate of n−1/2; see Appendix A.3 for details.

We note that in both Algorithm 1 and Theorem 1.2.3, Y can be everywhere replaced by Y − g0(Z)

for any non-random function g0 (e.g., E [µ(X,Z) |Z = z]would be a natural choice), which can

reduce the variance of theRi terms and hence improve the LCB.

Remark 1.2.3.1 (Doubly robust floodgate). Although for ease of exposition we have presented Algo-

rithm 1 and Theorem 1.2.3 under the model-X assumption that PX|Z is known exactly, we emphasize

here that the underlying idea of floodgate is not tied to this assumption. To reiterate, the key concep-

tual contribution of this paper is to introduce a lower-bounding functional f(µ) for I such that f(µ)

provides a tractable statistical target to obtain a LCB for. To underscore this point, we present here a

version of floodgate following the same principle but that is valid under standard double-robust as-

sumptions instead of the aforementioned model-X assumption. Consider the following functional that

depends not only on a working regression function µ(x, z), but also someQy estimating the true PY |Z

and someQx estimating the true PX|Z :

fQy ,Qx(µ) :=
E
[
(Y − EQy [Y |Z])(µ(X,Z)− EQx [µ(X,Z) |Z])

]
√
E [(µ(X,Z)− EQx [µ(X,Z) |Z])2]

, (1.2.8)

where EQx (resp. EQy ) denotes expectation with respect toQx (resp. Qy) as opposed to the true data-

generating distribution, and by convention we again define 0/0 = 0. GivenQy, Qx, and µ, i.i.d. un-

biased estimates analogous toRi and Vi in Algorithm 1 of the numerator and squared denominator,

respectively, of fQy ,Qx(µ) can be computed from each data point under no assumptions whatsoever,

thus allowing the exact same kind of LCB as in Algorithm 1 to be computed for fQy ,Qx(µ). It now just
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remains to check that fQy ,Qx(µ) lower-bounds I .

Lemma 2.3. For any µ,Qy, Qx such thatQx is absolutely continuous with respect to PX|Z and

fQy ,Qx(µ) exists, we have that fQy ,Qx(µ) ≤ I +∆, where

∆ =
√
E
[
(E [Y |Z]− EQy [Y |Z])2

]
E
[
wµ(X,Z)χ2

(
Qx‖PX|Z

)]
(1.2.9)

andwµ(X,Z) = (µ(X,Z)−E[µ(X,Z) |Z])2

E[(µ(X,Z)−E[µ(X,Z) |Z])2] is non-negative, has mean 1, and does not depend onQy

orQx, and we again define 0/0 = 0. Furthermore, fQy ,PX|Z (µ) = f(µ) and thus fQy ,PX|Z (µ
!) =

I (for anyQy).

The proof can be found in Appendix A.1.1. Lemma 2.3 says that fQy ,Qx(µ) only fails to lower-

bound I to an extent bounded by the square root of the product of two terms: theMSE of EQy [Y |Z]

and the weighted χ2 error ofQx. The same result also holds if we movewµ(X,Z) in Equation (1.2.9)

from the second term to the first term; see Equation (A.1.33). As the first termmeasures the error in

modeling Y | Z and the second termmeasures the error in modelingX | Z , the square root of

their product∆ is exactly what we would expect to be bounded as o(n−1/2) under standard double-

robustness assumptions (see, e.g., Chernozhukov et al. (2018a)). And indeed, since the LCB for fQy ,Qx(µ)

will beΩ(n−1/2) below fQy ,Qx(µ),∆ = o(n−1/2) implies asymptotic coverage exactly as in Theo-

rem 1.2.3.

Remark 1.2.3.2 (Floodgate’s validity in high dimensions). Again for ease of exposition, Theo-

rem 1.2.3 establishes floodgate’s pointwise asymptotic coverage for a fixed µ and a fixed (and hence

fixed-dimensional) distribution for (Y,X,Z). It is certainly of interest to also consider the high-

dimensional regime where the data-generating distribution (including the covariate dimension p) and

the working regression function µ both depend on n, but it turns out that this setting is actually not very

different from the simpler setting of Theorem 1.2.3. To see this, first note that Theorem 1.2.3 relies only
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on Lemma 1.2.2 (f(µ) ≤ I) and a central limit theorem (CLT) applied to the 2-dimensional mean

of the i.i.d. pairs (Ri, Vi). But Lemma 1.2.2 is non-asymptotic, and hence f(µ) ≤ I still holds even

if µ varies with n. And the pairs (Ri, Vi) remain i.i.d. and 2-dimensional even as µ and the distri-

bution of (Y,X,Z) vary with n, so all that is needed for floodgate’s validity is a 2-dimensional i.i.d.

triangular array CLT, which only requires that the 2-dimensional random variables (Ri, Vi) remain

“well-behaved”. In Appendix A.3 we show in fact an even stronger (non-asymptotic) result, which, sim-

ilarly to Theorem 1.2.3, only requires certain moments of Y and µ(X,Z) to remain bounded (al-

though the result in Appendix A.3 requires a bound on higher moments than Theorem 1.2.3 so that

recent Berry–Eseen-type results for the delta method can be applied to bound floodgate’s undercover-

age at a rate of n−1/2). In fact, it is even sufficient to replace the bound on µ(X,Z)’s absolute mo-

ment with a bound on that of its conditional residual h(X,Z) := µ(X,Z) − E [µ(X,Z) |Z].

Note that h only really measures the contribution from the single covariateX to the whole working

regression function µ, even whenZ is high-dimensional. Hence, we believe that assuming that Y ’s

and h(X,Z)’s moments do not explode, even in high dimensions (recall Y and h(X,Z) remain 1-

dimensional regardless of the dimension of the data), seems quite mild in practice. For instance, if |Y |

is a bounded random variable (as it often will be in practice), then as long as µ is winsorized at some

level (which, as long as the level is at least as large as |Y |’s bound, can only improve µ’s performance)

(Rinaldo et al., 2019a), then floodgate’s asymptotic validity is automatically ensured in the most gen-

eral high-dimensional regime. Even when Y is unbounded, we would usually not expect the moments

of Y or h(X,Z) to diverge. Indeed in Section 1.4.3 we conduct high-dimensional simulations with

unbounded Y and µ fitted via various parametric and nonparametric machine learning algorithms,

yet floodgate’s coverage remains empirically valid regardless of the dimension.

Remark 1.2.3.3 (Choosing µ). The final missing piece in our LCB procedure is the choice of µ. In

terms of how to obtain a working regression function µ, the flexibility of our procedure thus far finally

pays off: µ can be chosen in any way that does not depend on the data used for inference. Normally we
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expect this to be achieved through data-splitting, i.e., a set of data samples is divided into two indepen-

dent parts, and one part is used to produce an estimate µ of µ! while floodgate is applied to the other

part with input µ; we will explore this strategy in simulations in Section 1.4. But in general, µ can be

derived from any independent source, including mechanistic models or data of a completely different

type than that used in floodgate (see, for example, Bates et al. (2020) for an example of using a regres-

sion model fitted to a separate data set in the context of variable selection). The goal is to allow the user

as much latitude as possible in choosing µ so that they can leverage every tool at their disposal, includ-

ing modern machine learning algorithms and qualitative domain knowledge, to get as close to µ! as

possible. We show in Section 1.2.5 that there is a direct relationship between the accuracy of µ and the

accuracy of the resulting floodgate LCB.

In fact, an interesting and surprising feature of floodgate (both f and Algorithm 1) is that it is in-

variant to certain transformations of µ, making floodgate work well even sometimes when µ is quite

far from µ!. In particular, everything about floodgate remains identical if µ is replaced by any mem-

ber of the set Sµ = {cµ(·, ·) + g(·, ·) : c > 0, g(x, ·) = g(x′, ·) ∀x, x′}. An immediate

consequence is that if µ is a partially linear function in x, i.e., µ(x, z) = cx + g(z) for some c and

g, then floodgate only depends on µ through the sign of c, making floodgate particularly forgiving for

partially linear working models. To be precise, floodgate using µ(x, z) = cx + g(z) will perform

identically to floodgate using the best partially linear approximation to µ! as long as c has the same

sign as the coefficient in that best approximation (regardless of c’s magnitude or anything about g).

1.2.3 Upper confidence bounds for the mMSE gap

Before continuing our study of floodgate LCBs, we first pause to address a natural question: what

about an upper confidence bound (UCB)? One way to get a UCB is to follow a workflow similar to

the previous subsection, as follows. For any working regression function ν for E [Y |Z], consider
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the functional

fUCB(ν) = E
[
(Y − ν(Z))2

]
.

Then fUCB plays an analogous role to f in the opposite direction, in that for any ν, (a) fUCB(ν) ≥

I2 and (b) we can construct a level αUCBUα
n (ν) for fUCB(ν). Property (a) is immediate from

the minimality of the first term and non-negativity of the second term in definition (1.2.1), while

property (b) can be established without even making model-X assumptions: simply take the CLT-

based UCB from the estimator 1
n

∑n
i=1(Yi − ν(Zi))2, which is unbiased for fUCB(ν).

Unfortunately, there is no value of ν such that fUCB(ν) = I2 except in the noiseless setting

where Y is a deterministic function of (X,Z). In particular, no matter how well ν is chosen and

how large n is,Uα
n (ν)−I2 ≥ E [Var (Y |X,Z)]with probability at least 1−α. This shortcoming

is perhaps foreseeable given thatUα
n (ν) never even uses theXi, but it turns out to be unimprovable

(even using model-X information), as we now prove in Theorem 1.2.4.

Theorem 1.2.4. Fix a continuous joint distribution PX,Z for (X,Z), and letF denote the class of

joint distributions F for (Y,X,Z) such that F is compatible with PX,Z andVar (Y ) < ∞. Let

U(Dn) denote a scalar-valued function of the n i.i.d. samplesDn = {Yi, Xi, Zi}ni=1; ifU(Dn)

outputs a UCB for the mMSE gap that is pointwise asymptotically valid for any F ∈ F , i.e.,

inf
F∈F

lim inf
n→∞

PF (U(Dn) ≥ I2
F ) ≥ 1− α,

then

sup
F∈F

lim sup
n→∞

PF
(
U(Dn)− I2

F < EF [VarF (Y |X,Z)]
)
≤ α, (1.2.10)

where the subscript F denotes quantities computed with F as the data-generating distribution.

The proof of Theorem 1.2.4 can be found in Appendix A.1.2. Note that since we fix PX,Z at the

beginning of the theorem statement,U is allowed to use model-X information. As just mentioned
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above, this theorem provides no cause for concern in the noiseless setting when E [Var (Y |X,Z)] =

0. However, in many applications we may expectE [Var (Y |X,Z)] to be substantial, and the

above theorem guarantees any pointwise asymptotically valid UCBmust be conservative by this

amount. The only way to overcome this problem would be to assume some sort of structure on

Y | X,Z , such as smoothness or sparsity, in contrast to model-X floodgate which requires no infor-

mation about Y | X,Z and can certainly produce nontrivial LCBs and even achieve the parametric

rate with sufficiently-accurate µ; see Section 1.2.5. Although it is disappointing that a better UCB

is not achievable, we envisionMOVI inference often being used to quantify new important rela-

tionships, in which case we expect it to be more useful to know a variable is at least as important as

some LCB than to upper-bound its importance with a UCB. Given this perspective and the nega-

tive UCB result of Theorem 1.2.4, we return for the remainder of the paper to the study of using

floodgate to obtain LCBs.

1.2.4 Computation

Astute readers may have noticed that the quantitiesRi and Vi in Algorithm 1 involve conditional

expectations/variances which, though in principle known due to the assumed model-X knowledge

of PX|Z , may be quite hard to compute in practice. In certain cases these conditional expectations

can have simple or even closed-form expressions, such as when µ is a generalized linear model and

X | Z is Gaussian, but otherwise a more general approach is needed. Monte Carlo provides a

natural solution: assume that we can sampleK copies X̃(k)
i ofXi from PXi|Zi

conditionally inde-

pendently ofXi and Yi and thus replaceRi and Vi, respectively, by the sample estimators

RK
i = Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)
,
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V K
i =

1

K − 1

K∑

k=1

(
µ(X̃(k)

i , Zi)−
1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)2

.

Luckily the same guarantees hold for the Monte Carlo analogue of floodgate, even for fixedK .

Theorem 1.2.5. Under the conditions of Theorem 1.2.3, for any givenK > 1,Lαn,K(µ) computed by

replacingRi and Vi withRK
i and V K

i , respectively, in Algorithm 1 satisfies

lim inf
n→∞

P
(
Lαn,K(µ) ≤ I

)
≥ 1− α.

The proof can be found in Appendix A.1.3. In general we expect larger values ofK to produce

more accurate LCBs, but we found the difference betweenK = 2 andK = ∞ to be surprisingly

small in our simulations and, of course, it will always be computationally faster to use smallerK .

Although Theorem 1.2.5 is a pointwise result holding for any fixedK > 1, it can be generalized to

a uniform result over allK > 1with miscoverage bounded by a n−1/2 rate using higher moment

conditions and a variance lower bound assumption; see Appendix A.3 for details.

1.2.5 Accuracy adaptivity to µ’s mean squared error

Having established floodgate’s validity and computational tractability, the natural next question is:

how accurate is it, i.e., how close is the LCB to the mMSE gap? The answer depends on the accuracy

of µ—the better that µ approximates µ!, the more accurate the floodgate LCB is, as formalized in

the following theorem.

Theorem 1.2.6 (Floodgate accuracy and adaptivity). For i.i.d. data {(Yi, Xi, Zi)}ni=1 such that

E[Y 12] < ∞,Var (Y |X,Z) ≥ τ a.s. for some τ > 0, and a sequence of working regression

functions µn : Rp → R such that for someC and all n eitherE [Var (µn(X,Z) |Z)] = 0 or
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E[µ12
n (X,Z)]

E[Var(µn(X,Z) |Z)]6
≤ C , the output of Algorithm 1 satisfies

I − Lαn(µn) = Op

(
inf

µ∈Sµn

E
[
(µ(X,Z)− µ!(X,Z))2

]
+ n−1/2

)
, (1.2.11)

where Sµn = {cµn(·, ·) + g(·, ·) : c > 0, g(x, ·) = g(x′, ·) ∀x, x′} as defined in Remark 1.2.3.3.

The proof can be found in Appendix A.1.4. The condition that “E [Var (µn(X,Z) |Z)] = 0

or E[µ12
n (X,Z)]

E[Var(µn(X,Z) |Z)]6
≤ C” is a scale-free moment condition on µn which says that µn(X,Z) can

have no dependence onZ at all or have a non-vanishing conditional variance (givenZ) relative to

its higher moments. The high-order moments in our assumptions are likely a technical artifact of

our proof (which actually proves a somewhat stronger result than stated in the theorem), and could

perhaps be relaxed with a different approach. As it stands, these assumptions allow us to utilize the

Berry–Esseen-type results in Appendix A.3.1 to handle the fact that µn varies with n.

We call the left-hand side of Equation (1.2.11) the half-width (by analogy with the width that

would measure the accuracy of a two-sided confidence interval) and Theorem 1.2.6 shows it is adap-

tive to the accuracy of µn through the MSE of the best element of its equivalence class Sµn , up to a

limit of the parametric or central limit theorem rate of n−1/2. So in principle floodgate can achieve

n−1/2 accuracy if a member of Sµn converges very quickly to µ!, but in general floodgate’s accu-

racy decays gracefully with µn’s accuracy. Note that the infimum in Equation (1.2.11) means that

floodgate is self-correcting with respect to µn’s conditional mean givenZ , as explained in the second

paragraph of Remark 1.2.3.3.

1.2.6 Straightforward generalizations

Before moving onto extensions, we briefly address a few relatively straightforward generalizations of

floodgate.
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Extending the mMSE gap The mMSE gap can be very naturally made invariant to the scale

of Y and bounded between 0 and 1 by dividing it byVar (Y ). And sinceVar (Y ) can be easily and

asymptotically-normally estimated under weaker conditions than already assumed for floodgate’s

validity in Theorem 1.2.5, it is straightforward to extend the floodgate procedure and its validity

to perform inference on the scale-free version I2
sf = I2/Var (Y ). We also consider two ways of

extending the mMSE gap such that the key property of the MOVI in Azadkia & Chatterjee (2019)

is satisfied, i.e., the MOVI equals zero if and only if Y ⊥⊥ X | Z . Details about defining the MOVIs

and providing inference can be found in Appendices A.6.1 and A.6.2.

Inference for group variable importance In applications where a group of variables

share a common interpretation or are too correlated to powerfully distinguish, it is often necessary

to infer a measure of group importance instead of a MOVI. Luckily, whenX is multivariate, the

mMSE gap remains perfectly well-defined and interpretable and floodgate (both f and Algorithm 1)

retain all the same inferential properties. Indeed, we apply floodgate to groups of variables in our

genomics application in Section 1.5.

Transporting inference to other covariate distributions In some applications, the

samples we collect may not be uniformly drawn from the population we are interested in studying.

For instance, our data may come from a lab experiment with covariates randomized according to

one distribution, while our interest lies in inference about a population outside the lab whose co-

variates follow a different distribution. As long as the samples at hand share a common conditional

distribution Y | X,Z with the target population, it is relatively straightforward to perform an

importance-weighted version of floodgate that provides inference for the target population’s mMSE

gap. We provide the details in Appendix A.7.
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Adjusting for selection When inference is required for many variables simultaneously, it

is often preferable to focus attention on a subset of variables whose inferences appear particularly

interesting. But if we only report the set of LCBs that are, say, farthest from zero, then our cover-

age guarantees will fail to hold for this set due to selection bias (this is not a defect of floodgate, but

a property of nearly every non-selective inferential procedure). One way to address this may be to

apply false coverage-statement rate adjustments (Benjamini & Yekutieli, 2005) to floodgate LCBs.

The application is straightforward, and floodgate LCBs satisfy the monotone property required by

Benjamini & Yekutieli (2005), although they do not in general satisfy the independence or positive

regression dependence on a subset (PRDS) condition and hence would require a correction (Ben-

jamini & Yekutieli, 2001) for strict guarantees to hold. We leave a more formal treatment of selection

adjustment to future work, but note also some simple ways to perform benign selection.

First, if selection is performed using µ and/or independent data, then no adjustment is needed

for validity. For instance, if floodgate is run by data-splitting, we could arbitrarily use the first half of

the data (which is also used for choosing µ, but not for running floodgate) for selection, including

selecting precisely the subset of variables that µ depends on. In fact, we can even perform a certain

type of benign post-hoc data processing based on the floodgate data itself: if the floodgate data are

used to construct a transformation of the floodgate LCBs such that every transformed LCB either

shrinks or remains the same, then the transformed LCBs retain their marginal asymptotic valid-

ity. This is because any such transformation, even one depending on the data or LCBs themselves,

can only increase coverage of each LCB by reducing it or leaving it unchanged; this is related to the

screening procedure in Liu et al. (2021). This means, for instance, that if a selection procedure is ap-

plied to the floodgate data and used to zero out any unselected LCBs, then as long as the zeroed-out

LCBs are reported alongside the rest, the marginal validity of all reported LCBs remains intact even

though the same data was used to construct the LCBs and to perform the selection that transformed

them.
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1.3 Extensions

1.3.1 Beyond the mMSE gap

To demonstrate that the floodgate idea can be used beyond the mMSE gap, we consider the follow-

ing MOVI.

Definition 1.3.1 (Mean absolute conditional mean gap). Themean absolute conditional mean

(MACM) gap for variableX is defined as

I#1 = E [|E [Y |Z]− E [Y |X,Z]|] (1.3.1)

whenever all the above expectations exist.

The subscript in I#1 reflects its similarity to I2 = E
[
(E [Y |Z]− E [Y |X,Z])2

]
except with

the square replaced by the absolute value (also known as the $1 norm). Although we have not found

a floodgate function to enable inference for arbitrary Y , the remainder of this subsection shows how

to perform floodgate inference when Y is binary (coded as Y ∈ {−1, 1}). We note that when Y is

binary, I#1 is zero if and only if Y ⊥⊥ X | Z holds (the “if” part holds for non-binary Y as well),

since the expected value uniquely determines the distribution of a binary random variable.

In particular, for any (nonrandom) function µ : Rp → R, define

f#1(µ) = 2P
(
Y (µ(X̃, Z)− E [µ(X,Z) |Z]) < 0

)
− 2P

(
Y (µ(X,Z)− E [µ(X,Z) |Z]) < 0

)

(1.3.2)

where X̃ ∼ PX|Z and is conditionally independent ofX and Y .

Lemma 1.3.2. If |Y | a.s.= 1, then for any µ such that f#1(µ) exists, f#1(µ) ≤ I#1 , with equality when

µ = µ!.
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Obtaining an LCB for f#1(µ) is even easier than it was for f(µ) because f#1(µ) is essentially

just one expectation instead of a ratio of expectations, so a straightforward central limit theorem

argument suffices; Algorithm 10 (presented in Appendix A.8) formalizes the procedure and Theo-

rem 1.3.3 establishes its asymptotic coverage.

Theorem 1.3.3 (MACM gap floodgate validity). For any given working regression function µ :

Rp → R and i.i.d. data {(Yi, Xi, Zi)}ni=1,Lαn(µ) from Algorithm 10 satisfies

P (Lαn(µ) ≤ I#1) ≥ 1− α−O(n−1/2).

Theorem 1.3.3 is proved in Appendix A.1.5, and perhaps its most striking feature is its lack of

assumptions, which follows from the boundedness of f#1(µ) and theRi. Like f , f#1 is invariant

to any transformation of µ that leaves sign(µ(X,Z) − E[µ(X,Z) |Z]) unchanged on a set of

probability 1, making its validity immediately uniform over large classes of µ.

Although the boundedness of theRi streamlines the coverage guarantees, their conditional prob-

abilities make it somewhat more complicated to carry out efficient computation of Algorithm 10.

In particular, the sharp boundary at zero inside the probabilities requires a certain degree of smooth-

ness in µ and P to be able to estimate theRi byMonte Carlo samples analogously to Section 1.2.4.

We give precise sufficient conditions and a proof of their validity in Appendix A.8, and defer study

of Algorithm 10’s accuracy and robustness to future work.

1.3.2 Relaxing the assumptions by conditioning

In this section we show that we can relax the model-X assumption that PX|Z be known exactly and

apply floodgate when only a parametric model is known for PX|Z . This is inspired by Huang &

Janson (2020) which similarly relaxes the assumptions of model-X knockoffs. We follow the same

general principle of conditioning on a sufficient statistic of the parametric model for PX|Z , but
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doing so in floodgate requires a somewhat different approach than Huang & Janson (2020). Note

that this section’s method and assumptions are also distinct from the double robust assumptions

in Remark 1.2.3.1, further emphasizing that the key ideas underlying floodgate are not tied to any

particular set of assumptions.

The approach we take in this section will involve computations on the entire matrix of observa-

tions, i.e., (X,Z) ∈ Rn×p whose rows are the covariate samples (Xi, Zi) and y ∈ Rn whose

entries are the response samples Yi. Now suppose that we know a model FX|Z for PX|Z with a suf-

ficient statistic functional for n independent (but not necessarily identically distributed) samples

X | Z given by T (X,Z), whose random value we will denote simply by T . We will assume that T

is invariant to permutation of the rows of (X,Z) (as we would expect for any reasonable T , since

these rows are i.i.d.).

The key idea that allows us to perform floodgate inference without knowing the distribution of

X | Z is that, by definition of sufficiency, we do know the distribution ofX | Z,T . Leveraging

this idea requires some adjustment to the floodgate procedure, and we start by defining a condi-

tional analogue of f .

fT
n (µ) :=

E [Cov(µ!(Xi, Zi), µ(Xi, Zi) |Z,T )]√
E [Var(µ(Xi, Zi) |Z,T )]

, (1.3.3)

again with the convention 0/0 = 0. Note that fT
n (µ) does not depend on the choice of i thanks

to T ’s permutation invariance, but it does depend on the sample size n. Nevertheless, it follows

immediately from the proof of Lemma 1.2.2 that fT
n (µ) ≤ fT

n (µ!) for any nonrandom µ. On the

other hand, fT
n (µ!) += I , but instead a different relationship that is nearly as useful holds:

fT
n (µ!) ≤ f(µ!) = I,
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due to the monotonicity of conditional variance.

With floodgate property (a) (fT
n (µ) ≤ I) established, we now turn to property (b): the abil-

ity to construct a LCB for fT
n (µ). In an analogous way as for f(µ), we can compute n unbiased

estimators of the numerator and the squared denominator, but these estimators are no longer i.i.d.

because they are linked through T , so we cannot immediately apply the central limit theorem or

delta method as we did in Section 1.2.2. Our workaround is to split the data into n2 batches of size

n1 and only condition on the sufficient statistic within each batch. This way, there is still indepen-

dence between batches and we can apply the central limit theorem and delta method across batches.

This strategy is spelled out in Algorithm 11 (see Appendix A.9 for details) and Theorem 1.3.4 es-

tablishes its asymptotic coverage. We call this procedure co-sufficient floodgate because the term

“co-sufficiency” describes sampling conditioned on a sufficient statistic (Stephens, 2012).

Theorem 1.3.4 (Co-sufficient floodgate validity). For any given working regression function µ :

Rp → R, i.i.d. data {(Xi, Zi, Yi)}ni=1, and permutation-invariant sufficient statistic functional T ,

if E[Y 4] <∞ andE[µ4(X,Z)] <∞, thenLα,Tn (µ) from Algorithm 11 satisfies

lim inf
n→∞

P
(
Lα,Tn (µ) ≤ I

)
≥ 1− α.

The proof can be found in Appendix A.1.6. Regarding computation, as in Section 1.2.4, we

can replace the conditional expectations in Algorithm 11 withMonte Carlo estimates; see Ap-

pendix A.9.1 for details. For a given µ, we may worry that co-sufficient floodgate loses some accu-

racy relative to regular floodgate due to the gap between f(µ) and fT
n (µ), but in fact this gap is

typicallyO(n−1
2 ) for fixed-dimensional parametric models. We quantify this gap for multivariate

Gaussian and discrete Markov chain covariate models in the following two subsections, showing

that, at least in these two cases, co-sufficient floodgate relaxes the assumptions of model-X floodgate

with only a minimal loss in accuracy.
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Low-dimensional multivariate Gaussian model

In this section we let Bm = {(m− 1)n2 + 1, . . . ,mn2}.

Proposition 1.3.5. Suppose samples {X,Z}ni=1 are i.i.d. multivariate Gaussian parameterized as

Xi | Zi ∼ N
(
(1, Zi)γ,σ2

)
for some γ ∈ Rp and σ2 > 0, andZi ∼ N (v0,Σ0). Assume σ2 is

known and the batch size n2 satisfies n2 > p+ 2. Let T be the following sufficient statistic functional

Tm := T (Xm,Zm) =

(
∑

i∈Bm

Xi,
∑

i∈Bm

XiZi

)
.

Then if E
[
µ4(X,Z)

]
,E
[
(µ!)4(X,Z)

]
<∞, we have

f(µ)− fT
n (µ) = O

(
p

n2 − p− 2

)
. (1.3.4)

The proof can be found in Appendix A.9.2. Note the condition n2 > p + 2 is not surprising as

when the sample size is smaller than p, the sufficient statistic functional is degenerate, resulting in a

zero value of fT
n (µ). The bound in (1.3.4) allows p to grow with n in general, but when p is fixed, it

gives the rate ofO(n−1
2 ), as mentioned earlier in Section 1.3.2.

DiscreteMarkov chains

To present our second example model, we define some new notation. Consider a random variable

W following a discrete Markov chain withK states withX = Wj ,Z = W-j , then the model

parameters include the initial probability vector π(1) ∈ RK with π(1)k = P (W1 = k) and

the transition probability matrixΠ(j) ∈ RK×K (betweenWj−1 andX = Wj) withΠ(j)
k,k′ =

P (Wj = k′ |Wj−1 = k). Further denoting q(k, k1, k2) = P (Wj = k |Wj−1 = k1,Wj+1 = k2),
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we have

q(k, k1, k2) =
Π(j)

k1,k
Π(j+1)

k,k2∑K
k=1Π

(j)
k1,k

Π(j+1)
k,k2

,

so that the conditional distribution ofXm | Zm can be compactly written down as

P (Xm |Zm) =
∏

k,k1,k2∈[K]

(q(k, k1, k2))
N(k,k1,k2), (1.3.5)

whereN(k, k1, k2) =
∑

i∈Bm {Xi=k,Wi,j−1=k1,Wi,j+1=k1}. Thus we finally conclude that

{N(k, k1, k2)}(k,k1,k2∈[K]) is sufficient, and we proceed with this sufficient statistic.

Proposition 1.3.6. Consider the above discrete Markov chain model and define the sufficient statistic

functional T as

Tm = T (Xm,Zm) = {N(k, k1, k2)}(k,k1,k2∈[K]).

Then if for variableX = Wj ,K2min{P (Wj−1 = k1,Wj+1 = k2)}k1,k2∈[K]} ≥ q0 > 0 holds

andE
[
(µ!)2(X,Z)

]
, E
[
µ2(X,Z)

]
<∞, we have

f(µ)− fT
n (µ) = O

(
K3

n2

)
.

The proof can be found in Appendix A.9.2. Note that T here is not minimal sufficient and the

above rate is cubic inK . The non-minimal sufficient statistic is adopted for the discrete Markov

chain model in this paper since it is easier to work with and gives the desired rate in n2, but we ex-

pect the rate inK could be improved by using the minimal sufficient statistic. Again,K is allowed

to grow with n in general, but when it is fixed we get a rate ofO(n−1
2 ), as mentioned earlier in Sec-

tion 1.3.2.
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1.4 Simulations

Source code for conducting our simulation studies can be found at KWWSV���JLWKXE�FRP�/X=KDQJ+�

IORRGJDWH.

1.4.1 Setup

In the following subsections, we conduct simulation studies to complement the main theoretical

claims of the paper. We study the effects of the sample-splitting proportion (Section 1.4.2), co-

variate dimension (Section 1.4.3), and model misspecification (Section 1.4.5) on floodgate. Ad-

ditional simulation studies on the effect of covariate dependence and sample size can be found in

Appendix A.10.4. In Section 1.4.4, we numerically compare floodgate with the method proposed

inWilliamson et al. (2020). We also study the extensions to floodgate for the MACM gap (Sec-

tion 1.4.6) and co-sufficient floodgate (Section 1.4.7). Each simulation study generates a set of co-

variates and performs floodgate inference on each in turn (i.e., treating each covariate asX and the

rest asZ) before averaging its results (either coverage or half-width) over the covariates.

This paragraph describes the simulation setup for all but the simulation of Section 1.4.4. The

covariates are sampled from a Gaussian autoregressive model of order 1 (AR(1)) with autocorrela-

tion 0.3, except in Section A.10.4 where this value is varied over. The conditional distribution of

Y | X,Z is given by µ!(X,Z) plus standard Gaussian noise, and in each subsection we perform ex-

periments with both a linear and a highly nonlinear model. The linear model is sparse with non-zero

coefficients’ locations independently uniformly drawn from among the covariates, and the non-zero

coefficients’ values having uniform random signs and identical magnitudes (5, unless stated other-

wise) divided by
√
n. The nonlinear model combines zero’th-, first-, and second-order interactions

between nonlinear (mostly trigonometric and polynomial) transformations of elementwise func-

tions of a subset of covariates, and then multiplies this entire function by an amplitude (50, unless
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stated otherwise) divided by
√
n; see Appendix A.10.1 for details. Both models use n = 1100,

p = 1000, and a sparsity of 30 unless stated otherwise.

In our implementations of floodgate, we split the sample into two equal parts (justified by the

results of Section 1.4.2) and use the first half to fit µ. In most of the simulations, we consider four

fitting algorithms (two linear, two nonlinear): the LASSO (Tibshirani, 1996), Ridge regression,

Sparse Additive Models (SAM; (Ravikumar et al., 2009)), and Random Forests (Breiman, 2001);

when the response is binary there are two additional fitting algorithms: logistic regression with an

L1 penalty and an L2 penalty; see Appendix A.10.2 for implementation details of these algorithms.

TheMonte Carlo version of floodgate from Section 1.2.4 is not needed for the linear methods, and

for the nonlinear methods,K = 500 is used.

Given the novelty of considering inference for the mMSE gap, it is challenging to compare flood-

gate to alternatives except in special cases. For instance, in low-dimensional Gaussian linear models

the mMSE gap is a simple function of the coefficient and thus ordinary least squares (OLS) infer-

ence can be compared to floodgate; see Appendix A.10.3 for details of how it is made comparable.

Thus, in the low-dimensional linear-µ! simulations of Sections 1.4.3 and A.10.4, we compare flood-

gate’s inference to that of OLS, which acts as a sort of oracle since its inference relies on very strong

knowledge of Y | X,Z which floodgate does not rely on, and OLS is not valid without that knowl-

edge (and does not apply in high dimensions). Another example is when we can assume the group

mMSE gap of all of (X,Z) is bounded away from zero, in which case the method of Williamson

et al. (2020) applies, so in Section 1.4.4 we compare their method with floodgate in such a setting.

Remark 1.4.1 (Floodgate’s connection to conditional independence testing). Recall that Y ⊥⊥ X |

Z implies I = 0, and hence rejecting Y ⊥⊥ X | Z whenLαn(µ) > 0 constitutes an asymptoti-

cally valid level-α conditional independence test (which could then be combined with a multiple testing

procedure to perform variable selection). However, floodgate was explicitly designed to solve the harder

problem of quantifying strength of dependence, as opposed to the conditional independence problem of

34



whether any dependence exists at all. Due to the methodological constraints imposed by the more chal-

lenging nature of our problem, especially the need for data splitting, we do not expect this test derived

from floodgate to be competitive with (and hence do not compare with) the many excellent conditional

independence tests available in the literature (see, e.g., Candès et al. (2018a); Huang & Janson (2020);

Berrett et al. (2020); Liu et al. (2021); Barber & Janson (2020); Tansey et al. (2022); Fukumizu et al.

(2008); Zhang et al. (2011);Wang et al. (2015); Shah & Peters (2020); Park &Muandet (2020);

Huang et al. (2020b)).

We always take the significance level α = 0.05, and all results are averaged over 64 indepen-

dent replicates unless stated otherwise (although in most cases each plotted point is averaged over

multiple covariates per replicate as well, since we apply floodgate to each covariate in turn in each

replicate).

1.4.2 Effect of sample splitting proportion

As mentioned in Section 1.2.2, we can split a fixed sample size n into a first part of size ne for es-

timating µ! and use the remaining n − ne samples for floodgate inference via Algorithm 1. The

choice of ne represents a tradeoff between higher accuracy in estimating µ! (larger ne) and having

more samples available for inference (smaller ne).

In Figure 1.1, we vary the sample splitting proportion and plot the average half-widths of flood-

gate LCBs of non-null covariates under distributions with the linear and the nonlinear µ! described

in Section 1.4.1. Corresponding coverage plots and additional plots with different simulation pa-

rameters can be found in Appendix A.10.4. Our main takeaway from these plots is that, while the

optimal choice of splitting proportion varies between distributions and algorithms, the choice of

0.5 seems to frequently achieve a half-width close to the optimum. Acknowledging that in some cir-

cumstances a more informed choice than 0.5 can be made, we nevertheless choose 0.5 as the default
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splitting proportion throughout the rest of our simulations.

In addition to displaying the dynamics of sample splitting proportion, these plots also demon-

strate two other phenomena. First, the linear algorithms (LASSO and Ridge) dominate when µ! is

linear, and the nonlinear algorithms (SAM and Random Forest) dominate when µ! is nonlinear.

Second, Ridge has smaller half-width than LASSO for all sample splitting proportions, which can

be explained by floodgate’s invariance to (partially-)linear µ: all that matters is getting the sign of the

coefficient right, and setting a coefficient to zero guarantees a zero LCB. So the LASSO suffers from

being a sparse estimator, although in practice we may still prefer it because of the corresponding

computational savings of only having to run floodgate on a subset of covariates.

1.4.3 Effect of covariate dimension

To understand the dependence of dimension on floodgate, we perform simulations varying the

dimension. In particular, in the first panel of Figure 1.2, we vary the covariate dimension and plot

the average half-widths of floodgate LCBs of non-null covariates when µ! is linear. This setting

enables comparison with OLS because it is linear and low-dimensional, so we also include a curve

for OLS.
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The main takeaway is that floodgate’s accuracy is relatively unaffected by dimension, and al-

though for very low dimensions (where OLS is known to be essentially optimal) it is less accurate

than OLS, for a good choice of ne floodgate’s half-widths are at most about 50% larger than OLS’s

and actually narrower than OLS’s when p ≈ n/2. A similar message is found with nonlinear µ!

in the second panel of Figure 1.2, except OLS no longer applies and in this case the nonlinear al-

gorithms outperform the linear ones in floodgate. Coverage plots corresponding to Figure 1.2 and

additional plots with different simulation parameters can be found in Appendix A.10.4.

1.4.4 ComparisonwithWilliamson et al. (2020)

AlthoughWilliamson et al. (2020)’s method (which we refer to as W20b) is only valid when the

group mMSE gap of all the covariates is bounded away from zero, we can compare it with flood-

gate in that setting. We use W20b according to that paper’s instructions for ensuring validity for any

value of I (as long as the group mMSE gap for all the variables put together is bounded away from

zero), which seems most comparable to floodgate. That is, we implement the sample-split and cross-

fitted version using the default function YLPSBUVTXDUHG in the W20b authors’ R package YLPS (ver-

sion 2.1.0). Since W20b gives confidence intervals for I2/Var (Y ), we transform its inference into
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a 1 − α coverage LCB for I by taking the lower bound from its 1 − 2α confidence interval, multi-

plying it byVar (Y ), and then taking the square root. Our simulation example uses a sine function

of varying frequency for µ!. In particular, p = 2, the covariates (X,Z) ∈ R2 are i.i.d. uniformly

distributed on (−1, 1), and Y equalsA(λ) sin(λX) plus standard Gaussian noise, where λ > 0

controls the frequency andA(λ) is chosen so that I = 0.5 regardless of λ (thus ensuring the group

mMSE gap of (X,Z) is always bounded away from zero, as required byW20b). Both floodgate

andW20b must internally fit an estimate of µ!, and for both methods we use locally-constant loess

smoothing with tuning parameters selected by 5-fold cross-validation, following a different two-

dimensional simulation example fromWilliamson et al. (2019).

The solid curves in Figure 1.3 show the average LCBs of the two methods applied to the non-null

variableX as λ varies. Larger λ corresponds to less-smooth E [Y |X,Z] and hence a more challeng-

ing estimation problem (for both methods), and both methods become generally more conservative

and less accurate as λ grows (both methods achieve at or above nominal coverage throughout this

simulation; see Appendix A.10.4 for the coverage plot). Yet floodgate’s LCB provides consistently

and considerably more accurate inference over the entire range of λ. To better understand this per-

formance difference, we additionally plot as dashed curves the average of the asymptotically normal
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estimators of I each method uses for inference. We see from the plot that the two estimators have

similar bias, but the gap between the LCB and the estimator is much smaller for floodgate, reflecting

a smaller variance. This is likely due to the form ofW20b’s estimator, which is the difference of two

asymptotically normal test statistics, one computed on each half of the split data. Heuristically, one

would expect this to lead to higher variance than an estimator computed on (and hence whose vari-

ance comes only from) one half of the data, like floodgate’s. This general picture is reinforced by a

higher-dimensional simulation given in Appendix A.10.4.

1.4.5 Robustness

In order to study the robustness of floodgate to misspecification of PX|Z , we consider a scenario we

expect to arise in practice: a data analyst does not know PX|Z exactly, so instead they estimate it us-

ing the data they have, and then treat the estimate as the “known” PX|Z and proceed with floodgate.

Note that if the analyst splits the data and uses the same subset for estimating µ and for estimating

PX|Z , then Theorem A.5.1 applies, but if they use all of their data to estimate PX|Z , then our the-

ory does not apply. Also note we are not studying the performance of co-sufficient floodgate in this

subsection.

Note that if the analyst splits the data and uses the same subset for estimating µ and for estimat-

ing PX|Z , then Theorem A.5.1 applies, but if they use all of their data to estimate PX|Z , then our

theory does not apply. Also note we are not studying the performance of co-sufficient floodgate in

this subsection.

Figure 1.4 varies howmuch in-sample data is used in PX|Z -estimation and shows the coverage

of floodgate for null and non-null variables in a linear setting. The estimation procedure is to fit

the graphical LASSO (GLASSO) with 3-fold cross-validation to a subset of the in-sample data

and treat PX|Z as conditionally Gaussian with covariance matrix given by the GLASSO estimate.

Since n = 1100 in all these simulations and the sample splitting proportion is 0.5, when the x-axis
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value passes 550 is when the PX|Z -estimation and inference sets start to overlap, and at the value

1100, all of the data is being used to estimate PX|Z , including the half used for inference (violating

Theorem A.5.1’s assumptions). Nevertheless, we see the coverage is consistently quite high, only

dropping slightly from that with true PX|Z for very low estimation sample sizes (i.e., very bad esti-

mates of the covariance matrix). Note that some µ-fitting algorithms in Figure 1.4 have higher-than-

nominal coverage; this is largely because the floodgate procedure will deterministically output a zero

LCB (and hence have 100% coverage) when µ(x, z) does not depend on x. This happens for many

covariates when µ is fitted via a sparse regression such as the LASSO and SAM (short for Sparse

Additive Models), but also for our version of Random Forests which we effectively sparsify for com-

putational reasons (see Appendix A.10.2 for details). Figures 1.5 and 1.6 show similar overcoverage

for the same reason.

Average half-width plots corresponding to Figure 1.4 can be found in Appendix A.10.4. In addi-

tional to the linear setting in Figure 1.4, we also observe robust empirical coverage of floodgate when

the conditional model of Y is nonlinear; see Appendix A.10.4 for details.
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1.4.6 Floodgate for theMACMgap

Here we study the empirical performance of floodgate applied to the MACM gap as described in

Section 1.3.1. Conditional on the covariates, the binary response is generated from a logistic regres-

sion with log(P(Y=1 |X,Z))
log(P(Y=−1 |X,Z)) given by the linear µ

!(X,Z) in Section 1.4.1. We set the sample size

n = 1000, and the remaining simulation parameters to be the values described in Section 1.4.1.

Figure 1.5 shows that floodgate has consistent coverage over a range of algorithms for fitting µ, and

we see the dynamics of the average half-width as the explained variance proportion in PY |X,Z in-

creases. Note thatRi in Algorithm 10 needs to in general be estimated byMonte Carlo samples (see

Appendix A.8 for details) and in Figure 1.5, we setK = 100 andM = 400whenever the Monte

Carlo version is used.

1.4.7 Co-sufficient floodgate

Finally, we study the empirical performance of co-sufficient floodgate as described in Section 1.3.2

as compared to the original floodgate method which is given full knowledge of PX|Z . We set the

covariate dimension p = 50, the number of Monte Carlo samplesK = 100, and the amplitude
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value for nonlinear-µ! to 30. The remaining simulation parameters are set to the values described

in Section 1.4.1. Co-sufficient floodgate and the original floodgate procedure use the same working

regression function, fitted from ne = 500 samples, and use the same number of samples n − ne

for inference. The batch size n2 for co-sufficient floodgate is 300 and we vary the number of batches

n1 = (n − ne)/n2 on the x-axes. Co-sufficient floodgate is given the conditional variance of

the Gaussian distribution ofX | Z , but not its conditional mean, parameterized by a (p − 1)-

dimensional coefficient vector multiplyingZ . Figure 1.6 shows that co-sufficient floodgate has sat-

isfying coverage even when the number of batches is small, and has average half-width quite close

to the original floodgate procedure which is given the conditional mean ofX | Z exactly. In addi-

tional to the nonlinear setting in Figure 1.6, simulations for a linear µ! lead to similar conclusions;

see Appendix A.10.4.

1.5 Application to genomic study of platelet count

The study of genetic heritability is the study of howmuch variance in a trait can be explained by

genetics. Precise definitions vary based on modeling assumptions (Zuk et al., 2012), but the fun-

damental concept is intuitive and central to genomics; indeed the goal of genome-wide association
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studies (GWAS) is often precisely to identify single nucleotide polymorphisms (SNPs) or loci that

explain the most variance in a trait. To connect heritability with the present paper, suppose Y de-

notes a trait,X denotes a SNP or group of SNPs, andZ denotes all the remaining SNPs not in-

cluded inX . Then as can be seen in Equation (1.2.2), the mMSE gap I2 exactlymeasures the vari-

ance in Y that is attributable toX . Thinking of I2 as a sort of conditional heritability also makes it

easy to include non-genetic factors such as age inZ , since such factors may influence Y but not be

of direct interest to geneticists. Thus I2 can capture both gene-gene and gene-environment interac-

tions.

Having established I2 as a quantity of interest, we proceed to infer it for blocks of SNPs at var-

ious resolutions of the human genome by applying floodgate to a platelet GWAS from the UK

Biobank. Our analysis builds on the work of Sesia et al. (2020b), which carefully applied model-X

knockoffs to the same data to performmulti-resolution selection of important SNPs , and in doing

so require, like floodgate, a model for the SNPsX,Z and a working regression function, both of

which we reuse in our own analysis. In particular, we follow the literature on genotype/haplotype

modeling (Stephens et al., 2001; Zhang et al., 2002; Li & Stephens, 2003; Scheet & Stephens, 2006;

Sesia et al., 2019, 2020a,b) and model the SNPs as following a hiddenMarkov model, and use the

cross-validated Lasso as the algorithm to fit our working regression function µ. Although we use

a linear µ to match the existing analysis in Sesia et al. (2020b), we remind the reader that one is in

general free to use any µwith floodgate, and we hope that domain experts applying floodgate in the

future to GWAS data can tailor µ to be even more powerful. The output of the analysis in Sesia

et al. (2020b) is a so-called “Chicago plot”, which plots stacked blocks of selected SNPs at a range

of block resolutions. The height of the Chicago plot at a given location on the genome reflects the

resolution at which the SNP at that location was rejected, with a greater height corresponding to a

smaller block of SNPs being rejected. However, since the Chicago plot is derived from a pure selec-

tion method, it contains no information about the strength of the relationship between the trait and
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any of the blocks of SNPs. Floodgate enables us to construct a coloredChicago plot by computing

an LCB for each selected block of SNPs and reporting an LCB of zero (without computation) for

all unselected blocks of SNPs; see Appendix A.11 for implementation details.

In particular, Figure 1.7 is a colored version of Figure 1a of Sesia et al. (2020b), which displayed

the genomic regions on chromosome 12 that those authors found to be related to platelet count in

the UK Biobank data. Our colored figure shows how informative floodgate LCBs can be over and

beyond a pure selection method, as it shows the signal is far from being spread evenly over the SNPs

selected by Sesia et al. (2020b). This information is crucial for the prioritization of selected regions,

as without color the Chicago plot does not give any indication which of the selected SNPs the data

indicates are most important (we note that the height of the tallest selected block at a SNP need not

correspond to its importance, and indeed there are many pairs of locations in the figure such that

one has a taller block in the original Chicago plot but the other has a brighter color in Figure 1.7).
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1.6 Discussion

Floodgate is a powerful and flexible framework for rigorously inferring the strength of the condi-

tional relationship between Y andX . We prove results about floodgate’s validity, accuracy, and

robustness and address a number of extensions/generalizations, but a number of questions remain

for future work and we highlight two here:

• Floodgate relies on a working regression function that is not estimated from the same data

used for inference, which usually will require data splitting. It would be desirable, both from

an accuracy standpoint and a derandomization standpoint, to remove the need for data split-

ting or at least find a way for samples in one or both splits to be recycled between regression

estimation and inference.

• The floodgate framework is applied here to the mMSE gap and the MACM gap, but more

generally it constitutes a new tool for flexible inference of nonparametric functionals, and

we expect it can find use for inferring other MOVIs. The main challenge for its application is

the identification of an appropriate floodgate functional, and it would be of interest to better

understand principles or even heuristics for finding such functionals for a givenMOVI.

Indeed we make no claim that the functionals proposed in this paper are unique for their

respective MOVIs, and there may be others that lead to better floodgate procedures.
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Abstract

To better understand the underlying structures behind massive datasets, scientists and practitioners

ask many statistical questions, such as measuring the importance of a given variable, quantifying the

interaction effects between a pair of variables, and characterizing how the conditional relationship

is away from certain shape constraints, and many others. Traditional statistical approaches often

assume parametric models, thus reducing those problems to parameter estimation and inference. In

this paper, we aim to avoid parametric constraints and answer those questions in a principled way.

We first present the mMSE gap, an interpretable model-free inferential target, and demonstrate how

it applies to a diverse range of statistical questions including nonlinearity, interactions, heterogeneity

and deviation from shape constraints. To conduct inference for the mMSE gap, we leverage the

floodgate idea to construct lower confidence bounds, which can build on any user-chosen working

regression function. To illustrate, we provide computational details of our floodgate approaches

in multiple examples. Overall, we show how floodgate is a general and useful tool for regression

inference.

Keywords. Model-free, mMSE gap, interaction, alternating projection, heterogeneity, non-linearity,

shape constraints, isotonic regression, convex regression, privacy, feature engineering, representation

learning, floodgate, model-X.

2.1 Introduction

Given a response variable Y and the covariateX ∈ Rp, scientists and practitioners seek to under-

stand the conditional relationship between Y andX through answering many statistical questions.

Variable importance inference is one of the well-studied questions. Beyond variable importance,

there are many other appealing inferential questions. In feature engineering and representation
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learning, some representation of the covariates is considered for improving the subsequent learning

tasks in terms of computation time and power performance. A natural question researchers raise is

how to measure the intrinsic predictive accuracy loss from such a representation/transformation. In

privacy analysis, people develop procedures to produce synthetic data with principled privacy guar-

antees but sacrifice a certain amount of information in data. The intrinsic predictive accuracy loss

from the privacy mechanism is a critical factor for practitioners to consider in the decision-making

of privacy analysis. ForX = (X1, X2, Z), measuring the interactions between the pairX1 and

X2 in the presence ofZ is a long-standing statistical problem. Regression with shape constraints

is broadly used in many real-world problems. When the underlying conditional relationship does

not conform to such constraints, quantifying the strength of the deviation is useful. A list of such

inferential questions would go on and on. Canonical approaches start by assuming a parametric

model, then answer such questions based on the parameter estimation and inferential results. How-

ever, such parametric assumptions can largely limit the application to datasets involving complex

structures. When parametric assumptions fail in some examples, inferential statements produced

by those methods can be invalid or inaccurate. To avoid such limitations and thus provide great

generality and flexibility, we seek to deliver model-free solutions by answering the following two

questions:

1. how to characterize a class of interpretable model-free targets?

2. how to construct valid confidence bounds for the targets without relying on certain model-

ing assumptions?

2.1.1 Our contribution

In this paper, we introduce a unified regression inference framework: we present the mMSE gap

with respect to a subset S and show how it can characterize a class of interpretable model-free tar-
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gets by varying the choice of S ; we construct confidence bounds for the mMSE gap based on the

floodgate idea. In a bit more detail, we (in Section 2.2.1) define the the mMSE gap with respect to

a subset S and introduce the general floodgate procedure for constructing asymptotic confidence

bounds (Section 2.2.2) when S is a closed linear subspace. To illustrate how floodgate can handle

diverse model-free inferential targets, we (in Section 2.3) first consider four different examples of the

closed linear subspace and describe the computation details of implementing floodgate. Then we

leverage the alternating projection algorithm to handle more complicated cases where the closed lin-

ear subspace is the direct sum of subspaces (Section 2.3.5). We also go beyond linear subspaces and

consider the mMSE gap with respect to a convex cone (Section 2.4).

2.1.2 Relatedwork

Canonical parametric methods assume the underlying distribution to follow specific models asso-

ciated with some parameters (Javanmard &Montanari, 2014a; Van de Geer et al., 2014; Zhang &

Zhang, 2014; McCullagh &Nelder, 2019). Then one can base on the estimation and inferential

results to answer general inferential questions. Such approaches have been popular among practi-

tioners and successful in many fields. However, nonlinearities, interactions and other complexities

are ubiquitous in numerous real-world problems. Parametric assumptions thus limit the applica-

tions to them.

Partially or entirely removing the model assumption about the conditional distribution of Y

givenX , semiparametric and nonparametric inference are also studied a lot. Such approaches give

rise to many mathematically reliable techniques, thus enabling us to answer statistical questions

about the properties of the distribution (Fan, 1992; Delgado, 1993; Yatchew, 1998; Wasserman,

2006). But those rigorous statistical guarantees often count on some smoothness and consistency

conditions.

Different from the approaches above, another line of work flexibly exploits modern machine
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learning algorithms, and hinges on the fitted result to the dataset at hand to answer inferential

questions about the underlying relationship (Lei et al., 2018; Fisher et al., 2019; Watson &Wright,

2019). The targets defined within such an approach are not deterministic quantities. The random-

ness originating from both the data and the choice of algorithms makes the inferential statements

unreliable and uninterpretable.

There is also a line of work taking the so-called model-X methods to conduct hypothesis tests

(Barber & Candès, 2015; Candès et al., 2018a; Barber & Janson, 2020; Liu et al., 2021) for condi-

tional independence. They do not require any particular functional form for the conditional model

for Y givenX but assume complete knowledge of (or some part of) the covariate distribution. Such

methods apply to many practical examples such as randomized experiments, fields in which domain

scientists have good prior knowledge about the covariates, or cases involving a large amount of unla-

belled data.

Recently, Zhang & Janson (2020) introduces a novel method called floodgate to infer the mMSE

hap, which is an interpretable model-free measure of variable importance. Floodgate does not rely

on any parametric assumption. It can leverage cutting-edge machine learning algorithms to produce

rigorous inferential statements about how a given covariate variable (or a group of covariates) is

important in the conditional relationship between Y andX .

Zhang & Janson (2020) only focuses on variable importance. This paper will consider multiple

statistical problems beyond variable importance, including nonlinearity, interactions, deviations

frommonotonicity/convexity constraints, and many others. Related work for each concrete prob-

lem will be reviewed and discussed separately in those specific subsections.

2.1.3 Notation

For two random variablesU and V defined on the same probability space, denote the conditional

distribution ofA | B by PU |V . Let zα denote the upper αth quantile (also called as (1 − α)th
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quantile) of the standard normal distribution. Denote [n] := {1, . . . , n}. LetL2(Ω,F , P ) be the

vector space of real-valued random variables with finite second moments, on which we define the

inner product and norm: 〈U, V 〉 = E [UV ] and ||U || =
√
E [U2] for given two random variables

U, V ∈ L2(Ω,F , P ). Given a random vectorW ∈ Rp, we define a subspace ofL2(Ω,F , P ) i.e.,

L2(W ) := L2(Ω,σ(W ), P ), where σ(W ) is the sub σ-algebra generated byX . LetPS0U be the

orthogonal projection of a random variableU onto a closed subspace S0 ∈ L2(Ω,F , P ) and it

satisfies ||U − PS0U ||2 = infV ∈S0 E
[
(U − V )2

]
. When S0 = L2(W ),PS0U = E [U |W ]. Let

S⊥ be the orthogonal complement of S . Due to the orthogonal decomposition theorem, we have

U = PSU + P⊥
S U hence writeP⊥

S = 11− PS with 11 being the identity operator.

2.2 Main Idea

2.2.1 Minimummean squared error gap

Many inferential questions about the conditional relationship between the response variable Y and

the covariatesX = (X1, · · · , Xp) ∈ Rp are essentially about how the true regression function

µ!(x) := E [Y |X = x] is far from a function class of interest. For example, the extent of non-

linearity can be characterized as discrepancies between µ! and the class of linear functions. The

importance of variableXj for some j ∈ [p] can be quantified as how far µ!(x) is from the class of

functions which do not depend on the xj coordinate. One natural way to measure the discrepancy

is to consider the minimal MSE. Notice that the conditional mean µ!(X) = E [Y |X] is the so-

lution to argminµ(X)∈L2(X) E
[
(Y − µ(X))2

]
whereL2(X) = L2(Ω,σ(W ), P ) as denoted

in Section 2.1.3. We quantify the discrepancy as howmuch the minimal MSE under no constraint

minµ(X)∈L2(X) E
[
(Y − µ(X))2

]
gets increased with µ being subject to a certain constraint. The

constraint can be represented as µ(X) ∈ S where S ∈ L2(X). To formalize the above idea, we

introduce the following definition.
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Definition 2.2.1 (Minimummean squared error gap). The minimummean squared error gap

(mMSE gap) with respect to S ∈ L2(X) is defined as

I2
S := inf

µ(X)∈S
E
[
(Y − µ(X))2

]
− inf

µ(X)∈L2(X)
E
[
(Y − µ(X))2

]
(2.2.1)

whenever all the above expectations exist.

We shall mention that I2
S with a particular choice of S reduces to a measure of variable impor-

tance, which is studied in Zhang & Janson (2020) and also called the mMSE gap; see such a con-

nection in (2.2.2). Despite the same name, Definition 2.2.1 is a general inferential target and can

characterize lots of statistical questions by varying the choice of S .

Now we pause to elaborate on the above definition. I2
S is non-negative since S ∈ L2(X)

and equals zero if and only if µ!(X) ∈ S . It can be generically interpreted as the increase in the

achievable MSE for predicting Y when enforcing a constraint on the working regression function µ

through S . Below we consider a few concrete examples of S and explain the interpretations of I2
S .

Choosing S = {µ(X) ∈ L2(X) : µ(x) = xβ}, we can view I2
S as the extent of nonlinearity

in the conditional model of Y givenX . For S = {µ(X) ∈ L2(X) : µ =
∑p

j=1 µj(xj)}, we

can use I2
S to measure µ!’s level of non-additivity. Setting S to beL2(X-j) gives another interesting

example: I2
S measures the importance of variableXj via quantifying the increase in minimumMSE

for predicting Y when we are constrained not to have access toXj . NoticeE [Y |X-j ]minimizes

minµ(X)∈L2(X-j) E
[
(Y − µ(X))2

]
as E [Y |X] does forminµ(X)∈L2(X) E

[
(Y − µ(X))2

]
,

thus giving an equivalent expression of I2
S when S = L2(X-j):

I2
S = E

[
(Y − E [Y |X-j ])

2
]
− E

[
(Y − E [Y |X]))2

]
. (2.2.2)

The above quantity is the same as the measure of variable importance studied inWilliamson et al.
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(2019); Zhang & Janson (2020); Williamson et al. (2020). Note IS also admits a concise expression

when S is a closed linear subspace: it equals the norm of the projection of µ!(X) onto the orthogo-

nal complement of S .

Lemma 2.2.2. IS with respect to a closed linear subspace S ∈ L2(X) satisfies IS = ||P⊥
S µ!(X)||.

The proof can be found in Appendix B.1.1. From now on, we will restrict S to be a closed lin-

ear subspace and consider inference for it. Such a requirement of S is satisfied in a diverse range of

examples. In Section 2.4, we also describe how to extend to the convex cone case.

2.2.2 Floodgate framework

This section describes how to conduct inference on IS . From the expression of IS in Lemma 2.2.2,

we know the mMSE gap is a nonlinear functional of µ!, which can be estimated using a working

regression function µ. Conventional approaches in statistical inference often rely on µ being closed

enough to µ! (e.g., with a sufficiently-fast geometric rate). Such requirements limit the choices of

modern regression algorithms and the use of hard-to-quantify domain knowledge. To avoid the

limitation and thus ensure flexibility, we utilize the idea of floodgate, which is first introduced in

Zhang & Janson (2020) and used for inference on the measure of variable importance, as denoted by

I (Zhang & Janson, 2020). The floodgate idea provides confidence lower bounds for I through the

following:

1. construct a functional f(µ) satisfying f(µ) ≤ I for any µ and f(µ!) = I ;

2. know how to obtain a lower confidence boundL(µ) of f(µ) for any µ.

Straightforwardly,L(µ) is also a valid lower confidence bound for I no matter the choice of the

working regression functions. µ can be fitted by black-box machine learning algorithms or derived

from qualitative domain information, as long as it is chosen in a way that is independent from the
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data used for obtaining lower confidence bounds. One way to achieve this is data-splitting, i.e., we

reserve a proportion of data to produce an estimate µ of µ! and the rest of data is used for con-

structing confidence bounds for f(µ).

Zhang & Janson (2020) proposes a choice of the floodgate functional f(µ). Assuming the

knowledge of the covariate distribution PX , Zhang & Janson (2020) constructs lower confidence

bounds for f(µ) based on the central limit theorem (CLT) and delta method. The resulting flood-

gate inferential procedure also possesses many nice properties, e.g., its accuracy is adaptive to the

MSE of the estimate µ of the true regression function; it is robust to misspecification of the model-

X assumption. Zhang & Janson (2020) also presents doubly-robust floodgate, which guarantees

inferential validity under some doubly-robustness assumptions.

To utilize the floodgate idea for inference on the mMSE gap IS , the first step is to construct the

floodgate functional. Though it is possible to mimic Zhang & Janson (2020)’s choice, we will focus

on an alternative one for ease of exposition:

f(µ) := ||Y − PSµ(X)||2 − ||Y − µ(X)||2 = 〈2Y − µ(X), µ(X)− PSµ(X)〉 . (2.2.3)

The above floodgate functional is simply an inner product and tightly satisfies the lower-bounding

property as well. Lemma 2.2.3 formalizes this result and its proof can be found in Appendix B.1.1.

Lemma 2.2.3. For any µ such that f(µ) exists, f(µ) ≤ I2
S , with equality when µ = µ!.

Assume for now, we can compute the projectionPS , then straightforwardly we can derive confi-

dence bounds for f(µ) via the floodgate procedure in Algorithm 2. The coverage validity ofLαn(µ)

holds as a result of Lemma 2.2.3 and the CLT, as stated in the following theorem:

Theorem 2.2.4 (Validity). For any given working regression function µ : Rp → R and i.i.d. data

{(Yi, Xi)}ni=1, if E[Y 4], E[µ4(X)] <∞, thenLαn(µ) from Algorithm 2 satisfies P (Lαn(µ) ≤ f(µ)) ≥
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Algorithm 2 Floodgate for IS

Input: Data {(Yi, Xi)}ni=1,PS , a working regression function µ : Rp → R, and a confi-
dence level α ∈ (0, 1).
ComputeRi = 〈2Yi − µ(Xi), µ(Xi)− PSµ(Xi)〉 for each i ∈ [n], and its sample
mean R̄ and sample standard deviation s.

Output: Lower confidence bound Lαn(µ) = max
{
R̄− zαs√

n , 0
}
.

1− α, which combined with Lemma 2.2.3 immediately establishes

lim inf
n→∞

P
(
Lαn(µ) ≤ I2

S
)
≥ 1− α.

The proof can be found in Appendix B.1.1. The above 4-th moment conditions are required

since f(µ) is an inner product of the random variables 2Y − µ(X) and µ(X)− PSµ(X).

From the expression of f(µ), we know the central part of implementing Algorithm 2 is the eval-

uation ofPS for a given choice of S . Ideally, we would like to derive a closed-form expression of

PSµ for any µ. Then we can directly computeRi in Algorithm 2. This option is only possible in

some special cases. A more general strategy is to draw null samples to construct i.i.d. unbiased (or

asymptotically unbiased) estimates of f(µ). In this situation, the CLT argument still holds and thus

guarantees asymptotic validity as in Theorem 2.2.4. When the above solutions are not tractable, we

resort to least squares estimators for approximation. We shall mention that the strategies for all the

examples in this paper fall into the above three categories.

The deterministic lower bounding property in Lemma 2.2.3 frees us from assumptions about

µ. Therefore, the requirement for implementing floodgate is only in the part of constructingL(µ)

for f(µ). In this paper, we take a model-X approach to obtain lower confidence bounds, that is,

we assume knowledge about the covariate distribution PX . Such a model-X assumption is some-

times reasonable and has been assumed in many previous work (Barber & Candès, 2015; Candès

et al., 2018a; Barber & Janson, 2020; Zhang & Janson, 2020; Liu et al., 2021). We shall emphasize
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that the floodgate idea is not tied to a particular set of assumptions. For example, Zhang & Janson

(2020) presents doubly-robust floodgate for inference on variable importance. Though in principle

we can discuss different sets of assumptions for running floodgate, this paper will still focus on the

model-X approach for ease of presentation. Howmuch knowledge about the covariate distribu-

tion is required depends on the choice of S , and in some cases, running floodgate requires no such

assumptions.

2.3 Different examples of subspaces

As we have presented the general framework for inferring a class of nonparametric targets, let us in-

vestigate a few concrete examples. This section will consider some choices of S , which are closed

linear subspaces. For those examples, we will interpret Definition 2.2.1 and elaborate on the compu-

tational details of Algorithm 2.

2.3.1 Predictive power loss from feature transformations

The mMSE gap applies to context of variable importance, with the closed linear subspace S chosen

as the S = {µ(X) ∈ L2(X) : µ(X) = λ(X-j), for any λ : Rp−1 → R} for some variableXj ,

thus define a measure ofXj ’s importance. We can also interpret the mMSE gap differently: it quan-

tifies the intrinsic predictive accuracy loss after transforming the original covariate into a particular

low-dimensional space. Such a transformation is only a special case in feature engineering and repre-

sentation learning where people seek to transform the predictors (represent the data) to help super-

vised learning algorithms better uncover the underlying relationships, thus improving performance

(Kuhn & Johnson, 2019). Researchers have been developing techniques that automatically learn the

representations from data and eventually contribute to the remarkable success of machine learning

(Bengio et al., 2013; Chen et al., 2020). With such a boom in the representation learning commu-
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nity, it is important to evaluate the quality of those transformations/representations (Whitney et al.,

2020). Existing methods focus on certain “probe architectures” (Alain & Bengio, 2016; Blier &

Ollivier, 2018; Bachman et al., 2019; Henaff, 2020; Whitney et al., 2020): specifying a fixed learn-

ing algorithm such as neural networks, they train a model on the given representation of data then

evaluate the validation accuracy of the fitted model. Such strategies largely depend on the choice

(and architecture) of the learning algorithm. Hence, it can not capture the intrinsic properties of the

transformation and might lead to misleading conclusions about the quality of the representation. In

this section, we take a different approach and propose a measure using the mMSE gap framework.

Specifically, for a given transformation t : x ∈ Rp → t(x) ∈ Rr, we define the linear subspace S as

S = {µ(X) ∈ L2(X) : µ(X) = λ(t(X)), for any λ : Rr → R}. (2.3.1)

and use IS (in Definition 2.2.1) to measure the quality of the transformation t. As we can see,

IS measures the increase in the minimumMSE for predicting Y when the covariatesX are trans-

formed according to t. It is a population quantity and only depends on the joint distribution over

(Y,X) and the transformation function t, thus provides an intrinsic characterization of the quality

of the representation. The remaining question is how to carry out Algorithm 2 for such a S . We

havePSµ(X) = E [µ(X) | t(X)] by noticing that S in (2.3.1) is exactlyL2(F ,σ(t(X)), P ). This

result is formalized in the following lemma and its proof can be found in Appendix B.1.2.

Lemma 2.3.1. For S = {µ(X) ∈ L2(X) : µ(X) = λ(t(X)), for any λ : Rr → R},

PSµ(X) = E [µ(X) | t(X)].

Analogously to the application of floodgate to variable importance (Zhang & Janson, 2020), we

can estimate E [µ(X) | t(X)] via Monte Carlo sampling conditional on t(X). Define a null sample
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X̃ as a random variable satisfying

X̃ | t(X)
d∼ X | t(X), X̃ ⊥⊥ (X,Y ) | t(X). (2.3.2)

Then we can use X̃ to unbiasedly estimate f(µ), as shown in the following result.

Lemma 2.3.2. E
[
(2Y − µ(X))(µ(X)− µ(X̃))

]
= f(µ).

The proof can be found in Appendix B.1.2. Note X̃ drew from the conditional distribution of

X | t(X) (denoted as PX|t(X)), conditionally independently from (Y,X), will satisfy (2.3.2).

Therefore, we obtain a general version of Algorithm 2 to produce asymptotically valid lower con-

fidence bounds via replacingRi by its Monte Carlo estimatorRK
i = (2Yi − µ(Xi))(µ(Xi) −

1
K

∑K
k=1 µ(X̃

(k)
i ))where {X̃(k)

i }Kk=1 are K (conditionally) independent copies from PX|t(X).

The problem of sampling from PX|t(X) requires a case-by-case analysis. For certainX ’s distri-

bution and transformation function t (see Appendix B.2.1 for an example whereX is multivari-

ate Gaussian and t is linear), we can take advantage of their properties to generate exact samples

from PX|t(X). In the following, we consider a more complicated example whereX is multivariate

Gaussian and the transformation function t is defined as a neural network with one hidden layer.

Note that such an example is already quite interesting: universal approximation theorems say that

any continuous function on a compact set can be approximated arbitrarily well by a neural net-

work with one hidden layer and a finite number of weights (Cybenko, 1989; Hornik et al., 1989;

Hornik, 1991; Leshno et al., 1993; Pinkus, 1999). But the nonlinearities in the transformation func-

tion tmake it difficult to sample from PX|t(X). Despite the challenge, we utilize Markov chain

Monte Carlo (MCMC) samplers as well as a modular strategy to generate approximate samples, as

described below. And we defer to future work studying more covariate distributions and transfor-

mation functions of interest to the feature engineering and representation learning communities.
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Example 2.3.3 (Neural network with one hidden layer). SupposeX ∈ Rp andX ∼ N (0,Σ).

The transformation function t : Rp → Rr is defined as: t(x) = a(W(2)a(W(1)x))where

W(1) ∈ Rr1×p,W(2) ∈ Rr2×r1 are the matrices of weights and p > r1 > r2, a : R → R is a

1-to-1 activation function, applied to each element of the input.

To simplify the notation, we assume zero bias terms in the above example. DenoteU (1) =

W(1)X,X(1) = a(W(1)X). To construct null sample X̃ ofX given t(X), we will take a modular

strategy. Since the activation functions are 1-to-1, we can immediately construct the null sample

Ũ (1) ofU (1) by setting Ũ (1) = a−1(X̃(1)) if the null sample X̃(1) ofX(1) is given. Based on such

an observation, we break the problem of sampling X̃ into the following two subproblems.

1. Given t(X) (or equivalentlyU (2) := a−1(t(X))), how to construct a null sample X̃(1) of

X(1)?

2. Given Ũ (1), how to construct a null sample X̃ ofX?

The second subproblem reduces to the example with multivariate Gaussian covariates and linear

transformation function, which can be solved by the procedure in Appendix B.2.1. Regarding

the first subproblem, we notice thatX(1) is not multivariate Gaussian and the transformation de-

fined byU (2) = W(2)X(1) is linear. The procedure in Appendix B.2.1 does not apply to such

a case. Instead, we introduce the generic MCMC sampler (Zappa et al., 2018) to handle the first

subproblem, which involves general un-normalized densities on connected manifolds in Euclidean

space defined by equality and inequality constraints. Clearly, in our first subproblem, the constraint

W(2)X(1) = U (2) (i.e.,W(2)X̃(1) = U (2)) defines a linear subspace (which is a connected man-

ifold). Note the density function ofX(1) can also be derived analytically. Therefore, the MCMC

sampling methods in Zappa et al. (2018) apply to our first subproblem. We defer the computational

details to Appendix B.2.2.
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2.3.2 Predictive power loss from privacy mechanisms

Nowadays, companies, government agencies and scientific studies collect and share data which can

be sensitive (Isaak &Hanna, 2018; Bowser et al., 2014; Horvitz &Mulligan, 2015; Yu, 2016). The

raised privacy concerns motivate recent advances (e.g., Agrawal & Srikant (2000); Sweeney (2002);

Dinur &Nissim (2003); Raghunathan et al. (2003)) in generating privatized synthetic data, among

which is Differential Privacy (Dwork et al., 2006; McSherry & Talwar, 2007; Nissim et al., 2007;

Dwork, 2008; Abadi et al., 2016), a framework to synthesize data with principled privacy guaran-

tees. Differential Privacy mechanisms protect data by adding noises/perturbations to it. Although

many works have been devoted to establishing strong privacy guarantees (Dwork & Rothblum,

2016; Bun & Steinke, 2016; Dong et al., 2019), it is crucial to understand the quality of the data

since privatized data is only valuable if still preserving curial statistical information (Arnold &Ne-

unhoeffer, 2020; Elliot & Domingo-Ferrer, 2018). In this section, we formulate such quality evalua-

tion problems by leveraging the mMSE gap framework to quantify the intrinsic prediction accuracy

loss under the privacy mechanisms that add independent perturbation variables to the original data.

Some existing works (e.g., Drechsler (2018); Snoke et al. (2018)) study the quality evaluation prob-

lems by focusing on the similarity between the synthetic data and the training data (i.e., the data

used for synthesizing privatized data). There are also methods comparing the synthetic data to the

underlying population, including quantities that measure the overall distributional similarity (e.g.,

Arnold &Neunhoeffer (2020)) and quantities that describe the loss of performance for specific

prediction or inference tasks (e.g., Chen et al. (2018); Beaulieu-Jones et al. (2019)). Unlike those

previous works, the inferential target in our approach is a population quantity that only depends

on the underlying data distribution and the privacy mechanisms. It is model-free but also carries

appealing predictive interpretations.

For the covariate random vectorX , our considered privacy mechanisms will perturb it by adding
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independent random variable δ and obtainX + δ as the synthetic data. δ may follow certain dis-

tributions such as Gaussian or Laplace distributions. First we will describe our measures of the

loss of prediction accuracy under such privacy mechanisms. Without the perturbations, we know

µ!(X) = E [Y |X] achieves the minimumMSE. After masking the original data asX + δ, we

immediately know that the MSE is minimized at E [Y |X + δ]. Therefore, we can define

E
[
(Y − E [Y |X + δ])2

]
− E

[
(Y − E [Y |X])2

]
(2.3.3)

to measure the intrinsic predictive power loss under the above perturbation privacy mechanism. To

relate (2.3.3) to the mMSE gap, we augment the covariatesX ∈ Rp to (X, δ) ∈ R2p and define

the Hilbert spaceL2(X, δ). By construction, δ are null among the augmented covariates, and thus

infµ∈L2(X) E
[
(Y − µ(X))2

]
= infµ∈L2(X,δ) E

[
(Y − µ(X, δ))2

]
. Then we notice (2.3.3) is

equivalent to the expression below

inf
µ∈L2(X+δ)

E
[
(Y − µ(X + δ))2

]
− inf

µ∈L2(X,δ)
E
[
(Y − µ(X))2

]

= inf
µ∈S

E
[
(Y − µ(X, δ))2

]
− inf

µ∈L2(X,δ)
E
[
(Y − µ(X, δ))2

]
= I2

S , (2.3.4)

where the closed linear subspace S = L2(X + δ). SinceX + δ can be viewed as a transforma-

tion of the augmented covariates (X, δ), the floodgate inference problem for (2.3.4) is reduced to

the setting studied in Section 2.3.1. Thus it suffices to construct null samples of (X, δ) (i.e., draw

independent copies from the conditional distribution of (X, δ) | (X + δ). We still assumeX to be

multivariate Gaussian. If the perturbation δ is Gaussian and independent fromX , then (X, δ) is a

multivariate Gaussian random vector. We can utilize the procedures in Appendix B.2.1 to generate

null samples of (X, δ). For the case where δ is Laplace, we describe the connection between the null

sampling problem here to a standard Bayesian computation problem. Specifically, we can think of
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X as the linear coefficients with Gaussian priors and δ as the Laplacian noise in the Bayesian lin-

ear regression model with identity covariates I: v = IX + δ. Then generating the null samples

is equivalent to a well-studied Bayesian computation problem in the literature Hoff (2009); Kr-

uschke (2010); Choi &Hobert (2013); Jung &Hobert (2014); Nevo & Ritov (2016); Yang & Yuan

(2017): sampling from the posterior distribution of the linear coefficients given the response vari-

able v = X + δ.

In this section and Section 2.3.1, the definition of S involves certain transformation to the co-

variates. Next, we will consider other different types of linear subspaces.

2.3.3 Nonlinearity

Statisticians have been devoted to methodological and theoretical research for statistical estimation

and inference under linear assumptions. Practitioners commonly use linear regression models when

investigating certain conditional relationships. Such a simplification has wide applicability and no-

table advantages in many real-world problems. However, there also exist a lot of cases where linear

assumptions may fail to capture the underlying conditional structures. In those cases, methods im-

posing the linearity constraints risk sacrificing statistical accuracy. To mitigate the risk and thus help

practitioners’ decision-making in modeling, we study a critical problem: measuring the nonlinear-

ity and conducting inference on the measures. On the other hand, understanding how the regres-

sion functions are far from linear is by itself a long-standing question in mathematics, statistics, and

other scientific fields (Beale, 1960; Williams, 1962; Hamilton et al., 1982; Karolczak &Mickiewicz,

1995).

There are some existing works including Allgöwer (1995); Li (2012) that focus on the nonlin-

earity of a process/system, curvature-based nonlinearity measures (Guay et al., 1996; Bates &Watts,

1980), Guttman &Meeter (1965); Kotchoni (2018) that consider measuring nonlinearity in the re-

gression model, and references therein. This section focuses on a regression context where we study
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a nonlinearity measure of the true regression function of Y givenX . Specifically, we quantify non-

linearity via the mMSE gap and conduct inference via floodgate. A key observation is that linear

assumptions can be expressed as linear subspace constraints on the regression function. We define

S = {µ(X) ∈ L2(X) : µ(X) = Xβ, for some β ∈ Rp}

which a closed linear subspace ofL2(X). The mMSE gap with such a S is an interpretable nonlin-

earity measure of µ! as it quantifies the increase in the achievable MSE for predicting Y when en-

forcing linear regression models for Y givenX . In terms of how to do inference, we first notice that

PSµ(X) admits a closed form expression thatPSµ(X) = argminν(X)∈S ||µ(X) − ν(X)|| =

X
(
E
[
XX)])−1 E [Xµ(X)]. This is equivalent toXβ!, with β! being the projection parameter

studied in Rinaldo et al. (2019b). In order to run floodgate in Algorithm 2, we need to compute

E [Xµ(X)] and
(
E
[
XX)])−1. Given (only) separate covariate data, we can straightforwardly

obtain the Monte Carlo estimates of E [Xµ(X)] for any µ. Regarding
(
E
[
XX)])−1, we can

estimate it via existing precision matrix estimation methods in the literature (Yuan & Lin, 2007;

Banerjee et al., 2008; Friedman et al., 2008; Lam& Fan, 2009; Cai et al., 2011; Zhou et al., 2011; Liu

& Luo, 2015; Liu &Wang, 2017).

2.3.4 Deviation from equality of regression functions for multiple outcomes

When different response variables share the same covariatesX , understanding the similarity be-

tween the conditional structures of responses given covariates can be a natural question. For exam-

ple, ride-hailing platforms conduct switchback experiments (Kastelman &Ramesh, 2018; Tang &

Huang, 2019; Bojinov et al., 2020; Huang et al., 2020a) to test a new pricing algorithm’s effective-

ness to get around network effects. They randomize based on time-region units. In this example,

the geographical characteristics are the covariatesX and the numbers of successful deliveries at dif-
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ferent time windows are the response variables (e.g., Y1, Y2 when considering two time windows).

Such time-region randomization implicitly assumes that the conditional relationships between the

response variables and the covariates are the same across different time units. Testing whether such

an assumption is true or inferring the extent of the violation of the equality assumption is useful for

practitioners. In the following, we describe how floodgate can handle such problems. Given two re-

sponse variables Y1, Y2 at two different time units, we seek to infer the extent of inequality between

their true regression functions µ!1, µ!2. To formalize the problem, we introduce new notations. Let

L2
2(Ω,F , P ) denote the vector space of real-valued 2-dimensional random vectors with finite sec-

ond moments, on which we can similarly define inner product and norm. For the random vector

X ∈ Rp, we defineL2
2(Ω,F , P )’s subspaceL2

2(X) := L2
2(Ω,σ(X), P ). Choosing the closed

linear subspace S to be

S = {(µ1(X), µ2(X)) ∈ L2
2(X) : µ1(X) = µ2(X)}, (2.3.5)

we measure the extent of inequality between µ!1 and µ!2 using the mMSE gap I2
S

I2
S = inf

(µ1(X),µ2(X))∈S
E












Y1 − µ1(X)

Y2 − µ2(X)









2

− inf
(µ1(X),µ2(X))∈L2

2(X)
E












Y1 − µ1(X)

Y2 − µ2(X)









2

 .

For the above S , we can derive the closed form expression ofPS :

PS




µ1(X)

µ2(X)



 =




µ1(X)+µ2(X)

2

µ1(X)+µ2(X)
2



 .

Then we can immediately derive the floodgate functional and run the inference procedure in Algori-

htm 2. As alluded earlier to in Section 2.2.2, conducting floodgate inference for the problem in this

section does not require any knowledge about the covariate distribution PX .
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2.3.5 Direct sum of linear subspaces

In the above examples, the linear subspace S admits a relatively simple expression. There are also

examples where S is the direct sum of linear subspaces or the intersection of linear subspaces. To

run floodgate for those examples, we present a new technique called alternating floodgate, and give

the computation details for the example of interactions.

Suppose S1 and S2 are two different closed linear subspaces. Their direct sum S = S1
⊕

S2 is

still a closed linear subspace. In this section, we study the mMSE gap with respect to such a S . Note

there are also some examples where S is the direct sum of finite number of closed linear subspaces

(e.g., Example 2.3.6). For ease of exposition, we mainly focus on the case of S = S1
⊕

S2. Below

we give some concrete examples of S and describe how the corresponding I2
S are interpretable and

interesting inferential targets.

Example 2.3.4 (Interactions). For the covariate vectorX = (X1, X2, Z), we are interested in

the interactions betweenX1 andX2 in the presence ofZ . We consider S = S1
⊕

S2 with S1 =

L2(X1, Z),S2 = L2(X2, Z).

We rewrite S = {µ(X) ∈ L2(X) : µ(x1, x2, z) = µ1(x1, z) + µ2(x2, z), for some µ1, µ2},

which is a class of additive functions (in (x1, z) and (x2, z)). Clearly, I2
S is a model-free measure

of interactions since it quantifies the intrinsic predictive power loss when restricting the regression

function to be additive in the two covariatesX1 andX2.

Example 2.3.5 (Heterogeneity). For the covariate vectorX = (A,Z), we are interested in the

heterogeneity ofA’s effects. We consider S = S1
⊕

S2 with S1 = {µ(X) ∈ L2(X) : µ(a, z) =

aβ for some β ∈ R} and S2 = L2(Z).

We rewrite S = {µ(X) ∈ L2(X) : µ(a, z) = aβ + g(z), for some β ∈ R and g}which

is a class of partial linear functions (in a). Then I2
S is a model-free measure of heterogeneity since it
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quantifies the intrinsic predictive power loss when restricting the regression function to be free of

A’s heterogeneous effects.

Example 2.3.6 (Non-additivity). For the covariate vectorX = (X1, X2, · · · , Xp), we are inter-

ested in the non-additivity of the true regression function E [Y |X]. We consider S =
⊕p

j=1 Sj

with Sj = L2(Xj).

We rewrite S = {µ(X) ∈ L2(X) : µ(x) =
∑p

j µj(xj), for some µj}which is a class of

additive functions. I2
S can be viewed as a model-free measure of non-additivity since it quantifies

the intrinsic predictive power loss when restricting the regression function to be additive in all the

covariates.

Recall that f(µ) = 〈2Y − µ(X), µ(X)− PSµ(X)〉 = 〈2Y − µ(X),PS⊥µ(X)〉. To

conduct floodgate inference, we need to evaluate the projectionPS (orPS⊥). Notice that the or-

thogonal complement of S = S1
⊕

S2 is the intersection of two closed linear subspaces, i.e.,

S⊥ = S⊥
1 ∩ S⊥

2 . Inspired by this observation, we utilize the idea of alternative projection to eval-

uatePS⊥). First, we introduce a key result about alternating projection, von Neumann’s theorem

(Von Neumann, 1949).

Theorem 2.3.7 (von Neumann). LetP1,P2 be the orthogonal projections onto closed subspaces

M1,M2 of a Hilbert spaceH. LetPM be the orthogonal projection onto the intersectionM =

M1 ∩M2. IfP12 = P2P1, thenPN
12 → PM asN → ∞. That is, for each h ∈ H, ||PN

12(h) −

PM(h)||→ 0 asN →∞.

There is also some classical work studying the convergence rate in von Neumann’s theorem

(Aronszajn, 1950; Kayalar &Weinert, 1988). For example, Aronszajn (1950) established that

||PN
12(h)− PM(h)|| ≤ ρ2N−1||h||, for all h ∈ H, (2.3.6)
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where ρ is the cosine of the “angle” betweenM1 andM2, formally ρ = sup{〈v1, v2〉 : vj ∈

Mj ∩ (M)⊥, ||vj || ≤ 1, j = 1, 2}. Note ρ ≤ 1 by definition and ρ < 1 in most cases except some

pathological ones. Von Neumann’s theorem says we can utilize alternating projections to handle

PM1∩M2 as long as we know how to evaluate the projections ontoM1,M2. Back to our context,

we letM1 = S⊥
1 ,M2 = S⊥

2 and consider the alternating projectionP12 = PS⊥
2
PS⊥

1
=

(11− PS2)(11− PS1), where 11 is the identity operator. The strategy is spelled out in the alternating

floodgate algorithm (Algorithm 3) with asymptotic coverage validity established in Theorem 2.3.8.

Algorithm 3 Alternating floodgate
Input: Data {(Yi, Xi)}ni=1,PS1 ,PS2 , number of alternating stepsN , a working regression

function µ : Rp → R, and a confidence level α ∈ (0, 1).
ComputeRi = (2Yi − µ(Xi))PN

12µ(Xi) for each i ∈ [n], and its sample mean R̄ and
sample standard deviation s.

Output: Lower confidence bound Lαn(µ,N) = max
{
R̄− zαs√

n , 0
}
.

Theorem 2.3.8 (Validity of alternating floodgate). For any given working regression function µ :

Rp → R and i.i.d. data {(Yi, Xi)}ni=1, if E[Y 4], E[µ4(X)] < ∞, and for a given tolerance level

ε > 0, thenLαn(µ,N) from Algorithm 3 with 2N−1 ≥ log(ε/3c0)
log(ρ) where c0 = max{E

[
Y 2
]
,E
[
µ2(X)

]
},

satisfies

lim inf
n→∞

P
(
Lαn(µ,N) ≤ I2

S + ε
)
≥ 1− α. (2.3.7)

The proof can be found in Appendix B.1.3. In Algorithm 3, the key is to evaluatePN
12 where

P12 = (11 − PS2)(11 − PS1), but it is unclear how to directly evaluate the alternating projection

given some iteration numberN . To this end, we figure out a nice expanded expression ofPN
12.
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Lemma 2.3.9. Recursively defineA(s,P1,P0), A(s− 1,P0,P0) through

A(s,P1,P0) = P1A(s− 1,P0,P0), A(s− 1,P0,P0) = P0A(s− 2,P1,P0), s > 2,

A(3,P0,P0) = P0P1P0, A(2,P1,P0) = P1P0, A(1,P0,P0) = P0,

then we havePN
12 admits the following expression

PN
12 = 11+

N−1∑

s=1

(A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1))

−
N∑

s=1

(A(2s− 1,PS1 ,PS1) +A(2s− 1,PS2 ,PS2)) + (PS2PS1)
N .

(2.3.8)

The proof of Lemma 2.3.9 can be found in Appendix B.1.3. Now the problem is reduced to

evaluating each single term in (2.3.8), whose solution depends on the specific choices of S1,S2.

Computational details for interactions

This section describes how to apply alternating floodgate to infer the interactions (Example 2.3.4).

For general working regression function µ and covariate distribution PX , instead of trying to

analytically computeRi = (2Yi − µ(Xi))PN
12µ(Xi), we will generate null samples to con-

struct i.i.d. unbiased estimates of E [Ri]. We shall note that Theorem 2.3.8 remains true when

Ri in Algorithm 3 gets replaced with such i.i.d. unbiased estimates of E [Ri]. This is because the

i.i.d. estimates are unbiased and the CLT argument can still be applied. Therefore, now it suf-

fices to figure out the computation details of generating null samples. Due to the expansion in

Lemma 2.3.9, it remains to consider E [(2Y − µ(X))A(·, ·, ·)µ(X)] for eachA(·, ·, ·) term in

(2.3.8). Recall Example 2.3.4 says S1 = L2(X1, Z),S2 = L2(X2, Z). It is immediate that

PS1µ(X) = E [µ(X) |X2, Z] ,PS2µ(X) = E [µ(X) |X1, Z]. Notice that if we independently
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sample X̃1 from PX1|X2,Z and X̃2 from PX2|X1,Z , we have

E
[
(2Y − µ(X))µ(X̃1, X2, Z)

]
= E [(2Y − µ(X))A(1,PS1 ,PS1)µ(X)] ,

E
[
(2Y − µ(X))µ(X1, X̃2, Z)

]
= E [(2Y − µ(X))A(1,PS2 ,PS2)µ(X)] .

To estimate E [(2Y − µ(X))A(·, ·, ·)µ(X)] for generalA(·, ·, ·), we construct null samples via

the following two algorithms. A graphical demonstration of Algorithms 4 and 5 is given in Figure

Algorithm 4 Alternating Sampler

Input: (X1, X2, Z) (and denote X̃(1,0)
1 = X1, X̃

(1,0)
2 = X2), number of alternating steps

N .
for t from 1 toN do

Sample X̃(1,t)
1 conditional on (X̃(1,t−1)

2 , Z).
Sample X̃(1,t)

2 conditional on (X̃(1,t)
1 , Z).

end for
Output: {X̃(1,t)

1 , X̃(1,t)
2 }Nt=1.

Algorithm 5 Alternating Sampler

Input: (X1, X2, Z) (and denote X̃(2,0)
1 = X1, X̃

(2,0)
2 = X2), number of alternating steps

N .
for t from 1 toN do

Sample X̃(2,t)
2 conditional on (X̃(2,t−1)

1 , Z).
Sample X̃(2,t)

1 conditional on (X̃(2,t)
2 , Z).

end for
Output: {X̃(2,t)

1 , X̃(2,t)
2 }Nt=1.

2.1, from which we can see the analogy to the Gibbs sampling algorithm. Such a connection is not

a coincidence: the Gibbs sampling algorithm has been regarded as alternating projections; see Amit

(1996); Diaconis et al. (2010). Those null samples {X̃(1,t)
1 , X̃(1,t)

2 }Nt=1, {X̃
(2,t)
1 , X̃(2,t)

2 }Nt=1 from

Algorithms 4 and 5 can be used to construct unbiased estimators of E [(2Y − µ(X))A(·, ·, ·)µ(X)]
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for generalA(·, ·, ·) defined in (2.3.8), as formalized in Lemma 2.3.10.

Lemma 2.3.10. The null samples constructed from Algorithm 4 and 5 satisfy the following,

E
[
(2Y − µ(X))µ(X̃(1,t)

1 , X̃(1,t)
2 , Z)

]
= E [(2Y − µ(X))A(2t,PS2 ,PS1)µ(X)] ,

E
[
(2Y − µ(X))µ(X̃(1,t)

1 , X̃(1,t−1)
2 , Z)

]
= E [(2Y − µ(X))A(2t− 1,PS2 ,PS2)µ(X)] ,

E
[
(2Y − µ(X))µ(X̃(2,t)

1 , X̃(2,t)
2 , Z)

]
= E [(2Y − µ(X))A(2t,PS1 ,PS2)µ(X)] ,

E
[
(2Y − µ(X))µ(X̃(2,t−1)

1 , X̃(2,t)
2 , Z)

]
= E [(2Y − µ(X))A(2t− 1,PS1 ,PS1)µ(X)] .

(2.3.9)

The proof of Lemma 2.3.10 can be found in Appendix B.1.3. Algorithms 4 and 5 enable us to

implement the alternating projection idea, i.e., unbiasedly estimate
〈
2Y − µ(X),PN

12µ(X)
〉
.

For simplicity, we only proceed with one chain in Algorithm 4 (also in Algorithm 5), which can

be clearly seen from Figure 2.1. In practice, we should (conditionally) independently runK chains

to generate null samples and thus construct the Monte Carlo estimate of
〈
2Y − µ(X),PN

12µ(X)
〉
.

Specifically, we initialize X̃(2,0,k)
1 = X1, X̃

(2,0,k)
2 = X2 for all k ∈ [K]. Then in each alternating

step of Algorithm 4, we sample X̃(1,t,k)
1 conditional on (X̃(1,t−1,k)

2 , Z), independently for each

k ∈ [K] and sample X̃(1,t,k)
2 conditional on (X̃(1,t,k)

1 , Z), independently for each k ∈ [K]. Simi-

larly runningK chains for Algorithm 5 will produce X̃(2,t,k)
1 , X̃(2,t,k)

1 in each alternating step. For

completeness, the whole procedures are given in Appendix B.2.4. Now we describe how to compute
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Ri in Algorithm 3 such that E [Ri] =
〈
2Y − µ(X),PN

12µ(X)
〉
based on the null samples. For

notation simplicity, we drop all the i subscripts and present the Monte Carlo estimate as

R = (2Y − µ(X))
(
µ(X1, X2, Z) +

1

K

K∑

k=1

µ(X̃(1,N,k)
1 , X̃(1,N,k)

2 , Z)

+
1

K

K∑

k=1

N−1∑

s=1

(
µ(X̃(1,s,k)

1 , X̃(1,s,k)
2 , Z) + µ(X̃(2,s,k)

1 , X̃(2,s,k)
2 , Z)

)

− 1

K

K∑

k=1

N∑

s=1

(
µ(X̃(1,s,k)

1 , X̃(1,s−1,k)
2 , Z) + µ(X̃(2,s−1,k)

1 , X̃(2,s,k)
2 , Z)

))
.

For general µ and covariate distribution PX , Lemmas 2.3.10 and 2.3.9 enable us to obtain i.i.d.

unbiased estimates of
〈
2Y − µ(X),PN

12µ(X)
〉
, which converges to the floodgate functional

f(µ) = 〈2Y − µ(X),PS⊥µ(X)〉 as the number of alternating stepsN goes to∞. We shall

mention in some special cases, the termPS⊥µ(X) admits an analytical expression and it suffices to

only run one alternating step in Algorithm 3.

Lemma 2.3.11. IfX1 ⊥⊥ X2 | Z and µ(X) = µ1(X1, Z)µ2(X2, Z), we have

PS⊥µ(X) = (µ1(X1, Z)− E [µ1(X1, Z) |Z]) (µ2(X2, Z)− E [µ2(X2, Z) |Z]) . (2.3.10)

When µ1(X2, Z) = X1, µ2(X2, Z) = X2, simplyPS⊥µ(X) = (X1 − E [X1 |Z])(X2 −

E [X2 |Z]).

The proof of Lemma 2.3.11 can be found in Appendix B.1.3. Note (2.3.10) can be written as

PS⊥µ(X) = (11 − A(1,PS1 ,PS1) − A(1,PS2 ,PS2) + PS2PS1)µ(X), which equalsPN
12µ(X)

withN = 1. Comparing this equation with (2.3.8), we know that under the conditionX1 ⊥⊥ X2 |

Z and µ(X) = µ1(X1, Z)µ2(X2, Z), the sampling procedures (Algorithms 4 and 5) only need

to iterate one step. For illustration purposes, we describe a concrete example such that the condition
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holds: X1 andX2 do not have a direct edge on the associated graphical model ofX and the working

regression function µ is fitted from linear models with conventional interaction terms.

2.4 Extension from subspaces to convex cones

In the previous sections, we apply floodgate to the mMSE gap with S being a closed linear sub-

space. In the current section, we extend our framework by allowing S to be a closed convex cone

G and thus focusing on its associated inferential target I2
G := infµ∈G E

[
(Y − µ(X))2

]
−

infµ∈L2(X) E
[
(Y − µ(X))2

]
. Since every closed convex set in a Hilbert space is a Chebyshev set,

infµ∈G E
[
(Y − µ(X))2

]
admits a unique minimizer, which will be denoted byPGY . We can

rewrite I2
G = ||µ!(X)− PGµ!(X)||2. Similarly as in Section 2.2, the floodgate functional for IG is

chosen as

f(µ) := 〈2Y − µ(X), µ(X)− PGµ(X)〉

for any (nonrandom) function µ : Rp → R and by convention we define 0/0 = 0. Using a

property of the convex cone, we prove the above floodgate functional tightly satisfies the lower-

bounding property as well.

Lemma 2.4.1. For any µ such that f(µ) exists, f(µ) ≤ I2
G , with equality when µ = µ!.

The proof can be found in Appendix B.1.4. Given Lemma 2.4.1 holds, we can similarly derive

confidence bounds as in Algorithm 2 withPS replaced byPG . Now we pause to give a few examples

of G and elaborate on how the mMSE gap with respect to G can define interesting and interpretable

inferential targets.

Example 2.4.2 (Maximum and minimum constraints). For two given constant valuesCmax, Cmin,

we define Gmax := {µ(X)− Cmax : µ(X) ∈ L2(X), µ ≤ Cmax} and Gmin := {µ(X)− Cmin :

µ(X) ∈ L2(X), µ ≥ Cmin}.
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In this example, we are essentially considering function classes under certain maximum/minimum

constraints. Note in the above definitions, we subtract the maximum/minimum bound values from

µ(X) to ensure Gmax,Gmin satisfy the requirement of convex cones. Accordingly, we replace Y

by Y − Cmax (or Y − Cmin) in the definitions of IGmax (or IGmin ). Then we see the mMSE gap

naturally measures how the true regression function µ! deviates from the maximum and minimum

constraints.

Example 2.4.3 (Non-negative least squares). Let G = {µ(X) ∈ L2(X) : µ(X) = Xβ, for some β ≥

0}.

Non-negative least squares (NNLS) fit linear models for Y givenX but with non-negative con-

straints on the linear coefficients β. Non-negative constraints and NNLSmethods have been ap-

plied in many fields such as acoustics (Lin et al., 2004), chemometrics (Zhang et al., 2014), eco-

nomics (Lee & Pitt, 1986) and proteomics (Slawski et al., 2014). Our mMSE gap IG measures the

deviation from such constraints by quantifying the increase in the achievable MSE for predicting Y

when enforcing NNLS models.

Example 2.4.4 (Monotonicity constraints/isotonic regression). Consider G = {µ(X) ∈ L2(X) :

µ(x1, · · · , xp) ≤ µ(z1, · · · , zp)when xj ≤ zj , ∀j ∈ [p]}.

Monotonicity naturally defines a function class which is a convex cone. IG with the above G

quantifies the deviation of the true regression function from the class of monotone functions via

loss in predictive power. Isotonic regression enforcing the monotonicity constraints is one of the

simplest form of shape-constrained regression. It has been studied a lot in the literature (Barlow &

Brunk, 1972; Brunk et al., 1972; Zhang, 2002; Chatterjee et al., 2015; Han et al., 2019; Banerjee

et al., 2019; Dai et al., 2020c) and widely applied to many real-world problems, including educa-

tion Dykstra & Robertson (1982), genetics Luss et al. (2012), protein analysis Wang et al. (2021),
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psychology Kruskal (1964) and trend analysis Neelon &Dunson (2004). When the monotonicity

assumption is not plausible, it is natural to think of quantifying the non-monotonicity.

Example 2.4.5 (Convexity constraints/convex regression). Consider G = {µ(X) ∈ L2(X) :

µ is convex.}

Convexity constraints and convex approximations occur in various problems, including demand

analysis Varian (1982), option pricing Aıt-Sahalia & Duarte (2003), and geometric programming

Boyd et al. (2007). Researchers also devote efforts to such problems (Seijo & Sen, 2011; Lim &

Glynn, 2012; Hannah &Dunson, 2013; Guntuboyina & Sen, 2015; Mazumder et al., 2019). On

the other hand, quantifying the extent of non-convexity is interesting and useful. Note that the class

of convex function is a convex cone since non-negative weighted sums preserve convexity. There-

fore, the mMSE gap with the above G measures non-convexity as the intrinsic prediction accuracy

loss under convexity constraints.

In addition to the above choices of G, many other convex cone examples are studied in the liter-

ature; see, e.g., Guntuboyina et al. (2018); Wei et al. (2019). In the following, we will focus on two

particular shape constraints, i.e., provide the computational details of floodgate on IG with respect

to the convex cones defined in Examples 2.4.4 and 2.4.5.

2.4.1 Application to monotonicity and convexity constraints

There are existing work considering hypothesis testing problems on shape constraints especially

monotonicity and convexity constraints: early works Bowman et al. (1998); Gijbels et al. (2000);

Hall &Heckman (2000) study the monotonicity testing problem; Chetverikov (2019) develops

a nonparametric framework for testing monotonicity in regression; Meyer (2003) provides a test

for simple linear regression models versus convex alternatives; Sen &Meyer (2017) studies simi-

lar problems but in a multivariate sense and proposes a likelihood ratio hypothesis test for a linear
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model versus a convex or concave alternative; Wei et al. (2019) considers hypothesis testing within

the Gaussian sequence model in which the null and alternative are specified by a pair of closed, con-

vex cones such as the non-negative orthant cone, the monotone cone and the ray cone. Unlike the

literature, we seek to measure the deviations from the shape constraints and conduct inference on

those measures. As mentioned previously, the mMSE gap IG with respect to G in Examples 2.4.4

and 2.4.5 are appealing interpretable measures of deviation frommonotonicity and convexity con-

straints. In the following, we show how to use floodgate to conduct inference on IG .

The key is to evaluate the projection onto the convex cone G. Given a working regression func-

tion µ, computing the projectionPG is equivalent to solving

argmin
g(X)∈G

||µ− g|| = argmin
g(X)∈G

E
[
(µ(X)− g(X))2

]

for some G defined by the shape constraints. The above problem (i.e., least squares estimation in

shape-restricted regression) has been studied a lot in the literature; see e.g., Guntuboyina & Sen

(2015); Chatterjee et al. (2015); Guntuboyina et al. (2018); Fang & Guntuboyina (2019); Lim et al.

(2020); Kur et al. (2020). Therefore, we can leverage existing least squares estimation algorithms to

computePGµ(X). The full details of running floodgate is spell out in Algorithm 6.

Algorithm 6 Floodgate for shape constraints
Input: Data {(Yi, Xi)}ni=1, a working regression function µ : Rp → R, separate co-

variate dataset {X̃m}Nm=1, G defined by monotonicity or convexity constraints, and a
confidence level α ∈ (0, 1).

Let Ỹm = µ(X̃m) and compute gN = argming∈G
1
N

∑N
m=1

(
Ỹm − µ(X̃m)

)2
.

ComputeRi = (2Yi−µ(Xi))
(
µ(Xi)− gN(Xi)

)
for each i ∈ [n], and its sample mean

R̄ and sample standard deviation s.
Output: Lower confidence bound Lαn(µ,N) = max

{
R̄− zαs√

n , 0
}
.

In the above algorithm, we run least squares algorithms on {X̃m}Nm=1 to estimate the projection
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of µ onto G by gN . {X̃m}Nm=1 can be some separate unlabelled dataset or covariate dataset gener-

ated by independently sampling from PX . The coverage validity of floodgate confidence bounds

depends on gN ’s accuracy of estimatingPG . We formalize this in Theorem 2.4.6.

Theorem 2.4.6. For any given working regression function µ : Rp → R and i.i.d. data {(Yi, Xi)}ni=1,

if E[Y 4], E[µ4(X)] <∞, thenLαn(µ,N) from Algorithm 6 satisfies

lim inf
n→∞

P
(
Lαn(µ,N) ≤ I2

G + εN
)
≥ 1− α. (2.4.1)

where εN = 3
√
c0(E

[
(gN (X)− PGµ(X))2

]
)1/2 with c0 = max{E

[
Y 2
]
,E
[
µ2(X)

]
}.

The proof of Theorem 2.4.6 can be found in Appendix B.1.4. In the above result, εN quantifies

the accuracy of least squares estimation through the MSE term E
[
(gN (X)− PGµ(X))2

]
. There

is some existing literature studying limiting behaviors of the least squares estimators. For example,

Corollary 4.1 and Corollary 4.2 in Lim et al. (2020) derive the rate dependence of εN onN and p

for isotonic and convex regression estimators respectively under some regularity assumptions. When

the sample sizeN of separate covariate dataset {X̃m}Nm=1 is large enough, the error term εN in

(2.4.1) will vanish in general.

2.5 Discussion

Floodgate is a general and flexible inferential approach for a class of model-free targets. We apply it

to many interesting problems, including representation learning, privacy analysis, nonlinearity, in-

teractions, heterogeneity, and shape constraints. But there are some remaining questions for future

study:

• In this paper, we can handle the mMSE gap with respect to a closed linear subspace (and

extend to the convex cone case). The current floodgate framework relies on the properties
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of the Hilbert space and $2 norm. It would be desirable to extend to more general situa-

tions where we can go beyond Hilbert spaces and infer model-free targets involving different

norms or probability functions. Extensions to such problems can be useful as they apply to

quantile regression and survival analysis.

• The floodgate functional choice differs from the one used in Zhang & Janson (2020) for

ease of exposition. However, from a power/accuracy standpoint, it would still be of inter-

est to systematically study the construction of floodgate functionals and conduct thorough

comparisons to guide how practitioners choose or design optimal floodgate inferential proce-

dures for given inferential tasks at hand.
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3
StarTrek: Combinatorial Variable Selection

with False Discovery Rate Control

contribution

This chapter is based on a manuscript Zhang & Lu (2021), jointly with Prof. Junwei Lu.

79



Abstract

Variable selection on the large-scale networks has been extensively studied in the literature. While

most of the existing methods are limited to the local functionals especially the graph edges, this

paper focuses on selecting the discrete hub structures of the networks. Specifically, we propose

an inferential method, called StarTrek filter, to select the hub nodes with degrees larger than a cer-

tain thresholding level in the high dimensional graphical models and control the false discovery rate

(FDR). Discovering hub nodes in the networks is challenging: there is no straightforward statistic

for testing the degree of a node due to the combinatorial structures; complicated dependence in

the multiple testing problem is hard to characterize and control. In methodology, the StarTrek fil-

ter overcomes this by constructing p-values based on the maximum test statistics via the Gaussian

multiplier bootstrap. In theory, we show that the StarTrek filter can control the FDR by provid-

ing accurate bounds on the approximation errors of the quantile estimation and addressing the

dependence structures among the maximal statistics. To this end, we establish novel Cramér-type

comparison bounds for the high dimensional Gaussian random vectors. Comparing to the Gaussian

comparison bound via the Kolmogorov distance established by Chernozhukov et al. (2014), our

Cramér-type comparison bounds establish the relative difference between the distribution functions

of two high dimensional Gaussian random vectors, which is essential in the theoretical analysis of

FDR control. Moreover, the StarTrek filter can be applied to general statistical models for FDR con-

trol of discovering discrete structures such as simultaneously testing the sparsity levels of multiple

high dimensional linear models. We illustrate the validity of the StarTrek filter in a series of numer-

ical experiments and apply it to the genotype-tissue expression dataset to discover central regulator

genes.

Keywords. Graphical models, multiple testing, false discovery rate control, combinatorial inference,

Gaussian multiplier bootstrap, comparison bounds.
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3.1 Introduction

Graphical models are widely used for real-world problems in a broad range of fields, including so-

cial science, economics, genetics, and computational neuroscience (Newman et al., 2002; Lus-

combe et al., 2004; Rubinov & Sporns, 2010). Scientists and practitioners aim to understand the

underlying network structure behind large-scale datasets. For a high-dimensional random vector

X = (X1, · · · ,Xd) ∈ Rd, we let G = (V, E) be an undirected graph, which encodes the

conditional dependence structure amongX . Specifically, each component ofX corresponds to

some vertex in V = {1, 2 · · · , d}, and (j, k) /∈ E if and only ifXj andXk are conditionally in-

dependent given the rest of variables. We denote the associated weight matrix byΘ. Many existing

works in the literature seek to learn the structure of G via estimating the weight matrixΘ. For exam-

ple, Meinshausen & Bühlmann (2006); Yuan & Lin (2007); Friedman et al. (2008); Rothman et al.

(2008); Peng et al. (2009); Lam& Fan (2009); Ravikumar et al. (2011); Cai et al. (2011); Shen et al.

(2012) focus on estimating the precision matrix in a Gaussian graphical model. Further, there is also

a line of work developing methodology and theory to assess the uncertainty of edge estimation, i.e.,

constructing hypothesis tests and confidence intervals on the network edges, see Cai &Ma (2013);

Gu et al. (2015); Ren et al. (2015); Cai & Zhang (2016); Janková & van de Geer (2017); Yang et al.

(2018); Feng &Ning (2019); Ding & Zhou (2020). Recently, simultaneously testing multiple hy-

potheses on edges of the graphical models has received increasing attention (Liu, 2013; Cai et al.,

2013; Xia et al., 2015, 2018; Li &Maathuis, 2019; Eisenach et al., 2020).

Most of the aforementioned works formulate the testing problems based on continuous param-

eters and local properties. For example, Liu (2013) proposes a method to select edges in Gaussian

graphical models with asymptotic FDR control guarantees. Testing the existence of edges concerns

the local structure of the graph. Under certain modeling assumptions, its null hypothesis can be

translated into a single point in the continuous parameter space, for example,Θjk = 0whereΘ is
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the precision matrix or the general weight matrix. However, for many scientific questions involving

network structures, we need to detect and infer discrete and combinatorial signals in the networks,

which does not follow from single edge testing. For example, in the study of social networks, it is

interesting to discover active and impactful users, usually called “hub users,” as they are connected

to many other nodes in the social network (Ilyas et al., 2011; Lee et al., 2019). In gene co-expression

network analysis, identifying central regulators/hub genes (Yuan et al., 2017; Liu et al., 2019c,b) is

known to be extremely useful to the study of progression and prognosis of certain cancers and can

support the treatment in the future. In neuroscience, researchers are interested in identifying the

cerebral areas which are intensively connected to other regions (Shaw et al., 2008; van den Heuvel

& Sporns, 2013; Power et al., 2013) during certain cognitive processes. The discovery of such cen-

tral/hub areas can provide scientists with a better understanding of the mechanisms of human cog-

nition.

Motivated by these applications in various areas, in this paper, we consider the hub node selection

problem from the network models. In specific, given a graph G = (V, E), where V is the vertex set

and E ⊆ V×V is the edge set, we consider multiple hypotheses on whether the degree of some node

j ∈ V exceeds a given threshold kτ :

H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ ,

based on i.i.d. samplesX1, · · ·Xn
i.i.d.∼ X ∈ Rd. Throughout the paper, these nodes with large

degrees will be called hub nodes. For each j ∈ [d], let ψj = 1 ifH0j is rejected and ψj = 0

otherwise. When selecting hub nodes, we would like to control the false discovery rate, as defined

below:

FDR = E
[ ∑

j∈H0
ψj

max
{∑d

j=1 ψj , 1
}

]
,

whereH0 = {j | degree of node j < kτ}. Remark the hypothesesH0j , j ∈ [d] are not based
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on continuous parameters. They instead involve the degrees of the nodes, which are intrinsically dis-

crete/combinatorial functionals. To the best of our knowledge, there is no existing literature study-

ing such combinatorial variable selection problems. The most relevant work turns out to be Lu et al.

(2017), which proposes a general framework for inference about graph invariants/combinatorial

quantities on undirected graphical models. However, they study single hypothesis testing and have

to decide which subgraph to be tested before running the procedure.

The combinatorial variable selection problems bring many new challenges. First, most of the

existing work focus on testing continuous parameters (Liu, 2013; Javanmard &Montanari, 2013,

2014a,b; Belloni et al., 2014; Van de Geer et al., 2014; Xia et al., 2015, 2018; Javanmard & Javadi,

2019; Sur & Candès, 2019; Zhao et al., 2020). For discrete functionals, it is more difficult to con-

struct appropriate test statistics and estimate its quantile accurately, especially in high dimensions.

Second, many multiple testing procedures rely on an independence assumption (or certain depen-

dence assumptions) on the null p-values (Benjamini &Hochberg, 1995; Benjamini & Yekutieli,

2001; Benjamini, 2010). However, the single hypothesis here is about the global property of the

graph, which means that any reasonable test statistic has to involve the whole graph. Therefore,

complicated dependence structures exist inevitably, which presents another layer of difficulty for

controlling the false discoveries. Now we summarize the motivating question for this paper: how

to develop a combinatorial selection procedure to discover nodes with large degrees on a graph with

FDR control guarantees?

This paper introduces the StarTrek filter to select hub nodes. The filter is based on the maximum

statistics, whose quantiles are approximated by the Gaussian multiplier bootstrap procedure. Briefly

speaking, the Gaussian multiplier bootstrap procedure estimates the distribution of a given maxi-

mum statistic of general random vectors with unknown covariance matrices by the distribution of

the maximum of a sum of the conditional Gaussian random vectors. The validity of high dimen-

sional testing problems, such as family-wise error rate (FWER) control, relies on the non-asymptotic
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bounds of the Kolmogorov distance between the true distribution of the maximum statistics and

the Gaussian multiplier bootstrap approximation, which is established in Chernozhukov et al.

(2013). However, in order to control the FDR in the context of combinatorial variable selection,

a more refined characterization of the quantile approximation errors is required. In specific, we need

the so called Cramér-type comparison bounds quantifying the accuracy of the p-values in order to

control the FDR in the simultaneous testing procedures (Chang et al., 2016). In our context, con-

sider two centered Gaussian random vectorsU, V ∈ Rd with different covariance matricesΣU ,ΣV

and denote the $∞ norms ofU, V by ||U ||∞, ||V ||∞ respectively, then the Cramér-type compari-

son bounds aim to control the relative error
∣∣∣P(||U ||∞>t)
P(||V ||∞>t) − 1

∣∣∣ for certain range of t. Comparing to

the Kolmogorov distance supt∈R |P(||U ||∞ > t)− P(||V ||∞ > t)| (Chernozhukov et al., 2015),

the Cramér-type comparison bound leads to the relative error between two cumulative density func-

tions, which is necessary to guarantee the FDR control. In specific, we show in this paper a novel

Cramér-type Gaussian comparison bound

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O

(
min

{
(log d)5/2∆1/2

∞ ,
∆0 log d

p

})
, (3.1.1)

for some constantC0 > 0, where∆∞ := ||ΣU − ΣV ||max is the entrywise maximum norm

difference between the two covariance matrices,∆0 := ||ΣU − ΣV ||0 with ‖·‖0 being the entry-

wise $0-norm of the matrix, and p is the number of connected subgraphs in the graph whose edge

set E = {(j, k) : ΣU
jk += 0 orΣV

jk += 0}. This comparison bound in (3.1.1) characterizes the

relative errors between Gaussian maxima via two types of rates: the $∞-norm∆∞ and the $0-norm

∆0. This implies a new insight that the Cramér type bound between two Gaussian maxima is small

as long as either their covariance matrices are uniformly close or only sparse entries of the two co-

variance matrices differ. As far as we know, the second type of rate in (3.1.1) has not been developed

even in Kolmogorov distance results of high dimensional Gaussian maxima. In the study of FDR
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control, we need both types of rates: the∆∞ rate is used to show that the Gaussian multiplier boot-

strap procedure is an accurate approximation for the maximum statistic quantiles and the∆0 rate

is used to quantify the complicated dependence structure of the p-values for the single tests on the

degree of graph nodes. In order to prove the Cramér-type comparison bound in (3.1.1), we develop

two novel theoretic techniques to prove the two types of rates separately. For the∆∞ rate, we re-

formulate the Slepian’s interpolation (Slepian, 1962) into an ordinary differential inequality such

that the relative error can be controlled via the Grönwall’s inequality (Grönwall, 1919). To control

the∆0 rate, the anti-concentration inequality of Gaussian maxima developed in Chernozhukov

et al. (2015) is no longer sufficient, we establish a new type of anti-concentration inequality for the

derivatives of the soft-max of high dimensional Gaussian vectors. The existing works on the Cramér

type comparison bounds such as Liu & Shao (2010, 2014); Chang et al. (2016) does not cover the

high dimensional maximum statistics. Therefore, their techniques can not be directly extended to

our case. To the best of our knowledge, it is the first time in our paper to prove the Cramér-type

Gaussian comparison bounds (3.1.1) for high dimensional Gaussian maxima.

In summary, our paper makes the following major contributions. First, we develop a novel

StarTrek filter to select combinatorial statistical signals: the hub nodes with the FDR control. This

procedure involves maximum statistic and Gaussian multiplier bootstrap for quantile estimation.

Second, in theory, the proposed method is shown to be valid for many different models with the

network structures. In this paper, we provide two examples, the Gaussian graphical model and the

bipartite network in the multiple linear models. Third, we prove a new Cramér-type Gaussian com-

parison bound with two types of rates: the maximum norm difference and $0 norm difference.

These results are quite generic and has its own significance in the probability theory.
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3.1.1 Relatedwork

Canonical approaches to FDR control and multiple testing (Benjamini &Hochberg, 1995; Ben-

jamini & Yekutieli, 2001; Benjamini, 2010) require that valid p-values are available, and they only

allow for certain forms of dependence between these p-values. However, obtaining asymptotic

p-values with sufficient accuracy is generally non-trivial for high dimensional hypothesis testing

problems concerning continuous parameters (Javanmard &Montanari, 2013, 2014a,b; Belloni

et al., 2014; Van de Geer et al., 2014; Sur & Candès, 2019; Zhao et al., 2020), not even to mention

discrete/combinatorial functionals.

Recently, there is a line of work conducting variable selection without needing to act on a set of

valid p-values, including Barber & Candès (2015, 2019); Candès et al. (2018b); Xing et al. (2019);

Dai et al. (2020a,b). These approaches take advantage of the symmetry of the null test statistics

and establish FDR control guarantee. As their single hypothesis is often formulated as conditional

independence testing, it is challenging to apply those techniques to select discrete signals for the

problem studied in this paper.

Another line of work develops multiple testing procedures based on asymptotic p-values for spe-

cific high dimensional models (Liu, 2013; Liu & Luo, 2014; Javanmard & Javadi, 2019; Xia et al.,

2015, 2018; Liu et al., 2020). Among them, Liu (2013) studies the edge selection problem on Gaus-

sian graphical models, which turns out to be the most relevant work to our paper. However, their

single hypothesis is about the local property of the graph. Our problem of discovering nodes with

large degrees concerns the global property of the whole network, therefore requiring far more work.

There exists some recent work inferring combinatorial functionals. For example, the method pro-

posed in Ke et al. (2020) provides a confidence interval for the number of spiked eigenvalues in a

covariance matrix. Jin et al. (2020) focuses on estimating the number of communities in a network

and yields confidence lower bounds. Neykov et al. (2019); Lu et al. (2017) propose a general frame-
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work for conducting inference on graph invariants/combinatorial quantities, such as the maximum

degree, the negative number of connected subgraphs, and the size of the longest chain of a given

graph. Shen & Lu (2020) develops methods for testing the general community combinatorial prop-

erties of the stochastic block model. Regarding the hypothesis testing problem, all these works only

deal with a single hypothesis and establish asymptotic type-I error rate control. While simultane-

ously testing those combinatorial hypotheses is also very interesting and naturally arises frommany

practical problems.

3.1.2 Outline

In Section 3.2, we set up the general testing framework and introduce the StarTrek filter for selecting

hub nodes. In Section 3.3, we present our core probabilistic tools: Cramér-type Gaussian compar-

ison bounds in terms of maximum norm difference and $0 norm difference. To offer a relatively

simpler illustration of our generic theoretical results, we first consider the hub selection problem

on a bipartite network (multitask regression with linear models). Specifically, the input of the gen-

eral StarTrek filter is chosen to be the estimators and quantile estimates described in Section 3.4.

Applying the probabilistic results under this model, we establish FDR control guarantees under cer-

tain conditions. Then we move to the Gaussian graphical model in Section 3.5. In Section 3.6, we

demonstrate StarTrek’s performance through empirical simulations and a real data application.

3.1.3 Notations

Let φ(x),Φ(x) be the probability density function (PDF) and the cumulative distribution function

(CDF) respectively of the standard Gaussian distribution and denote Φ̄(x) = 1 − Φ(x). Let

1d be the vector of ones of dimension d. We use 1(·) to denote the indicator function of a set and

| · | to denote the cardinality of a set. For two setsA andB, denote their symmetric difference by
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A 3 B, i.e.,A 3 B = (A \ B) ∪ (B \ A); letA × B be the Cartesian product. For two

positive sequences {xn}∞n=1 and {yn}∞n=1, we say xn = O (yn) if xn ≤ Cyn holds for any n

with some large enoughC > 0. And we say xn = o (yn) if xn/yn → 0 as n → ∞. For a

sequence of random variables {Xn}∞n=1 and a scalar a, we sayXn ≤ a + oP(1) if for all ε >

0, limn→∞ P (Xn − a > ε) = 0. Let [d] denote the set {1, . . . , d}. The $∞ norm and the $1

norm onRd are denoted by || · ||∞ and || · ||1 respectively. For a random vectorX , let ||X||∞

be its $∞ norm. For a matrixA ∈ Rd1×d2 , we denote its minimal and maximal eigenvalues by

λmin(A),λmax(A) respectively, the elementwise max norm by ‖A‖max = maxi∈[d1],j∈[d2] |Aij |

and the elementwise $0 norm by ‖A‖0 =
∑

i∈[d1],j∈[d2] 1(Aij += 0). Throughout this paper,

C,C ′, C ′′, C0, C1, C2, . . . are used as generic constants whose values may vary across different

places.

3.2 Methodology

Before introducing our method, we set up the problem with more details. Specifically, we consider

a graph G = (V1,V2, E)with the node sets V1,V2 and the edge set E . Let d1 = |V1|, d2 = |V2|

and denote its weight matrix byΘ ∈ Rd1×d2 . In the undirected graph where V1 = V2 := V ,Θ

is a square matrix and its elementΘjk is nonzero when there is an edge between node j and node

k, zero when there is no edge. In a bipartite graph where V1 += V2, elements ofΘ describe the

existence of an edge between node j in V1 and node k in V2. Without loss of generality, we focus on

one of the node sets and denote it by V with |V| := d. We would like to select those nodes among

V whose degree exceeds a certain threshold kτ , based on the n data samplesX1, · · ·Xn
i.i.d.∼ X ∈

Rd. And the selection problem is equivalent to simultaneously testing d hypotheses:

H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ , (3.2.1)
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for j ∈ [d]. Let ψj = 1 ifH0j is rejected and ψj = 0 otherwise, then for some multiple testing

procedure with output {ψj}j∈[d], the false discovery proportion (FDP) and FDR can be defined as

below:

FDP =

∑d
j∈H0

ψj

max
{
1,
∑d

j=1 ψj

} , FDR := E[FDP],

whereH0 = {j | degree of node j < kτ}. Given the dataX1, · · ·Xn from the graphical model,

we aim to propose a multiple testing procedure such that the FDP or FDR can be controlled at a

given level 0 < q < 1.

We illustrate the above general setup in two specific examples. In multitask regression with linear

models, we are working with the bipartite graph case, then the weight matrixΘ corresponds to the

parameter matrix whose row represents the linear coefficients for one given response variable. Given

a threshold kτ , we want to select those rows (response variables) with $0 norm being at least kτ . In

the context of Gaussian graphical models where V1 = V2,Θ represents the precision matrix, and

we want to select those hub nodes i.e., whose degree is larger than or equal to kτ .

3.2.1 StarTrek filter

LettingΘj be the j-th row ofΘ andΘj,−j be the vectorΘj excluding its j-th element, we formu-

late the testing problem for each single node as below,

H0j : ‖Θj,−j‖0 < kτ v.s. H1j : ‖Θj,−j‖0 ≥ kτ .

To test the above hypothesis, we need some estimator of the weight matrixΘ. In Gaussian graph-

ical model, it is natural to use the estimator of a precision matrix. In the bipartite graph (multiple

response model), estimated parameter matrix will suffice. Denote this generic estimator by Θ̃ (with-

out causing confusion in notation), the maximum test statistic over a given subsetE of V × V will
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be

TE := max
(j,k)∈E

√
n
∣∣∣Θ̃jk

∣∣∣

and its quantile is defined as c(α, E) = inf {t ∈ R | P (TE ≤ t) ≥ 1− α}, which is often un-

known. Assume it can be estimated by ĉ(α, E) from some procedure such as the Gaussian mul-

tiplier bootstrap, a generic method called skip-down procedure can be used, which was originally

proposed in Lu et al. (2017) for testing a family of monotone graph invariants. When applied to the

specific degree testing problem, it leads to the following algorithm.

Algorithm 7 Skip-downMethod in Lu et al. (2017) (for testing the degree of node j)

Input: {Θ̃e}e∈V×V , significance level α.
Initialize t = 0, E0 = {(j, k) : k ∈ [d], k += j}.
repeat

t← t+ 1;
Select the rejected edgesR← {(j, k) ∈ Et−1 |

√
n|Θ̃jk| > ĉ(α, Et−1)};

Et ← Et−1\R;
until |Ec

t | ≥ k orR = ∅
Output: ψj,α = 1 if |Ec

t | ≥ k and ψj,α = 0 otherwise.

To conduct the node selection over the whole graph, we need to determine an appropriate thresh-

old α̂ then rejectH0j if ψj,α̂ = 1. A desirable choice of α̂ should be able to discover as many as

hub nodes with the FDR remaining controlled under the nominal level q. For example, if the BHq

procedure is considered, α̂ can be defined as follows:

α̂ = sup




α ∈ (0, 1) :
αd

max
{
1,
∑

j∈[d] ψj,α

} ≤ q




 . (3.2.2)

The above range of α is (0, 1), it will be very computationally expensive if we do an exhaustive

search since for each α, we have to recompute the quantiles ĉ(α, E) for a lot of setsE.

We overcome the computational difficulty and propose a efficient procedure called StarTrek fil-
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ter, which is presented in Algorithm 8. Remark it only involves estimating kτ different quantiles of

Algorithm 8 StarTrek Filter

Input: {Θ̃e}e∈V×V , nominal FDR level q.
for j ∈ [d] do

We order the elements in {|Θ̃j#| : # += j} as |Θ̃j,(1)| ≥ |Θ̃j,(2)| ≥
. . . ≥ |Θ̃j,(d−1)|,where |Θ̃j,(#)| is the #th largest entry. Compute αj =

max1≤s≤kτ ĉ
−1(
√
n|Θ̃j,(s)|, E(s)

j )whereE(s)
j := {(j, #) : # += j, |Θ̃j#| ≤ |Θ̃j,(s)|}.

end for
Order αj as α(1) ≤ α(2) ≤ · · · ≤ α(d) and set α(0) = 0, let jmax = max{0 ≤ j ≤ d :
α(j) ≤ qj/d}.
Output: S = {j : αj ≤ α(jmax)} if jmax > 0; S = ∅ otherwise.

some maximum statistics per node, which is more efficient than the Skip-down procedure (Lu et al.,

2017) in terms of computation.

3.2.2 Accuracy of approximate quantiles

Before diving into the theoretical results, we pause to give specific forms of the estimator ofΘ and

how to compute the estimated quantiles of the maximum statistic. Take the Gaussian graphical

model as an example, suppose thatX1, . . . ,Xn
i.i.d.∼ Nd(0,Σ). LetΘ = Σ−1, which will have

the same $0 elementwise norm as the adjacency matrixΘ. Denote ek be the kth canonical basis in

Rd, we consider the following one-step estimator ofΘjk,

Θ̂d
jk := Θ̂jk −

Θ̂)
j

(
Σ̂Θ̂k − ek

)

Θ̂)
j Σ̂j

, (3.2.3)

where Θ̂ could be either the graphical Lasso (GLasso) estimator (Friedman et al., 2008) or the

CLIME estimator (Cai et al., 2011). Let Θ̃d
jk := Θ̂d

jk/
√
Θ̂d

jjΘ̂
d
kk and the standardized version

{Θ̃d
e}V×V will be the input {Θ̃e}V×V of Algorithm 8. Then the maximum test statistics (over the
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subsetE) is defined as TE = max
(j,k)∈E

√
n|Θ̃d

jk|. To estimate its quantile, we construct the following

Gaussian multiplier bootstrap

TB
E := max

(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
ξi

∣∣∣∣, (3.2.4)

where ξi
i.i.d.∼ N(0, 1), which produces ĉ(α, E) = inf

{
t ∈ R : Pξ

(
TB
E ≤ t

)
≥ 1− α

}
as the

quantile estimate. We also denote the standardized true precision matrix (Θjk/
√
ΘjjΘkk)j,k∈[d]

byΘ!. The theoretical results for Gaussian multiplier bootstrap developed in Chernozhukov et al.

(2013) basically imply the above quantile estimates are accurate in the following sense:

Lemma 3.2.1. SupposeΘ ∈ U(M, s, r0) and (log(dn))7/n + s2(log dn)4/n = o(1), for any

edge setE ⊆ V × V , we have

lim
(n,d)→∞

sup
Θ∈U(M,s,r0)

sup
α∈(0,1)

∣∣∣∣P
(
max
e∈E

√
n|Θ̃d

e −Θ!
e| > ĉ(α, E)

)
− α

∣∣∣∣ = 0. (3.2.5)

where Θ̃d
e is the standardized version of the one-step estimator (3.2.3).

Note that U(M, s, r0) denotes the parameter space of precision matrices and is defined as below:

U(M, s, r0) =
{
Θ ∈ Rd×d

∣∣λmin(Θ) ≥ 1/r0,λmax(Θ) ≤ r0,max
j∈[d]
‖Θj‖0 ≤ s, ‖Θ‖1 ≤M

}
.

The proof of Lemma 3.2.1 can be found in Appendix C.4.2. However, Lemma 3.2.1 is not suf-

ficient for our multiple testing problem. Generally speaking, the probabilistic bounds in Cher-

nozhukov et al. (2013) are in terms of Kolmogorov distance, which only provides a uniform char-

acterization for the deviation behaviors. Their results can be used to establish FWER control for

global testing problems based on the maximum test statistics. However, in order to establish FDR
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control, we have to show that the estimation of number of false discoveries is sufficiently accurate

enough in the following sense, i.e., uniformly over certain range of α,

αd0∑
j∈H0

ψj,α
→ 1, in probability

whereH0 = {j : ‖Θj,−j‖0 < kτ}. The above result is different from the one needed for FWER

control: E [ψj,α] = α + o(1), j ∈ H0. In the context of our node selection problem, it can be

reduced to the following,

∣∣∣∣∣

∑
j∈H0

1(maxe∈E
√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, E))

d0α
− 1

∣∣∣∣∣→ 0 in probability

uniformly over certain range of α for some subsetE. The above ratio is closedly related to the ratio

in Cramér-type moderation deviation results (Liu & Shao, 2010, 2014; Liu, 2013). To this end,

we establish the Cramér-type deviation bounds for the Gaussian multiplier bootstrap procedure.

This type of results is built on two types of Cramér-type Gaussian comparison bounds, which are

presented in Section 3.3.

3.3 Cramér-type comparison bounds for Gaussian maxima

In this section, we present the theoretic results on the Cramér-type comparison bounds for Gaus-

sian maxima. LetU, V ∈ Rd be two centered Gaussian random vectors with different covariance

matricesΣU = (σUjk)1≤j,k≤d,ΣV = (σVjk)1≤j,k≤d. Recall that the maximal difference of the

covariance matrices is∆∞ := ||ΣU − ΣV ||max and the elementwise $0 norm difference of the

covariance matrices is denoted by∆0 :=
∥∥ΣU −ΣV

∥∥
0
=
∑

j,k∈[d] 1(σ
U
jk += σUjk). The Gaussian

maxima ofU and V are denoted as ||U ||∞ and ||V ||∞. Now we present a Cramér-type comparison

bound (CCB) between Gaussian maxima in terms of the maximum norm difference∆∞.
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Theorem 3.3.1 (CCB with maximum norm difference). Suppose (log d)5∆∞ = O(1), then we

have

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O
(
(log d)5/2∆1/2

∞

)
, (3.3.1)

for some constantC0 > 0.

Remark 3.3.1.1. We can actually prove a more general form (see Theorem C.2.2 in the appendix) of

the upper bound on the above term, without the assumption on∆∞. In fact, we bound the right hand

side of (3.3.1) asM3(log d)3/2A(∆∞)eM3(log d)3/2A(∆∞), whereA(∆∞) = M1 log d∆
1/2
∞ exp (M2 log

2 d∆1/2
∞ )

with the constantsM1,M2 only depending on the variance termsmin1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj}

andM3 being a universal constant.

When applying Theorem 3.3.1 to Gaussian multiplier bootstrap, ||∆||∞ actually controls the

maximum differences between the true covariance matrix and the empirical covariance matrix.

Based on the bound of ||∆||∞, we can show that the Cramér-type comparison bound in (3.3.1)

will beO((log d)3/2n−1/4)with high probability.

The proof can be found in Appendix C.2.1. The above result bounds the relative difference be-

tween the distribution functions of the two Gaussian maxima. Compared with the bound in terms

of Kolmogorov distance, it has more refined characterization when t is large, which benefits from

our iterative use of the Slepian interpolation. We denote the interpolation betweenU and V as

W (s) =
√
sU +

√
1− sV, s ∈ [0, 1] and letQt(s) = P(||W (s)||∞ > t). Existing results

(Chernozhukov et al., 2013, 2014) quantify the difference betweenQt(1) andQt(0) uniformly

over t ∈ R, which leads to a bound on the Kolmogorov distance between Gaussian maxima.

Our main innovation is to considerRt(s) = Qt(s)/Qt(0) − 1 and show that for any given t,

Rt : s ∈ [0, 1] 6→ |Rt(s)| is a contraction mapping with 0 being its fixed point. Specifically, we
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have the following upper bound on |Rt(s)|,

|Rt(s)| ≤ AB

∫ s

0
|Rt(µ)|dµ+AB · s+A,

whereAB andA can be controlled via the bound on the maximal difference of the covariance ma-

trices∆∞ and converge to 0 under certain conditions. By Grönwall’s inequality (Grönwall, 1919),

we then derive the bound onRt(1) explicitly in terms ofA andB, which finally lead to the desired

Cramér-type comparison bound in (3.3.1).

The above theorem is a key ingredient for deriving Cramér-type deviation results for the Gaus-

sian multiplier bootstrap procedure. However, in certain situations, comparison bounds in terms of

maximum norm difference may not be appropriate. There exist cases where the covariance matrices

of two Gaussian random vectors are not uniformly closed to each other, but have lots of identical

entries. In particular, for the combinatorial variable selection problem in this paper, there exist com-

plicated dependence structures between the maximum statistic for different nodes, since each time

when the degree of one single node is tested, the statistic is computed based on the whole graph.

Again, this highlights the challenge of the multiple testing problem in our paper. To establish FDR

control, we need to deal with the dependence between the maximum statistic of pairs of non-hub

nodes. By the definition of non-hub nodes, the covariance matrix difference between each pair of

the involving Gaussian vectors actually has lots of zero entries. We would like to take advantage of

this sparsity pattern when applying the comparison bound. However, the bound in (3.3.1) is not

sharp when∆∞ is not negligible but∆0 is small. To this end, we develop a different version of the

Cramér-type comparison bound as below.

Theorem 3.3.2 (CCB with elementwise $0-norm difference). Assume the Gaussian random vectors

U and V have unit variances, i.e., σUjj = σVjj = 1, j ∈ [d] and there exists some σ0 < 1 such

that |σVjk| ≤ σ0, |σUjk| ≤ σ0 for any j += k. Suppose there exists a disjoint p-partition of nodes
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∪p#=1C# = [d] such that σUjk = σVjk = 0 when j ∈ C# and k ∈ C#′ for some $ += $′. We have

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ O

(
∆0 log d

p

)
, (3.3.2)

for some constantC0 > 0.

When applying the above result to our multiple degree testing problem, specifically the covari-

ance of maximum test statistics for pairs of non-hub nodes,∆0 can be controlled as k2τ which is in

a constant order. In Theorem 3.3.2, the quantity p represents the number of connected subgraphs

shared by the coviarance matrix networks ofU and V . We refer to Theorem C.2.4 in the appendix

for a generalized definition of p to strengthen the results in (3.3.2). The p in the denominator of

the right hand side of Cramér-type comparison bound in (3.3.2) is necessary: it is possible that even

if∆0 is small, when p is large, the Camér-type Gaussian comparison bound is not converging to

zero. For example, consider Gaussian vectors with unit variancesU = (X1, X2, Z, . . . , Z) ∈ Rd,

V = (Y1, Y2, Z, . . . , Z) ∈ Rd, where corr(X1, X2) = 0.9, corr(Y1, Y2) = 0 and (X1, X2) ⊥⊥ Z ,

(Y1, Y2) ⊥⊥ Z . For this case, the Camér-type Gaussian comparison bound

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = sup
0≤t≤C0

√
log d

∣∣∣∣
P(max{|X1|, |X2|, |Z|} > t)

P(max{|Y1|, |Y2|, |Z|} > t)
− 1

∣∣∣∣

is not converging to zero as d goes to infinity even if the corresponding∆0 is 1 but p = 2.

Compared with Theorem 3.3.1, the above theorem provides a sharper comparison bound for

large p and small∆0. The two theorems together describe a interesting phase transition phenomenon,

i.e., the dependence onΣU − ΣV of the Cramér-type comparison bound exhibits a difference be-

havior in the regime of large p and small∆0 versus the regime of small∆∞.

The proof of Theorem 3.3.2 can be found in Appendix C.2.2. Our main technical innovation

is to establish a new type of anti-concentration bound for “derivatives” of Gaussian maxima. Since
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both the indicator function and maximum function are discontinuous, we follows the idea of using

smoothing approximation as in the proof of Theorem 3.3.1, specifically, we bound the following

term

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)], (3.3.3)

where ϕ is the same approximation function of the indicator of $∞ norm with certain smooth-

ing parameter β. Note that E[1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] is the anti-concentration bound

for Gaussian maxima (Chernozhukov et al., 2014). A non-uniform version is also established in

Kuchibhotla et al. (2021). (3.3.3) can be viewed as the anti-concentration bound on the second

order partial derivatives of the smooth approximation function. When deriving the comparison

bound in terms of $0 norm difference, we have to deal with such terms as (3.3.3) when σUjk += σVjk.

We show (3.3.3) can be controlled as

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] ! P (||V ||∞ > t) (log d)2

εβp
.

The above anti-concentration bound is non-uniform and has only a logarithm dependence on the

dimension d. It provides a relatively sharp characterization when t is large and the Gaussian graphi-

cal model is not highly connected (i.e., the number of connected components p being large).

3.4 Discovering hub responses in multitask regression

The theoretical results presented in Section 3.3 will be the cornerstone for establishing FDR con-

trol of the multiple testing problem described in Section 3.2. As seen previously, the testing prob-

lem (3.2.1) is set up in a quite general way: Θ is a weight matrix, and we would like to select rows

whose $0 norm exceeds some threshold. This section considers the specific application to multi-

task/multiple response regression, which turns out to be less involved. We take advantage of it and
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demonstrate how to utilize the probabilistic tools in Section 3.3. After that, the theoretical results

on FDR control for the Gaussian graphical models are presented and discussed in Section 3.5.

In multitask regression problem, multiple response variables are regressed on a common set of

predictors. We can view this example as a bipartite graph G = (V1,V2, E), |V1| = d1, |V2| = d2,

where V1 contains the response variables and V2 represents the common set of predictors. Each

entry of the weight matrixΘ indicates whether a given predictor is non-null or not for a given re-

sponse variable. In the case of parametric model,Θ ∈ Rd1×d2 corresponds to the parameter matrix.

One might be interested in identifying shared sparsity patterns across different response variables.

It can be solved by selecting a set of predictors being non-null for all response variables (Obozinski

et al., 2006; Dai & Barber, 2016). This section problem is column-wise in the sense that we want to

select columns ofΘ, denoted byΘ·j , such that ||Θ·j ||0 = d1. It is also interesting to consider a

row-wise selection problem formalized in (3.2.1). Under the multitask regression setup, we would

like to select response variables with at least a certain amount of non-null predictors. We will call

this type of response variables hub responses throughout the section. This has practical applications

in real-world problems such as the gene-disease network.

Consider the multitask regression problem with linear models, we have n i.i.d. pairs of the re-

sponse vector and the predictor vector, denoted by (Y1,X1), (Y2,X2), . . . , (Yn,Xn), where

Yi ∈ Rd1 ,Xi ∈ Rd2 satisfy the following relationship,

Yi = ΘXi +Ei, whereEi ∼ N (0,Dd1×d1) andXi ⊥⊥ Ei, (3.4.1)

whereΘ ∈ Rd1×d2 is the parameter matrix andD is a d1 by d1 diagonal matrix whose diagonal

elements σ2j is the noise variance for response variableY (j). LetX be the design matrix with rows

X)
1 , . . . ,X)

n , shared by different response variables, and assume the noise variables are indepen-

dent conditional on the design matrixX . Let s = maxj∈[d1] ||Θj ||0 be the sparsity level of the pa-
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rameter matrixΘ, we want to select columns of the parameter matrix which has at least kτ nonzero

entries, i.e., select nodes with large degree among [d1] in the bipartite graph G = (V1,V2, E).

As mentioned in Section 3.2, some estimator of the parameter matrix is needed to conduct hy-

pothesis testing. Debiased Lasso is widely used for parameter estimation and statistical inference

in high dimensional linear models (Javanmard &Montanari, 2014a,b). For each response variable

Y (j), j ∈ [d1], we compute the debiased Lasso estimator, denoted by Θ̃d
j as

Θ̃d
j = Θ̂j +

1

n
MX)(Y (j) −XΘ̂j), where Θ̂j = arg min

β∈Rd2

{ 1

2n
‖Y (j) −Xβ‖22 + λ‖β‖1

}
.

(3.4.2)

Note the aboveM is defined asM = (m1, . . . ,md2)
) where

mi =argmin
m

m)Σ̂m, s.t. ‖Σ̂m− ei‖∞ ≤ µ , (3.4.3)

and here Σ̂ = (X)X)/n.

Then the debiased estimator of the parameter matrix, defined by Θ̃d := (Θ̃d
1, · · · , Θ̃d

d1
)),

will be used the input {Θ̃e}e∈V1×V2 of Algorithm 8. In addition, we also need to compute the

quantile of the maximum statistics. There exist many work studying the asymptotic distribution of

the debiased Lasso estimator. Among them, the results in Javanmard &Montanari (2014a) (when

translated into our multitask regression setup) imply, for each response variableY (j), j ∈ [d1],

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0,σ2jMΣ̂M)), (3.4.4)

under proper assumptions. Additionally with a natural probabilistic model of the design matrix,

the bias term can be showed to be ||Ξ||∞ = O( s log d2√
n

)with high probability. As discussed in (Ja-

99



vanmard &Montanari, 2014a), the asymptotic normality result can be used for deriving confidence

intervals and statistical hypothesis tests. As the noise variance σj is unknown, the scaled Lasso is

used for its estimation (Javanmard &Montanari, 2014a; Sun & Zhang, 2012), given by the follow-

ing joint optimization problem,

{Θ̂j , σ̂j} = arg min
β∈Rd2 ,σ>0

{ 1

2σn
‖Y (j) −Xβ‖22 +

σ

2
+ λ‖β‖1

}
. (3.4.5)

Regarding our testing problem, intuitively we can use the quantile of the Gaussian maxima of

N (0, σ̂2jMΣ̂M)) to approximate the quantile of maximum statistic TE = max
(j,k)∈E

√
n|Θ̃d

jk|

for some given subsetE. Specifically, letZj | X,Y (j) ∼ N (0, σ̂2jMΣ̂M))whereZj ∈ Rd2 and

consider the subsetE ⊂ {j}× V2, we approximate the quantile of TE by the following

TN
E := max

(j,k)∈E
|Zjk|, ĉ(α, E) = inf

{
t ∈ R : PZ

(
TN
E ≤ t

)
≥ 1− α

}
. (3.4.6)

Indeed, under proper scaling conditions, similar results as (3.2.5) can be established, i.e., as n, d→∞,

sup
α∈(0,1)

∣∣∣∣P
(

max
(j,k)∈E

√
n|Θ̃d

jk −Θjk| > ĉ(α, E)

)
− α

∣∣∣∣→ 0. (3.4.7)

The above result is based on two ingredients: the asymptotic normality result and the control of

the bias term Ξ. Below we list the required assumptions for those two ingredients, i.e., (3.4.4) and

||Ξ||∞ = O( s log d2√
n

).

Assumption 3.4.1 (Debiased Lasso with random designs). The following assumptions are from

the ones of Theorems 7 and 8 in Javanmard &Montanari (2014a).

• LetΣ = E
[
X1X)

1

]
∈ Rd2×d2 be such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤

Cmax < ∞, andmaxj∈[d2]Σjj ≤ 1. AssumeXΣ−1/2 have independent subgaussian
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rows, with zero mean and subgaussian norm ‖Σ−1/2Xi‖ψ2 = κ, for some constant κ ∈

(0,∞).

• µ = a
√
(log d2)/n, and n ≥ max(ν0s log(d2/s), ν1 log d2), ν1 = max(1600κ4, a/4),

and λ = σ
√
(c2 log d2)/n.

Remark that there may exist other ways of obtaining a consistent estimator ofΘ and sufficiently

accurate quantile estimates under different assumptions. Since it is not the main focus of this pa-

per, we will not elaborate on it. As mentioned before, the Kolmogorov type result in (3.4.7) can

be immediately applied to the global testing problem to guarantee FWER control. However, it is

not sufficient for FDR control of the multiple testing problem in this paper. And this is when the

Cramér-type comparison bound for Gaussian maxima established in Section 3.3 play its role. In ad-

dition, signal strength condition is needed. Recall thatH0 = {j ∈ [d1] : ||Θj ||0 < kτ}with

d0 = |H0|, we consider the following rows ofΘ,

B := {j ∈ Hc
0 : ∀k ∈ supp(Θj), |Θjk| > c

√
log d2/n}, (3.4.8)

and define the proportion of such rows as ρ = |B|/d1. In the context of multitask regression, ρ

measures the proportion of hub response variables whose non-null parameter coefficients all exceed

certain thresholds, thus characterizes the overall signal strength. Below we present our result on

FDP/FDR control under appropriate assumptions.

Theorem 3.4.2 (FDP/FDR control). Under Assumption 3.4.1 and the scaling condition d2 log d2+d0
d0d2ρ

+

s log2 d2
n1/2 + log2 d2

(nρ)1/5
= o(1), if we implement the StarTrek procedure in Algorithm 8 withΘ estimated

by (3.4.2) and the quantiles approximated by (3.4.6), as (n, d1, d2)→∞, we have

FDP ≤ q
d0
d1

+ oP(1) and lim
(n,d1,d2)→∞

FDR ≤ q
d0
d1

. (3.4.9)
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The proof of Theorem 3.4.2 can be found in Appendix C.1.3. Note that signal strength condi-

tions which require some entries of parameter matrixΘ have magnitudes exceeding c
√
log d2/n

are usually assumed in existing work studying FDR control problem for high dimensional models

(Liu, 2013; Liu & Shao, 2014; Liu & Luo, 2014; Xia et al., 2015, 2018; Javanmard & Javadi, 2019).

3.5 Discovering hub nodes in Gaussian graphical models

This section focuses on the hub node selection problem on Gaussian graphical models. Recall in

Section 3.2, we first compute the one-step estimator {Θ̂d
e}e∈V×V in (3.2.3) then take its standard-

ized version {Θ̃d
e}e∈V×V as the input of Algorithm 8 i.e.,

Θ̂d
jk := Θ̂jk −

Θ̂)
j

(
Σ̂Θ̂k − ek

)

Θ̂)
j Σ̂j

, Θ̃d
jk := Θ̂d

jk/
√
Θ̂d

jjΘ̂
d
kk. (3.5.1)

Our StarTrek filter selects nodes with large degrees based on the maximum statistics TE = max
(j,k)∈E

√
n|Θ̃d

jk|

over certain subsetE. We use the Gaussian multiplier bootstrap (3.2.4) to approximate the quan-

tiles, specifically,

ĉ(α, E) = inf
{
t ∈ R : Pξ

(
TB
E ≤ t

)
≥ 1− α

}
. (3.5.2)

Chernozhukov et al. (2013) shows that this quantile approximation is accurate enough for FWER

control in modern high dimensional simultaneous testing problems. Their results are based on the

control of the non-asymptotic bounds in a Kolmogorov distance sense. Lu et al. (2017) also takes

advantage of this result to test single hypothesis of graph properties or derive confidence bounds on

graph invariants.

However, in order to conduct combinatorial variable selection with FDR control guarantees,

we need more refined studies about the accuracy of the quantile approximation. This is due to the

ratio nature of the definition of FDR, as explained in Section 3.2.2. Compared with the results in
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Chernozhukov et al. (2013), we provide a Cramér-type control on the approximation errors of the

Gaussian multiplier bootstrap procedure. This is built on the probabilistic tools in Section 3.3, in

particular, the Cramér-type Gaussian comparison bound with max norm difference in Theorem

3.3.1. Due to the dependence structure behind the hub selection problem in Graphical models, we

also have to utilize Theorem 3.3.2. In a bit more detail, computing the maximum test statistic for

testing node node actually involves the whole graph, resulting complicated dependence among the

test statistics. The non-differentiability of the maximum function makes it very difficult to track

this dependence. Also note that, this type of difficulty can not be easily circumvented by alternative

methods, due to the discrete nature of the combinatorial inference problem. However, we figure out

that the Cramér-type Gaussian comparison bound with $0 norm difference plays an important role

in handling this challenge.

In general, the sparsity/density of the graph is closed related to the dependence level of multiple

testing problem on graphical models. For example, Liu (2013); Xia et al. (2015, 2018) make certain

assumptions on the sparsity level and control the dependence of test statistics when testing multiple

hypotheses on graphical models/networks. For the hub node selection problem in this paper, a new

quantity is introduced, and we will explain why it is suitable. Recall that we define the set of non-

hub response variables in Section 3.4. Similarly, the set of non-hub nodes is denoted byH0 = {j ∈

[d] : ||Θj ||0 < kτ}with d0 = |H0|. Now we consider the following set,

S = {(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 += j2, k1 += k2,Θj1j2 = Θj1k1 = Θj2k2 = 0,Θj1k2 += 0,Θj2k1 += 0}.

(3.5.3)

Remark that in the above definition, k1 can be the same as j2 and k2 can be the same as j1. If there

exists a large number of nodes which are neither connected to j1 nor j2, we then do not need to

worry much about the dependence between the test statistics for non-hub nodes. Therefore, |S|

actually measures the dependence level via checking how a pair of non-hub nodes interact through
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(b)
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other nodes. Liu (2013); Cai et al. (2013) also examine the connection structures in the 4-vertex

graph and control the dependence level by carefully bounding the number of the 4-vertex graphs

with different numbers of edges.

We provide a graphical demonstration of S and show how |S| looks like in certain types of graph

patterns via some simple examples. Though the definition of S does not exclude the possibility of

(j1, j2, k1, k2) being a graph with 2 or 3 vertices, we only draw 4-vertex graph in Figure 3.1 for

convenience. In the left panel of Figure 3.1, we consider four different cases of the 4-vertex graph.

The upper two belong to the set S, while the lower three do not. In the right panel, we consider

four graphs which all have 6 vertices. They have different graph patterns. For example, (a) clearly

has a hub structure. All of the non-hub nodes are only connected to the hub node. While in (d),

the edges are evenly distributed and each node are connected to its two nearest neighbours. For each

graph, we count the value of |S| and obtain 10, 15, 24, 51 respectively, which show a increasing

trend of |S|. This sort of matches our intuition that it is relatively easier to discover hub nodes on

graph (a) compared with graph (d). See more evidence in the empirical results of Section 3.6.

In addition to |S|, we also characterize the dependence level via the connectivity of the graph,

specifically let p be the number of connected components. And similarly as in Section 3.4, we define
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ρ to measure the signal strength, i.e., ρ = |B|/d, where B := {j ∈ Hc
0 : ∀k ∈ supp(Θj), |Θjk| >

c
√

log d/n}. In the following, we list our assumptions needed for FDR control.

Assumption 3.5.1. Suppose thatΘ ∈ U(M, s, r0) and the following conditions hold:

(i) Signal strength and scaling condition.

log d

ρ

(
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+

s(log d)3

n1/2

)
= o(1). (3.5.4)

(ii) Dependency and connectivity condition.

log d

ρd0
+

(log d)2|S|
ρd20p

= o(1). (3.5.5)

In the above assumption, (3.5.4) places conditions on the signal strength and scaling. The first

and the second term come from the Cramér-type large deviation bounds in the high dimensional

CLT setting (Kuchibhotla et al., 2021) and the Cramér-type Gaussian comparison bound estab-

lished in Theorem 3.3.1. And the third term comes from the fact that the relevant test statistics arise

as maxima of approximate averages instead of the exact averages and thus the approximation error

needs to be controlled. See similar discussions about this in (Chernozhukov et al., 2013). Remark

that the signal strength condition is mild here, due to similar reasons as the discussion in Section

3.4. Regarding (3.5.5), there is a trade-off between the dependence level and connectivity level of the

topological structure. |S|/d20 characterizes how the test statistics of non-hub nodes are correlated

to each other in average. p by definition describes the level of connectivity. Due to the condition

(3.5.5), larger signal strength generally makes the hub selection problem easier. And when |S|/d20

is small, the graph is allowed to be more connected. When there exist more sub-graphs, we allow

higher correlations between the non-hub nodes. Note that the cardinality of S is directly related

to the $0 norm covariance matrix difference term∆0, and arises from the application of Theorem
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3.3.2. In the following, we present our core theoretical result on FDP/FDR control for hub selec-

tion using the StarTrek filter on Gaussian graphical models.

Theorem 3.5.2 (FDP/FDR control). Under Assumption 3.5.1, the StarTrek procedure in Algorithm

8 with (3.5.1) as input and the quantiles approximated by (3.5.2) satisfies: as (n, d)→∞,

FDP ≤ q
d0
d

+ oP(1) and lim
(n,d)→∞

FDR ≤ q
d0
d
. (3.5.6)

The proof can be found in Appendix C.1.1. Remark that control of the FDR does not prohibit

the FDP from varying. Therefore our result on FDP provides a stronger guarantee on controlling

the false discoveries. See clear empirical evidence in Section 3.6.1. To the best of our knowledge,

the proposed StarTrek filter in Section 3.2 and the above FDP/FDR control result are the first Al-

gorithm and theoretical guarantee for the problem of simultaneously selecting hub nodes. Existing

work like Liu (2013); Liu & Luo (2014); Xia et al. (2015, 2018); Javanmard & Javadi (2019) focus

on the discovery of continuous signals and their tools are not applicable to the problem here.

3.6 Numerical results

3.6.1 Synthetic data

In this section, we apply the StarTrek filter to synthetic data and demonstrate the performance of

our method. The synthetic datasets are generated from Gaussian graphical models. The correspond-

ing precision matrices are specified based on four different types of graphs. Given the number of

nodes d and the number of connected components p, we will randomly assign those nodes into p

groups. Within each group (sub-graph), the way of assigning edges for different graph types will be

explained below in detail. After determinning the adjacency matrix of the graph, we follow Zhao

et al. (2012) to construct the precision matrix, more specifically, we set the off-diagonal elements to
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be of value v which control the magnitude of partial correlations and is closely related to the signal

strength. In order to ensure positive-definiteness, we add some value v together with the absolute

value of the minimal eigenvalues to the diagonal terms. In the following simulations, v and u are

set to be 0.4 and 0.1 respectively. Now we explain how to determine the edges within each group

(sub-graph) for four different graph patterns.

• Hub graph. We randomly pick one node as the hub node of the sub-graph, then the rest of

the nodes are made to connect with this hub node. There is no edge between the non-hub

nodes.

• Random graph. This is the Erdös-Rényi random graph. There is an edge between each pair

of nodes with certain probability independently. In the following simulations, we will set

this probability to be 0.15 unless stated otherwise.

• Scale-free graph. In this type of graphs, the degree distribution follows a power law. We

construct it by the Barabási-Albert algorithm: starting with two connected nodes, then

adding each new node to be connected with only one node in the existing graph; and the

probability is proportional to the degree of the each node in the existing graph. The number

of the edges will be the same as the number of nodes.

• K-nearest-neighbor (knn) graph. For a given number of k, we add edges such that each

node is connected to another k nodes. In our simulations, k is sampled from {1, 2, 3, 4}

with probability mass {0.4, 0.3, 0.2, 0.1}.

See a visual demonstration of the above four different graph patterns in Appendix C.5.1. Through-

out the simulated examples, we fix the number of nodes d to be 300 and vary other quantities such

as sample size n or the number of connected components p. To estimate the precision matrix, we

run the graphical Lasso algorithm with 5-fold cross-validation. Then we obtain the standardized
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debiased estimator as described in (3.2.3). To obtain the quantile estimates, we use the Gaussian

multiplier bootstrap with 4000 bootstrap samples. The threshold kτ for determining hub nodes is

set to be 3. And all results (of FDR and power) are averaged over 64 independent replicates.

As we can see from Table 3.1, the FDRs of StarTrek filter for different types of graph are well

controlled below the nominal levels. In hub graph, the FDRs are relatively small but the power is

still pretty good. Similar phenomenon for multiple edge testing problem is observed (Liu, 2013).

In the context of node testing, it is also unsurprising. These empirical results actually match our

demonstration about |S| in Figure 3.1: hub graphs have a relatively weaker dependence structure

(smaller S values) and make it is easier to discover true hub nodes without making many errors.

$-0Ѵ; ƒĺƐĹ �lrbub1-Ѵ 	!

d = 300 q = 0.1 q = 0.2
n 200 300 400 200 300 400

p = 20
hub 0.0000 0.0000 0.0007 0.0000 0.0000 0.0029

random 0.0255 0.0383 0.0467 0.0521 0.0770 0.0833
scale-free 0.0093 0.0211 0.0282 0.0352 0.0486 0.0581
knn 0.0101 0.0296 0.0370 0.0228 0.0620 0.0769

p = 30
hub 0.0013 0.0000 0.0016 0.0027 0.0054 0.0036

random 0.0347 0.0359 0.0568 0.0725 0.0753 0.0963
scale-free 0.0215 0.0335 0.0317 0.0521 0.0624 0.0584
knn 0.0297 0.0420 0.0563 0.0504 0.0857 0.1030

The power performance of the StarTrek filter is showed in Table 3.2. As the sample size grows, we

see the power is increasing for all four different types of graphs. When p is larger, there are more hub

nodes in general due to the way of constructing the graphs, and we find the power is higher. Among

different types of graphs, the power in hub graph and scale-free graph is higher than that in random

and knn graph since the latter two are relatively denser and have more complicated topological struc-

tures.
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$-0Ѵ; ƒĺƑĹ �o�;u

d = 300 q = 0.1 q = 0.2
n 200 300 400 200 300 400

p = 20
hub 0.7109 0.9453 0.9898 0.7805 0.9648 0.9938

random 0.3343 0.7815 0.9408 0.4520 0.8514 0.9604
scale-free 0.4524 0.8145 0.9363 0.5281 0.8614 0.9568
knn 0.0905 0.5306 0.8067 0.1634 0.6511 0.8630

p = 30
hub 0.6848 0.9244 0.9706 0.7588 0.9459 0.9784

random 0.4882 0.8863 0.9790 0.5770 0.9225 0.9870
scale-free 0.6472 0.9047 0.9810 0.7197 0.9331 0.9870
knn 0.2409 0.6841 0.8922 0.3298 0.7706 0.9241

In Figure 3.2 and 3.3, we demonstrate the performance of our method in the random graph with

different parameters. Specifically, we vary the connecting probability changing from 0.1 to 0.3 in

the x-axis. In those plots, we see the FDRs are all well controlled below the nominal level q = 0.1.

As the connecting probability of the random graph grows, the graph gets denser, resulting more

hub nodes. Thus we can see the height of the short blue solids lines (representing qd0/d) is decreas-

ing. Based on our results in Theorem 3.5.2, the target level of FDP/FDR control is qd0/d. This is

why we find the mean and median of each box-plot is getting smaller as the connecting probability

increases (hence d0 decreases).

The box-plots and the jittering points show that our StarTrek procedure not only controls the

FDR but also prohibit it from varying too much, as implied by the theoretical results on FDP con-

trol in Section 3.5. Regarding the power plots, we see that the power is smaller when the graph is

denser since the hub selection problem becomes more difficult with more disturbing factors. Plots

with nominal FDR level q = 0.2 are deferred to Appendix C.5.3.
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3.6.2 Application to gene expression data

We also apply our method to the Genotype-Tissue Expression (GTEx) data studied in Lonsdale

et al. (2013). Beginning with a 2.5-year pilot phase, the GTEx project establishes a great database

and associated tissue bank for studying the relationship between certain genetic variations and gene

expressions in human tissues. The original dataset involves 54 non-diseased tissue sites across 549

research subjects. Here we only focus on analyzing the breast mammary tissues. It is of great interest

to identify hub genes over the gene expression network.

First we calculate the variances of the gene expression data and focus on the top 100 genes in the

following analysis. The data involves n = 291 samples for male individuals and n = 168 samples

for female individuals. The original count data is log-transformed and scaled. We then obtain the

estimator of the precision matrix by the Graphical Lasso with 2-fold cross-validation. As for the hub

node criterion, we set kτ as the 50% quantile of the node degrees in the estimated precision matrix.

We run StarTrek filter with 2000 bootstrap samples and nominal FDR level q = 0.1 to select hub
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genes for both the male and female datasets.

Figure 3.4 shows that the selected hub genes by the StarTrek filter also have large degrees on the

estimated gene networks (based on the estimated precision matrices). In Figure 3.5, the results for

male and female dataset agree with each other except that the number of selected hub genes using

female dataset is smaller due to a much smaller sample size. The selected hub genes are found to play

an important role in breast-related molecular processes, either as central regulators or their abnormal

expressions are considered as the causes of breast cancer initiation and progression, see relevant liter-

ature in genetic research such as Hellwig et al. (2016); Blein et al. (2015); Chen et al. (2016); Li et al.

(2019); Lou et al. (2020); Mohamed et al. (2014); Bai et al. (2019); Sirois et al. (2019); Marino et al.

(2020); Malvia et al. (2019). Therefore, our proposed method for selecting hub nodes can be ap-

plied to the hub gene identification problem. It may improve our understanding of the mechanisms

of breast cancer and provide valuable prognosis and treatment signature.
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A
Appendix of Chapter 1

A.1 Proofs for main text

Throughout the proofs, we will abbreviate (X,Z) = W, (X̃, Z) = W̃ for simplicity and write

w = (x, z). And g!, g : Rp−1 → R; h!, h : Rp → R are defined as below:

g!(z) = E[µ!(W ) |Z = z], g(z) = E[µ(W ) |Z = z], (A.1.1)

h!(w) = µ!(w)− g!(z), h(w) = µ(w)− g(z). (A.1.2)
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And we can further decompose Y :

Y = E [Y |X,Z] + ε(Y,X,Z) = µ!(W ) + ε(Y,W ) = g!(Z) + h!(W ) + ε(Y,W ). (A.1.3)

LetL2(Ω,F , P ) denote the vector space of real-valued random variables with finite second mo-

ments, which is a Hilbert space, and define its subspaceL2(W ) := L2(Ω,A (W ), P ), where

A (W ) is the sub σ-algebra generated byW = (X,Z). (L2(Z) := L2(Ω,A (Z), P ) is de-

fined analogously). Then µ!(W ) and g!(Z) can be interpreted as the projections of Y onto the

subspacesL2(W ) andL2(Z), respectively. Y and µ!(W ) admit the orthogonal decompositions

Y = µ!(W ) + ε(Y,W ) and µ!(W ) = g!(Z) + h!(W ), respectively. Similarly note the projec-

tion of µ(W ) ontoL2(Z) and the decomposition µ(W ) = g(Z) + h(W ). We remark these imply

the following facts:

E[ε(Y,W ) |W ] = 0, E [ε(Y,W )λ(W )] = 0,

E[h!(W ) |Z] = 0, E [h!(W )γ(Z)] = 0,E[h(W ) |Z] = 0, E [h(W )γ(Z)] = 0.
(A.1.4)

for any function λ(w) and any function γ(z). Thus we can rewrite the denominator of f(µ) by

noticing the equivalence below:

E [Var(µ(X,Z) |Z)] = E [Var(h(W ) |Z)] = E
[
E
[
h2(W ) |Z

]]
= E

[
h2(W )

]
. (A.1.5)
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As for the numerator of f(µ), (1.2.7) mentions the rewritten expression. Here we formally derive

the following equivalent expressions of f(µ),

f(µ) :=
E [Cov(µ!(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]

=
E [Cov(h!(W ), h(W ) |Z)]√

E [h2(W )]

=
E [h!(W )h(W )]√

E [h2(W )]
(A.1.6)

=
E [Y h(W )]√
E [h2(W )]

− E [ε(Y,W )h(W )]√
E [h2(W )]

− E [g!(Z)h(W )]√
E [h2(W )]

=
E [Y h(W )]√
E [h2(W )]

(A.1.7)

where the second equality is by (A.1.5) and the definitions of h!(W ), h(W ), the third equal-

ity holds by the total law of conditional expectation and (A.1.4), the fourth equality comes from

(A.1.3), and the last equality holds due to (A.1.4) and the total law of conditional expectation. As

(A.1.7) is very concise, we will work with this expression of f(µ) throughout the following proof.

Also note we have an equivalent expression of I .

√
E [(h!)2(W )] =

√
E
[
E
[
(µ!(W )− E [µ!(W ) |Z])2

∣∣∣Z
]]

=
√

E [Var (E [Y |X,Z] |Z)] = I.

(A.1.8)

Note that the proofs of Theorems 1.2.3 and 1.2.5 only require moment conditions on h(W ),

which will hold under the corresponding moment conditions on µ(X,Z). This can be seen from

the following example where the finiteness of E [µr(W )] implies that of E [hr(W )] for some posi-
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tive integer r:

E [hr(W )] = E [(µ(W )− E [µ(W ) |Z])r]

≤ 2r−1(E [µr(W )] + E [(E [µ(W ) |Z])r])

≤ 2r−1(E [µr(W )] + E [E [µr(W ) |Z]]) = 2rE [µr(X,Z)] ,

(A.1.9)

where the first inequality holds by theCr inequality (which states that E [|X + Y |r] ≤ Cr(E [|X|r]+

E [|Y |r])withCr = 1 for 0 < r ≤ 1 andCr = 2r−1 for r ≥ 1), the second inequality holds by

Jensen’s inequality, and the last equality holds due to the tower property of conditional expectation.

In the proofs of Theorems 1.2.3 and 1.2.5, we will use a key fact to simplify exposition: when

E
[
h2(W )

]
> 0, E

[
h2(W )

]
= 1 can be assumed without loss of generality. This is because

(A.1.7) says f(µ) = E[Y h(W )]√
E[h2(W )]

andRi, Vi in Algorithm 1 can be rewritten as

Ri = Yi(µ(Xi, Zi)− E [µ(Xi, Zi |Zi]) = Yih(Wi),

Vi = Var (µ(Xi, Zi) |Zi) = Var (h(Xi, Zi) |Zi)

by definition of h. Regarding Theorem 1.2.5,RK
i , V K

i can be rewritten as

RK
i = Yi

(
h(Wi)−

1

K

K∑

k=1

h(X(k)
i , Zi)

)
,

V K
i =

1

K − 1

K∑

k=1

(
h(X(k)

i , Zi)−
1

K

K∑

k=1

h(X(k)
i , Zi)

)2

due to (A.1.51), (A.1.53). It is immediate that the floodgate procedure is invariant to positive scaling

thus we assume E
[
h2(W )

]
= 1without loss of generality.
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A.1.1 Proofs in Section 1.2.2

Lemma 1.2.2

Proof of Lemma 1.2.2. When E [Var(µ(X,Z) |Z)] = 0, the numerator must also be zero, and

hence the ratio is 0 by convention and f(µ) ≤ I . Now assuming E [Var(µ(X,Z) |Z)] > 0,

f(µ) =
E [Cov(µ(X,Z), µ!(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]

=
E
[√

Var(µ(X,Z) |Z)
√
Var(µ!(X,Z) |Z)Cor (µ(X,Z), µ!(X,Z) |Z)

]

√
E [Var(µ(X,Z) |Z)]

≤
E
[√

Var(µ(X,Z) |Z)
√
Var(µ!(X,Z) |Z)

]

√
E [Var(µ(X,Z) |Z)]

≤
√
E [Var(µ(X,Z) |Z)]

√
E [Var(µ!(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
= I,

where the first inequality uses the fact that correlation is bounded by 1, and the second inequality

uses Cauchy–Schwarz. Finally, it is immediate that f(µ!) = I .

Theorem 1.2.3

Proof of Theorem 1.2.3. Due to (A.1.9), E
[
µ4(X,Z)

]
< ∞ implies E

[
h4(W )

]
< ∞. In the

following proof, we will only assume the weaker moment conditionsE
[
Y 4
]
,E
[
h4(W )

]
<

∞. Under such moment conditions, we also haveE [Y h(W )] ≤
√
E [Y 2]

√
E [h2(W )] and

E
[
h2(W )

]
<∞ since the finiteness of higher moments implies that of lower moments.

When µ(X,Z) ∈ A (Z), i.e., E [Var(µ(X,Z) |Z)] = 0, we immediately have cover-

age sinceLαn(µ) = 0 by construction and I ≥ 0 by its definition. Regarding the case where

E [Var(µ(X,Z) |Z)] += 0, we have E
[
h2(W )

]
= E [Var(µ(X,Z) |Z)] > 0 due to (A.1.5).
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Based on the discussions in the part after (A.1.9), we can assume E
[
h2(W )

]
= 1without loss of

generality.

Recall in Algorithm 1, we denoteRi = Yi
(
µ(Xi, Zi) − E [µ(Xi, Zi) |Zi]

)
and Vi =

Var (µ(Xi, Zi) |Zi) for each i ∈ [n], and compute their sample mean (R̄, V̄ ) and sample co-

variance matrix Σ̂. The LCB is constructed as

Lαn(µ) = max

{
R̄√
V̄
− zαs√

n
, 0

}
, where s2 =

1

V̄

[(
R̄

2V̄

)2

Σ̂22 + Σ̂11 −
R̄

V̄
Σ̂12

]
.

And we have

{Lαn(µ) ≤ I} =

{
R̄√
V̄
− zαs√

n
≤ I

}
⊃
{

R̄√
V̄
− zαs√

n
≤ f(µ)

}
,

where the first equality holds since I ≥ 0 and the subset relation holds due to Lemma 1.2.2. Hence

it suffices to show that

P
(

R̄√
V̄
− zαs√

n
≤ f(µ)

)
≥ 1− α− o(1). (A.1.10)

We will utilize the central limit theorem (CLT) and the delta method to prove the above result. Now

we consider four different cases.

(I) Var (Y h(W )) = 0 andVar (Var (h(W ) |Z)) = 0.

(II) Var (Y h(W )) > 0 andVar (Var (h(W ) |Z)) = 0.

(III) Var (Y h(W )) = 0 andVar (Var (h(W ) |Z)) > 0.

(IV) Var (Y h(W )) > 0 andVar (Var (h(W ) |Z)) > 0.

Note that assuming E
[
Y 4
]
and E

[
h4(W )

]
< ∞ ensures all the above variances exist; the bound-

ing strategy is the same as (A.1.9), thus we omit the proof. For the first case whereVar (Y h(W )) =
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0 andVar (Var (h(W ) |Z)) = 0, we have the following facts.

Var (Y h(W )) = 0 ⇒ Ri = E [Y h(W )], ∀ i ∈ [n], R̄ = E [Y h(W )], Σ̂11 = Σ̂12 = 0,

(A.1.11)

Var (Var (h(W ) |Z)) = 0 ⇒ Vi = E
[
h2(W )

]
, ∀ i ∈ [n], V̄ = E

[
h2(W )

]
, Σ̂22 = Σ̂12 = 0.

(A.1.12)

Case (I): due to (A.1.11) and (A.1.12), we simply have R̄√
V̄

= E [Y h(W )] /
√
E [h2(W )] =

f(µ) and s = 0, thus (A.1.10) holds.

Case (II): due to (A.1.12), s2 = Σ̂11/V̄ = Σ̂11/E
[
h2(W )

]
, hence we have the following

equivalence

{
R̄√
V̄
− zαs√

n
≤ f(µ)

}
=

{
R̄− zα(Σ̂11)1/2√

n
≤ E [Y h(W )]

}
.

Thus the problem is reduced to showing that

P
(
R̄− zα(Σ̂11)1/2√

n
≤ E [Y h(W )]

)
≥ 1− α− o(1). (A.1.13)

Notice R̄ is simply the sample mean estimator of the quantity E [Y h(W )] and Σ̂11 is the corre-

sponding sample variance. (A.1.13) is an immediate result of the central limit theorem and Slutsky’s

theorem.

Case (III): due to (A.1.11), we have

R̄√
V̄
− zαs√

n
=

E [Y h(W )]√
V̄

− zαs√
n
, where s2 =

1

V̄

(
E [Y h(W )]

2V̄

)2

Σ̂22.

E[Y h(W )]√
V̄

is a nonlinear function of the moment estimators. We will use the delta method to estab-
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lish the asymptotic normality result. In case (IV), E [Y h(W )] is further replaced by its moment

estimator, and we are dealing with a bit more complicated nonlinear statistic than 1/
√
V̄ . Hence we

focus on case (IV) and omit the very similar proof for case (III).

Case (IV): sinceVar (Y h(W )) > 0 andVar (Var (h(W ) |Z)) > 0, we have as n→∞,

√
n




R̄− E [Y h(W )]

V̄ − E
[
h2(W )

]



 d→ N (0,Σ) (A.1.14)

by the multivariate central limit theorem, where the covariance matrix of the random vector (Ri, Vi) ∈

R2 is denoted byΣwith




Σ11 Σ12

Σ21 Σ22



 =




Var (Y h(W )) Cov (Y h(W ),Var (h(W ) |Z))

Cov (Y h(W ),Var (h(W ) |Z)) Var (Var (h(W ) |Z))



 .

E
[
Y 4
]
,E
[
h4(W )

]
<∞ ensures the finiteness ofΣ11,Σ12,Σ22. Denote

σ̃20 =
1

E [h2(W )]

[(
E [Y h(W )]

2E [h2(W )]

)2

Σ22 + Σ11 −
E [Y h(W )]

E [h2(W )]
Σ12

]
, (A.1.15)

and we will show σ̃0 > 0 over the course of derivations from (A.1.20) to the end of the proof. Now

consider

(
R̄√
V̄
− f(µ)

)
/s =

(
R̄√
V̄
− f(µ)

)
/σ̃0 ·

σ̃0
s

:=
H(R̄, V̄ )− f(µ)

σ̃0
·
(

s

σ̃0

)−1

, (A.1.16)

whereH(x1, x2) : R2 → R is defined asH(x1, x2) = x1/
√
x2 for x2 > 0 and its gradient equals

∇H(x1, x2) = ( ∂H∂x1
, ∂H∂x2

) = 1√
x2
(1,− x1

2x2
). Let θ = (E [Y h(W )] ,E

[
h2(W )

]
), then

∇H(θ) =
1√

E [h2(W )]

(
1,−E [Y h(W )]

2E [h2(W )]

)
, (A.1.17)
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and we obtain

Var



∇H(θ))




√
nR̄

√
nV̄







 = Var



∇H(θ))




Ri

Vi







 = ∇H(θ)) Σ∇H(θ) = σ̃20

(A.1.18)

where the second equality holds by the definition ofΣ and the last equality holds by elementary cal-

culation. Therefore, by applying the multivariate delta method to (A.1.14), we have
√
n(H(R̄, V̄ )−

H(θ))
d→ N

(
0,∇H(θ)) Σ∇H(θ)

)
, i.e.,

√
n(H(R̄, V̄ )− f(µ))/σ̃0

d→ N (0, 1) . (A.1.19)

Replacing the means, variances and covariances in σ̃20 by their moment estimators, we obtain

1

V̄

[(
R̄

2V̄

)2

Σ̂22 + Σ̂11 −
R̄

V̄
Σ̂12

]
,

which equals s2 by its definition. Due to the finiteness of E [Y h(W )] ,E
[
h2(W )

]
,Σ11,Σ12,Σ22,

we have

(R̄, V̄ , Σ̂11, Σ̂12, Σ̂22)
p→ (E [Y h(W )] ,E

[
h2(W )

]
,Σ11,Σ12,Σ22)

by the law of large numbers. Then by the continuous mapping theorem, we have s p→ σ̃0 as n →

∞. Combining this with (A.1.16) and (A.1.19), we have

√
n

(
R̄√
V̄
− f(µ)

)
/s

d→ N (0, 1) ,

as n→∞, which establishes (A.1.10).

Now we will verify the positiveness of σ̃0. RecallE
[
h2(W )

]
= 1 as assumed without loss of
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generality; we rewrite σ̃20

σ̃20 = Var



∇H(θ))




Ri − E [Y h(W )]

Vi − E
[
h2(W )

]







 (A.1.20)

= Var




(
1,−E [Y h(W )]

2

))



Ri − E [Y h(W )]

Vi − E
[
h2(W )

]









= E
[
(Ri − E [Y h(W )]− 0.5 E [Y h(W )](Vi − 1))2

]
(A.1.21)

:= E
[
(A+B)2

]

where the first equality holds due to (A.1.18) and the basic property of variance, the second equal-

ity holds due to (A.1.17), and the last equality is by rearranging and the termsA,B are defined as

below:

A := Ri − E [Yih(Wi) |Zi] = Yih(Wi)− E [Yih(Wi) |Zi] , (A.1.22)

B := E [Yih(Wi) |Zi]− E [Y h(W )]− 0.5 E [Y h(W )] (Var (h(Wi) |Zi)− 1). (A.1.23)

Now we can expand (A.1.20) as

σ̃20 = E
[
(A+B)2

]
= E

[
E
[
(A+B)2 |Zi

]]

= E
[
E
[
A2 |Zi

]
− 2B E [A |Zi] +B2

]

= E
[
E
[
A2 |Zi

]
+B2

]

≥ E [Var (Y h(W ) |Z)] , (A.1.24)

where the first equality comes from the tower property of conditional expectation, the second

equality holds sinceB ∈ A (Zi) and the third equality holds due to E [A |Zi] = 0.
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Since (A.1.24) gives a lower bound for σ̃20 , we are done when E [Var (Y h(W ) |Z)] > 0. Oth-

erwise, we assume E [Var (Y h(W ) |Z)] = 0, then σ̃20 = ∇H(θ)) Σ∇H(θ) = 0 implies the

degeneracy ofΣ since the vector∇H(θ) = (1,−0.5 E [Y h(W )]) is nonzero. It suffices to show it

is impossible to haveΣ degenerate when E [Var (Y h(W ) |Z)] = 0. According to the definition of

Σ, we have that Y h(W ) is a linear function ofVar (h(W ) |Z) in the degenerate case. This means

Y h(W ) = cVar (h(W ) |Z) + d for some constants c, d. Then we obtain

Var (Y h(W ) |Z) = Var (cVar (h(W ) |Z) + d |Z) = c2Var (Var (h(W ) |Z)) > 0,

since we are dealing with case (IV) whereVar (Var (h(W ) |Z)) > 0 andVar (Y h(W )) > 0 (thus

c2 > 0). The above result contradicts the assumption E [Var (Y h(W ) |Z)] = 0. This finishes

showing the positiveness of σ̃0,

Lemma 2.3

Proof of Lemma 2.3. Recall the notations g(z) = E [µ(X,Z) |Z = z] and h(w) = h(x, z) =

µ(x, z) − g(z) introduced in (A.1.1) and (A.1.2). WhenQx = PX|Z , we immediately have

µ(X,Z)− EQx [µ(X,Z) |Z] = µ(X,Z)− E [µ(X,Z) |Z] = h(W ), thus

fQy ,Qx(µ) =
E
[
(Y − EQy [Y |Z])h(W )

]
√
E [h2(W )]

=
E [Y h(W )]√
E [h2(W )]

= f(µ)

where the second equality holds sinceE
[
EQy [Y |Z]h(W )

]
= 0 by (A.1.4) and the last equal-

ity holds by (A.1.7). Hence fQy ,PX|Z (µ) = f(µ) is proved. For convenience, we also use the

following notations throughout this proof: Px := PX|Z , gy(Z) := EQy [Y |Z], gx(Z) :=
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EQx [µ(X,Z) |Z]. Thus we rewrite fQy ,Qx(µ) in (1.2.8) as

fQy ,Qx(µ) =
E [(Y − gy(Z))(µ(X,Z)− gx(Z))]√

E [(µ(X,Z)− gx(Z))2]
≤
√
E [(Y − gy(Z))2]

√
E [(µ(X,Z)− gx(Z))2]√

E [(µ(X,Z)− gx(Z))2]
,

(A.1.25)

where the inequality holds by the Cauchy–Schwarz inequality. If E
[
(µ(X,Z)− gx(Z))2

]
= 0,

fQy ,Qx(µ) is 0/0 = 0 by convention and thus fgy ,gx(µ) ≤ I +∆ automatically holds due to the

non-negativeness of∆ and I . Otherwise, we notice that

E
[
(µ(X,Z)− gx(Z))2

]
= E

[
(µ(X,Z)− E [µ(X,Z) |Z] + E [µ(X,Z) |Z]− gx(Z))2

]

= E
[
(µ(X,Z)− g(Z))2

]
+ E

[
(g(Z)− gx(Z))2

]

≥ E
[
h2(W )

]
, (A.1.26)

where the first equality holds due to rearranging, the second equality holds since

E [(µ(X,Z)− E [µ(X,Z) |Z])(E [µ(X,Z) |Z]− gx(Z))] = E [h(W )(g(Z)− gx(Z))] = 0

by (A.1.4), and the last inequality holds by the definition of h(w) and the non-negativeness of

E
[
(g(Z)− gx(Z))2

]
. When E [(Y − gy(Z))(µ(X,Z)− gx(Z))] ≤ 0, we note that fQy ,Qx(µ) ≤

0 ≤ I+∆. Thus it remains to deal with the case where E [(Y − gy(Z))(µ(X,Z)− gx(Z))] > 0.
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Nowwe expand fQy ,Qx(µ) and bound it as below:

fQy ,Qx(µ) =
E [(Y − gy(Z))(µ(X,Z)− gx(Z))]√

E [(µ(X,Z)− gx(Z))2]

=
E [(Y − gy(Z))(µ(X,Z)− g(Z))]√

E [(µ(X,Z)− gx(Z))2]
+

E [(Y − gy(Z))(g(Z)− gx(Z))]√
E [(µ(X,Z)− gx(Z))2]

≤ E [(Y − gy(Z))(µ(X,Z)− g(Z))]√
E [h2(W )]

+
E [(Y − gy(Z))(g(Z)− gx(Z))]√

E [(µ(X,Z)− gx(Z))2]

=
E [Y h(W ))]√
E [h2(W )]

+
E [(ε(Y,W ) + h!(W ) + g!(Z)− gy(Z))(g(Z)− gx(Z))]√

E [(µ(X,Z)− gx(Z))2]

= f(µ) +
E [(g!(Z)− gy(Z))(g(Z)− gx(Z))]√

E [(µ(X,Z)− gx(Z))2]
,

≤ I +
E [|g!(Z)− gy(Z)| · |g(Z)− gx(Z)|]√

E [h2(W )]
(A.1.27)

where the first equality comes from (A.1.25), the second equality is by rearranging, the first inequal-

ity holds due to E [(Y − gy(Z))(µ(X,Z)− gx(Z))] > 0 and (A.1.26), the third equality holds

sinceE [gy(Z)(µ(X,Z)− g(Z))] = E [gy(Z)h(W )] = 0 by (A.1.4) and we expand Y as in

(A.1.3), the last equality holds by (A.1.4), (A.1.5) and (A.1.7), and the last inequality holds due to

Lemma 1.2.2, E [|g!(Z)− gy(Z)| · |g(Z)− gx(Z)|] > 0 and (A.1.26). In the following, we

bound E [|g!(Z)− gy(Z)| · |g(Z)− gx(Z)|]. Since we denote gx(z) = EQx [µ(X,Z) |Z = z]

withQx being the estimate of the true conditional distribution ofX given Z (i.e., PX|Z , abbrevi-
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ated as Px), we can rewrite |g(Z)− gx(Z)| then bound it as:

|g(Z)− gx(Z)| = |EPx [µ(X,Z) |Z]− EQx [µ(X,Z) |Z]|

= |EPx [h(W ) + g(Z) |Z]− EQx [h(W ) + g(Z) |Z]|

= |EPx [h(W ) |Z]− EQx [h(W ) |Z]|

=

∣∣∣∣
∫

h(x, Z)(1− δ(x, Z))dPX|Z(x | Z)

∣∣∣∣

= |EPx [h(W )(1− δ(W )) |Z] | ≤
√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)
,

(A.1.28)

where the second equality holds due to (A.1.2), the third equality holds since g(Z) ∈ A (Z),

the fourth equality holds sinceQx is absolutely continuous with respect to PX|Z and we denote

δ(x, Z) := dQx(x|Z)
dPX|Z(x|Z) and rewrite the third line in the form of integral, and the last inequality

holds by the Cauchy–Schwarz inequality and the definition of the χ2 divergence. Hence replacing

the term |g(Z)− gx(Z)| in (A.1.27) by its upper bound in (A.1.28) produces the following

fQy ,Qx(µ) ≤ I +
E
[
|g!(Z)− gy(Z)|

√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)]

√
E [h2(W )]

. (A.1.29)

Now we will bound III := E
[
|g!(Z)− gy(Z)|

√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)]
in three

different versions.

Firstly, we apply the Cauchy–Schwarz inequality to
√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)
and
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|g!(Z)− gy(Z)|, producing

III = E
[
|g!(Z)− gy(Z)|

√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)]

≤
√
E [(g!(Z)− gy(Z))2]

√
E
[
EPx [h

2(W ) |Z]χ2
(
Qx‖PX|Z

)]

=
√
E [(g!(Z)− gy(Z))2]

√
E
[
EPx

[
h2(W )χ2

(
Qx‖PX|Z

)
|Z
]]

=
√
E [(g!(Z)− gy(Z))2]

√
E
[
h2(W )χ2

(
Qx‖PX|Z

)]
, (A.1.30)

where the second equality holds since χ2
(
Qx‖PX|Z

)
∈ A (Z), and the last equality holds due

to the notation Px = PX|Z and the law of total expectation. Noting the definition of III and

combining (A.1.29) with (A.1.30) yields

fQy ,Qx(µ) ≤ I +
√
E [(g!(Z)− gy(Z))2]

√√√√√E




(

h(W )√
E [h2(W )]

)2

χ2
(
Qx‖PX|Z

)


.

Recalling the notations:

g!(Z) = E [Y |Z] , gy(Z) = EQy [Y |Z] , h(W ) = µ(X,Z)−E [µ(X,Z) |Z] , (A.1.31)

andwµ(X,Z) = (µ(X,Z)−E[µ(X,Z) |Z])2

E[(µ(X,Z)−E[µ(X,Z) |Z])2] , (1.2.9) is thus established.

Secondly, we apply the Cauchy–Schwarz inequality to the term
√
χ2
(
Qx‖PX|Z

)
and the term
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|g!(Z)− gy(Z)|
√
EPx [h

2(W ) |Z] in III, producing

III = E
[
|g!(Z)− gy(Z)|

√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)]

≤
√
E
[
χ2
(
Qx‖PX|Z

)]√
E [EPx [h

2(W ) |Z] (g!(Z)− gy(Z))2]

=
√
E
[
χ2
(
Qx‖PX|Z

)]√
E [EPx [h

2(W )(g!(Z)− gy(Z))2 |Z]]

=
√
E
[
χ2
(
Qx‖PX|Z

)]√
E [h2(W )(g!(Z)− gy(Z))2], (A.1.32)

where the second equality holds since (g!(Z) − gy(Z))2 ∈ A (Z), and the last equality holds due

to the notation Px = PX|Z and the law of total expectation. Combining (A.1.29) and (A.1.31)

with (A.1.32) and recallingwµ(X,Z) = (µ(X,Z)−E[µ(X,Z) |Z])2

E[(µ(X,Z)−E[µ(X,Z) |Z])2] =
h2(W )

E[h2(W )] yields a different

bound on fQy ,Qx(µ), namely,

fQy ,Qx(µ) ≤ f(µ) +∆′, where

∆′ =
√
E
[
χ2
(
Qx‖PX|Z

)]√
E
[
wµ(X,Z)(E [Y |Z]− EQy [Y |Z])2

]
.

(A.1.33)

Lastly, we apply the Cauchy–Schwarz inequality to the term
√
EPx [h

2(W ) |Z] and the term

|g!(Z)− gy(Z)|
√
χ2
(
Qx‖PX|Z

)
in III, producing

III = E
[
|g!(Z)− gy(Z)|

√
EPx [h

2(W ) |Z]
√
χ2
(
Qx‖PX|Z

)]

≤
√

E [EPx [h
2(W ) |Z]]

√
E
[
χ2
(
Qx‖PX|Z

)
(g!(Z)− gy(Z))2

]

=
√

E [h2(W )]
√

E
[
χ2
(
Qx‖PX|Z

)
(g!(Z)− gy(Z))2

]

=
√

E [h2(W )]
(
E
[
(g!(Z)− gy(Z))4

])1/4 (E
[(
χ2
(
Qx‖PX|Z

))2])1/4
, (A.1.34)

where the second equality holds due to the notation Px = PX|Z and the law of total expecta-

tion, and the last inequality holds by applying the Cauchy–Schwarz inequality again. Combining
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(A.1.29) and (A.1.31) with (A.1.34) yields a final different bound on fQy ,Qx(µ), namely,

fQy ,Qx(µ) ≤ f(µ) +∆′′, where

∆′′ =
(
E
[
(E [Y |Z]− EQy [Y |Z])4

])1/4 (E
[(
χ2
(
Qx‖PX|Z

))2])1/4
.

(A.1.35)

A.1.2 Proofs in Section 1.2.3

Proof of Theorem 1.2.4. We prove by contradiction. Suppose there exists an upper confidence

bound procedure ensuring asymptotic coverage such that (1.2.10) holds, that is, there exists a joint

law over (Y,X,Z), denoted by F∞ ∈ F such that

lim sup
n→∞

P∞
(
U(Dn)− I2

F∞ < E∞ [Var∞ (Y |X,Z)]
)
> α. (A.1.36)

where P∞, E∞, Var∞ denote that the data generating distribution for i.i.d. sampleDn is F∞.

Note that P∞
(
U(Dn)− I2

F∞
< E∞ [Var∞ (Y |X,Z)]

)
= P∞ (U(Dn) < E∞ [Var∞ (Y |Z)])

by the definition of I2
F∞

. Let λ1 = E∞ [Var∞ (Y |Z)]. When λ1 = 0, we have E∞ [Var∞ (Y |Z)] =

E∞ [Var∞ (Y |X,Z)] = I2
F∞

= 0 and immediately show

lim sup
n→∞

P∞
(
U(Dn)− I2

F∞ < E∞ [Var∞ (Y |X,Z)]
)
= lim sup

n→∞
P∞

(
U(Dn) < I2

F∞

)
≤ α,

which contradicts (A.1.36). In the following we consider the case where λ1 > 0. Now we construct

a sequence of joint laws over (Y,X,Z), denoted by {Fk}∞k=1, Fk ∈ F , such that the conditional
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distribution of ε | X,Z is the same as that under F∞, where ε = Y − E [Y |X,Z], that is,

Pk (ε |X,Z) = P∞ (ε |X,Z) , ∀ k ≥ 1 (A.1.37)

and there exist Borel setsAk ∈ Rp−1 satisfying the following:

(a) Pk (Z ∈ Ak) = 1/k;

(b) Pk (Y |X,Z) = P∞ (Y |X,Z)whenZ /∈ Ak;

(c) Ek [µ!k(X,Z) |Z] = E∞ [µ!∞(X,Z) |Z]whenZ ∈ Ak;

(d) Vark (µ!k(X,Z) |Z) = Var∞ (µ!∞(X,Z) |Z) + k
(
2λ1 − I2

F∞

)
whenZ ∈ Ak;

where Pk ,Ek, Vark denote that the data generating distribution for i.i.d. sampleDn is Fk, and

µ!k(X,Z) := Ek [Y |X,Z] , µ!∞(X,Z) := E∞ [Y |X,Z]. According to the statement of

Theorem 1.2.4, the covariate distribution PX,Z is continuous and fixed. Therefore we have (a) is

possible and immediately know

Pk (X,Z) = P∞ (X,Z) , ∀ k ≥ 1. (A.1.38)

Note here Ek [· |Z] ,Vark (· |Z) are the same as E∞ [· |Z] ,Var∞ (· |Z) due to (A.1.38). Hence

we can calculate IFk through the following

I2
Fk
− I2

F∞ = E∞
[

{Ak} (Var∞ (µ!k(X,Z) |Z)−Var∞ (µ!∞(X,Z) |Z))
]

= E∞
[

{Ak}k
(
2λ1 − I2

F∞

)]

= 2λ1 − I2
F∞ =: λ2, (A.1.39)
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where the first equality comes from the definition of I2
F , (A.1.38) and (b), the second equality holds

due to (d) and the third equality holds due to (a). Therefore I2
Fk

= 2λ1. We should also check

whether Fk belongs toF . Indeed, we consider the following

Vark (Y ) = Ek [Vark (Y |X,Z)] + Vark (Ek [Y |X,Z])

= Ek [Vark (ε |X,Z)] + Vark (Ek [Y |Z]) + I2
Fk

= E∞ [Vark (ε |X,Z)] + Var∞ (Ek [Y |Z]) + I2
Fk

= E∞ [Var∞ (ε |X,Z)] + Var∞ (E∞ [Y |Z]) + I2
Fk

= E∞ [Var∞ (ε |X,Z)] + Var∞ (E∞ [Y |Z]) + I2
F∞ + λ2

= Var∞ (Y ) + λ2 <∞,

where the first equality comes from the law of total variance, the second equality holds as a result of

the decomposition Y = µ!(X,Z) + ε and the equivalent expression of the mMSE gap (1.2.2), the

third equality holds due to (A.1.38), the fourth equality holds due to (A.1.37), (b) and (c), the fifth

equality comes from (A.1.39). Thus we verify Fk ∈ F , ∀ k ≥ 1. As the upper confidence bound

procedureU ensures asymptotic coverage validity and I2
Fk

= 2λ1, we have

Pk (U(Dn) ≥ 2λ1) ≥ 1− α+ ok(1) (A.1.40)

where the subscript in ok(1) emphasizes that the convergence is with respect to data generating

function Fk. Remark we only require for fixed k, ok(1)→ 0 as n→∞. Also notice the following

|P∞ (U(Dn) ≥ 2λ1)− Pk (U(Dn) ≥ 2λ1)| ≤ dTV (Fk, F∞) ≤ 1

k
, ∀ k ≥ 1, (A.1.41)
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where the first inequality comes from the property of total variation distance and the second equal-

ity holds as a result of (a), according to the construction of Fk. Combining (A.1.40) and (A.1.41)

yields the following

P∞ (U(Dn) ≥ 2λ1) ≥ 1− α− 1/k + ok(1), ∀ k ≥ 1.

First let n→∞ then send k to infinity, we obtain

lim inf
n→∞

P∞ (U(Dn) ≥ 2λ1) ≥ 1− α,

which contradicts

lim sup
n→∞

P∞ (U(Dn) < E∞ [Var∞ (Y |Z)] = λ1) > α.

A.1.3 Proofs in Section 1.2.4

Proof of Theorem 1.2.5. As in the proof of Theorem 1.2.3, we immediately have coverage validity

when µ(X,Z) ∈ A (Z). Otherwise, it suffices to show

P
(

R̄√
V̄
− zαs√

n
≤ f(µ)

)
≥ 1− α− o(1). (A.1.42)

for any givenK > 1, where the sample mean (R̄, V̄ ) and sample covariance matrix Σ̂ are defined

the same way as in Algorithm 1 except thatRi, Vi are replaced by their Monte Carlo estimators
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RK
i , V K

i as defined below.

RK
i := Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X(k)
i , Zi)

)
,

V K
i :=

1

K − 1

K∑

k=1

(
µ(X(k)

i , Zi)−
1

K

K∑

k=1

µ(X(k)
i , Zi)

)2

,

(A.1.43)

for any fixedK > 1.

First we verify

E
[
RK

i

]
= E [Y h(W )] , E

[
V K
i

]
= E

[
h2(W )

]
. (A.1.44)

By the construction of the null samples,X(k)
i satisfy the following properties:

{X(k)
i }Kk=1 ⊥⊥ (Xi, Yi) | Zi, (A.1.45)

{X(k)
i }Kk=1 | Zi

i.i.d.∼ Xi | Zi, (A.1.46)

thus we have

E
[
1

K

K∑

k=1

µ(X̃(k)
i , Zi)

∣∣∣∣∣Zi

]
= E [µ(Xi, Zi) |Zi] , (A.1.47)

E



 1

K − 1

K∑

k=1

(
µ(X̃(k)

i , Zi)−
1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)2
∣∣∣∣∣∣
Zi



 = Var (µ(Xi, Zi) |Zi) ,

(A.1.48)
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and further obtain

E
[
RK

i

]
= E

[
Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)]

= E [Yiµ(Wi)]− E
[
E [Yi |Zi]E

[
1

K

K∑

k=1

µ(X̃(k)
i , Zi)

∣∣∣∣∣Zi

]]

= E [Yiµ(Wi)]− E [E [Yi |Zi]E [µ(Xi, Zi) |Zi]]

= E [Yiµ(Wi)]− E [YiE [µ(Xi, Zi) |Zi]] = E [Y h(W )] ,

where the first equality holds due to (A.1.43), the second equality holds due to (A.1.45), the third

equality holds due to (A.1.47), the fourth equality comes from the tower property of total expec-

tation and the last one is by the definition of h(W ). Regarding the term E
[
V K
i

]
, (A.1.48) and

(A.1.5) immediately implyE
[
V K
i

]
= E

[
h2(W )

]
.

To prove (A.1.42), we can follow a similar strategy as in the proof of Theorem 1.2.3. Note Ap-

pendix A.1.1 considers 4 different cases then deals with them separately. Essentially we can con-

duct similar analysis, but to avoid lengthy proof, we focus on the most complicated case where

Var (Y h(W )) > 0 andVar (Var (h(X) |Z)) > 0 and omit the derivations for the other

three cases. Under the moment conditionsE
[
Y 4
]
,E
[
h4(W )

]
< ∞, we haveE

[
RK

i

]
=

E [Y h(W )] <∞ and E
[
V K
i

]
= E

[
h2(W )

]
<∞.

By applying the multivariate central limit theorem and the delta method, we obtain the following

asymptotic normality result as in the proof of Theorem 1.2.3: as n→∞,

√
n




1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)



 d→ N
(
0, σ̃20

)
, (A.1.49)

where σ̃20 is similarly defined as in (A.1.15) and its positiveness will be proved over the course of

derivations from (A.1.59) toward the end of this proof. Due to the law of large numbers and the
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continuous mapping theorem, we can prove s p→ σ̃0 as in Appendix A.1.1. The asymptotic nor-

mality and the consistency result only require us to verify the finiteness ofΣ11 = Var
(
RK

i

)
,Σ12 =

Cov
(
RK

i , V K
i

)
,Σ22 = Var

(
V K
i

)
. SinceE

[
RK

i

]
,E
[
V K
i

]
<∞ under the stated moment con-

ditions andCov
(
RK

i , V K
i

)
≤
√
Var

(
RK

i

)
Var

(
V K
i

)
by the Cauchy–Schwarz inequality, it

suffices to prove

E
[
|RK

i |2
]
<∞,E

[
|V K

i |2
]
<∞. (A.1.50)

Denote h̄Ki = 1
K

∑K
k=1 h(X̃

(k)
i , Zi) and we rewriteRK

i and V K
i .

RK
i = Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)

= Yi

(
µ(Xi, Zi)− E [µ(Xi, Zi) |Zi]−

1

K

K∑

k=1

(µ(X̃(k)
i , Zi)− E

[
µ(X̃(k)

i , Zi) |Zi

]
)

)

= Yi

(
h(Xi, Zi)−

1

K

K∑

k=1

h(X̃(k)
i , Zi)

)
(A.1.51)

= Yi(h(Xi, Zi)− h̄Ki ) (A.1.52)

where the first equality holds by (A.1.43), the second equality holds by (A.1.47) and the third equal-

ity holds by the definition of h(w).

V K
i =

1

K − 1

K∑

k=1

(
µ(X(k)

i , Zi)−
1

K

K∑

k=1

µ(X(k)
i , Zi)

)2

=
1

K − 1

K∑

k=1

(
h(X(k)

i , Zi)−
1

K

K∑

k=1

h(X(k)
i , Zi)

)2

=
1

K − 1

K∑

k=1

h2(X(k)
i , Zi)−

K

K − 1

(
1

K

K∑

k=1

h(X(k)
i , Zi)

)2

(A.1.53)

=
K

K − 1

(
1

K

K∑

k=1

h2(X(k)
i , Zi)− (h̄Ki )2

)
(A.1.54)
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where the first equality holds by (A.1.43), the second equality holds due to similar derivations as

(A.1.51) and the last two equalities are simply by expanding and rearranging. Now we bound

(
E
[
|RK

i |2
])2

=
(
E
[
Y 2
i (h(Xi, Zi)− h̄Ki )2

])2

≤ E
[
Y 4
]
E
[
(h(Xi, Zi)− h̄Ki )4

]

≤ E
[
Y 4
]
· 24−1

(
E
[
h4(Xi, Zi) + E

[(
h̄Ki
)4]]) (A.1.55)

where the first equality holds due to (A.1.52), the first inequality holds by the Cauchy–Schwarz

inequality, the second inequality comes from theCr inequality. Regarding E
[
|V K

i |2
]
, we have

E
[
|V K

i |2
]
= E




∣∣∣∣∣

K

K − 1

(
1

K

K∑

k=1

h2(X(k)
i , Zi)− (h̄Ki )2

)∣∣∣∣∣

2




≤ 22−1K2

(K − 1)2
E




(

1

K

K∑

k=1

h2(X(k)
i , Zi)

)2


+
22−1K2

(K − 1)2
E
[
(h̄Ki )4

]

≤ 23



E




(

1

K

K∑

k=1

h2(X(k)
i , Zi)

)2


+ E
[
(h̄Ki )4

]


 := 23(II + E
[
(h̄Ki )4

]
),

(A.1.56)

where the first equality holds by (A.1.54), the first inequality holds due to theCr inequality, and the

second inequality comes from rearranging and the fact thatK ≤ 2(K − 1) (sinceK > 1). The

term II and E
[
(h̄Ki )4

]
can be bounded using the same strategy. Below we give the bounding details
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of E
[
(h̄Ki )4

]
and omit that of II. By the tower property of conditional expectation, we have

E
[
(h̄Ki )4

]
= E




(

1

K

K∑

k=1

h(X̃(k)
i , Zi)

)4




= E



E




(

1

K

K∑

k=1

h(X̃(k)
i , Zi)

)4
∣∣∣∣∣∣
Zi







 . (A.1.57)

To bound E
[(

1
K

∑K
k=1 h(X̃

(k)
i , Zi)

)4 ∣∣∣∣Zi

]
, we notice that, conditional onZi, {h(X̃(k)

i , Zi)}Kk=1

are i.i.d. mean zero random variables, hence we can apply the extension of the Bahr–Esseen inequal-

ity in Dharmadhikari et al. (1969) to obtain

E




(

K∑

k=1

h(X̃(k)
i , Zi)

)4
∣∣∣∣∣∣
Zi



 ≤ c4,K

K∑

k=1

E
[
h4(X̃(k)

i , Zi)
∣∣∣Zi

]
, (A.1.58)

Note for generic d ≥ 2 and n, the term cd,n is defined as

cd,n = nd/2−1d(d− 1)

2
max{1, 2d−3}

[
1 + 2d−1D(d−2)/2m

2m

]

where the integerm satisfies 2m ≤ d < 2m+ 2, and

D2m =
m∑

t=1

t2m−1

(t− 1)!
.

We then can simply bound c4,K byC4K for some universal constantC4 which do not depend on

K . Therefore, combining (A.1.57) and (A.1.58) gives us

E
[
(h̄Ki )4

]
≤ E

[
C4K

K4

K∑

k=1

E
[
h4(X̃(k)

i , Zi)
∣∣∣Zi

]]

=
C4

K2
E
[
E
[
h4(Xi, Zi)

∣∣Zi
]]

=
C4

K2
E
[
h4(W )

]
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where the equality holds by (A.1.46) and the second equality holds by the tower property of con-

ditional expectation. SinceE
[
h4(W )

]
< ∞, we haveE

[
(h̄Ki )4

]
< ∞. The finiteness of II is

similarly proved. Due to (A.1.55) and (A.1.56), we thus establish (A.1.50) under the stated moment

conditionsE
[
Y 4
]
,E
[
h4(W )

]
< ∞. Applying Slutsky’s theorem to (A.1.49) and the consistency

result that s p→ σ̃0, we have

√
n

s




1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)



 d→ N (0, 1) ,

which establishes (A.1.42).

Now we will verify the positiveness of σ̃0 as promised. Recall in the proof of Theorem 1.2.3,

the variance term in the asymptotic normality result is also denoted as σ̃20 and admits the following

expression

E
[
(Ri − E [Y h(W )]− 0.5 E [Y h(W )](Vi − 1))2

]
= E

[
(A+B)2

]
> 0 (A.1.59)

according to (A.1.21), whereA andB are defined in (A.1.22) and (A.1.23) and E
[
(A+B)2

]
> 0

as proved over the course of derivations from (A.1.21) to the end of the proof of Theorem 1.2.3. In

this proof, it is not hard to see σ̃20 has a similar form except thatRi, Vi in the above expression are

replaced by their Monte Carlo estimatorsRK
i , V K

i , thus giving

σ̃20 = E
[
(RK

i − E [Y h(W )]− 0.5 E [Y h(W )](V K
i − 1))2

]

= E
[
(Yi(h(Xi, Zi)− h̄Ki )− E [Y h(W )]− 0.5 E [Y h(W )](V K

i − 1))2
]

= E
[
(III1 − III2)

2
]
, (A.1.60)

where the second equality holds by (A.1.52) and rearranging, the terms III1, III2 in the last equality
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are defined as:

III1 := Yih(Wi)− E [Y h(W )]− 0.5 E [Y h(W )] (Var (h(Wi) |Zi)− 1)

III2 := Yih̄
K
i + 0.5 E [Y h(W )] (V K

i −Var (h(Wi) |Zi)).

To bound E
[
(III1 − III2)

2
]
, we will showE [III2 |Yi,Wi] = 0. Recall the definition that h̄Ki =

1
K

∑K
k=1 h(X̃

(k)
i , Zi), we obtain

E
[
h̄Ki |Yi,Wi

]
= E

[
h̄Ki |Zi

]
= E [h(Wi) |Zi] = 0,

where the first equality holds due toWi = (X1, Zi) and (A.1.45), the second equality holds by

(A.1.46), and the last equality holds due to (A.1.4). Similarly we have

E
[
V K
i |Yi,Wi

]
= E

[
V K
i |Zi

]
= Var (h(Wi) |Zi) ,

due to (A.1.43), (A.1.45), and (A.1.47). Thus we have shown

E [III2 |Yi,Wi] = 0. (A.1.61)

Applying the tower property of conditional expectation to (A.1.60) then expanding yields the fol-

lowing expression:

σ̃20 = E
[
E
[(
III21 + III22 − 2III1III2

)
|Yi,Wi

]]

= E
[
III21 + E

[
III22 |Yi,Wi

]
− 2III1E [III2 |Yi,Wi]

]

= E
[
III21 + E

[
III22 |Yi,Wi

]]

≥ E
[
III21
]
= E

[
(A+B)2

]
, (A.1.62)
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where the second equality holds since III1 ∈ A (Yi,Wi), and the third equality comes from

(A.1.61). Note in the last line we have III1 = A + B due to the definitions ofA,B in (A.1.22)

and (A.1.23) and E
[
(A+B)2

]
> 0 due to (A.1.59). Note E

[
(A+B)2

]
does not depend onK ,

therefore we establish the positiveness of σ̃0 for anyK > 1.

A.1.4 Proofs in Section 1.2.5

Proof of Theorem 1.2.6. First we write

I − Ln
α(µn) = I − f(µn) + f(µn)− Ln

α(µn),

where f(µn) is defined as

f(µn) =:
E [Cov(µ!(X,Z), µn(X,Z) |Z)]√

E [Var(µn(X,Z) |Z)]
.

Then it suffices to separately show

I − f(µn) = Op

(
inf

µ′∈Sµn

E
[
(µ′

n(X,Z)− µ!(X,Z))2
])

, (A.1.63)

f(µn)− Ln
α(µn) = Op

(
n−1/2

)
. (A.1.64)

In the following, we first show (A.1.64). Recall the definitions in Algorithm 1, when µ(X,Z) ∈

A (Z), we have f(µn) = Ln
α(µn) = 0, hence in the following we focus on the case where

µ(X,Z) /∈ A (Z). Note we have

Ln
α(µn) ≥

R̄√
V
− zαs√

n
,
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then since f(µn)− Ln
α(µn) ≤ s

(∣∣∣
(

R̄√
V
− f(µn)

)
/s
∣∣∣+ zα√

n

)
, it suffices to show

T :=
R̄/
√
V − f(µn)

s
= Op

(
n−1/2

)
, s = Op(1).

For given µn, showing the above is quite straightforward: in the proof of Theorem 1.2.3, we es-

tablish the asymptotic normality of T ; we also show s converges in probability to σ̃0 (which is the

variance of the asymptotic normal distribution, as defined in (A.1.15)). For a sequence of work-

ing regression functions µn, we need more work and the stated uniformmoment conditions. The

proof proceeds through verifying the following: note that by definition of bounded in probability,

T = Op
(
n−1/2

)
says for any ε > 0, there existsM for which

sup
n

P (
√
n|T | > M) ≤ ε.

The case that µ(X,Z) ∈ A (Z), i.e.,E [Var (µn(X,Z) |Z)] = 0, was dealt with in the first

sentence after (A.1.64). Now it suffices to show for any µn in the function class U := {µ :

E
[
µ12(X,Z)

]
/(E [Var (µ(X,Z) |Z)])6 ≤ C},

sup
n

P
(√

n|T | > M
)
≤ ε, (A.1.65)

and the choice ofM (when fixing ε) is uniform over µn ∈ U . Define the standard Gaussian random

variable byG. Then we have

P
(√

n|T | > M
)
≤ P (|G| > M) +∆, (A.1.66)
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where∆ is defined as

∆ := sup
µn∈U

sup
M>0

∣∣P
(√

n|T | > M
)
− P (|G| > M)

∣∣ . (A.1.67)

Due to (A.1.9), E
[
µ12(X,Z)

]
< ∞ implies E

[
h12(W )

]
< ∞, where h is defined in (A.1.2). In

the following proof, we will only assume weaker moment conditions, i.e.,E [Var (µn(X,Z) |Z)] =

0 or E[µ12
n (X,Z)]

E[Var(µn(X,Z) |Z)]6
≤ C stated in Theorem 1.2.6 is replaced byE [Var (µn(X,Z) |Z)] = 0

or E[h12
n (X,Z)]

E[Var(µn(X,Z) |Z)]6
≤ C , where hn is defined accordingly.

In the proof of Theorem A.3.1, we assume E
[
h2(W )

]
= 1without loss of generality. This

is because we can always scale h by dividing by
√
E [h2(W )]when the given working regression

function satisfies µ(X,Z) /∈ A (Z). The floodgate inference procedure and results are the same

with the corresponding scaled version h̃(W ). And the scaled version still satisfies the finite mo-

ment conditionE
[
h̃12(W )

]
< ∞. Now we are dealing with a sequence of working regres-

sion functions µn. If we scale hn analogously by dividing it by
√

E [h2n(W )], the corresponding

function sequence {h̃n} does not necessarily satisfy the uniformmoment condition, i.e., for all

n, E
[
h̃12n (W )

]
< C for some constantC . But the moment conditionsE[Y 12] < ∞ and

E
[
h12n (X,Z)

]
/(E [Var (µn(X,Z) |Z)])6 = E

[
h12n (W )

]
/(
√
E [h2n(W )])12 ≤ C for all n en-

sure the uniformmoment bound after scaling, hence for the following we can assume E
[
h2n(W )

]
=

1.

According to the proof of Theorem A.3.1, we have the following Berry–Esseen bound

sup
M>0

∣∣P
(√

n|T | > M
)
− P (|G| > M)

∣∣ = O

(
1√
n

)
,

which relies on verifying the following:

(i) E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
<∞,
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(ii) σ̃20(µn) = H2(0) > 0,

(iii) σ̃2(µn) = ‖L(U0)‖2 > 0.

Note the above terms are defined similarly as in the proof of Theorem A.3.1 except the depen-

dence on µn (but we abbreviate the notation dependence on µn for the random variables). We have

σ̃2(µn) = 1 due to the derivations after (A.3.21) in the proof of Theorem A.3.1. To show the con-

stant in the above rate of 1√
n
is uniformly bounded, we need to prove infµn∈U σ̃

2(µn) > 0 and

uniformly control the the 3rd moments in the condition (i). First notice that

inf
µn∈U

σ̃2(µn) ≥ inf
µn∈U

E [Var (Y hn(W ) |Z)]

≥ inf
µn∈U

E [Var (Y hn(W ) |X,Z)]

= inf
µn∈U

E
[
h2n(W )Var (Y |X,Z)

]

≥ τ > 0

where the first inequality holds due to (A.1.24), the second inequality holds as a result of the law

of total conditional variance, the last equality holds by the assumption that E
[
h2n(W )

]
= 1

and the moment lower bound conditionVar (Y |X,Z) ≥ τ > 0. Assuming E[Y 12] < ∞

and E
[
µ12
n (X,Z)

]
/(E [Var (µn(X,Z) |Z)])6 ≤ C , we can uniformly control the moments

E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
, therefore establish the rate of 1√

n
in

(A.1.67):

∆ = O

(
1√
n

)
.

Combining this with (A.1.66), we have

sup
µn∈U

P
(√

n|T | > M
)
≤ P (|G| > M) +

C ′
√
n
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for some constantC ′ depending onC, τ and E
[
Y 12

]
. Therefore we obtain (A.1.65) and the choice

ofM can be universally chosen over µn ∈ U , which finally establishes T = Op
(
n−1/2

)
. Using

similar strategies, we can prove s = Op (1). Hence we have shown (A.1.64).

Now we proceed to prove (A.1.63), first it can be simplified into the following form due to

(A.1.6) and (A.1.8),

I − f(µn) =
√

E[(h!)2(W )]− E [hn(W )h!(W )]√
E [h2n(W )]

(A.1.68)

where hn(W ) = µn(W ) − E [µn(W ) |Z] and h! are defined the same way. Remark we have

0/0 = 0 by convention for (A.1.68). We also find it is more convenient to work with f(µ̄n) (note

f(µn) = f(µ̄n)), recall that the definition of µ̄n:

µ̄n(x, z) :=

√
I

E [h2n(W )]
(µn(x, z)− E [µn(X,Z) |Z = z]) + E [µ!(X,Z) |Z = z] ,

and similarly denote h̄n(w) = µ̄n(x, z) − E [µ̄n(X,Z) |Z = z]. When µ(X,Z) ∈ A (Z), we

have µ̄n(x, z) = E [µ!(X,Z) |Z = z] , h̄n(w) = 0, thus

I − f(µn) = I =
E
[
(h̄n(W )− h!(W ))2

]
√
E[(h!)2(W )]

(A.1.69)

Otherwise when E
[
h2n(W )

]
> 0, we have

√
E [µ̄2

n(W )] = I . In this case, we rewrite the right

hand side of (A.1.68) in terms of µ̄n and further simplify it as below,

E
[
(h̄n(W )− h!(W ))2

]
−
(√

E
[
h̄2n(W )

]
−
√
E[(h!)2(W )]

)2

2
√
E
[
h̄2n(W )

] =
E
[
(h̄n(W )− h!(W ))2

]

2
√
E[(h!)2(W )]
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which says that

I − f(µn) =
E
[
(h̄n(W )− h!(W ))2

]

2
√
E[(h!)2(W )]

(A.1.70)

Note that
√

E[(h!)2(W )] = I which does not depend on µ, hence it suffices to show

E
[
(h̄n(W )− h!(W ))2

]
= Op

(
inf

µ′∈Sµn

E
[
(µ′(X,Z)− µ!(X,Z))2

])
. (A.1.71)

We prove it by considering two cases:

(a) E [hn(W )h!(W )] ≤ 0,

(b) E [hn(W )h!(W )] > 0.

Regarding case (a), we have

inf
µ′∈Sµn

E
[
(µ′(X,Z)− µ!(X,Z))2

]
= inf

c>0,∀g(z)

(
E
[
(chn(W )− h!(W ))2

]
+ E

[
(g(Z)− E [µ!(W ) |Z])2

])

= inf
c>0

E
[
(chn(W )− h!(W ))2

]

= E
[
(h!)2(W )

]
+ inf

c>0
c2E

[
h2n(W )

]
− 2cE [hn(W )h!(W )]

= E
[
(h!)2(W )

]

where the first equality holds by the definition of Sµn and the fact that, for any g(Z),

E [h!(W )g(Z)] = E [g(Z)E [h!(W ) |Z]] = 0

and similarly E [hn(W )g(Z)] = 0. The second equality holds by choosing g(z) to be E [h!(W ) |Z = z].

The third equality is simply from expanding and the last equality holds in case (a). Noticing

E
[
(h̄n(W )− h!(W ))2

]
≤ 2

(
E
[
h̄2n(W )

]
+ E

[
(h!)2(W )

])
= 4E

[
(h!)2(W )

]
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we thus establish (A.1.71). Regarding case (b), we have

inf
µ′∈Sµn

E
[
(µ′(X,Z)− µ!(X,Z))2

]
= inf

c>0
E
[
(chn(W )− h!(W ))2

]

= inf
c>0

E
[
(chn(W )− h0(W ) + h0(W )− h!(W ))2

]

= E
[
(h0(W )− h!(W ))2

]
+ inf

c>0
E
[
(chn(W )− h0(W ))2

]

= E
[
(h0(W )− h!(W ))2

]

= E
[
(h!)2(W )

]
− E

[
(h0(W ))2

]
(A.1.72)

where in the second equality, h0 is defined to be

h0(w) :=
E [hn(W )h!(W )]

E [h2n(W )]
hn(w).

It satisfies the property E [hn(W ) (h!(W )− h0(W ))] = 0 thus the third equality holds. The

fourth equality comes from choosing c to be E[hn(W )h#(W )]
E[h2

n(W )] , which is positive in case (b). The last

equality holds again due to E [hn(W ) (h!(W )− h0(W ))] = 0. And we have

E
[
(h̄n(W )− h!(W ))2

]
= 2E

[
(h!)2(W )

]
− 2E

[
h̄n(W )h!(W )

]

= 2E
[
(h!)2(W )

]
− 2E

[
(h0(W ))2

]
ρ (A.1.73)

where ρ denotes the following term and can be further simplified based on the definition of h̄n(W )

and h0(W ).

ρ :=
E
[
h̄n(W )h!(W )

]

E [(h0(W ))2]

=
I
√
E [h2n(W )]

E [hn(W )h!(W )]
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thus we have ρ > 0 in case (b) and ρ ≥ 1 by the Cauchy–Schwarz inequality. Combining this with

(A.1.72) and (A.1.73) yields (A.1.71). Finally we establish the bound in (1.2.11).

A.1.5 Proofs in Section 1.3.1

Proof of Lemma 1.3.2. We prove this lemma by a small trick, taking advantage of the idea of symme-

try. Remember as in (A.1.45),X ’s null copy X̃ is constructed such that

X̃ ⊥⊥ (X,Y ) | Z, and X̃ | Z d
= X | Z. (A.1.74)

We can define the null copy of Ỹ by drawing from the conditional distribution of of Y givenZ ,

without looking at (X,Y ). Remark that introducing Ỹ is just for the convenience of proof and

does not necessarily mean we need to be able to sample it. Formally it satisfy

Ỹ ⊥⊥ (X,Y ) | Z, Ỹ | Z d
= Y | Z (A.1.75)

More specifically, we “generate” Ỹ conditioning on (X̃, Z), following the same conditional distri-

bution as Y |X,Z (It can be verified this will satisfy (A.1.75)). Now by the symmetry argument, we

have

E
[

{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
= E

[
{Ỹ ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
. (A.1.76)
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LetW = (X,Z) and define g(Z) := E [µ(W ) |Z] , h(W ) := µ(W )− g(Z)with the associated

functions denoted by g(z), h(w), we can rewrite f#1(µ)/2 as

f#1(µ)/2 = P
(
Y (µ(X̃, Z)− E [µ(X,Z) |Z]) < 0

)
− P

(
Y (µ(X,Z)− E [µ(X,Z) |Z]) < 0

)

= E
[

{Ỹ ·[µ(W )−E[µ(W ) |Z]]<0}

]
− E

[
{Y ·[µ(W )−E[µ(W ) |Z]]<0}

]

= E
[
E
[(

{Ỹ ·[µ(W )−E[µ(W ) |Z]]<0} − {Y ·[µ(W )−E[µ(W ) |Z]]<0}

) ∣∣∣W
]]

= E
[
E
[(

{Ỹ ·h(W )<0} − {Y ·h(W )<0}

) ∣∣∣W
]]

where the second equality is by (A.1.76), the third one comes from the law of total expectation and

the fourth one is by the definition of h(W ). Now it suffices to consider maximizing the following

quantity

E
[(

{Ỹ ·h(W )<0} − {Y ·h(W )<0}

) ∣∣∣W = w
]

(A.1.77)

for eachw = (x, z). Due to the property (A.1.75), we have

P
(
Ỹ = y |W

)
= P

(
Ỹ = y |Z

)
= P (Y = y |Z) y ∈ {−1, 1},

hence we can simplify the conditional expectation of the first indicator function in (A.1.77) into the

following

E
[

{Ỹ ·h(W )<0} |W = w
]
= P

(
Ỹ = 1, h(W ) < 0 |W = w

)
+ P

(
Ỹ = −1, h(W ) > 0 |W = w

)

= P (Y = 1 |Z = z) {h(w)<0} + P (Y = −1 |Z = z) {h(w)>0}.

(A.1.78)
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Similarly we have

E
[

{Y ·h(W )<0} |W = w
]
= P (Y = 1 |W = w) {h(w)<0}+P (Y = −1 |W = w) {h(w)>0}.

(A.1.79)

When E [Y |W = w] > E [Y |Z = z], we have

P (Y = 1 |W = w) > P (Y = 1 |Z = z) , P (Y = −1 |W = w) < P (Y = −1 |Z = z) ,

hence in this case, by comparing (A.1.78) and (A.1.79) we know h(w) > 0will maximize (A.1.77)

with maximum value

P (Y = −1 |Z = z)− P (Y = −1 |W = w) = (1− E [Y |Z = z])/2− (1− E [Y |W = w])/2

= (E [Y |W = w]− E [Y |Z = z])/2. (A.1.80)

Similarly we can figure out the maximizer of h(w)when E [Y |W = w] < E [Y |Z = z]. Finally

we have

h(w)






> 0, when E [Y |W = w] > E [Y |Z = z]

< 0, when E [Y |W = w] < E [Y |Z = z]

can be any choice, when E [Y |W = w] = E [Y |Z = z]

(A.1.81)

will maximize (A.1.77) with the maximum value |E [Y |W = w]− E [Y |Z = z] |/2. Remark the

definition of h(w) = µ(w)− g(z), we can restate (A.1.81) as






µ(x, z) = µ(w) > g(z), when E [Y |W = w] > E [Y |Z = z]

µ(x, z) = µ(w) < g(z), when E [Y |W = w] < E [Y |Z = z]

can be any choice, when E [Y |W = w] = E [Y |Z = z]

(A.1.82)
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where again g(z) = E [µ(X,Z) |Z = z]. Apparently, choosing µ(x, z) to be the true regression

function µ!(x, z)will satisfy (A.1.82). Hence we show f#1(µ) is maximized at µ! with maximum

value

E |E [Y |Z]− E [Y |X,Z]|

which equals I#1 . Clearly from (A.1.82), µ!(x, z) is not the unique maximizer and any function in

the set described in the following set can attain the maximum.

{µ : Rp → R | sign (µ(x, z)− E [µ(X,Z) |Z = z]) = sign (E [Y |X = x]− E [Y |Z = z])}.

(A.1.83)

Proof of Theorem 1.3.3. According to Algorithm 10, we first denote

U := µ(X,Z), g(z) := E[µ(X,Z) |Z = z], (A.1.84)

Gz(u) := P (U < u |Z = z) , Fz(u) := P (U ≤ u |Z = z) .

thus have the following expression ofRi:

Ri = GZi(g(Zi)) {Yi=1} + (1− FZi(g(Zi))) {Yi=−1} − {Yi(µ(Wi)−g(Zi))<0}

First we prove that E [Ri] = f#1(µ)/2. Recall the definition of f#1(µ) in (1.3.2),

f#1(µ)/2 = E
[

{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
− E

[
{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
,
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letW = (X,Z), then it suffices to show the following

E
[
GZ(g(Z)) {Y=1} + (1− FZ(g(Z))) {Y=−1}

]
= E

[
{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
.

(A.1.85)

By the law of total expectation we can rewrite the right hand side as

E
[
E
[

{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0} |Z, Y
]]

.

Due to the property (A.1.74), we have X̃ ⊥⊥ (Y, Z) | Z and X̃ | Z ∼ X | Z , which yields

E
[

{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0} |Z = z, Y = 1
]
= GZ(g(Z)) {Y=1}.

And we can do similar derivations when Y = −1. Thus we can proveE [Ri] = f#1(µ)/2 by

showing (A.1.85). In light of the deterministic relationship in Lemma 1.3.2, we have {Lαn(µ) ≤

f#1(µ)} ⊂ {Lαn(µ) ≤ I#1}, hence it suffices to prove

P (Lαn(µ) ≤ f#1(µ)) ≥ 1− α−O(n−1/2). (A.1.86)

Note thatVar (Ri) always exist due to the boundedness. WhenVar (Ri) = 0, we haveRi =

f#1(µ)/2 = R̄ and s = 0, thusLαn(µ) = f#1(µ), hence (A.1.86) trivially holds. Remark this

includes the case when µ(X,Z) ∈ A (Z). Otherwise, applying Lemma A.3.4 to i.i.d. bounded

random variablesRi will yield (A.1.86), where the constant will depend onVar (Ri).

A.1.6 Proofs in Section 1.3.2

Proof of Theorem 1.3.4. When T is degenerate or µ(X) ∈ A (Z), we immediately haveLα,Tn (µ) =

0 according to Algorithm 11, which implies the coverage validity. Below we focus on the non-trivial
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case. Due to the deterministic relationship

fT
n (µ) ≤ fT

n (µ!) ≤ f(µ!) = I,

it suffices to prove

PP
(
Lα,Tn (µ) ≤ fT

n (µ)
)
≥ 1− α− o(1). (A.1.87)

which can be reduced to establishing certain asymptotic normality based on i.i.d. random variables

Rm, Vm,m ∈ [n1]whenever the variance of the asymptotic distribution is nonzero. First, we verify

that under the stated conditions, all the involving moments are finite, which can be reduced to show

Var (Rm) ,Var (Vm) <∞.

For a given n2, it can be further reduced to the following

Var (Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm])

Var (Var (µ(Xi, Zi) |Zm,Tm)) <∞.

Using similar strategies in the proof of Theorem 1.2.3, we can show the above holds under the mo-

ment conditionsE
[
Y 4
]
,E
[
µ4(X)

]
< ∞ by the Cauchy–Schwarz inequality and the tower

property of conditional expectation.

Note that in the proof of the main result, i.e. Theorem 1.2.3, we consider four different cases

based on whether some variances are zero or not. Here we only pursue the asymptotic coverage va-

lidity, then the discussion on those four different cases becomes very straighforward. When both

the variances ofRm, Vm are zero, we have R̄/V̄ = fT
n (µ), s2 = 0, then (A.1.87) holds im-
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mediately. WhenVar (Vm) = 0, we can simply establish the asymptotic normality by the cen-

tral limit theorem. Otherwise, delta method can be applied. Here we give the derivation for the

most non-trivial case whereVar (Rm) ,Var (Vm) > 0. Denote random vectors {Um}n1
m=1 =

{(Um1, Um2)}n1
m=1

i.i.d.∼ U = (U1, U2) to be

Um1 = Rm − E [Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm]] , (A.1.88)

Um2 = Vm − E [Var (µ(Xi, Zi) |Zm,Tm)] (A.1.89)

hence we haveE [U ] = 0. Denote hT (Wi) = µ(Xi, Zi) − E [µ(Xi, Zi) |Zm,Tm], we have the

following holds

fT
n (µ) =

E [Cov(µ!(Xi, Zi), µ(Xi, Zi) |Z,T )]√
E [Var(µ(Xi, Zi) |Z,T )]

=
E
[
Cov(µ!(Xi, Zi), hT (Wi) |Z,T )

]
√

E [E [(hT (Wi)2)]]

=
E
[
µ!(Xi, Zi)hT (Wi)

]
√
E [E [(hT (Wi)2)]]

=
E
[
YihT (Wi)

]
√
E [(hT (Wi)2)]

,

where the first equality holds by the definition of fT
n (µ), the second inequality holds by the defini-

tion of hT (Wi). Regarding the third equality, we make use of the factE
[
hT (Wi) |Zm,Tm

]
= 0

and the tower property of conditional expectation. The last inequality holds by the tower prop-

erty of conditional expectation and the fact that hT (Wi) ∈ A (Xm,Zm). Let T = R̄/V̄ , then

T − fT
n (µ) can be rewritten as

T − fT
n (µ) =

Ū1 + E
[
YihT (Wi)

]
√

Ū2 + E [(hT (Wi)2)]
−

E
[
YihT (Wi)

]
√
E [(hT (Wi)2)]

:= H(Ū)
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where Ū = (Ū1, Ū2) =
1
n1

∑n
i=1 Um andH : R2 → R is defined through the following:

H(x) = H(x1, x2) :=
x1 + E

[
YihT (Wi)

]
√
x2 + E [(hT (Wi)2)]

−
E
[
YihT (Wi)

]
√
E [(hT (Wi)2)]

:= H(Ū)

when x2 > −E
[
(hT (Wi)2)

]
and is set to be E[YihT (Wi)]√

E[(hT (Wi)2)]
otherwise. Note that the first order

derivatives ofH(x) exists, by applying the multivariate Delta method to mean zero random vectors

{(Um1, Um2)}n1
m=1 with the nonlinear function chosen asH , we have

√
n1(T − fT

n (µ))
d→ N

(
0, σ̃2

)

whenever the variance term σ̃2 is nonzero. Exactly following the strategy in the proof of Theorem

1.2.3, we have σ̃2 > 0 under the case whereVar (Rm) ,Var (Vm) > 0. Also notice s2 is a consis-

tent estimator of σ̃2, then by the argument of Slutsky’s Theorem, (A.1.87) is established.

A.2 An example for projection methods

Consider covariatesW = (W1,W2) distributed asW1 ∼ N (0, 1) andW2 = W 2
1 + N (0, 1).

Let Y = W 2
1 +N (0, 1), with all the Gaussian random variables independent. ThenW1 is the only

important variable; formally: W1 +⊥⊥ Y | W2 andW2 ⊥⊥ Y | W1. But the projection parameters are

(E
[
W)W

]
)−1E [WY ] = (0, 34)

), i.e., zero for the non-null covariate and non-zero for the null

covariate.

A.3 Rate results

Theorem A.3.1 (Floodgate validity). For any given working regression function µ : Rp → R

and i.i.d. data {(Yi, Xi, Zi)}ni=1, if E[Y 12], E[µ12(X,Z)] < ∞, thenLαn(µ) from Algorithm 1
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satisfies

P (Lαn(µ) ≤ I) ≥ 1− α− Cn−1/2

for some constantC depending only on the moments of Y and µ(X,Z).

The proof can be found in Appendix A.3.1. Establishing the n−1/2 rate requires relatively re-

cent Berry–Esseen-type results for the delta method (Pinelis et al., 2016) and also necessitates the

existence of 12th moments.

Theorem A.3.2. Under the conditions of Theorem A.3.1 and the additional moment condition that

E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0,Lαn,K(µ) computed by replacingRi and Vi with

RK
i and V K

i , respectively, in Algorithm 1 satisfies

inf
K>1

P
(
Lαn,K(µ) ≤ I

)
≥ 1− α− Cn−1/2

for some constantC depending only on the moments of Y and µ(X,Z).

The proof can be found in Appendix A.3.1. Note that the additional assumption beyond The-

orem A.3.1 of E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0 is only needed for n−1/2-rate

coverage validity uniformly overK > 1, and could be removed for the same result for any fixed

K > 1.

A.3.1 Proofs in Appendix A.3

Theorem A.3.1

Proof of Theorem A.3.1. Recall in Algorithm 1, we denoteRi = Yi
(
µ(Xi, Zi)−E [µ(Xi, Zi) |Zi]

)

and Vi = Var (µ(Xi, Zi) |Zi) for each i ∈ [n], and compute their sample mean (R̄, V̄ ) and sam-
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ple covariance matrix Σ̂. The LCB is constructed as

Lαn(µ) = max

{
R̄√
V̄
− zαs√

n
, 0

}
, where s2 =

1

V̄

[(
R̄

2V̄

)2

Σ̂22 + Σ̂11 −
R̄

V̄
Σ̂12

]
.

Following exactly the same discussions as those from the beginning to (A.1.10) in the proof of The-

orem 1.2.3, we have

• Theorem A.3.1 can be proved under the weaker moment conditions that E
[
Y 12

]
,E
[
h12(W )

]
<

∞, which is assumed for the following proof;

• it suffices to prove

P
(

R̄√
V̄
− zαs√

n
≤ f(µ)

)
≥ 1− α− C/

√
n (A.3.1)

for some constantC when E [Var(µ(X,Z) |Z)] += 0;

• we can assume E
[
h2(W )

]
= 1without loss of generality.

We will utilize Berry–Esseen-type bounds to prove (A.3.1). Now we still consider the following four

cases.

(I) Var (Y h(W )) = 0 andVar (Var (h(W ) |Z)) = 0.

(II) Var (Y h(W )) > 0 andVar (Var (h(W ) |Z)) = 0.

(III) Var (Y h(W )) = 0 andVar (Var (h(W ) |Z)) > 0.

(IV) Var (Y h(W )) > 0 andVar (Var (h(X) |Z)) > 0.

Note that assuming E
[
Y 12

]
and E

[
h12(W )

]
< ∞ ensures all the above variances exist due to the

same bounding strategy as (A.1.9).
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Case (I): (A.3.1) holds by the discussion for Case (I) in the proof of Theorem 1.2.3.

Case (II): due to the derivations for Case (II) in the proof of Theorem 1.2.3, the problem is re-

duced to showing

P
(
R̄− zα(Σ̂11)1/2√

n
≤ E [Y h(W )]

)
≥ 1− α− C/

√
n. (A.3.2)

As mentioned in the proof of Theorem 1.2.3, R̄ is simply the sample mean estimator of the quan-

tity E [Y h(W )] and Σ̂11 is the corresponding sample variance. Therefore, the CLT and Slutsky’s

theorem immediately establish the asymptotic coverage validity. To prove the 1/
√
n rate in (A.3.2),

stronger results are needed. The classical Berry–Esseen bound serves as the main ingredient, which

states that

Lemma A.3.3 (Berry–Esseen bound). There exists a positive constant C, such that for i.i.d.mean

zero random variablesX1, . . . , Xn satisfying

(1) E[X2
1 ] = σ2 > 0

(2) E[|X1|3] = ρ <∞

if we define Fn(x) to be the cumulative distribution function (CDF) of the scaled average
√
nX̄/σ

and denote the CDF of the standard normal distribution byΦ(x), then we have

sup
x∈R

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n
. (A.3.3)

Since σ in the above result is generally unknown and usually replaced by the sample variance

s2σ = 1
n

∑n
i=1(Xi − X̄)2, we need the following lemma, which is proved in Bentkus et al. (1996).

Lemma A.3.4 (Berry–Esseen bound for Student’s statistic). Under the same conditions as in Lemma

A.3.3, if we redefine Fn(x) to be the cumulative distribution function (CDF) of the Student t-statistic
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√
nX̄/sσ , then we have the following Berry–Esseen bound

sup
x∈R

|Fn(x)− Φ(x)| ≤ C ′ρ

σ3
√
n
. (A.3.4)

To apply Lemma A.3.4, since we are in Case (II) whereVar (Var (h(W ) |Z)) = 0 andVar (Y h(W )) >

0, it suffices to verify the finiteness of the term “ρ” in our context:

ρ = E
[
|Y h(W )− E [Y h(W )]|3

]

≤ 23−1
(
E
[
Y 3h3(W )

]
+ |E [Y h(W )] |3

)
<∞

where the equality holds since we assume E
[
h2(W )

]
= 1 and the inequality comes from theCr in-

equality. For the last inequality, using the Cauchy–Schwarz inequality and the fact that higher mo-

ments dominate lower moments, we obtain the finiteness when assuming E
[
Y 6
]
,E
[
h6(W )

]
<

∞, which holds under the assumed moment conditions. Now by applying the Berry–Esseen bound

in Lemma A.3.4 with X̄ = R̄− E [Y h(W )] and s2σ = Σ̂11, we obtain (A.3.2).

Case (III): due to (A.1.11), we have

R̄√
V̄
− zαs√

n
=

E [Y h(W )]√
V̄

− zαs√
n
, where s2 =

1

V̄

(
E [Y h(W )]

2V̄

)2

Σ̂22.

Note E[Y h(W )]√
V̄

is a nonlinear function of the moment estimators, so the following asymptotic

normality result is a direct consequence of the multivariate delta method,

√
n

(
E [Y h(W )]√

V̄
− f(µ)

)
d→ N

(
0, σ̃20

)
,

where σ̃20 = H2(0)will be specified later (see the definition ofH2(x) in (A.3.10)) and s2 inLαn(µ)

is a consistent estimator of it. To establish the rate 1/
√
n, the classical Berry–Esseen result needs to

158



be extended for nonlinear statistics. Note that Case (IV) involves a nonlinear statistic too, and is a

bit more complicated. Hence we focus on Case (IV) and omit the very similar proof for Case (III).

Case (IV): Denote T :=
(

R̄√
V̄
− f(µ)

)
/s. Under specific moment conditions, we will establish

the Berry–Esseen-type bound below:

sup
t∈R

∣∣P
(√

nT ≤ t
)
− Φ(t)

∣∣ = O

(
1√
n

)
(A.3.5)

whereΦ(t) denotes the CDF of the standard normal distribution.

The proof relies on a careful analysis of nonlinear statistics. We take advantage of the results in

a recent paper (Pinelis et al., 2016) that establishes Berry–Esseen bounds with rate 1/
√
n for the

multivariate delta method when the function applied to the sample mean estimator satisfies certain

smoothness conditions. And the constants in the rate depend on the distribution only through

several moments. Specifically, considerU,U1, . . . , Un to be i.i.d. random vectors on a setX and a

functionalH : X → Rwhich satisfies the following smoothness condition:

Condition A.3.5. There exists ε,Mε > 0 and a continuous linear functionalL : X → R such that

|H(x)− L(x)| ≤Mε‖x‖2 for all x ∈ X with ‖x‖ ≤ ε (A.3.6)

We can think ofL as the first-order Taylor expansion ofH . This smoothness condition basi-

cally requiresH to be nearly linear around the origin and can be satisfied if its second derivatives are

bounded in the small neighbourhood {x : ‖x‖ ≤ ε}. Before stating Pinelis et al. (2016)’s result

(we change their notation to avoid conflicts with the notation in the main text of this paper), define

Ū := 1
n

∑n
i=1 Ui and

σ̃ := ‖L(U)‖2, νp := ‖U‖p, ςp :=
‖L(U)‖p

σ̃
,
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where for a given random vectorU = (U1, · · · , Ud) ∈ Rd, ‖U‖p is defined as ‖U‖p = (E [‖U‖p])1/p

with ‖u‖p :=
∑d

j=1 |uj |p.

Theorem A.3.6. (Pinelis et al., 2016, Theorem 2.11) LetX be a Hilbert space, letH satisfy Condi-

tion A.3.5 for some ε > 0, and assume E [U ] = 0, σ̃ > 0 and ν3 <∞, then

sup
t∈R

∣∣∣∣P
(√

nH(Ū)

σ̃
≤ t

)
− Φ(t)

∣∣∣∣ ≤
C√
n

(A.3.7)

where the constantC depends on the distribution ofU only through σ̃, ν2, ν3, ς3 (it also depends on the

smoothness of the functionalH through ε,Mε).

Note that the above result is a generalization of the standard Berry–Esseen bound. σ̃2 is the vari-

ance term of the asymptotic normal distribution. ς3 is closely related to the term ρ/σ2 in (A.3.3).

The quantities σ̃, ν2, ν3, ς3 involved in the constantC only involve up to third moments, which is

in accordance with the standard Berry–Esseen bound in Lemmas A.3.3 and A.3.4. Note the exis-

tence of σ̃, ν2, ς3 is implied by ν3 < ∞ due to the fact that lower moments can be controlled by

higher moments, together with the linearity of the functionalL. To apply Theorem A.3.6 to our

problem, we first letX = R5 and random vectors {Ui}ni=1 = {(Ui1, Ui2, Ui3, Ui4, Ui5)}ni=1
i.i.d.∼

U0 = (U01, U02, U03, U04, U05) to be

Ui1 = Ri − E [Y h(W )] , Ui2 = Vi − E
[
h2(W )

]
,(A.3.8)

Ui3 = Y 2
i h

2(Wi)− E
[
Y 2h2(W )

]
, Ui4 = (Var (h(Wi) |Zi))

2 − E
[
(Var (h(W ) |Z))2

]
,

Ui5 = RiVar (h(Wi) |Zi)− E [Y h(W )Var (h(W ) |Z)] .

Recall the definitionRi = Yi
(
µ(Xi, Zi) − E [µ(X,Zi) |Zi]

)
and Vi = Var (µ(Xi, Zi) |Zi),

hence we haveE [Ui] = E [U0] = 0. Let Ū = (Ū1, Ū2, Ū3, Ū4, Ū5) = 1
n

∑n
i=1 Ui ∈ R5, recall
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the definition T =
(

R̄√
V̄
− f(µ)

)
/swhere s2 = 1

V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
, then T can

be rewritten as

T = H(Ū) :=
H1(Ū1, Ū2)√

H2(Ū)
,

whereH1(Ū1, Ū2) andH2(Ū) are defined as

H1(Ū1, Ū2) :=
Ū1 + E [Y h(W )]√
Ū2 + E [h2(W )]

− E [Y h(W )]√
E [h2(W )]

, (A.3.9)

H2(Ū) :=
1

Ū2 + E [h2(W )]

[(
Ū1 + E [Y h(W )]

2(Ū2 + E [h2(W )])

)2 (
Ū4 + E

[
(Var (h(W ) |Z))2

]
− (Ū2 + E

[
h2(W )

]
)2
)

+ Ū3 + E
[
Y 2h2(W )

]
− (Ū1 + E [Y h(W )])2

− Ū1 + E [Y h(W )]

Ū2 + E [h2(W )]

(
Ū5 + E [Y h(W )Var (h(W ) |Z)]− (Ū1 + E [Y h(W )])(Ū2 + E

[
h2(W )

]
)
)
]
.

(A.3.10)

NoteH(x) = H(x1, x2, x3, x4, x5) : R5 → R is defined by replacing the above Ū =

(Ū1, Ū2, Ū3, Ū4, Ū5) by x := (x1, x2, x3, x4, x5) respectively. When x2 > −E
[
h2(W )

]
or

H2(x) = 0,H(x) is set to be 0. If we can verify the conditions for T = H(Ū), Theorem A.3.6

implies

sup
t∈R

∣∣P
(√

nT ≤ tσ̃
)
− Φ(t)

∣∣ ≤ C√
n
,

for some constantC , where σ̃ = ‖L(U0)‖2 > 0 (we will defineL(x) shortly and subsequently

show σ̃ = 1). Theorem A.3.6 says that the constantC above only depends on some universal con-

stants and σ̃, ν2, ν3, ς3, which are the moments ofU (i.e., the moments ofUi). SinceUi (defined in

the three lines around (A.3.8)) is a function of Yi and h(Wi), we will apply the Cauchy–Schwarz

inequality to further bound the moments ofU by the moments of Y and h(W ) = µ(X,Z) −

E [µ(X,Z) |Z]. First we need to verify Condition A.3.5, i.e., there exists ε,Mε > 0 and a continu-
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ous linear functionalL : R5 → R such that

|H(x)− L(x)| ≤Mε‖x‖2 for all x ∈ R5 with ‖x‖ ≤ ε. (A.3.11)

Second, we will show σ̃, ν3, and ς3 are finite under the stated moment conditions. Regarding the

smoothness condition, consider the first order Taylor expansion ofH at zero,

H(0) +
∂H

∂x1
(0)x1 +

∂H

∂x2
(0)x2 +

∂H

∂x3
(0)x3 +

∂H

∂x4
(0)x4 +

∂H

∂x5
(0)x5.

Note that forH(0) = H1(0)/
√
H2(0), we haveH1(0) = 0 andH2(0) > 0 (denote σ̃20 :=

H2(0) and we will show it is positive over the course of derivations from (A.3.17) to (A.3.21). After

simplifying the expression ofH2(0), we give the explicit form of σ̃20 below:

σ̃20 =
1

E [h2(W )]

[(
E [Y h(W )]

2(E [h2(W )])

)2

Var (Var (h(W ) |Z)) + Var (Y h(W ))

− E [Y h(W )]

E [h2(W )]
Cov (Y h(W ),Var (h(W ) |Z))

]
.

(A.3.12)

Using the chain rule of derivatives, we have form ∈ [5],

∂H

∂xm
(0) =

∂H1

∂xm
(0)/

√
H2(0)−

H1(0)

2H2(0)3/2
· ∂H2

∂xm
(0) =

∂H1

∂xm
(0)/σ̃0.

SinceH1(x1, x2) only depends on x1, x2, we only need to evaluate two partial derivatives to com-

pute the first order Taylor expansion ofH at zero, yielding the following linear function

1

σ̃0

(
1√

E [h2(W )]
x1 −

E [Y h(W )]

2(
√
E [h2(W )])3

x2

)
:= L(x), (A.3.13)

which is denoted byL(x) = L(x1, x2) and satisfiesL(0) = 0. Note that when ε = E
[
h2(W )

]
/2,
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we have

min
‖x‖≤ε

(x2 + E
[
h2(W )

]
) = E

[
h2(W )

]
− ε > 0.

SinceH2(x) is continuous around zero andH2(0) > 0 (which will be shown in the following

proof), we can similarly choose ε sufficiently small such thatmin‖x‖≤εH2(x) > 0. RecallH(x) =

H1(x)/
√
H2(x), whereH1, H2 are defined in (A.3.9) and (A.3.10), soH(x) is continuous on

{x : ‖x‖ ≤ ε}. Furthermore, its second partial derivatives exist and are continuous over the

compact set {x : ‖x‖ ≤ ε}, thus are also bounded, which implies that there existsMε > 0 such

that (A.3.11) holds.

As for σ̃, ν3, and ς3, we will now establish the following moment bounds:

0 < σ̃ := ‖L(U0)‖2 <∞, (A.3.14)

ν2 := ‖U0‖2, ν3 := ‖U0‖3 <∞,

ς3 :=
‖L(U0)‖3

σ̃
<∞. (A.3.15)

Note that ν33 = ‖U0‖33 = E
[
|U01|3

]
+ E

[
|U02|3

]
+ E

[
|U03|3

]
+ E

[
|U04|3

]
+ E

[
|U05|3

]
and

(ς3σ̃)
3 = E

[
|L(U0)|3

]
=

1

σ̃30
E




∣∣∣∣∣

1√
E [h2(W )]

U01 −
E [Y h(W )]

2(
√
E [h2(W )])3

U02

∣∣∣∣∣

3




≤ 23−1

σ̃30

(
1

(
√
E [h2(W )])3

E
[
|U01|3

]
+

(E [Y h(W )])3

8(
√
E [h2(W )])9

E
[
|U02|3

]
)

(A.3.16)

where the equalities hold due to the definitions ofL and ς3 in (A.3.13), (A.3.15), and the inequality

holds as a result of theCr inequality. Due to the fact that the finiteness of higher moments implies

that of lower moments and (A.3.16), we only need to show
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(i) E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
<∞,

(ii) σ̃20 = H2(0) > 0,

(iii) σ̃2 = ‖L(U0)‖2 > 0,

under the stated moment conditions. For (iii), actually we will show σ̃2 = 1.

Starting with (i), we have

E
[
|U02|3

]
= E

[
|Ui2|3

]
= E

[∣∣Vi − E
[
h2(W )

]∣∣3
]

≤ 23−1
(
E
[
|Var (µ(Wi) |Zi)|3

]
+ (E

[
h2(W )

]
)3
)

≤ 23−1
(
E
[
E
[
h6(Wi) |Zi

]]
+ (E

[
h2(W )

]
)3
)
<∞,

where the first inequality comes from theCr inequality, the second holds by the definition of h and

Jensen’s inequality, and the third inequality holds due to the tower property of conditional expec-

tation and E
[
h6(W )

]
< ∞ under the assumed moment conditions. For the term E

[
|U01|3

]
, we

have

E
[
|U01|3

]
= E

[
|Ui1|3

]
= E

[
|Ri − E [Y h(W )]|3

]

≤ 23−1
(
E
[
|Yi(µ(Wi)− E [µ(Wi) |Zi])|3

]
+ (E [Y h(W )])3

)

= 23−1
(
E[|Y 3h3(W )|] + (E [Y h(W )])3

)
<∞,

where the first inequality holds due to theCr inequality and the second inequality holds due to the

Cauchy–Schwarz inequality and the assumed moment conditions. The same approach and inequal-

ities can be used for the other three terms, i.e., we haveE
[
|U03|3

]
,E
[
|U04|3

]
,E
[
|U05|3

]
< ∞.

Note thatU03,U04, andU05 involve higher-order polynomials of Yih(Wi) andVar (h(Wi) |Zi)

thanU01, U02, and thus require assuming bounded 12th moments to ensure the boundedness of
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their third absolute moments, hence the assumptions in Theorem A.3.1 that E
[
Y 12

]
< ∞ and

E
[
h12(W )

]
<∞.

Regarding (ii) and (iii): recalling the definitions of σ̃2 andL in (A.3.13), (A.3.14), we have

σ̃20σ̃
2 = σ̃20‖L(U0)‖2 =

1

E [h2(W )]
E
[(

Ui1 −
E [Y h(W )]

2E [h2(W )]
Ui2

)2
]

= E
[(

Ui1 −
E [Y h(W )]

2
Ui2

)2
]

(A.3.17)

= E
[(

Ri − E [Y h(W )]− E [Y h(W )]

2
(Var (h(Wi) |Zi)− 1)

)2
]

= E
[
(A+B)2

]
, (A.3.18)

where the third equality holds sinceE
[
h2(W )

]
= 1 as assumed without loss of generality, the

fourth one comes from (A.3.8), and the last one is by rearranging withA,B defined as:

A := Yih(Wi)− E [Yih(Wi) |Zi] , (A.3.19)

B := E [Yih(Wi) |Zi]− E [Y h(W )]− E [Y h(W )]

2
(Var (h(Wi) |Zi)− 1).(A.3.20)

The above termsA,B have equivalent expressions as the termsA,B defined in the proof of Theo-

rem 1.2.3 (see (A.1.22), (A.1.23)). Note E
[
(A+B)2

]
> 0, as proved over the course of deriva-

tions from (A.1.20) to the end of the proof of Theorem 1.2.3. Due to (A.3.18), we then have σ̃20σ̃2

in this proof is nonzero, thus finish showing (ii).
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Nowwe will verify σ̃ = 1. According to (A.3.17), we equivalently write down

σ̃20σ̃
2 = E

[(
Ui1 −

E [Y h(W )]

2
Ui2

)2
]

= E
[((

1,−E [Y h(W )]

2

)
(Ui1, Ui2)

)
)2
]

= a)ΣUa, (A.3.21)

where a) :=
(
1,−E[Y h(W ]

2

)
andΣU is the covariance matrix for the random vectorUi, which

can be explicitly written as

ΣU =




Var (Y h(W )) Cov (Y h(W ),Var (h(W ) |Z))

Cov (Y h(W ),Var (h(W ) |Z)) Var (Var (h(W ) |Z))



 .

We immediately have σ̃20σ̃2 = a)ΣUa = H2(0) = σ̃20 due to the expression of σ̃20 in (A.3.12),

(A.3.21) and E
[
h2(W )

]
= 1 as assumed; hence, σ̃ = 1.

Having verified (i), (ii) and (iii), we thus prove the Berry–Esseen-type bound in (A.3.5), which

completes the proof for case (IV). Therefore, the asymptotic coverage validity with a rate of 1/
√
n

for the lower confidence bounds produced by Algorithm 1 has been established.

Theorem A.3.2

Proof of Theorem A.3.2. Similarly as in the proofs of Theorem 1.2.3 and Theorem A.3.1, we imme-

diately have coverage validity when µ(X,Z) ∈ A (Z). Otherwise, it suffices to show

inf
K>1

P
(

R̄√
V̄
− zαs√

n
≤ f(µ)

)
≥ 1− α− C/

√
n (A.3.22)
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for some constantC , where the sample mean (R̄, V̄ ) and sample covariance matrix Σ̂ are defined

the same way as in Algorithm 1 except thatRi, Vi are replaced by their Monte Carlo estimators

RK
i , V K

i as defined below:

RK
i = Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X(k)
i , Zi)

)
,

V K
i =

1

K − 1

K∑

k=1

(
µ(X(k)

i , Zi)−
1

K

K∑

k=1

µ(X(k)
i , Zi)

)2

,

Recall that the proof in Appendix A.1.1 considers 4 cases then deals with them separately. Essen-

tially we can conduct similar analysis, but to avoid lengthy derivations, we focus on Case IV. Note

we also make the extra assumption E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0 to simplify

the proof.

In the proof of Theorem 1.2.5, we have the following asymptotic normality result:

√
n




1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)



 d→ N
(
0, σ̃20

)
.

To establish (A.3.22), we follow the proof strategy of Theorem A.3.1. Specifically, we apply the

Berry–Esseen bound for nonlinear statistics (see Theorem A.3.6 in Appendix A.3.1).

Again we first introduce some notations for the following proof: let random vectors {Ui}ni=1 =

{(Ui1, Ui2, Ui3, Ui4, Ui5)}ni=1
i.i.d.∼ U0 = (U01, U02, U03, U04, U05) to be

Ui1 = RK
i − E [Y h(W )] , Ui2 = V K

i − E
[
h2(W )

]
, (A.3.23)

Ui3 = (RK
i )2 − E

[
(RK

i )2
]
, Ui4 = (V K

i )2 − E
[
(V K

i )2
]
, Ui5 = RK

i V K
i − E

[
RK

i V K
i

]
.
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Note by the construction of the null samples,X(k)
i satisfy the two properties in (A.1.45) and (A.1.46)

and we have (A.1.47), (A.1.48) hold. Recall (A.1.44) in the proof of Theorem 1.2.5 states E
[
RK

i

]
=

E [Y h(W )] ,E
[
V K
i

]
= E

[
h2(W )

]
, hence E [Ui1] = E [Ui2] = 0. Straightforwardly,E [Ui3] =

E [Ui4] = E [Ui5] = 0. Thus we haveE [U0] = 0. Now we denote Ū = (Ū1, Ū2, Ū3, Ū4, Ū5) =

1
n

∑n
i=1 Ui and rewrite the following expression,

1

s




1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)



 := H(Ū) :=
H1(Ū1, Ū2)√

H2(Ū)
,

where s is similarly defined as in Algorithm 1 except thatRi, Vi are replaced byRK
i , V K

i . Here

H(x) = H(x1, x2, x3, x4, x5) : R5 → R is the same as in the proof of Theorem A.3.1. There-

fore the smoothness condition, i.e., Condition (A.3.5), holds by the same argument as in Appendix

A.3.1. The continuous linear functionalL is also defined the same way. To apply Theorem A.3.6, it

remains to verify the following moment bound conditions onU0 andL(U0),

0 < σ̃ := ‖L(U0)‖2 <∞,

ν2 := ‖U0‖2, ν3 := ‖U0‖3 <∞,

ς3 :=
‖L(U0)‖3

σ̃
<∞.

Note that ν33 = ‖U0‖33 = E
[
|U01|3

]
+ E

[
|U02|3

]
+ E

[
|U03|3

]
+ E

[
|U04|3

]
+ E

[
|U05|3

]
and

we can bound (ς3σ̃)3 similarly as in the proof of Theorem A.3.1:

(ς3σ̃)
3 = E

[
|L(U0)|3

]
= E




∣∣∣∣∣

1√
E [h2(W )]

U01 −
E [Y h(W )]

2(
√
E [h2(W )])3

U02

∣∣∣∣∣

3




≤ 23−1

(
A

1

(
√
E [h2(W )])3

E
[
|U01|3

]
+

(E [Y h(W )])3

8(
√
E [h2(W )])9

E
[
|U02|3

]
)
, (A.3.24)
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Due to the fact that the finiteness of higher moments implies that of lower moments and (A.3.24),

we only need to show

(i) E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
<∞

(ii) σ̃20 = H2(0) > 0

(iii) σ̃2 = ‖L(U0)‖2 > 0

under the stated moment conditions. For (iii), we have σ̃2 = 1, due to the derivations in the proof

of Theorem A.3.1. Hence we will focus on the first two conditions in the following. Appendix

A.3.1 verifies (i) and (ii) for any givenK > 1. In this proof, we will actually show

sup
K>1

E
[
|U0j |3

]
<∞, ∀j ∈ [5], inf

K>1
σ̃20 > 0.

Note the definitions ofU0 = (U01, U02, U03, U04, U05) and σ̃20 depend onK . To simplify nota-

tions, we do not make this dependence explicit. By the definitions in (A.3.23), we boundU01, U02

as below:

E
[
|U01|3

]
= E

[
|Ui1|3

]
= E

[
|RK

i − E [Y h(W )] |3
]

≤ 23−1
(
E
[
|RK

i |3
]
+ (E [Y h(W )])3

)
,

E
[
|U02|3

]
= E

[
|Ui2|3

]
= E

[
|V K

i − E
[
h2(W )

]
|3
]

≤ 23−1
(
E
[
|V K

i |3
]
+ (E

[
h2(W )

]
)3
)
,

where the inequalities hold due to theCr inequality. Recalling in the proof of Theorem 1.2.5, we

showE
[
|RK

i |2
]
< ∞,E

[
|V K

i |2
]
< ∞ under the conditionE

[
Y 4
]
,E
[
h4(W )

]
< ∞

over the course of derivations from (A.1.50) to the end of that proof. The derivations are mainly

based on theCr inequality and the Bahr–Esseen inequality in Dharmadhikari et al. (1969). Us-

169



ing the same bounding strategy, we can showE
[
|RK

i |3
]
,E
[
|V K

i |3
]

< ∞when assuming

E
[
Y 6
]
,E
[
h6(W )

]
< ∞. Hence we obtain supK>1 E

[
|U01|3

]
, supK>1 E

[
|U02|3

]
< ∞

under the above moment conditions. And nearly identical derivations as in bounding E
[
|U01|3

]

and E
[
|U02|3

]
suffice to show supK>1 E

[
|U03|3

]
, supK>1 E

[
|U04|3

]
, supK>1 E

[
|U05|3

]
< ∞

under the stronger moment boundedness conditionsE
[
Y 12

]
< ∞,E

[
h12(W )

]
< ∞ stated in

Theorem 1.2.5.

Regarding (ii), we notice that

σ̃20 ≥ E
[
(A+B)2

]
≥ E [Var (Y h(W ) |Z)] , (A.3.25)

where the first inequality holds due to (A.1.62),A,B are defined as (A.1.22) and (A.1.23) in the

proof of Theorem 1.2.3, and the second inequality holds by (A.1.24). The above lower bound for

σ̃20 does not depend onK and implies the positiveness of infK>1 σ̃0 under the assumed condition

E [Var (Y h(W ) |Z)] = E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0.

Therefore, we obtain the Berry–Esseen bound for nonlinear statistics by applying Theorem

A.3.6. Finally we conclude the asymptotic coverage with a rate of n−1/2, i.e.,

inf
K>1

P
(
Lαn,K(µ) ≤ I

)
≥ 1− α− Cn−1/2,

where the constantC only depends on the moments of Y and h(X,Z) = µ(X,Z)−E [µ(X,Z) |Z].

A.4 Applicability of theModel-X assumption

Model-X floodgate assumes knowing the distribution of PX|Z . This may not always hold in prac-

tice, but in some important instances, PX|Z may be (A) known due to experimental randomization,

170



(B) well-modeled a priori due to domain expertise, or (C) accurately estimated from a large unla-

beled data set. For example, (A) holds in the high-dimensional experiments of conjoint analysis

(Luce & Tukey, 1964; Hainmueller &Hopkins, 2014), (B) holds in the study of the microbiome

where accurate covariate simulators exist (Ren et al., 2016), and a combination of (B) and (C) hold

in genomics, where the model-X framework has been repeatedly and successfully applied for con-

trolled variable selection (Sesia et al., 2019; Katsevich & Sabatti, 2019; Sesia et al., 2020b; Bates et al.,

2020; Sesia et al., 2020a).

We also quantify the robustness of our inferences to this assumption in Appendix A.5 and show

it can be relaxed to parametric models (Section 1.3.2), and indeed model-X approaches have shown

promising empirical performance in a number of applications in which it is unclear whether any of

(A), (B), or (C) hold, such as bacterial classification from spectroscopic data (Chia et al., 2020) and

single cell regulatory screening (Katsevich & Roeder, 2020).

A.5 Robustness

To explain how the floodgate idea is not tied to the model-X assumption, a double-robustness type

result (Lemma 2.3) is presented in Remark 1.2.3.1. It involves an approximated floodgate functional

(1.2.8) and says that the inferential statements are valid as long as either of the models ofX | Z

or Y | Z is correctly specified. For ease of exposition, Algorithm 1.2.3 and Theorem 1.2.3 focus

on a particular floodgate procedure which requires knowing PX|Z . However, it is still of interest to

study the robustness of floodgate (in Algorithm 1.2.3) to misspecification of PX|Z . Specifically, we

consider the case when the true distribution PX|Z used in floodgate is replaced by an approximation

QX|Z .

Notationally, letQ = PY |X,Z × QX|Z × PZ (we need not consider misspecification in the

distributions ofZ or Y | X,Z since these are not inputs to floodgate), and let fQ be an analogue
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of f with certain expectations replaced by expectations overQ (we will denote such expectations by

EQ [·]); see Equation (A.5.5) for a formal definition. It is not hard to see that floodgate with input

QX|Z produces an asymptotically-valid LCB for fQ(µ), from which we immediately draw the

following conclusions.

First, if µ does not actually depend onX , i.e.,VarQ (µ(X,Z) |Z)
a.s.
= 0, then fQ(µ) = 0

regardless ofQ and floodgate is trivially asymptotically-valid. Second, when µ does depend onX ,

floodgate’s inference will still be approximately valid as long as fQ(µ) − f(µ) ≈ 0, and this differ-

ence can be bounded by, for instance, the χ2 divergence between PX|Z andQX|Z . The third, and

perhaps most interesting, conclusion is that the gap between I and f(µ) grants floodgate an extra

layer of robustness as long as I − f(µ) is large compared to fQ(µ) − f(µ). Thus even ifQX|Z is

a bad approximation of PX|Z , floodgate’s inference may be saved if f(µ) is an even worse approxi-

mation of I , and this latter approximation is related to that of µ for µ!. To make this last relation

precise, we quantify µ’s approximation of µ! by focusing on a particular representative of Sµ: for

any µ : Rp → R,

µ̄(x, z) =

√
E [Var(µ!(X,Z) |Z)]

E [Var(µ(X,Z) |Z)]

(
µ(x, z)−E [µ(X,Z) |Z = z]

)
+E [µ!(X,Z) |Z = z] ,

(A.5.1)

where 0/0 = 0. We can think of µ̄ as a generally accurate representative from Sµ, in that it takes µ

and corrects its conditional mean and expected conditional variance to match µ!. Note that µ̄ = µ!

whenever µ! ∈ Sµ, which includes anytime I = 0. Since the LCB from floodgate with input

QX|Z is asymptotically-valid for fQ(µ) under certain moment conditions and the proof can be

done similarly as Theorem 1.2.3, we will focus on quantifying the difference between fQ(µ) and I

in the following robustness result.

Theorem A.5.1 (Floodgate robustness). For data {(Yi, Xi, Zi)}ni=1 i.i.d. draws from P satisfying

E[Y 4] < ∞, a sequence of working regression functions µn : Rp → R such that for someC and all
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n eitherVarQ(n) (µn(X,Z) |Z)
a.s.
= 0 or

max
{
E[µ4

n(X,Z)],EQ(n) [µ4
n(X,Z)]

}

E
[
Var

Q(n) (µn(X,Z) |Z)

]2 ≤ C , and a sequence of

conditional distributionsQ(n)
X|Z , the difference between f

Q(n)
(µ) and I can be controlled as

∆n = fQ(n)
(µn)− I ≤ c1

√
E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
− c2 E

[
(µ̄n(X,Z)− µ!(X,Z))2

]

(A.5.2)

for some positive c1 and c2 that depend on P , where χ2(· ‖ ·) denotes the χ2 divergence.

The proof of Theorem A.5.1 can be found in Appendix A.5.1. Equation (A.5.2) formalizes that

larger MSE of µ̄n actually improves robustness, although we remind the reader once again that when

I = 0, the MSE of µ̄n is always zero by construction in Equation (A.5.1). Given the n−1/2-rate

half-width lower-bound for floodgate, a sufficient condition for asymptotically-exact coverage is

√
E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
= o

(
n−1/2 + E

[
(µ̄n(X,Z)− µ!(X,Z))2

])
. (A.5.3)

WhenQ(n)
X|Z is a standard parametric estimator based onNn independent samples, the left-hand

side has aO(N−1/2
n ) rate. Thus ifNn ; min{n,E

[
(µ̄n(X,Z)− µ!(X,Z))2

]−2}, then flood-

gate’s coverage will be asymptotically-exact. For certain parametric models forX | Z , Section 1.3.2

shows how to modify floodgate to attain asymptotically-exact inference without the need for estima-

tion at all.

Theorem A.5.1 treats the sequenceQ(n)
X|Z as fixed, which of course meansQ(n)

X|Z can be estimated

from any data that is independent of the data floodgate is applied to. This means the same data can

be used to estimate µn andQ(n)
X|Z . ForQ

(n)
X|Z however, this strict separation may not be necessary

in practice, and in our simulations we found floodgate to be quite robust to estimatingQ(n)
X|Z on

samples that included those used as input to floodgate; see Section 1.4.5.

Another layer of robustness beyond that addressed in this section can be injected by replacing
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PX|Z in floodgate with PX|Z,T for some random variable T . For instance, floodgate’s model-X as-

sumption can be formally relaxed to only needing to know a fixed-dimensional model for PX|Z by

conditioning on T that is a sufficient statistic for that model; see Section 1.3.2 for details. More gen-

erally, conditioning on T that is a function of {(X,Z)}ni=1 may induce some degree of robustness,

as conditioning on the order statistics of theXi can in conditional independence testing (Berrett

et al., 2020).

A.5.1 Proofs in Appendix A.5

In the case where the conditional distribution ofX givenZ is specified asQX|Z (in the following,

we often denote the true conditional distribution by P := PX|Z and the specified conditional

distribution byQ := QX|Z without causing confusion), the floodgate functional with inputQX|Z

is denoted by fQ(µ). Note that f(µ) can be rewritten with explicit subscripts as below (here we use

the equivalent expression of f(µ) in (A.1.7) and expand h(W )).

f(µ) =
EP [Y (µ(X,Z)− EP [µ(X,Z) |Z])]√

EPZ [VarP (µ(X,Z) |Z)]
(A.5.4)

Therefore, fQ(µ) admits the following expression:

fQ(µ) :=
EP [Y (µ(X,Z)− EQ [µ(X,Z) |Z])]√

EPZ [VarQ (µ(X,Z) |Z)]
. (A.5.5)

Denote ω(x, z) :=
dPX|Z(x|z)
dQX|Z(x|z) . Note that ω(x, z) is the ratio of conditional densities if we are in

the continuous case; ω(x, z) is the ratio of conditional probability mass function in discrete case.

Then we can quantify the difference between f(µ) and fQ(µ) as in Lemma A.5.2.

Lemma A.5.2. Assuming E
[
Y 4
]
< ∞, consider two joint distributions P,Q over (X,Z), defined

as P (x, z) = PX|Z(x|z)PZ(z), Q(x, z) = QX|Z(x|z)PZ(z). If we denote U to be the class of
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functions µ : Rp → R satisfying one of the following conditions:

• µ(X,Z) ∈ A (Z);

• max{EP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
}/(EPZ [VarQ (µ(X,Z) |Z)])2 ≤ c0.

for some constants c0, then we have the following bounds

∆(P,Q) := sup
µ∈U

|θQ(µ)− f(µ)| ≤ C
√

EPZ

[
χ2
(
PX|Z‖QX|Z

)]
(A.5.6)

for some constantC only depending on E
[
Y 4
]
and c0, where the χ2 divergence between two distribu-

tions P,Q on the probability spaceΩ is defined as χ2 (P‖Q) :=
∫
Ω(

dP
dQ − 1)2dQ.

When theX | Z model is misspecified, the inferential validity will not hold in general, without

adjustment on the lower confidence bound. Lemma A.5.2 gives a quantitative characterization

about howmuch we need to adjust.

Proof of Lemma A.5.2. When the support ofQ does not contain the support of P , the χ2 di-

vergence between P andQ is infinite, which immediately proves (A.5.6). From now, we work

with the case where the support ofQ contains the support of P . When µ(X,Z) ∈ A (Z),

f(µ) = fQ(µ) = 0, thus the statement holds. Now we deal with the nontrivial case where

EPZ [VarQ (µ(X,Z) |Z)] > 0. Without loss of generality, we assume EPZ [VarQ (µ(X,Z) |Z)] =

1 for the following proof (since floodgate is invariate to positive scaling of µ). Then the stated mo-

ment conditions on µ imply

EP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
≤ c0. (A.5.7)
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First we simplify f(µ) and fQ(µ) into

f(µ) =
EP

[
µ!(X,Z)

(
µ(X,Z)− EPX|Z [µ(X,Z) |Z]

)]

√
EPZ

[
VarPX|Z (µ(X,Z) |Z)

] =
EP [µ!(W ) (µ(W )− EP [µ(W ) |Z])]√

EPZ [VarP (µ(W ) |Z)]

fQ(µ) =
EP

[
µ!(X,Z)

(
µ(X,Z)− EQX|Z [µ(X,Z) |Z]

)]

√
EPZ

[
VarQX|Z (µ(X,Z) |Z)

] =
EP [µ!(W ) (µ(W )− EQ [µ(W ) |Z])]√

EPZ [VarQ (µ(W ) |Z)]

due to (A.1.4), where we denoteW = (X,Z) (thusw = (x, z)). Noticing the following facts

∣∣∣∣
a√
b
− c√

d

∣∣∣∣ =

∣∣∣∣∣
a
√
d− c

√
b√

bd

∣∣∣∣∣ ≤
a√
bd

∣∣∣
√
b−
√
d
∣∣∣+

1√
d
|a− c| ≤ a√

b
· 1
d
|b− d|+ 1√

d
|a− c| ,

we let a, c to be the numerators of f(µ) and fQ(µ) respectively and
√
b,
√
d to be their denomina-

tors. Before dealing with |b − d| and |c − d|, we have the following bounds on the terms a/
√
b and

1/d.

a/
√
b = f(µ) ≤ I ≤ (EP

[
Y 4
]
)1/4, 1/d = 1/EPZ [VarQ (µ(X,Z) |Z)] = 1, (A.5.8)

where the first equality is by Lemma 1.2.2 and the second one is by applying Jensen’s inequality

(EPZ [VarP (E [Y |X,Z] |Z)] ≤ EPZ

[
EP
[
(E [Y |X,Z])2 |Z

]]
≤ E

[
Y 2
]
≤
√
E [Y 4]). The

equality holds by assumption. Now it suffices to consider bounding |b − d| and |c − d| in terms of

the expected χ2 divergence between PX|Z andQX|Z . We have the following equations for |a− c|:

|a− c| = |EP [µ!(W ) (µ(W )− EP [µ(W ) |Z])]− EP [µ!(W ) (µ(W )− EQ [µ(W ) |Z])]|

= |EP [µ!(W ) (EP [µ(W ) |Z]− EQ [µ(W ) |Z])]|

= |EPZ [EP [µ!(W ) |Z] (EP [µ(W ) |Z]− EQ [µ(W ) |Z])]| . (A.5.9)

176



Nowwe rewrite |EP [µ(W ) |Z]− EQ [µ(W ) |Z] | in the form of integral then bound it as

|EP [µ(W ) |Z]− EQ [µ(W ) |Z] | =

∣∣∣∣
∫

µ(x, Z)(1− ω(x, Z))dQX|Z(x | Z)

∣∣∣∣

≤
√

EQX|Z [µ2(X,Z) |Z]

√∫
(1− w(x, Z))2dQX|Z(x | Z)

=
√
EQX|Z [µ2(W ) |Z]

√
χ2
(
PX|Z‖QX|Z

)
, (A.5.10)

where ω(x, Z) =
dPX|Z(x|Z)
dQX|Z(x|Z) and the above inequality is from the Cauchy–Schwarz inequality.

Hence we can plug (A.5.10) into (A.5.9) and further bound |a− c| by

|a− c| ≤ EPZ

[
EPX|Z [µ!(W ) |Z]

√
EQX|Z [µ2(W ) |Z]

√
χ2
(
PX|Z‖QX|Z

)]

≤
√
EPZ

[
(EPX|Z [µ!(W ) |Z])2EQX|Z [µ2(W ) |Z]

]
·
√

EPZ

[
χ2
(
PX|Z‖QX|Z

)]
.

(A.5.11)

For the first part of the product in (A.5.11), we can apply the Cauchy–Schwarz inequality and

Jensen’s inequality and bound it by (EP
[
(µ!)4(W )

]
EQ
[
µ4(W )

]
)1/4, which is upper bounded

by some constant under the stated conditionE
[
Y 4
]
< ∞ and EQ

[
µ4(X,Z)

]
≤ c0 (from

(A.5.7)). Regarding |b− d|, we have

|b− d| = |EPZ [VarP (µ(W ) |Z)]− EPZ [VarQ (µ(X,Z) |Z)]|

≤
∣∣EPZ

[
(EP [µ(W ) |Z])2 − (EQ [µ(W ) |Z])2

]∣∣

+
∣∣EPZ

[
EP
[
µ2(W ) |Z

]
− EQ

[
µ2(W ) |Z

]]∣∣ . (A.5.12)

Similarly as (A.5.10), we obtain

∣∣EP
[
µ2(W ) |Z

]
− EQ

[
µ2(W ) |Z

]∣∣ ≤
√
EQX|Z [µ4(W ) |Z]

√
χ2
(
PX|Z‖QX|Z

)
.
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Then under the moment bounds EQ
[
µ4(X,Z)

]
≤ c0 in (A.5.7), we show the second term in

(A.5.12) is upper bounded by
√
c0EPZ

[
χ2
(
PX|Z‖QX|Z

)]
. Regarding the first term in (A.5.12),

we can write

(EP [µ(W ) |Z])2 − (EQ [µ(W ) |Z])2 = (EP [µ(W ) |Z]− EQ [µ(W ) |Z]) (EP [µ(W ) |Z] + EQ [µ(W ) |Z])

then apply similar strategies in deriving (A.5.9) and (A.5.11) to control the above term under a

boundC
√
EPZ

[
χ2
(
PX|Z‖QX|Z

)]
for some constantC . And this will make use of the mo-

ment bound conditionsEP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
≤ c0 in (A.5.7). Finally we establish

(A.5.6).

Proof of Theorem A.5.1. First notice that∆n can be decomposed into two parts:

∆n = fQ(n)
(µn)− I = (fQ(n)

(µn)− f(µn))− (I − f(µn)). (A.5.13)

In the following, we will deal with fQ(n)
(µn) − f(µn) and I − f(µn) separately. Applying

Lemma A.5.2 to P ,Q(n) and µn under the stated conditions gives

(fQ(n)
(µn)− f(µn)) ≤ c1

√
E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
(A.5.14)

for some constant c1 only depending on E
[
Y 4
]
and c0. Regarding the term I − f(µn), we recall

the derivations in the proof of Theorem 1.2.6, specifically (A.1.69) and (A.1.70), then obtain

I − f(µn) ≥
E
[
(h̄n(W )− h!(W ))2

]

2I =
E
[
(µ̄n(W )− µ!(W ))2

]

2I , (A.5.15)

where the equality holds by the definition of h!, µ̄n and h̄n. Combining (A.5.13), (A.5.14) and

(A.5.15) yields (A.5.2).
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A.6 Details of extending the mMSE gap

A.6.1 Taking the supremum over transformations

Drawing inspiration from the maximum correlation coefficient (Hirschfeld, 1935), taking the

supremum of the mMSE gap over transformations of Y leads to other desirable properties. For a

set G of functions g mapping Y to its sample space, let IG = supg∈G Isf(g(Y )), where Isf(g(Y ))

denotes the scale-free version of the mMSE gap when Y is replaced by g(Y ). Then for any fixed

function g ∈ G, floodgate’s LCB for Isf(g(Y )) is also an asymptotically valid LCB for IG . And like

µ, g can be chosen based on an independent split of the data to make the gap between Isf(g(Y ))

and IG as small as possible. If G forms a group, then it is immediate that IG takes the same value

when g(Y ) is used as the response, for any g ∈ G, i.e., IG is invariant to any transformation g ∈ G

of Y . For instance, we might choose G to be the group of all strictly monotone functions, or of

all bijections. Regardless of whether G is a group or not, if it is large enough that it contains all

bounded continuous functions then, by the Portmanteau Theorem, IG will be zero if and only if

Y ⊥⊥ X | Z . That is, for sufficiently large G, IG satisfies the key property of the MOVI in Azadkia

& Chatterjee (2019) and floodgate provides asymptotically valid inference for it. A natural choice*

of G satisfying such property is { {y≤t} : t ∈ R} as

IG = sup
t∈R

E
[
Var

(
E
[

{Y≤t} |X,Z
]
|Z
)]

Var
(

{Y≤t}
) .

The above quantity is related to the measure of conditional dependence in Azadkia & Chatterjee

(2019) as both involve E
[
Var

(
E
[

{Y≤t} |X,Z
]
|Z
)]
.

*We are grateful to an anonymous reviewer for suggesting this choice.
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A.6.2 Extending via the RKHS framework

A reviewer pointed out a very interesting work (Huang et al., 2020b) which came out after our

arXiv preprint. To handleX,Y, Z from general topological spaces, Huang et al. (2020b) proposes

the kernel partial correlation coefficient (KPC) to measure conditional dependence and provides

consistent estimation methods. Huang et al. (2020b) mentioned the numerator of KPC with a

linear kernel equals to the mMSE gap considered in our paper. In this section, we discuss how to

extend the floodgate inferential approach via reproducing kernel Hilbert spaces (RKHS) to apply

to the KPC. For ease of exposition, we focus on the numerator of KPC and call it the average kernel

maximummean discrepancy (AKMMD). Note that the AKMMDwith a characteristic kernel will

be zero if and only if Y ⊥⊥ X | Z .

Recall the equivalent expression of the mMSE gap in (1.2.4)

I2 = E
[
(E [Y |X,Z]− E [Y |Z])2

]
,

where E [Y |X,Z] can be viewed as the kernel embedding of PY |X,Z under a special linear ker-

nel. Then I2 essentially quantifies the distance between PY |X,Z and PY |Z via the maximummean

discrepancy (MMD). To extend this idea using a general kernel, we introduce some new notations

and preliminary concepts about RKHS. Suppose (Y,X,Z) take values in some topological space

Y × X × Z and let P be the joint distribution over (Y,X,Z). The marginal distribution of Y

is denoted by PY . Sometimes this subscript is dropped when doing so does not cause confusion.

We use the boldµ notation for kernel mean embeddings, which should be differentiated from the

working regression function in the main text. Denote byHY an RKHS with kernelK(·, ·) on the

spaceY , whereK : Y × Y → R is a symmetric and positive semidefinite function such thatK(·, y)

is measurable function onY, ∀ y ∈ Y . The inner product and norm on the RKHSHY are denoted

by 〈·, ·〉HY
and || · ||HY , with the subscripts often dropped for simplicity. The kernel reproducing
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property implies that h(y) = 〈K(·, y), h〉HY
. First we introduce the definitions of the kernel mean

embedding and the MMD (Deb et al., 2020; Huang et al., 2020b).

Definition A.6.1 (Kernel mean embedding). Suppose Y ∼ PY and EP

[√
K(Y, Y )

]
<∞. There

exists (Deb et al., 2020; Huang et al., 2020b) a uniqueµP ∈ HY satisfying

〈µP , h〉HY
= EP [h(Y )] , for all h ∈ HY ,

which is called the kernel mean embedding of PY intoHY .

Definition A.6.2 (Maximummean discrepancy). Wemeasure the distance between two distributions

P1, P2 via theMMD (with respect to the kernelK(·, ·)), defined as

MMD(P1, P2) := ||µP1 − µP2 ||HY .

It also has the following equivalent representation (Deb et al., 2020; Huang et al., 2020b):

MMD2(P1, P2) := E
[
K(U,U ′)

]
+ E

[
K(V, V ′)

]
− 2E [K(U, V )] ,

whereU,U ′ i.i.d.∼ P1, V, V ′ i.i.d.∼ P2 andU ⊥⊥ V .

Nowwe are ready to define the AKMMD.

Definition A.6.3 (average kernel maximummean discrepancy). The average kernel maximummean

discrepancy for variableX is defined as

I2
K = E

[
MMD2(PY |X,Z , PY |Z)

]
(A.6.1)

whenever all the above expectations exist.
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We also present its alternative expression in terms of the kernel:

I2
K = E

[
K(Y2, Ỹ2)

]
− E

[
K(Y1, Ỹ1)

]
= E

[
E
[
K(Y2, Ỹ2) |X,Z

]]
− E

[
E
[
K(Y1, Ỹ1) |Z

]]
,

where Y1, Ỹ1, Y2, Ỹ2 are defined as below

Y1 | X ∼ PY |Z , Ỹ1 | X ∼ PY |Z , and Y1 ⊥⊥ Ỹ1 | X,

(X,Z) ∼ PX,Z , Y2 | X,Z ∼ PY |X,Z , Ỹ2 | X,Z ∼ PY |X,Z , and Y2 ⊥⊥ Ỹ2 | X,Z.

The floodgate functional constitutes a deterministic lower bound for the mMSE gap for any work-

ing regression function µ. As we are now dealing with mean embeddings with a general kernel, we

will replace the role of µwithQY |X,Z , an estimate of the full conditional distribution of Y | X,Z

(as opposed to just its conditional mean). LetQ = QY |X,Z × PX,Z and the associated condi-

tional distribution of Y givenZ byQY |Z . For notational simplicity,QY |X,Z andQY |Z are both

sometimes abbreviated simply asQ. Given any non-random conditional distributionQY |X,Z , we

consider the kernel floodgate functional

fK(Q) :=
E
[
K(Y, Y Q

2 )
]
− E

[
K(Y, Y Q

1 )
]

√
E
[
K(Y Q

2 , Ỹ Q
2 )
]
− E

[
K(Y Q

2 , Y Q
1 )
] , (A.6.2)

where the involved random variables are defined through

(X,Z) ∼ PX,Z , Y | X,Z ∼ PY |X,Z , Y | Z ∼ PY |Z

Y Q
2 , Ỹ Q

2 | X,Z
i.i.d.∼ QY |X,Z , Y ⊥⊥ (Y Q

2 , Ỹ Q
2 ) | X,Z,

Y Q
1 | Z i.i.d.∼ QY |Z , Y Q

1 ⊥⊥ (X,Y, Y Q
2 , Ỹ Q

2 ) | Z.

(A.6.3)
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Lemma A.6.4 shows fK tightly satisfies the lower-bounding property, as f does in Lemma 1.2.2.

The proof can be found in Appendix A.6.3.

Lemma A.6.4. For anyQ such that fK(Q) exists, we have fK(Q) ≤ IK, with equality whenQ =

PY |X,Z .

Therefore, we can provide an LCB for IK via a LCB for fK(Q)with some choice ofQ. Since the

definition of fK(Q) involves null Y samples such as Y Q
2 , Ỹ Q

2 , Y Q
1 , we will follow (A.6.3) to gen-

erate null samples of Y then construct i.i.d. unbiased estimates of the numerator and the denomi-

nator of fK(Q) respectively. Based on the CLT and the delta method, we can derive asymptotically

valid LCBs for fK(Q). This idea is spelled out in Algorithm 9.

A.6.3 Proofs in Appendix A.6.2

Proof of Lemma A.6.4. Recall the form of the kernel floodgate functional in (A.6.2)

fK(Q) =
E
[
K(Y, Y Q

2 )
]
− E

[
K(Y, Y Q

1 )
]

√
E
[
K(Y Q

2 , Ỹ Q
2 )
]
− E

[
K(Y Q

2 , Y Q
1 )
] :=

II1√
II2

,

whereX,Z, Y, Y Q
2 , Ỹ Q

2 , Y Q
1 are defined as

(X,Z) ∼ PX,Z , Y | X,Z ∼ PY |X,Z , Y | Z ∼ PY |Z (A.6.4)

Y Q
2 , Ỹ Q

2 | X,Z
i.i.d.∼ QY |X,Z , Y ⊥⊥ (Y Q

2 , Ỹ Q
2 ) | X,Z, (A.6.5)

Y Q
1 | Z i.i.d.∼ QY |Z , Y Q

1 ⊥⊥ (X,Y, Y Q
2 , Ỹ Q

2 ) | Z. (A.6.6)

Denote the true conditional distributions PY |X,Z , PY |Z by F,G respectively, the estimated con-

ditional distributionsQY |X,Z , QY |Z by Fq, Gq respectively, and the kernel mean embeddings of
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Algorithm 9 Kernel floodgate
Input: Data {(Yi,Wi)}ni=1, a chosen kernelK(·, ·), a estimated conditional distribution

of PY |X,Z , denoted byQY |X,Z , resampling numberM , PX|Z , number of null repli-
catesK , and a confidence level α ∈ (0, 1).

1: For each i ∈ [n], draw {Y (m)
2,i }Mm=1 fromQY |X,Z given (Xi, Zi); givenZi, draw i.i.d.

null samples {X̃(k)
i }Kk=1 from PX|Z , then draw {Y (k,m)

1,i }Mm=1 fromQY |X,Z given
(Xi, Z̃

(k)
i ) for each k ∈ [K]. Denote Y (m)

2,i = Y (0,m)
1,i for eachm ∈ [M ].

2: Compute

Ri =
1

M

M∑

m=1

K
(
Yi, Y

(m)
2,i

)
− 1

KM

K∑

k=1

M∑

m=1

K
(
Yi, Y

(k,m)
1,i

)

Vi =
2

(K + 1)M(M − 1)

K∑

k=0

∑

1≤m1<m2≤M

K
(
Y (k,m1)
1,i , Y (k,m2)

1,i

)

− 2

K(K + 1)M2

M∑

m1,m2=1

∑

0≤k1<k2≤K

K
(
Y (k1,m1)
1,i , Y (k2,m2)

1,i

)

for each i ∈ [n], and their sample mean (R̄, V̄ ) and sample covariance matrix Σ̂, and

compute s2 = 1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
.

Output: Lower confidence bound Lαn(µ) = max
{

R̄√
V̄
− zαs√

n , 0
}
, with the convention

that 0/0 = 0.
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those conditional distributions byµF ,µG,µFq ,µGq . First notice

〈
µF ,µFq

〉
HY

=
〈
E [K(·, Y ) |X,Z] ,E

[
K(·, Y Q

2 ) |X,Z
]〉

HY
= E

[
K(Y, Y Q

2 ) |X,Z
]

by (A.6.4), (A.6.5) and the definition of the kernel embedding. Similarly, we have the following

equalities,

E
[
K(Y, Y Q

2 )
]
= E

[
E
[
K(Y, Y Q

2 ) |X,Z
]]

= E
[〈
µF ,µFq

〉
HY

]
, (A.6.7)

E
[
K(Y, Y Q

1 )
]
= E

[
E
[
K(Y, Y Q

1 ) |Z
]]

= E
[〈
µG,µGq

〉
HY

]
, (A.6.8)

E
[
K(Y Q

2 , Ỹ Q
2 )
]
= E

[
E
[
K(Y Q

2 , Ỹ Q
2 ) |X,Z

]]
= E

[〈
µFq ,µFq

〉
HY

]
, (A.6.9)

E
[
K(Y Q

2 , Y Q
1 )
]
= E

[
E
[
K(Y Q

2 , Y Q
1 ) |X,Z

]]
= E

[〈
µFq ,µGq

〉
HY

]
, (A.6.10)

where we also apply the law of total expectation. Note that the subscripts for the expectation in

the above equations are abbreviated. In addition to the these equalities, our derivation also relies

on a key result E
[〈
µG,µFq

〉]
= E

[〈
µG,µGq

〉]
. Consider Ỹ satisfying Ỹ | X,Z ∼ PY |Z ,

Ỹ ⊥⊥ Y Q
2 | X,Z , Ỹ ⊥⊥ Y Q

1 | Z , then we prove the key result as below,

E
[〈
µG,µFq

〉
HY

]
= EX,Z

[
E
[
K(Ỹ , Y Q

2 ) |X,Z
]]

= E
[
K(Ỹ , Y Q

2 )
]

= EZ

[
E
[
K(Ỹ , Y Q

2 ) |Z
]]

= EZ

[
E
[
K(Ỹ , Y Q

1 ) |Z
]]

= E
[〈
µG,µGq

〉
HY

]
,

(A.6.11)

where the first and the last equalities hold by the definition of the kernel mean embedding, the sec-

ond and the third equalities hold by the law of total expectation, and the fourth equality holds by

the definitions of Y Q
1 , Y Q

2 , Ỹ .
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Therefore we can rewrite the numerator of fK(Q) as

II1 = E
[
K(Y, Y Q

2 )
]
− E

[
K(Y, Y Q

1 )
]

= E
[〈
µF ,µFq

〉
HY

]
− E

[〈
µF ,µGq

〉
HY

]

= E
[〈
µF ,µFq − µGq

〉
HY

]

= E
[〈
µF − µG,µFq − µGq

〉
HY

]
+ E

[〈
µG,µFq − µGq

〉
HY

]

= E
[〈
µF − µG,µFq − µGq

〉
HY

]
+ E

[〈
µG,µFq

〉
HY

]
− E

[〈
µG,µGq

〉
HY

]

= E
[〈
µF − µG,µFq − µGq

〉
HY

]

≤ E
[
||µF − µG||HY ||µFq − µGq ||HY

]

≤
√

E
[
||µF − µG||2HY

]√
E
[
||µFq − µGq ||2HY

]
, (A.6.12)

where the first line holds due to (A.6.7) and (A.6.8), the second to the fourth equalities hold by

rearranging, the fifth equality holds due to (A.6.11), the last two inequalities hold by the Cauchy–

Schwarz inequality. Regarding the denominator of fK(Q), we rewrite II2 in terms of the kernel

embedding

II2 = E
[
K(Y Q

2 , Ỹ Q
2 )
]
− E

[
K(Y Q

2 , Y Q
1 )
]

= E
[〈
µFq ,µFq

〉
HY

]
− E

[〈
µGq ,µFq

〉
HY

]

= E
[〈
µFq ,µFq

〉
HY

]
+ E

[〈
µGq ,µGq

〉
HY

]
− 2E

[〈
µGq ,µFq

〉
HY

]

= E
[
||µFq − µGq ||2HY

]
, (A.6.13)

where the second equality holds due to (A.6.9) and (A.6.10) and the third equality holds since

E
[〈
µGq ,µFq

〉
HY

]
= E

[〈
µGq ,µGq

〉
HY

]
can be similarly derived as (A.6.11). As I2

K has equiva-

lent expressions I2
K = E

[
MMD2(PY |X,Z , PY |Z)

]
= E

[
||µF − µG||2HY

]
, we have fK(Q) ≤ IK
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by combining (A.6.2), (A.6.12), and (A.6.13).

A.7 Transporting inference to other covariate distributions

To present how to perform inference on a target population whose covariate distribution differs

from the distribution the study samples are drawn from, letQ denote the target distribution for

all the random variables (Y,X,Z), but assume thatQY |X,Z = PY |X,Z and thatQX|Z and the

likelihood ratioQZ/PZ are known (note this last requirement is trivially satisfied if onlyX | Z

changes between the study and target distributions, i.e., we knowQZ = PZ ). Overloading notation

slightly, letQ and P also denote the real-valued densities of random variables under their respective

distributions (so, e.g., P (Y = y |Z = z) denotes the density of Y | Z = z under P evaluated

at the value y), which we assume to exist. We can now define a weighted analogue of the floodgate

functional (1.2.6):

fw(µ) =
EP [(Y − µ(X̃, Z))2w(X,Z)w1(X̃, Z)− (Y − µ(X,Z))2w(X,Z)]√

2EP [(µ(X,Z)− µ(X̃, Z))2w(X,Z)w1(X̃, Z)]
, (A.7.1)

wherew(x, z) = w0(z)w1(x, z),w0(z) =
Q(Z=z)
P (Z=z) ,w1(x, z) =

Q(X=x |Z=z)
P (X=x |Z=z) , and X̃ ∼ PX|Z

conditionally independently of Y andX . The following Lemma certifies that fw satisfies property

(a) of a floodgate functional for I2
Q = EQ [VarQ (EQ[Y |X,Z] |Z)], the mMSE gap with respect

toQ.

Lemma A.7.1. IfQY |X,Z = PY |X,Z , then for any µ such that fw(µ) exists, fw(µ) ≤ IQ, with

equality when µ = µ!.

The proof is immediate from Lemma 1.2.2 if we notice that the ratio of the joint distribution of
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(Y,X, X̃, Z) under the two populations equals

Q(Y,X,Z)Q(X̃ |Z)

P (Y,X,Z)P (X̃ |Z)
=

Q(Y |X,Z)

P (Y |X,Z)

Q(X,Z)

P (X,Z)

Q(X̃ |Z)

P (X̃ |Z)
= w1(X̃, Z)w(X,Z), (A.7.2)

where the last equality follows from PY |X,Z = QY |X,Z . Floodgate property (b) of fw can be

established in the same way as for f by computing weighted versions ofRi and Vi from Algorithm 1

according to the weights in Equation (A.7.1), applying the central limit theorem, and combining

them with the delta method.

A.8 Algorithm details for inference on theMACMgap

Recall the construction of the floodgate functional ((1.3.2) in Section 1.3.1):

f#1(µ) = 2P
(
Y (µ(X̃, Z)− E [µ(X,Z) |Z]) < 0

)
− 2P

(
Y (µ(X,Z)− E [µ(X,Z) |Z]) < 0

)
.

We can define random variables which are i.i.d. and unbiased for f#1(µ) then construct CLT-based

confidence bounds, as formalized in Algorithm 10. Algorithm 10 involves computing the terms

Algorithm 10 Floodgate for the MACM gap
Input: Data {(Yi, Xi, Zi)}ni=1, PX|Z , a working regression function µ : Rp → R, and a

confidence level α ∈ (0, 1).
Let Ui = µ(Xi, Zi)− E[µ(Xi, Zi) |Zi] and compute

Ri =

{
P (Ui < 0 |Zi)− {Ui<0} if Yi = 1
P (Ui > 0 |Zi)− {Ui>0} if Yi = −1

for i ∈ [n], and compute its sample mean R̄ and sample variance s2.
return Lower confidence bound Lαn(µ) = 2max

{
R̄− zαs√

n , 0
}
.

E[µ(Xi, Zi) |Zi] and evaluating the CDF of the conditional distribution µ(X,Z) |Z = z at

the valueE[µ(Xi, Zi) |Zi], which is not analytically possible in general. Unlike in Section 1.2.4,
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where users can replaceE [µ(X,Z) |Z] andVar (µ(X,Z) |Z) by their Monte Carlo estimators

without it impacting asymptotic normality, we need slightly more assumptions when inferring the

MACM gap due to the discontinuous indicator functions in the definition of f#1(µ). Before stating

the required assumptions, we introduce some notation, all of which is specific to a given working

regression function µ.

U := µ(X,Z), g(z) := E[µ(X,Z) |Z = z],

Gz(u) := P (U < u |Z = z) , Fz(u) := P (U ≤ u |Z = z) .

ς(z) :=
√
Var (µ(X,Z) |Z = z),

Cu,z,y :=
max{|Gz,y(u)−Gz,y(g(z))| , |Fz,y(u)− Fz,y(g(z))|}

|u− g(z)| (A.8.1)

where Fz,y(u) is the CDF of µ(X,Z) | Z = z, Y = y evaluated at u,Gz,y(u) is the limit from

the left of the same CDF at u, and with the convention forCu,z,y that 0/0 = 0 (so it is well-defined

when u = g(z)). Now we are ready to state Assumption A.8.1.

Assumption A.8.1. Assume the joint distribution over (Y,X,Z) and the nonrandom function µ :

Rp → R satisfy the following on a set of values of Y = y, Z = z of probability 1:

(a) There exists a δz,y > 0 and finiteCz,y such that

Cu,z,y ≤ Cz,y when |u− g(z)| ≤ ς(z)δz,y.

(b) The aboveCz,y and δz,y satisfy

E
[
C2
Z,Y

]
<∞, E

[
1

δZ,Y

]
<∞.
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(c) E
[
ς2(Z)

]
<∞, E

[
E[|µ(X,Z)−E[µ(X,Z) |Z]|3 |Z]

ς3(Z)

]
<∞.

These assumptions are placed because we have to construct the Monte Carlo estimator of E [µ(X,Z) |Z]

then plug it into the discontinuous indicator functions in f#1(µ). Assumptions A.8.1(a) and

A.8.1(b) are smoothness requirements on the the CDF of µ(X,Z) | Z, Y around E [µ(X,Z) |Z].

Assumption A.8.1(c) specifies mild moment bound conditions on µ(X,Z). To see that they are

actually sensible, we consider the example of logistic regression and walk through those assumptions

in Appendix A.8.1.

Assume that we can sample (M +K) copies ofXi from PXi|Zi
conditionally independently of

Xi and Yi, which are denoted by {X̃(m)
i }Mm=1, {X̃

(k)
i }Kk=1, and thus replace g(Zi) (i.e. E[µ(Xi, Zi) |Zi])

andRi, respectively, by the sample estimators

gM (Zi) =
1

M

M∑

m=1

µ(X̃(m)
i , Zi), R

M,K
i =

1

K

K∑

k=1

(
{
Yi(µ(X̃

(k)
i ,Zi)−gM (Zi))<0

}
)
− {Yi(µ(Xi,Zi))−gM (Zi))<0}

Theorem A.8.2. Under the same setting as in Theorem 1.3.3, if either (i) E [Var(µ(X,Z) |Z)] = 0

or (ii) E
[
Var

(
{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0} |Z, Y

)]
> 0 holds together with Assumption A.8.1

and n/M = o(1), thenLαn,M,K(µ) computed by replacing g(Zi) andRi with gM (Zi) andRM,K
i ,

respectively, in Algorithm 10 satisfies

P
(
Lαn,M,K(µ) ≤ I#1

)
≥ 1− α+ o(1).

The proof can be found in Appendix A.8.2. Intuitively when we construct a lot more null sam-

ples to estimate the term g(Zi), our inferential validity improves. Formally, when n2/M = O(1),

we can improve the asymptotic miscoverage toO(n−1/2). Note that we only place a rate assump-

tion onM (but put no requirement onK).
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A.8.1 Illustration of assumption A.8.1

We consider the joint distribution overW to be p-dimensional multivariate Gaussian withX =

Wj , Z = W-j for some 1 ≤ j ≤ p, and Y follows a generalized linear model with logistic link.

That is,

W ∼ N (0,Σ) , µ!(W ) = 2P (Y = 1 |W )−1, where P (Y = 1 |W ) =
exp (Wβ!)

1 + exp (Wβ!)
, β! ∈ Rp.

Choosing logistic regression as the fitting algorithm, we haveU := µ(X,Z) takes the following

form

U := µ(W ) =
2 exp (Wβ)

1 + exp (Wβ)
− 1

where β ∈ Rp is the fitted regression coefficient vector and βj += 0wheneverE [Var(µ(X,Z) |Z)] >

0. Conditional onZ ,U follows a logit-normal distribution (defined as the logistic function trans-

formation of normal random variable) up to constant shift and scaling. Note that the probability

density function (PDF) of logit-normal distribution with parameters a,σ is

hlogit(u) =
1

σ
√
2π

exp

(
−(logit(u)− a)2

2σ2

)
1

u(1− u)
, u ∈ (0, 1) (A.8.2)

where logit(u) = log(u/(1 − u)) is the logit function. Note hlogit(u) is bounded over its support.

Regarding the PDF ofU | Z = z, Y = 1, which is denoted as hz,1(u), we first notice the following

expression

h(x | Z = z, Y = 1) =
h(x | Z = z)P (Y = 1 |W = w)∫
h(x | Z = z)P (Y = 1 |W = w) dx

(A.8.3)

wherewj = x,w-j = z, h(x | Z = z, Y = 1) and h(x | Z = z, Y = 1) denote the density

functions ofX | Z = z, Y = 1 andX | Z = z. Since logit(z) is one-to-one mapping, we have
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fz,1(z) (up to constant shift and scaling) takes the form similar to (A.8.3)

hz,1(u) =
hlogit(u)P (Y = 1 |W = w)∫
hlogit(u)P (Y = 1 |W = w) dx

(A.8.4)

wherew = (x, z) = µ−1(u), and we denote the PDF ofU | Z = z as hlogit(u)without causing

confusion (the parameters of hlogit(u) depend on z,β). Therefore we can show hz,1(z) is bounded

(similarly for hz,−1(z)).

The boundedness of hz,y(u) implies that the corresponding CDF Fz,y (Fz,y = Gz,y in this

case) satisfies a Lipschitz condition over its support. Hence δz,y can be chosen to be greater than

some positive constant uniformly, so that E
[

1
δZ,Y

]
< ∞ holds. Though the Lipschitz constant

does depend on z,β, it is easy to verifyE
[
C2
Z,Y

]
< ∞, thus assumption (b) holds. And assump-

tion (c) is just a regular moment condition.

A.8.2 Proofs in Appendix A.8

Proof of Theorem A.8.2. Similar to the proof of Theorem 1.3.3, it suffices to deal with the case

where µ(X,Z) /∈ A (Z) and prove

P
(
Lαn,M,K(µ) ≤ f#1(µ)

)
≥ 1− α+ o(1). (A.8.5)

Note that in Algorithm 10, E [Ri] = f#1(µ)/2. But when g(Zi) (i.e.,E[µ(Xi, Zi) |Zi]) andRi

are replaced by gM (Zi) andRM,K
i , respectively, in Algorithm 10, we do not haveE

[
RM,K

i

]
equal

to f#1(µ)/2 anymore. Note that f#1(µ)/2 equals the following

f#1(µ)/2 = E
[

{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
− E

[
{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
, (A.8.6)
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andRM,K
i is defined as

RM,K
i =

1

K

K∑

k=1

(
{
Yi(µ(X̃

(k)
i ,Zi)−gM (Zi))<0

}
)
− {Yi(µ(Xi,Zi))−gM (Zi))<0} (A.8.7)

Remark the value of E
[
RM,K

i

]
does not depend onK , hence we simplify the notation intoRM

i

without causing confusion. Actually we can show asM → ∞, E
[
RM

i

]
→ f#1(µ)/2. Indeed,

we need to show
√
n|E

[
RM

i

]
− f#1(µ)/2| = o(1) in order to prove (A.8.5). Also remark that

in Section 1.3.1, it is mentioned that under a stronger condition n2/M = O(1) (which will imply
√
n|E

[
RM

i

]
− f#1(µ)/2| = O(1/

√
n)), we can additionally establish a rate for n−1/2 for the

asymptotic coverage validity in Theorem A.8.2. In either cases, it is reduced to prove

∣∣∣∣E
[
RM

i

]
− f#1(µ)

2

∣∣∣∣ = O

(
1√
M

)
(A.8.8)

First we ignore the i subscripts and get rid of the average overK null samples in the definition of

RM,K
i , then E

[
RM

i

]
can be simplified into

E
[

{Y (µ(X̃,Z)−gM (Z))<0} − {Y (µ(X,Z)−gM (Z))<0}

]
(A.8.9)

where gM (Z) = 1
M

∑M
m=1 µ(X̃

(m), Z). To bound
∣∣E
[
RM

i

]
− f#1(µ)/2

∣∣, we consider the two

terms in (A.8.6) and separately bound

II1 :=
∣∣∣E
[

{Y (µ(X̃,Z)−gM (Z))<0} − {Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0

]∣∣∣ ,

II2 :=
∣∣∣E
[

{Y (µ(X,Z)−gM (Z))<0} − {Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]∣∣∣ .
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Starting from the second term above, we rewrite it as

II2 =
∣∣∣E
[
E
[

{Y (µ(X,Z)−gM (Z))<0} − {Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣

≤
∣∣∣E
[

{Y=1}E
[

{µ(X,Z)<gM (Z)} − {µ(X,Z)<E[µ(X,Z) |Z]} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣

+
∣∣∣E
[

{Y=−1}E
[

{µ(X,Z)>gM (Z)} − {µ(X,Z)>E[µ(X,Z) |Z]} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣

≤ E
[
max{

∣∣GZ,Y (g
M (Z))−GZ,Y (g(Z))

∣∣ ,
∣∣FZ,Y (g

M (Z))− FZ,Y (g(Z))
∣∣}
]

:= E [A] (A.8.10)

where the first equality is by the law of total expectation, the first and the second inequality are sim-

ply expanding and rearranging. By construction, µ(X̃(m), Z),m ∈ [M ] are i.i.d. random variables

conditioning onZ, Y , then by central limit theorem we have

√
M(gM (Z)− g(Z))

ς(Z)
d→ N (0, 1)

conditioning onZ, Y . Further we obtain the following from the Berry–Esseen bound i.e. Lemma

A.3.3:

∣∣∣∣∣P
(∣∣∣∣∣

√
M |gM (Z)− g(Z)|

ς(Z)

∣∣∣∣∣ >
√
MδZ,Y

∣∣∣∣∣Z, Y
)
−Φ(

∣∣∣
√
MδZ,Y

∣∣∣)

∣∣∣∣∣ ≤
C√
M

·
E
[
|µ3(X,Z)| |Z

]

ς3(Z)

(A.8.11)

for any δZ,Y when conditioning onZ, Y , whereΦ(x) = 1 − Φ(x) andC is some constant which

does not depend on the distribution of (Y,X,Z). Regarding (A.8.10), by considering the event

B := {|gM (Z)− g(Z)|/ς(Z) ≤ δZ,Y }, we can decompose (A.8.10) into

E [A] = E
[
A {B}

]
+ E

[
A {Bc}

]
(A.8.12)
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For the first term, we have

E
[
A {B}

]
≤ E

[
CgM (Z),Z,Y

∣∣gM (Z)− g(Z)
∣∣ {B}

]

= E
[
E
[
CgM (Z),Z,Y

∣∣gM (Z)− g(Z)
∣∣ {B}

∣∣∣Z, Y
]]

≤ E
[
CZ,Y E

[∣∣gM (Z)− g(Z)
∣∣ ∣∣Z, Y

]]

≤ E
[
CZ,Y

√
E
[
|gM (Z)− g(Z)|2

∣∣∣Z, Y
]]

(A.8.13)

where the first inequality is by the definition ofCu,z,y , the first equality is from the law of total

expectation, the second inequality holds by (a) in Assumption A.8.1 and the last inequality holds

due to the Cauchy–Schwarz inequality. Remember we have gM (Z) = 1
M

∑M
m=1 µ(X̃

(m), Z)

where µ(X̃(m), Z),m ∈ [M ] are i.i.d. random variables with mean g(Z)when conditioning on

Z, Y , hence (A.8.13) equals

E
[
CZ,Y

√
ς2(Z)

M

]
≤ 1√

M

√
E
[
C2
Z,Y

]√
E [ς2(Z)] = O

(
1√
M

)

where the first inequality is from the Cauchy–Schwarz inequality and the second one holds by (b)

and (c) in Assumption A.8.1. Now we have showed

E
[
A {B}

]
= O

(
1√
M

)
, (A.8.14)

195



it suffices to prove the same rate forE
[
A {Bc}

]
:

E
[
A {Bc}

]
≤ 2 P (Bc)

= 2 E [P (Bc |Z)]

= 2 E
[
P
(√

M |gM (Z)− g(Z)|/ς(Z) >
√
MδZ,Y |Z

)]

≤ 2E
[
Φ(
∣∣∣
√
MδZ,Y

∣∣∣) +
C√
M

·
E
[
|µ3(X,Z)| |Z

]

ς3(Z)

]

≤ 2E
[

2√
2π

exp{−Mδ2Z,Y }√
MδZ,Y

+
C√
M

·
E
[
|µ3(X,Z)| |Z

]

ς3(Z)

]

where the first inequality holds since Fz,y(u), Gz,y(u) are bounded between 0 and 1, the first

equality is due to the law of total expectation, the second equality is from the definition of the event

B, the second inequality holds due to (A.8.11) and the last inequality is a result of Mill’s Ratio, see

Proposition 2.1.2 in Vershynin (2018). Under (b) and (c) in Assumption A.8.1, the following holds

E
[
A {Bc}

]
= O

(
1√
M

)
. (A.8.15)

Finally we prove

∣∣∣E
[

{Y (µ(X,Z)−gM (Z))<0} − {Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]∣∣∣ = O

(
1√
M

)
.

Regarding the term

II1 =
∣∣∣E
[

{Y (µ(X̃,Z)−gM (Z))<0} − {Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0

]∣∣∣

All of the steps are the same except that the CDF (and its limit) of the conditional distributionX |

Z, Y are replaced by those ofX | Z , i.e. Fz(u) andGz(u) as defined in (A.8.1). Hence it suffices to
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notice the following derivations for Fz(u):

Fz(u) = P (U ≤ u |Z = z) = EY |Z=z [P (U ≤ u |Z = z, Y ) |Z = z]

= EY |Z=z [Fz,Y (u) |Z = z] ,

and similarly forGz(u). Together with the definition ofCu,z,y and (a) in Assumption A.8.1, the

above equations yield

max{|Fz(u)− Fz(g(z))| , |Gz(u)−Gz(g(z))|} ≤ Cz,y|u− g(z)|

over the region |u− g(z)| ≤ ς(z)δz,y . Then the other steps follow as those of proving the term II2.

Finally, we obtain a rate ofO
(

1√
M

)
for
∣∣E
[
RM

i

]
− f#1(µ)/2.

∣∣.

In the following, we prove the stronger version of (A.8.5), i.e.,

P
(
Lαn,M,K(µ) ≤ f#1(µ)

)
≥ 1− α−O

(
1√
n

)
, (A.8.16)

when assuming n2/M = O(1). For this it suffices to establish the following Berry–Esseen bound:

∆ := sup
t∈R

∣∣∣∣P
(√

n

(
R̄− f#1(µ)/2

s

)
≤ t

)
− Φ(t)

∣∣∣∣ = O

(
1√
n

)
,

where R̄ and s are defined similarly as in Algorithm 10 except that g(Zi) andRi are replaced with

gM (Zi) andRM,K
i , respectively. Notice that

∆ = sup
t∈R

∣∣∣∣∣P
(
√
n

(
R̄− E

[
RM

i

]

s

)
≤ t+

√
n
(E
[
RM

i

]
− f#1(µ)/2)

s

)
− Φ(t)

∣∣∣∣∣

≤ sup
t∈R

∣∣∣∣∣P
(
√
n

(
R̄− E

[
RM

i

]

s

)
≤ t

)
− Φ(t)

∣∣∣∣∣+ sup
t∈R

∣∣∣∣∣Φ
(
t+
√
n
(E
[
RM

i

]
− f#1(µ)/2)

s

)
− Φ(t)

∣∣∣∣∣
:= ∆1 +∆2
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Since the first derivative ofΦ(t) is bounded by 1/
√
2π overR, we have

∆2 ≤
√
n√
2π

|f#1(µ)/2− E
[
RM

i

]
|

√
Var

(
RM

i

) · (
√
Var

(
RM

i

)
/s)

by Taylor expansion. Note that as a result of (A.8.8), we have

√
n|E

[
RM

i

]
− f#1(µ)/2| = O(1/

√
n). (A.8.17)

Then it suffices to prove∆1 = O(1/
√
n) andVar

(
RM

i

)
> 0 (since s is simply the sample mean

estimator ofVar
(
RM

i

)
thus consistent). ∆1 = O(1/

√
n) holds when applying the triangular

array version of the Berry–Esseen bound in Lemma A.3.4 (note that the result is stated in a way

such that the bound clearly applies to the triangular array with i.i.d. rows {RM,K
i }ni=1 for eachM ).

The only thing we need to deal with is to verify the following uniformmoment conditions:

(i) supM,K E
[∣∣∣RM,K

i − E
[
RM,K

i

]∣∣∣
3
]
<∞,

(ii) infM,K Var
(
RM,K

i

)
> 0.

where we go back to the original notationRM,K
i from the simplified oneRM

i since the above mo-

ments do depend on bothM andK . SinceRM,K
i is always bounded, (i) holds. Regarding (ii),
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notice that we have the following

Var
(
RM,K

i

)

= E
[
Var

(
RM,K

i |Zi, Yi, {X̃(m)
i }Mm=1

)]
+Var

(
E
[
RM,K

i |Zi, Yi, {X̃(m)
i }Mm=1

])

≥ E
[
Var

(
RM,K

i |Zi, Yi, {X̃(m)
i }Mm=1

)]

= E
[
Var

(
1

K

K∑

k=1

(
{
Yi(µ(X̃

(k)
i ,Zi)−gM (Zi))<0

}
)
− {Yi(µ(Xi,Zi))−gM (Zi))<0}

∣∣∣∣∣Zi, Yi, {X̃(m)
i }Mm=1

)]

≥ E
[
Var

(
{Yi(µ(Xi,Zi))−gM (Zi))<0}

∣∣∣Zi, Yi, {X̃(m)
i }Mm=1

)]
:= σ2M (A.8.18)

where the first equality is due to the law of total expectation, the second equality is by the definition

ofRM,K
i , the second inequality holds since {X̃(k)

i }Kk=1 ⊥⊥ Xi | Zi, Yi, {X̃(m)
i }Mm=1 due to

the construction of {X̃(k)
i }Kk=1 and the variance of first term is non-negative. Before dealing with

(A.8.18), notice the stated condition

σ20 := E
[
Var

(
{Yi(µ(Xi,Zi))−g(Zi))<0}

∣∣Zi, Yi
)]

> 0

Thus to establish (ii), it suffices to show σ2M → σ20 asM → ∞. Recall the derivations in (A.8.10)

for bounding the term II2, we can similarly bound |σ2M − σ20| by the following quantity:

|σ2M − σ20| ≤ E
[
3max{

∣∣GZ,Y (g
M (Z))−GZ,Y (g(Z))

∣∣ ,
∣∣FZ,Y (g

M (Z))− FZ,Y (g(Z))
∣∣}
]

= 3E [A] = 3(E
[
A {B}

]
+ E

[
A {Bc}

]
) = O

(
1√
M

)
.

where the last equality holds due to the results (A.8.14) and (A.8.15) from previous derivations

for the term II2. Finally we conclude (A.8.16), which immediately implies a weaker version of the

result, i.e.the statement of Theorem A.8.2.
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A.9 Co-sufficient floodgate details

The strategy described in Section 1.3.2 is formalized in Algorithm 11 (under the simplifying as-

sumption that the number of batches, n2, evenly divides the sample size n).

Algorithm 11 Co-sufficient floodgate
Input: The inputs of Algorithm 1, a sufficient statistic functional T , and a batch size n2.
1: Let n1 = n/n2 and form ∈ [n1], denote (Xm,Zm) = {Xi, Zi}mn2

i=(m−1)n2+1, and let
Tm = T (Xm,Zm).

2: Form ∈ [n1], compute

Rm =
1

n2

mn2∑

i=(m−1)n2+1

Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm]),

Vm =
1

n2

mn2∑

i=(m−1)n2+1

Var (µ(Xi, Zi) |Zm,Tm),

their sample mean (R̄, V̄ ), their sample covariance matrix Σ̂, and s2 =

1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
.

3: return Lower confidence bound Lα,Tn (µ) = max
{

R̄√
V̄
− zαs√

n1
, 0
}
, with the conven-

tion that 0/0 = 0.

A.9.1 Monte Carlo analogue of co-sufficient floodgate

Similarly as in Section 1.2, when the conditional expectations in Algorithm 11 do not have closed-

form expressions, Monte Carlo provides a general approach: within each batch, we can sampleK

copies X̃(k)
m ofXm from the conditional distributionXm |Zm,Tm, conditionally independently
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ofXm and y and thus replaceRm and Vm, respectively, by the sample estimators

(RK
m, V K

m ) =
1

n2




mn2∑

i=(m−1)n2+1

Yi

(
µ(Xi, Zi)−

1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)
,

mn2∑

i=(m−1)n2+1

1

K − 1

K∑

k=1

(
µ(X(k)

i , Zi)−
1

K

K∑

k=1

µ(X̃(k)
i , Zi)

)2




We defer to future work a proof of validity of the Monte Carlo analogue of co-sufficient floodgate

following similar techniques as Theorem 1.2.5.

A.9.2 Proofs in Appendix A.9

Lemma A.9.1. Under the moment conditionsE
[
µ2(X,Z)

]
,E
[
(µ!)2(X,Z)

]
< ∞, we can

quantify the gap between f(µ) and fT
n (µ) as below.

f(µ)− fT
n (µ) = O (max{II(µ), II(µ!)}) (A.9.1)

where II(µ) = EZ
[
VarT |Z (E [µ(Xi, Zi) |Z,T ])

]
.

When this lemma is used in the proof of Proposition 1.3.5 and 1.3.6, the natural sufficient statis-

tic and fT
n (µ) are actually defined based on the batch Bm whose sample size is n2. We do not carry

these in the above notation, but use generic (X,Z) instead, where (X,Z) = {(Xi, Zi)}ni=1.

Proof of Lemma A.9.1. Recall the definition of f(µ) and fT
n (µ),

f(µ) =
E [Cov(µ!(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
, (A.9.2)

fT
n (µ) =

E [Cov(µ!(Xi, Zi), µ(Xi, Zi) |Z,T )]√
E [Var(µ(Xi, Zi) |Z,T )]

, (A.9.3)
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then denoteWi = (Xi, Zi), h(Wi) := µ(Wi) − E [µ(Wi) |Zi] , hT (Wi) := µ!(Wi) −

E [µ!(Wi) |Z,T ] and assume E
[
h2(Wi)

]
= 1without loss of generality. First notice a simple fact

|ab −
c
d | =

|ad−bc|
bd = |ad−cd+cd−bc|

bd ≤ |a−c|
b + c|b−d|

bd for a, b, c, d > 0, then let the numerator and

denominator of f(µ) in (A.9.2) to be a, b respectively (similarly denote c, d for fT
n (µ) in (A.9.3)).

And we have

max{1
b
,

c

bd
} ≤ 1 + fT

n (µ) ≤ 1 + fT
n (µ!) ≤ 1 + f(µ!) ≤ 1 + E

[
(µ!)2(X,Z)

]
<∞,

hence it suffices to bound |a− c| and |b− d|. First we have the following

a− c = E [Cov (µ!(Wi), µ(Wi) |Z)]− E [Cov (µ!(Wi), µ(Wi) |Z,T )] (A.9.4)

= E [Cov (E [µ!(Wi) |Z,T ],E [µ(Wi) |Z,T ] |Z)]

= EZ
[
CovT |Z (E [µ!(Wi) |Z,T ],E [µ(Wi) |Z,T ])

]
.

where the first equality holds due to the independence among i.i.d. samples (X,Z) = {(Xi, Zi)}ni=1.

For the second equality, we apply the law of total covariance to the covariance termCov (µ!(Wi), µ(Wi) |Z)

then cancel out the second term of the first line, leading to the term in the second line. Finally we

spell out the randomness of the expectation and covariance through explicit subscripts in the last

inequality. They by applying Cauchy–Schwarz inequality, we obtain

|a− c| ≤
√
EZ
[
VarT |Z (E [µ!(Wi) |Z,T ])

]√
EZ
[
VarT |Z (E [µ(Wi) |Z,T ])

]
(A.9.5)
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Regarding the term |b− d|, we have

|b− d| =

∣∣∣∣
√
E [h2(Wi)]−

√
E [(hT )2(Wi)]

∣∣∣∣

=

∣∣E
[
h2(Wi)

]
− E

[
(hT )2(Wi)

]∣∣
√
E [h2(Wi)] +

√
E [(hT )2(Wi)]

≤
∣∣E
[
h2(Wi)

]
− E

[
(hT )2(Wi)

]∣∣
√

E [h2(Wi)]

≤ E [Var (µ(Wi) |Z)]− E [Var (µ(Wi) |Z,T )]

= EZ
[
VarT |Z (E [µ(Wi) |Z,T ])

]
(A.9.6)

where we use the assumption E
[
h2(Wi)

]
= 1 and the definition of h, hT in the second inequal-

ity. The last equality holds as a result of applying the law of total variance to the variance term

Var (µ(Wi) |Z) then getting the second term of line 4 cancelled out. Finally, combining (A.9.5)

and (A.9.6) establishes the bound in (A.9.1).

Proposition 1.3.5

Proof of Proposition 1.3.5. Throughout the proof, the natural sufficient statistic and fT
n (µ) are

defined based on the batch Bm whose sample size is n2. But we will abbreviate the notation depen-

dence on it for simplicity and use a generic n instead of n2 to avoid carrying too many subscripts,

without causing any confusion. Now we present a roadmap of this proof.

(i) due to Lemma A.9.1, it suffices to bound the term II(µ), II(µ!) in (A.9.1).

(ii) we bound II(µ), II(µ!)with the same strategy. Specifically, we will show

II(µ) = O
(
EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

])

and similarly for II(µ!) under the stated model, where F denotes the conditional distribution
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ofXi|Z , and hii is the ith diagonal term of the hat matrixH , which is defined later. This ter-

minology comes from the fact that we can treatXj as response variable, (1, Z) as predictors,

the natural sufficient statistic for this low dimensional multivariate Gaussian distribution is

equivalent to the OLS estimator.

(iii) Regarding the term E [hii |Zi] above, we can carefully bound it by 1/(n − 1) + E [Ξ |Zi],

whereΞ is defined in (A.9.16).

(iv) Simply expanding E [Ξ |Zi] into three terms: III1, III2, III3, which are defined in (A.9.17),

(A.9.18) and (A.9.18), we will show III2 = 0 and figure out the stochastic representation of

III1, III3, which turns out to be related to chi-squared, Wishart and inverse-Wishart random

variables.

(v) Cauchy–Schwarz inequalities together with some properties of those random variables (chi-

squared, Wishart and inverse-Wishart) and the stated moment conditions finally gives us the

result in (1.3.4).

Having proved Lemma A.9.1, now we directly start with step (ii). Notice the following

II(µ) = EZ
[
VarT |Z (E [µ(Wi) |Z,T ])

]

= EZ
[
ET |Z

[
(EF [µ(Wi)]− EFT [µ(Wi)])

2
]]

= EZ

[
VarF (µ(Wi))ET |Z

[
(EF [µ(Wi)]− EFT [µ(Wi)])2

VarF (µ(Wi))

]]

≤ EZ
[
VarF (µ(Wi))min

{
ET |Z

[
χ2(FT ‖F )

]
, 2
}]

(A.9.7)

where the second equality is just rewriting the conditional variance, with F denoting the condi-

tional distributionXi|Z and FT denoting the conditional distributionXi|Z,T . Here we ab-

breviate the subscript dependence on i for notation simplicity. The third equality holds since
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VarF (µ(Wi)) ∈ A (Z). Regarding the last inequality, we make use of the variational represen-

tation of χ2-divergence:

χ2(P‖Q) = sup
µ

(EP (µ)− EQ(µ))2

VarQ(µ)

and the fact that

ET |Z

[
(EF [µ(Wi)]− EFT [µ(Wi)])2

VarF (µ(Wi))

]

≤
ET |Z

[
EF
[
µ2(Wi)

]]
+ ET |Z

[
EFT

[
µ2(Wi)

]]
− 2ET |Z [EFT [µ(Wi)]EF [µ(Wi)]]

VarF (µ(Wi))

=
EF
[
µ2(Wi)

]
+ EF

[
µ2(Wi)

]
− 2(EF [µ(Wi)])2

VarF (µ(Wi))

=
2VarF (µ(Wi))

VarF (µ(Wi))
= 2

where the first inequality is from expanding the quadratic term and the fact (EF [µ(Wi)])2 ≤

EF
[
µ2(Wi)

]
, (EFT [µ(Wi)])2 ≤ EFT

[
µ2(Wi)

]
, the first equality holds as a result of the tower

property of conditional expectation and EF [µ(Wi)] ∈ A (Z). Denote ui = (1, Zi)) and the

following n by pmatrix byU :

U =





u)1
...

u)n




= (1,Z) (A.9.8)

Recall that the sufficient statistic (here we ignore the batching index)

T = (
∑

i∈[n]

Xi,
∑

i∈[n]

XiZi) = U)X,
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under the stated multivariate Gaussian model, we knowX | Z ∼ N
(
Uγ,σ2In

)
, then the

conditional distribution of (Xi,T ) | Z can be specified as below




Xi

T



 ∼ N








(1, Zi)γ

U)Uγ



 ,σ2




1 e)i U

U)e)i U)U







 (A.9.9)

where ei ∈ Rn, (e1, · · · , en) forms the standard orthogonal basis. Noticing the above joint distri-

bution is multivariate Gaussian, we can immediately derive the conditional distribution as below,

Xi | Z,T ∼ N
(
e)i U(U)U)−1U)X,σ2(1− e)i U(U)U)−1U)ei)

)
.

DenoteH = U(U)U)−1U), which is the “hat” matrix. Now we compactly write down the

following two conditional distributions:

FT : Xi | Z,T ∼ N
(
e)i HX,σ2(1− hii)

)

F : Xi | Z ∼ N
(
(1, Zi)γ,σ

2
)

Note the sufficient statistic T is equivalent to

γ̂OLS = (U)U)−1U)X

wheneverU)U is nonsingular. Here γ̂OLS is the OLS estimator for γ (when treatingX as re-

sponse variable, (1, Z) as predictors). Simply, we have

γ̂OLS ∼ N
(
γ,σ2(U)U)−1

)
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Nowwe are ready to calculate χ2(FT ‖F ). First,

e)i HX − (1, Zi)γ = e)i U γ̂
OLS − (1, Zi)γ

= e)i U(γ̂OLS − γ) ∼ N (0,σ2hii) (A.9.10)

Since 2σ2 > σ2(1− hii), applying Lemma A.9.2 yields the following

χ2(FT ‖F ) =
1

2



 1√
1− h2ii

exp

{
(e)i HX − (1, Zi)γ)2

σ2(1 + hii)

}
− 1





≤ 1√
1− hii

exp

{
(e)i HX − (1, Zi)γ)2

σ2(1 + hii)

}
− 1

=
1√

1− hii
exp

{
hiiG2

1 + hii

}
− 1 (A.9.11)

whereG ∼ N (0, 1) is independent fromX and the last equality holds due to (A.9.10). Plugin

(A.9.11) back to (A.9.7), we have

II(µ) ≤ EZ
[
VarF (µ(Wi))min

{
ET |Z

[
χ2(FT ‖F )

]
, 2
}]

≤ EZ

[
VarF (µ(Wi))min

{
ET |Z

[
1√

1− hii
exp

{
hiiG2

1 + hii

}
− 1

]
, 2

}]

Note the moment generating function for χ2
1 random variable is 1√

1−2t
when t < 1/2. Since

the expectation of exp
{

hiiG2

1+hii

}
does not always exist, we consider two eventsE andEc such that

conditional on the eventE, the expectation exists and the probability of eventEc is small. More
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specifically, define the eventE = {hii < 1
2}, which implies

ET |Z

[
1√

1− hii
exp

{
hiiG2

1 + hii

}]
− 1 =

1
√
1− hii

√
1− 2hii/(1 + hii)

− 1

=

√
1 + hii
1− hii

− 1

≤ 1 + hii
1− hii

− 1

≤ 4hii

hence we can bound II(µ) by the summation of the following two terms:

II1 := EZ
[
VarF (µ(Wi)) {E} · 4hii

]
, II2 := EZ

[
VarF (µ(Wi)) {Ec} · 2

]

Regarding II1, the following holds:

II1 ≤ 4 EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
,

where we apply the tower property of conditional expectation andVarF (µ(Wi)) ≤ EF
[
µ2(Wi)

]
∈

A (Zi)Regarding II2, we have

II2 = 2 EZ
[
VarF (µ(Wi)) {Ec}

]

= 2 EZ
[
VarF (µ(Wi))E

[
{Ec} |Zi

]]

≤ 2 EZi

[
EF
[
µ2(Wi)

]
P
(
hii ≥

1

2
|Zi

)]

≤ 4 EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

]

where the second equality comes from the tower property of conditional expectation andVarF (µ(Wi)) ∈

A (Zi) and the last inequality holds due toMarkov’s inequality. Now we can compactly write
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down the following bound for II(µ),

II(µ) ≤ II1 + II2 ≤ 8 EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
, (A.9.12)

Similarly we obtain II(µ!) = O
(
EZi

[
EF
[
(µ!)2(Wi)

]
E [hii |Zi]

])
. Now we proceed step (iii),

i.e. calculatingE [hii |Zi]. Notice hii is the ith diagonal term of the “hat” matrix, which involves

{wi}ni=1. In order to bound the conditional expectation of hii givenZi in a sharp way, we carefully

expand hii and try to getwi separated from {wm}m .=i. Recall the definition ofU = (1,Z) in

(A.9.8), we can rewrite

U)U =
∑

m .=i

umu)m + uiu
)
i , A :=

∑

m .=i

umu)m

Note that hii = u)i (U
)U)−1ui sinceH = U(U)U)−1U), hence we have

hii = u)i (A+ uiu
)
i )

−1ui

As n > p,A is almost surely positive definite thus invertible, then applying Sherman–Morrison

formula toA and uiu)i yields the following

hii = u)i A
−1ui −

(u)i A
−1ui)2

1 + u)i A
−1ui

≤ u)i A
−1ui. (A.9.13)

SinceA also involves the unit vector 1n−1, it is easier when we first projectZ-i on 1n−1 then work

with the orthogonal complement. Bearing this idea in mind, we denoteΩ = (1n−1,Z-i)which is a
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n− 1 by pmatrix, then rewriteA as

A = Ω)Ω =




1)n−11n−1 1)n−1Z-i

Z)
-i 1n−1 Z)

-i Z-i





where In−1 is the (n− 1) dimensional identity matrix. Denote

Z-i :=
1

n− 1

∑

m .=i

Zm =
1

n− 1
1)n−1Z-i Γ :=




1 −Z-i

0 In−1



 , (A.9.14)

we have

ΩΓ = (1n−1,Z-i)Γ = (1n−1,Z-i − 1n−1Z-i)

= (1n−1, (In−1 − Pn−1)Z-i).

wherePn−1 = 1n−11)n−1/(n− 1) is the projection matrix onto 1n−1. Then we immediately have

(ΩΓ))ΩΓ =




n− 1 0

0 Z)
-i (In−1 − Pn−1)Z-i





sincePn−11n−1 = 1n−1, (In−1 − Pn−1)1n−1 = 0 and

u)i Γ = (1, Zi)Γ = (1, Zi −Z-i). (A.9.15)
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Combining (A.9.14) with (A.9.15) yields the following

u)i A
−1ui = u)i (Ω

)Ω)−1ui

= u)i Γ((ΩΓ))ΩΓ)−1Γ)wi

=
1

n− 1
+ (Zi −Z-i)(Z

)
-i (In−1 − Pn−1)Z-i)

−1(Zi −Z-i)
),

which together with (A.9.13) impliesE [hii |Zi] ≤ E
[
u)i A

−1ui |Zi
]
= 1/(n− 1) + E [Ξ |Zi],

where

Ξ = (Zi −Z-i)(Z
)
-i (In−1 − Pn−1)Z-i)

−1(Zi −Z-i)
). (A.9.16)

As the problem has been reduced to calculatingE [Ξ |Zi], we arrive at the step (iv) now. Write

(Zi−Z-i) = (Zi− v0)− (Z-i− v0), where v0 is the mean of Gaussian random variableZ , we can

expandE [Ξ |Zi] = III1 + III2 + III3, where

III1 = (Zi − v0)E
[
(Z)

-i (In−1 − Pn−1)Z-i)
−1 |Zi

]
(Zi − v0)

) (A.9.17)

III2 = −2(Zi − v0)E
[
(Z)

-i (In−1 − Pn−1)Z-i)
−1(Z-i− v0)

) |Zi

]
(A.9.18)

III3 = E
[
(Z-i− v0)(Z

)
-i (In−1 − Pn−1)Z-i)

−1(Z-i− v0)
) |Zi

]
(A.9.19)

Below we are going to show III2 = 0 and derive III1, III3 carefully. Regarding the term III1, we

exactly write down its stochastic representation. Under the state Gaussian model, we haveZ)
-i ∼

N
(
v01)n−1, In−1 ⊗Σ0

)
, then (Z)

-i (In−1−Pn−1)Z-i)−1 follows an inverse Wishart distribution

i.e.

(Z)
-i (In−1 − Pn−1)Z-i)

−1 ∼W−1
p−1(Σ

−1
0 , n− 2)
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andZ-i ⊥⊥ Zi, hence we can calculate

E
[
(Z)

-i (In−1 − Pn−1)Z-i)
−1 |Zi

]
=

Σ−1
0

n− p− 2
.

Plug in the above equation into (A.9.17), we have

III1 = (Zi − v0)Σ
−1
0 (Zi − v0)

) =
Φ

n− p− 2
, where Φ ∼ χ2

p−1, Φ ⊥⊥ Z-i. (A.9.20)

Regarding the term III2 in (A.9.18), we first denoteZ = Z-i − 1n−1v0 and notice

Z ∼ N (0, In−1 ⊗Σ0) , 1)n−1Z = (n− 1)(Z-i− v0), (A.9.21)

then rewrite III2 as below

III2 = −2(Zi − v0)E
[
((Z + 1n−1v0)

)(In−1 − Pn−1)(Z + 1n−1v0))
−1 (1

)
n−1Z))

n− 1

]

where we also makes use of the fact that

(Z)
-i (In−1 − Pn−1)Z-i)

−1(Z-i− v0)
) ⊥⊥ Zi

Noticing that (1n−1v0))(In−1 − Pn−1) = 0, we can simplify further

III2 = −
2

n− 1
(Zi − v0)E

[
(Z)(In−1 − Pn−1)Z)−1(1)n−1Z))

]
(A.9.22)

Notice in the above equation,Z)(In−1−Pn−1) is the orthogonal complement ofZ)1n−1, which

implies independence under the Gaussian distribution assumption, which we will now use to prove

the expectation in (A.9.22) equals zero. Formally, we first have (Z)(In−1 − Pn−1),Z)1n−1) are
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multivariate Gaussian. Introducing the vectorization of matrix and the Kronecker product, we can

express in the following way:

vec(Z)(In−1−Pn−1)) = (In−1−Pn−1)⊗ Ip−1vec(Z)), vec(Z)) = 1n−1⊗ Ip−1vec(Z)).

Nowwe are ready to calculate the covariance

Cov
(
vec(Z)(In−1 − Pn−1)), vec(Z)1n−1)

)

= ((In−1 − Pn−1)⊗ Ip−1)(In−1 ⊗Σ0)(1n−1 ⊗ Ip−1)
)

= ((In−1 − Pn−1)In−11n−1)⊗ (Ip−1Σ0Ip−1) = 0

where in above equalities we use the factVar
(
vec(Z))

)
= In−1 ⊗Σ0 in (A.9.21) and the mixed-

product property of the Kronecker product. Therefore

Z)(In−1 − Pn−1) ⊥⊥ Z)1n−1 =⇒ III2 = 0 (A.9.23)

Regarding the term III3, first denoteΨ1 = Z)Pn−1Z andΨ2 = Z)(In−1 − Pn−1)Z , we

obtain two independent Wishart random variables i.e.

Ψ1 ∼Wp−1(Σ0, 1), Ψ2 ∼Wp−1(Σ0, n− 2), Ψ1 ⊥⊥ Ψ2.
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Then III3 can be calculated as below

III3 = E
[
(Z-i− v0)(Z

)
-i (In−1 − Pn−1)Z-i)

−1(Z-i− v0)
) |Zi

]

= E
[
1)n−1Z(Z)(In−1 − Pn−1)Z)−1Z)1n−1

]
/(n− 1)2

= E
[
Tr
(
1)n−1Z(Z)(In−1 − Pn−1)Z)−1Z)1n−1

)]
/(n− 1)2

= E
[
Tr(Ψ1Ψ

−1
2 )
]
/(n− 1)

= TrE
[
Ψ1Ψ

−1
2

]
/(n− 1)

= Tr(E [Ψ1]E
[
Ψ−1

2

]
)/(n− 1)

= Tr(Σ0
Σ−1

0

n− p− 2
)/(n− 1)

=
p

(n− 1)(n− p− 2)
(A.9.24)

where the first equality is from (A.9.19), the second equality is similarly obtained as (A.9.22), the

fourth equality holds by the factTr(AB) = Tr(BA) and the definition ofΨ1 andΨ2, the sixth

equality holds due toΨ1 ⊥⊥ Ψ2. So far we have shown III2 = 0 and figured out the stochas-

tic representation of III2, III3, which are also further simplified using the properties of Wishart

and inverse-Wishart random variables. These bring us to the final stage i.e. step (v). Combining

(A.9.13), (A.9.20), (A.9.23) and (A.9.24), we finally obtain

E [hii |Zi] ≤ E
[
u)i A

−1ui |Zi

]

≤ 1

n− 1
+ E [Ξ |Zi]

=
1

n− 1
+ III1 + III2 + III3

≤ 1

n− 1
· n− 2

n− p− 2
+

Φ

n− p− 2
(A.9.25)
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Recall the bound for II(µ) in (A.9.12), then we apply the Cauchy–Schwarz inequality to E
[
µ2(Wi) |Zi

]

and E [hii |Zi], which yields

II(µ) ≤ 8 EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

]

≤
8(n− 2)E

[
µ2(Wi)

]

(n− 1)(n− p− 2)
+

8
√
E [Φ2]

n− p− 2

√
EZi [E [µ4(Wi) |Zi]]

≤
8
√
E [µ4(X,Z)]

n− p− 2

(
1 +

√
E [Φ2]

)
(A.9.26)

where in the above equality,Φ ∼ χ2
p−1 and is independent fromZ-i. SinceE

[
Φ2
]
≤ p2, under

the assumption E
[
µ4(X,Z)

]
<∞, we obtain the following bound on II(µ),

II(µ) = O

(
p

n− p− 2

)
. (A.9.27)

Replacing the µ function by µ! and applying the assumption E
[
(µ!)4(X,Z)

]
< ∞, we can

establish the same rate for II(µ!). Shifting back to the n2 notation, we finally establish (1.3.4), i.e.

f(µ)− fT
n (µ) = O

(
p

n2 − p− 2

)
.

Proposition 1.3.6

Proof of Proposition 1.3.6. From the proposition statement, we know the sufficient statistic Tm and

fT
n (µ) are defined based on the batch Bm whose sample size is n2. Again, we will abbreviate the

notation dependence for simplicity, i.e. use a generic n instead of n2, use T andZ instead of Tm

andZm, as we did in the proof of Proposition 1.3.5. Following the derivations up to (A.9.7) in the
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proof of Proposition 1.3.5, it suffices to deal with the following term:

Π(µ) := EZ
[
VarF (µ(Wi))ET |Z

[
χ2(FT ‖F )

]]
.

where F denotes the conditional distributionXi|Z and FT denotes the conditional distribution

Xi|Z,T . Below we will consider quantifying the χ2 divergence between FT and F , Let k1, k2 be

Wi,j−1,Wi,j+1 respectively, we can write down the probability mass function of FT and F :

F : P (Xi |Z) =
K∏

k=1

(q(k, k1, k2)) {Xi=k,Wi,j−1=k1,Wi,j+1=k1} (A.9.28)

FT : P (Xi |Z,T ) =
K∏

k=1

(q̂(k, k1, k2)) {Xi=k,Wi,j−1=k1,Wi,j+1=k1} (A.9.29)

where q̂(k, k1, k2) = N(k, k1, k2)/N(:, k1, k2) andN(:, k1, k2) =
∑n

i=1 {Wi,j−1=k1,Wi,j+1=k2}.

Recall the definition of χ2 divergence between two discrete distributions, we have

χ2(FT ‖F ) =
K∑

k=1

(q̂(k, k1, k2)− q(k, k1, k2))2

q(k, k1, k2)

Notice that

ET |Z [q̂(k, k1, k2)] = q(k, k1, k2), VarT |Z (q̂(k, k1, k2)) =
q(k, k1, k2)(1− q(k, k1, k2))

N(:, k1, k2)
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hence we can calculate the following conditional expectation,

ET |Z
[
χ2(FT ‖F )

]
=

K∑

k=1

ET |Z

[
(q̂(k, k1, k2)− q(k, k1, k2))2

q(k, k1, k2)

]

=
K∑

k=1

q(k, k1, k2)(1− q(k, k1, k2))

N(:, k1, k2)q(k, k1, k2)

=
K∑

k=1

K − 1

N(:, k1, k2)
(A.9.30)

where we use the fact
∑K

k=1 q(k, k1, k2) = 1 in the last equality. NowΠ(µ) can be calculated as

below.

Π(µ) = EZ
[
VarF (µ(Wi))ET |Z

[
χ2(FT ‖F )

]]

= EZi

[
VarF (µ(Wi))E

[
ET |Z

[
χ2(FT ‖F )

]
|Zi
]]

= EZi

[
VarF (µ(Wi))E

[
K − 1

N(:,Wi,j−1,Wi,j+1)
|Zi

]]

= EZi

[
VarF (µ(Wi))E

[
K − 1

1 +Nn−1(Wi,j−1,Wi,j+1)
|Zi

]]
(A.9.31)

where the second equality comes from the tower property of conditional expectation, the third

equality holds due to (A.9.30) and k1 = Wi,j−1, k2 = Wi,j+1. In term of the fourth equality, we

simply use the new notation thatNn−1(Wi,j−1,Wi,j+1) =
∑n

m .=i {Wm,j−1=Wi,j−1,Wm,j+1=Wi,j+1}.

Due to the independence among i.i.d. samples {Wi}ni=1, we have, when conditioning onZi =

Wi,-j

{Wm,j−1=Wi,j−1, Wm,j+1=Wi,j+1}
i.i.d.∼ Bern(q(Wi,j−1,Wi,j+1)), m ∈ [n], m += i.
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where q(Wi,j−1,Wi,j+1) = P (Wj−1 = Wi,j−1,Wj+1 = Wi,j+1 |Zi). Given a binomial ran-

dom variableB ∼ Bin(n, q), we have the following fact by elementary calculus,

E
[

1

1 +B

]
=

1

(n+ 1)q
· (1− (1− q)n+1). (A.9.32)

hence we can bound the termΠ(µ) as below

Π(µ) =
K − 1

n
EZi

[
VarF (µ(Wi))

1− (1− q(Wi,j−1,Wi,j+1))n

q(Wi,j−1,Wi,j+1)

]
(A.9.33)

≤ K − 1

n
EZi [VarF (µ(Wi))]

K2

K2min{q(k1, k2)}
(A.9.34)

≤ K3

n

E
[
µ2(X,Z)

]

q0
(A.9.35)

where the equality holds due to (A.9.31) and (A.9.32). And in the second line, we lower bound

q(Wi,j−1,Wi,j+1) bymin{q(k1, k2)}. AssumingK2min{P (Wj−1 = k1,Wj+1 = k2)}k1,k2∈[K]} ≥

q0 > 0 gives us the third line. Then we can establishΠ(µ) = O
(
K3

n

)
(and similarly forΠ(µ!))

under the stated moment conditionE
[
(µ)2(X,Z)

]
,E
[
(µ!)2(X,Z)

]
< ∞. Finally, making use

of the rate result aboutΠ(µ),Π(µ!) and following the same derivation as in Proposition 1.3.5, we

have f(µ)− fT
n (µ) = O

(
K3

n2

)
, where we shift back to the n2 notation.

Ancillary lemmas

Lemma A.9.2 can be similarly derived as the expression for the Rényi divergence between two multi-

variate Gaussian distributions in Section 2.2.4 of Gil (2011). For completeness, we still present our

proof below.

Lemma A.9.2. The χ2-divergence between P : N (a1,Σ1) andQ : N (a2,Σ2) equals the follow-
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ing whenever 2Σ2 − Σ1 = 0:

|Σ2|
|Σ1|

1
2 |2Σ2 − Σ1|

1
2

exp
{
(a1 − a2)

)(2Σ2 − Σ1)
−1(a1 − a2)

}
− 1.

where a1,a2 ∈ Rd,Σ1,Σ2 ∈ Rd×d,Σ = 0means a matrixΣ is positive definite and |Σ| denotes its

determinant.

Proof of Lemma A.9.2. According to the definition of the χ2-divergence, we have

χ2(P‖Q) :=

∫ (
dP

dQ

)2

dQ− 1 =

∫
p2(x)

q(x)
dx− 1, (A.9.36)

where p(x), q(x) are the Gaussian density functions. For multivariate Gaussian random variable

with mean a ∈ Rd and covariance matrixΣ ∈ Rd×d, the density function equals the following

f(x) =
1

(2π)
d
2 |Σ|

1
2

exp

{
−1

2
(x− a))Σ−1(x− a)

}
, x ∈ Rd. (A.9.37)

Hence we can calculate the χ2-divergence as below,

χ2(P‖Q) =
|Σ2|

1
2

|Σ1|

∫

Rd

1

(2π)
d
2

exp

{
−1

2
(x− a1)

)(2Σ−1
1 )(x− a1) +

1

2
(x− a2)

)Σ−1
2 (x− a2)

}
dx− 1

:=
|Σ2|

1
2

|Σ1|

∫

Rd

1

(2π)
d
2

exp {II1 + II2 + II3} dx− 1, (A.9.38)

where the first equality holds following the definition in (A.9.36) and the second equality comes

from expanding the term in the exponent and combining, together with the following new nota-
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tions:

II1 := −1

2
x)(2Σ−1

1 − Σ−1
2 )x (A.9.39)

II2 := −1

2
· (−2x))(2Σ−1

1 a1 − Σ−1
2 a2) (A.9.40)

II3 := −1

2
(2a)

1 Σ
−1
1 a1 − a2Σ

−1
2 a2) (A.9.41)

LetΣ−1
! = 2Σ−1

1 − Σ−1
2 ,Σ−1

! a! = 2Σ−1
1 a1 − Σ−1

2 a2 (since we assume the positive definiteness

of 2Σ2 − Σ1, which implies 2Σ−1
1 − Σ−1

2 = 0, henceΣ! and a! are well-defined), then we have

(Σ−1
1 Σ!Σ

−1
2 )−1 = Σ2Σ

−1
! Σ1 = 2Σ2 − Σ1 (A.9.42)

2Σ!Σ
−1
1 − Id = Σ!(2Σ

−1
1 − Σ−1

! ) = Σ!Σ
−1
2 (A.9.43)

1

2
a)
! Σ

−1
! a! =

1

2
(2Σ−1

1 a1 − Σ−1
2 a2)

)Σ!(2Σ
−1
1 a1 − Σ−1

2 a2)

= 2a)
1 Σ

−1
1 Σ!Σ

−1
1 a1 − 2a)

1 Σ
−1
1 Σ!Σ

−1
2 a2 +

1

2
a)
2 Σ

−1
2 Σ!Σ

−1
2 a2

= 2a)
1 Σ

−1
1 Σ!Σ

−1
1 a1 − 2a)

1 (2Σ2 − Σ1)
−1a2 +

1

2
a)
2 Σ

−1
2 Σ!Σ

−1
2 a2

(A.9.44)

where the first and the second line hold by the definition ofΣ!, the second equality holds since

Σ−1
! = Σ−1

! Σ!Σ−1
! , the third line is simply from expanding and the last equality comes from

(A.9.42). The above equations will be used a lot for the incoming derivations. Now the term in the
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exponent can be written as

II1 + II2 + II3

= −1

2
(x)Σ−1

! x− 2x)Σ−1
! a!) + II3

= −1

2
(x− a!)

)Σ−1
! (x− a!) +

1

2
a)
! Σ

−1
! a! −

1

2
(2a)

1 Σ
−1
1 a1 − a2Σ

−1
2 a2)

= λ(x) + a)
1 Σ

−1
1 (2Σ!Σ

−1
1 − Id)a1 − 2a)

1 (2Σ2 − Σ1)
−1a2 +

1

2
a)
2 Σ

−1
2 (Σ!Σ

−1
2 + Id)a2

= λ(x) + a)
1 Σ

−1
1 Σ!Σ

−1
2 a1 − 2a)

1 (2Σ2 − Σ1)
−1a2 + a)

2 Σ
−1
2 Σ!Σ

−1
1 a2

= λ(x) + a)
1 (2Σ2 − Σ1)

−1a1 − 2a)
1 (2Σ2 − Σ1)

−1a2 + a)
2 (2Σ2 − Σ1)

−1a2

= λ(x) + (a1 − a2)
)(2Σ2 − Σ1)

−1(a1 − a2) := λ(x) +Q(a1,a2,Σ1,Σ2) (A.9.45)

where the first equality holds by the definition ofΣ!, a! and (A.9.39), (A.9.40), and the second

equality holds due to (A.9.41). Regarding the third equality, we denote the term which depends on

x by λ(x) := −1
2(x − a!))Σ−1

! (x − a!). As for the other constant terms in the third line, we

simply combine (A.9.44) with the expansion of the term II3 and rearrange them into three terms:

a)
1 (·)a1, a)

1 (·)a2 and a)
2 (·)a2. The fourth equality holds as a result of applying (A.9.43) twice

and the last equality is simply from rearranging. Since only the term λ(x) depends on x, we can
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simplify the χ2-divergence into the following

χ2(P‖Q) =
|Σ2|

1
2

|Σ1|
exp {Q(a1,a2,Σ1,Σ2)}

∫

Rd

1

(2π)
d
2

exp {λ(x)} dx− 1

=
|Σ2|

1
2

|Σ1|
exp {Q(a1,a2,Σ1,Σ2)}

∫

Rd

|Σ!|
1
2

(2π)
d
2 |Σ!|

1
2

exp {λ(x)} dx− 1

=
|Σ2|

1
2

|Σ1|
|Σ!|

1
2 exp {Q(a1,a2,Σ1,Σ2)}− 1

=
|Σ2|
|Σ1|

1
2

|Σ−1
1 Σ!Σ

−1
2 |

1
2 exp {Q(a1,a2,Σ1,Σ2)}− 1

=
|Σ2|

|Σ1|
1
2 |2Σ2 − Σ1|

1
2

exp
{
(a1 − a2)

)(2Σ2 − Σ1)
−1(a1 − a2)

}
− 1

where the first equality comes from (A.9.38) and (A.9.45), the third equality holds due to the defi-

nition of λ(x) and the fact that
∫
f(x)dx = 1, where f(x) is the Gaussian density function with

the mean a! and covariance matrixΣ!), the fourth equality holds by making use of the properties

of determinant and the last equality holds as a result of (A.9.42).

A.10 Further simulation details

Source code for conducting floodgate in our simulation studies can be found at KWWSV���JLWKXE�

FRP�/X=KDQJ+�IORRGJDWH.

A.10.1 Nonlinear model setup

ConsiderW which follows a Gaussian copula distribution withX = Wj0 , Z = W-j0 for some j0

(1 ≤ j0 ≤ p), i.e.,

W latent ∼ AR(1), Wj = 2ϕ(X latent
j )− 1, ∀ 1 ≤ j ≤ p. (A.10.1)
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Hence the marginal distribution forWj is Unif[−1, 1] (in fact, these are the inputs to the fitting

methods we use in floodgate, not the AR(1) latent variablesW latent). We consider the following

conditional model for Y givenW , with standard Gaussian noise,

µ!(x, z) = µ!(w) :=
∑

j∈S1

gj(wj) +
∑

(j,l)∈S2

gj(wj)gl(wl) +
∑

(j,l,m)∈S3

gj(wj)gl(wl)gm(wm)

(A.10.2)

where each function gj(x) is randomly chosen from the following:

sin(πx), cos(πx), sin(πx/2), cos(πx)I(x > 0), x sin(πx), x, |x|, x2, x3, exp(x)− 1.

(A.10.3)

S1 basically contains the main effect terms, while S2 contain the pairs of variables with first order

interactions. Tuples of variables involving second order interaction are denoted by S3. For a given

amplitude, (A.10.2) is scaled by the amplitude value divided by
√
n.

Now we describe the construction of S1, S2, S3. First we randomly pick 30 variables into S!

and initialize Swl = S!. 15 of them will be randomly assigned into S1 and removed from Swl.

Among these 15 variables in S1, we further choose 10 variables into 5 pairs randomly, which will

be included in S2. Regarding the other pairs in S2, each time we randomly pick 2 variables from

S! with the unscaled weight being 2|Swl|/|S!| for variables in Swl, |S! \ Swl|/|S!| for the others,

then add them as a pair into S2. Once picked, the variables will be removed from Swl. This process

iterates until |Swl| ≤ 5. Regarding the construction of S3, each time we randomly pick 3 variables

from S! with the unscaled weight being 1.5|Swl|/|S!| for variables in Swl, |S! \ Swl|/|S!| for the

others, then add them as a tuple into S3. Once picked, the variables will be removed from Swl. This

process iterates until |Swl| = 0.
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A.10.2 Implementation details of fitting algorithms

Regarding how to obtain the working regression function, there will be four different fitting algo-

rithms for non-binary responses:

• LASSO: We fit a linear model by 10-fold cross-validated LASSO and output a working re-

gression function. The subsequent inference step will be quite fast. First, as implied by

Algorithm 1,Lαn(µ)will be set to zero for unselected variables, without any computation.

Second, as alluded to in Section 1.2.4, we can analytically compute the conditional quantities

in Algorithm 1.

• Ridge: We again use 10-fold cross-validation to choose the penalty parameter for Ridge re-

gression. It is also fast to perform floodgate on, due to the second point mentioned above.

• SAM: We consider additive modelling, for example the sparse additive models (SAM) pro-

posed in Ravikumar et al. (2009). As suggested by the name, it carries out sparse penalization

and our method will assignLαn(µ) = 0 to unselected variables, as in lasso.

• Random Forest: Random forest (Breiman, 2001) is included as a purely nonlinear machine

learning algorithm. While random forest do not generally conduct variable selection, we

rank variables based on the heuristic importance measure and use the top 50 variables to run

Algorithm 1 and setLαn(µ) = 0 for the remaining ones. Remark this is only for the concern

of speed and does not have any negative impact on the inferential validity.

There are two additional fitting algorithms for binary responses: logistic regression with L1 regular-

ization and L2 regularization, denoted by Binom_LASSO and Binom_Ridge respectively. Both use

10-fold cross-validation to choose the penalty parameter.
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A.10.3 Implementation details of ordinary least squares

When the conditional model of Y | X,Z is linear, i.e.,E [Y |X,Z] = Xβ + Zθ with (β, θ) ∈ Rp

the coefficients, the mMSE gap forX is closely related to its linear coefficient, formally

I = |β|
√
E[Var(X |Z)].

When the sample size n is greater than the number of variables p, ordinary least squares (OLS) can

provide valid confidence intervals for β. However, there does not seem to exist a non-conservative

way to transform the OLS confidence interval for β into a confidence bound for |β|. So instead, we

provide OLS with further oracle information: the sign of β (we only compare half-widths of non-

null covariates, and hence never construct OLS LCBs when β = 0). In particular, if [LCI, UCI]

denotes a standard OLS 2-sided, equal-tailed 1 − 2α confidence interval for β, then the OLS LCB

for I we use is

LCBOLS =






LCI
√
E[Var(X |Z)] if β > 0

−UCI
√
E[Var(X |Z)] if β < 0

(A.10.4)

which guarantees exact 1 − α coverage of I for any nonzero value of β. We again emphasize that, in

order to construct this interval, OLS uses the oracle information of the sign of β (this information is

not available to floodgate in our simulations).

A.10.4 Plots deferred from the main paper

Effect of sample splitting proportion

The corresponding coverage plots of Figure 1.1 are given in Figure A.1. Figures A.2 and A.3 are

additional plots with different simulation parameters specified in the captions. Figures A.1 and A.3

show that in the simulations in Section 1.4.2, the coverage of floodgate is consistently at or above the
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nominal 95% level.

Effect of covariate dimension

The corresponding coverage plots of Figure 1.2 are given in Figure A.4. Figures A.5 and A.6 are

additional plots with different simulation parameters specified in the captions. Figures A.4 and A.6

show that in these simulations, the coverage of floodgate is consistently at or above the nominal 95%

level.
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ComparisonwithWilliamson et al. (2020)

The corresponding coverage plot of Figure 1.3 is given in Figure A.7, where we see both methods

have coverages above the nominal level. In addition to the example in Section 1.4.4, we also compare

floodgate withW20b in the higher-dimensional setting of the left panel of Figure 1.2. Due to the

computational challenge of runningWilliamson et al. (2020)’s method, we only consider the two

most efficient algorithms (LASSO and Ridge) among the four described in Appendix A.10.2. Fig-

ure A.8 showsW20b to have slightly less consistent coverage than floodgate, but also reinforces the
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general picture from the lower-dimensional simulation in Section 1.4.4 that W20b’s LCBs are quite

close to zero compared with floodgate’s.

Robustness

Figure A.9 studies the robustness of floodgate for a nonlinear µ!. We see the coverage being rather

conservative for the non-null variables, reflecting the coverage-protective gap between f(µ) and

f(µ!) = I . Figure A.10 shows that in the simulations of linear models and nonlinear models, the
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average half-width of floodgate is robust to estimation error in PX|Z .

Co-sufficient floodgate

In this section, we demonstrate the performance of co-sufficient floodgate in a linear setting. Figure

A.11 tells a similar story as Figure 1.6 in Section 1.4.7. Note that despite the linearity of the true

model in Figure A.11, the LASSO performs poorly because the true model is quite dense (30 of the

50 covariates are non-null), which also explains why ridge regression performs so well.
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Effect of covariate dependence

In Figure A.12, we vary the covariate autocorrelation coefficient and plot the average half-widths of

floodgate LCBs of non-null covariates under distributions with the linear (left panel) and the non-

linear (right panel) µ! described in Section 1.4.1, respectively. The left panel of Figure A.12 also in-

cludes a curve for OLS. Since I in a linear model is proportional to
√

E [Var (X |Z)]which varies

with the autocorrelation coefficient, we divided the half-widths in Figure A.12 by this quantity to

make it easier to compare values across the x-axis. The main takeaway is that the effect of covariate
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dependence on floodgate is somewhat mild until the dependence gets very large (> 0.5 correlation).

This behavior is intuitive, and indeed we see a parallel trend in the curves for OLS inference in Fig-

ure A.12. The corresponding coverage plots of Figure A.12 are given in Figure A.13. Figures A.14

and A.15 are additional plots with a different covariate dimension specified in the captions. Fig-

ures A.13 and A.15 show that the coverage of floodgate is consistently at or above the nominal 95%

level.
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Effect of sample size

In Figures A.16 and A.17, we vary the sample size and plot the coverages and average half-widths

of floodgate LCBs of non-null covariates under distributions with the linear and the nonlinear µ!

described in Section 1.4.1, respectively. The main takeaway is that the accuracy of floodgate depends

heavily on sample size. Note that in these plots, the signal size is scaled down by the square root of

the sample size, so the selection problem is roughly getting no easier as the sample size increases, but

we still see that floodgate can achieve much more accurate inference for larger sample sizes.
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A.11 Implementation details of genomics application

As mentioned in Section 1.2.6, the floodgate approach can be immediately generalized to conduct

inference on the importance of a group of variables. This is practically useful in our application to

the genomic data, where we group nearby SNPs whose effects are usually found challenging to be

distinguished. Specifically, we use the exact same grouping at the same seven resolutions as Sesia

et al. (2020b).

Regarding the genotype modelling, we consider the hiddenMarkov models (HMM) (Scheet &
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Stephens, 2006), as used in Sesia et al. (2019, 2020b), which provides a good description of the link-

age disequilibrium (LD) structure. We obtain the fitted HMMparameters from Sesia et al. (2020b)

on the UK Biobank data. Since HMM does not offer simple closed form expressions of the con-

ditional quantities in Algorithm 1, we generate null copies of the genotypes and use them for the

Monte Carlo analogue of floodgate. Below we simply describe the generating procedure. Under the

HMM, we denote the covariates byW (genotypes or haplotypes) and the unobserved hidden states

(local ancestries) byA, with the joint distribution overW denoted by PW , the joint distribution

overA denoted by PA, which is the latent Markov chain model. For a given contiguous group of

variables gj , we can sample the null copy ofWgj as follows:

(1) Marginalize outWgj and recompute the parameters of the newHMM P-gj overW-gj .

(2) Sample the hidden statesA-gj by applying the forward-backward algorithm toW-gj , with the

newHMM P-gj .

(3) GivenA-gj , sampleAgj according to the latent Markov chain model PA.

(4) Sample W̃gj givenAgj according to the emission distribution of the group gj in the model of

PW .
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To see why the above procedure produces a valid null copy ofWgj , consider the following joint

distribution, conditioning onW-gj

Pjoint : (Wgj , Agj , A-gj ) | W-gj

If we sample (W̃gj , Agj , A-gj ) from the above joint conditional distribution, without looking at

Wgj or Y , then W̃gj has the same conditional distribution asWgj , givenW-gj and is conditionally

independent from (Wgj , Y ), and thus is a valid null copy ofWgj . Regarding how to sample from

Pjoint, we take advantage of the HMM structure and sampleA-gj , Agj , W̃gj sequentially since

Agj | A-gj ,W-gj
d
= Agj | A-gj , (A.11.1)

Wgj | Agj , A-gj ,W-gj
d
= Wgj | Agj . (A.11.2)

Sampling fromA-gj | W-gj is feasible since P-gj is still a HMMwhenever the group gj is contigu-

ous. Under the HMMwith particular parameterization in Scheet & Stephens (2006), the cost of

the forward-backward algorithm can be reduced, see Sesia et al. (2020b) for more details. We re-

mark that marginalizing outWgj only changes the transition structure around the group gj and the

special parameterization over other variables is still beneficial in terms of the computation cost. Sam-

pling ofAgj and W̃gj is computationally cheap due to (A.11.1) and (A.11.2). For a given number

of null copiesK , we will repeat the steps (2)-(4) forK times. But we remark the involving sampling

probabilities only have to be computed once.

Regarding the quality control and data prepossessing of the UK Biobank data, we follow the

Neale Lab GWAS with application 31063; details can be found on KWWS���ZZZ�QHDOHODE�LV�

XN�ELREDQN. A few subjects withdrew consent and are removed from the analysis. Our final data

set consisted of 361, 128 unrelated subjects and 591, 513 SNPs along 22 chromosomes.
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For the platelet count phenotype, the analysis by Sesia et al. (2020b) makes several selections over

the whole genome at seven different resolution levels. We focus on chromosome 12 and look at 248

selected groups from their analysis. For a given group of variables, we generateK = 5 null copies

following the null copy generation procedure described above.

We applied floodgate with a 50-50 data split and fitted µ to the first half using the cross-validated

LASSO as in Sesia et al. (2020b) and included both genotypes (SNPs from chromosomes 1–22) and

the non-genetic variables sex, age and squared age. We centered Y by its sample mean from the first

half of the data (the half used to fit µ) before applying floodgate. Although this changes nothing in

theory, it does improve robustness as small biases in µ(Xi, Zi)−E [µ(Xi, Zi) |Zi]would otherwise

get multiplied by Yi’s mean in the computation ofRi in Algorithm 1.

Although our fitting of a linear model in no way changes the validity of floodgate’s inference of

the completely model-free mMSE gap, it does desensitize the LCB itself to the nonlinearities and

interactions that partially motivated I as an object of inference in the first place. Our reasoning is

purely pragmatic: as the universe of nonlinearities/interactions is exponentially larger than that

of linear models, fitting such models requires either very strong nonlinear/interaction effects or

prior knowledge of a curated set of likely nonlinearities/interactions. It is our understanding that

nearly all genetic effects, linear and nonlinear/interaction alike, tend to be relatively weak, and the

authors are not geneticists by training and thus lack the domain knowledge necessary to leverage the

full flexibility of floodgate. Although we were already able to find substantial heritability for many

blocks of SNPs with our default choice of the LASSO, it is our sincere hope and expectation that

geneticists who specialize in the study of platelet count or similar traits would be able to find even

more heritability using floodgate.

We report LCBs for all blocks simultaneously, although computationally we only actually run

floodgate on those selected by Sesia et al. (2020b). Although their selection used all of the data (in-

cluding the data we used for floodgate), it does not affect the marginal validity of the LCBs we re-

236



port, as explained in the last paragraph of Section 1.2.6.
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B
Appendix of Chapter 2

B.1 Proofs for main text

Throughout the proofs, we denote ε(Y,X) := Y − E [Y |X] = Y − µ!(X) and simply have

E [ε(Y,X) |X] = 0. By the law of total expectation, we have

〈ε(Y,X), g(X)〉 = E [g(X)ε(Y,X)] = E [g(X)E [ε(Y,X) |X]] = 0. (B.1.1)
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Due to the definition ofPS , we have, for random variablesU and V .

〈PSU, V − PSV 〉 = 0. (B.1.2)

Let S⊥ be the orthogonal complement of S . Due to the orthogonal decomposition, we haveU =

PSU + P⊥
S U hence writeP⊥

S = 11− PS with 11 being the identity operator.

B.1.1 Proofs in Section 2.2

Proof of Lemma 2.2.2. Recall that ε(Y,X) = Y − E [Y |X] = Y − µ!(X). We simply have

infµ(X)∈L2(X) E
[
(Y − µ(X))2

]
= E

[
(Y − µ!(X))2

]
= E

[
ε2(Y,X)

]
. Then I2

S can be

rewritten as

I2
S = inf

µ(X)∈S
E
[
(Y − µ(X))2

]
− inf

µ(X)∈L2(X)
E
[
(Y − µ(X))2

]

= inf
µ(X)∈S

E
[
(ε(Y,X) + µ!(X)− µ(X))2

]
− E

[
ε2(Y,X)

]

= inf
µ(X)∈S

{E
[
(µ!(X)− µ(X))2

]
+ 2E [ε(Y,X)(µ!(X)− µ(X))] + E

[
ε2(Y,X)

]
}− E

[
ε2(Y,X)

]

= inf
µ(X)∈S

E
[
(µ!(X)− µ(X))2

]

= ||P⊥
S µ!(X)||2,

where the third equality holds by expansion, the fourth equality holds due to (B.1.1) and the cancel-

lation of E
[
ε2(Y,X)

]
, and the last equality is by the definition of projections. Therefore, we prove

the concise expression IS = ||P⊥
S µ!(X)||.

Proof of Lemma 2.2.3. Recall thatP⊥
S = 11 − PS with 11 being the identity operator. We bound
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f(µ) as below

f(µ) =
〈
2Y − µ(X),P⊥

S µ(X)
〉

=
〈
2ε(Y,X) + 2P⊥

S µ!(X)− P⊥
S µ(X) + 2PSµ

!(X)− PSµ(X),P⊥
S µ(X)

〉

=
〈
2P⊥

S µ!(X)− P⊥
S µ(X),P⊥

S µ(X)
〉

= −
〈
P⊥
S µ!(X)− P⊥

S µ(X),P⊥
S µ!(X)− P⊥

S µ(X)
〉
+
〈
P⊥
S µ!(X),P⊥

S µ!(X)
〉

= −||P⊥
S µ!(X)− P⊥

S µ(X)||2 + I2
S ≤ I2

S ,

where the first equality holds by the definition of f(µ) in (2.2.3), the second equality holds by the

definition of ε(Y,X) and the orthogonal decompositionPS + P⊥
S = 11 with 11 being the identity

operator, the third equality holds due to (B.1.1) and (B.1.2), the fourth equality is by rearranging,

the fifth equality holds due to Lemma 2.2.2, and the last equality holds by the non-negativeness of

norms.

Proof of Theorem 2.2.4. Recall the expression ofLαn(µ). We notice

{Lαn(µ) ≤ I2
S} =

{
max

{
R̄− zαs√

n
, 0

}
≤ I2

S

}
⊃
{
R̄− zαs√

n
≤ I2

S

}

due to the non-negativeness of I2
S . Lemma 2.2.3 says f(µ) ≤ I2

S . Thus it suffices to prove

1− α ≤ lim inf
n→∞

P
(
R̄− zαs√

n
≤ f(µ)

)
= lim inf

n→∞
P
(√

n(R̄− f(µ))

s
≤ zα

)
. (B.1.3)

By construction in Algorithm 2, R̄ and s are respectively the sample mean and sample standard

deviation of i.i.d. random variablesRi = 〈2Yi − µ(Xi), µ(Xi)− PSµ(Xi)〉whose expectation

equals f(µ). Also note zα is the (1 − α)th quantile of the standard normal distribution. Then
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(B.1.3) immediately holds as a result of applying CLT to i.i.d. random variables {Ri}ni=1.

B.1.2 Proofs in Section 2.3

Proof of Lemma 2.3.1. Consider the following minimization problem

argmin
ν(X)∈S

||µ(X)− ν(X)||2

= argmin
λ

E
[
(µ(X)− λ(t(X)))2

]

= argmin
λ

E
[
(µ(X)− E [µ(X) | t(X)] + E [µ(X) | t(X)]− λ(t(X)))2

]

= argmin
λ

E
[
(µ(X)− E [µ(X) | t(X)])2

]
+ E

[
(E [µ(X) | t(X)]− λ(t(X)))2

]

= E
[
(µ(X)− E [µ(X) | t(X)])2

]
+ argmin

λ
E
[
(E [µ(X) | t(X)]− λ(t(X)))2

]
,

where ν(X) = λ(t(X)). For the above equalities, the third equality holds since

E [(µ(X)− E [µ(X) | t(X)])(E [µ(X) | t(X)]− λ(t(X)))]

= E [(E [µ(X) | t(X)]− λ(t(X)))E [(µ(X)− E [µ(X) | t(X)]) | t(X)]] = 0.

due to the law of total expectation. By the definition ofPS , we have

PSµ(X) = argmin
ν(X)∈S

||µ(X)− ν(X)||2 = argmin
λ

E
[
(E [µ(X) | t(X)]− λ(t(X)))2

]

= E [µ(X) | t(X)] .
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Proof of Lemma 2.3.2. We have

E
[
(2Y − µ(X))µ(X̃)

]
= E

[
E
[
(2Y − µ(X))µ(X̃) |X

]]

= E
[
E [(2Y − µ(X)) | t(X)]E

[
µ(X̃) | t(X)

]]

= E [E [(2Y − µ(X)) | t(X)]E [µ(X) | t(X)]]

= E [E [(2Y − µ(X))E [µ(X) | t(X)] | t(X)]]

= E [(2Y − µ(X))E [µ(X) | t(X)]] = 〈2Y − µ(X),PSµ(X)〉 ,

where the first and fifth equalities hold by the law of total expectation, the second and third equal-

ities hold due to (2.3.2), the fourth equality holds sinceE [µ(X) | t(X)] ∈ σ(t(X)), and the last

equality holds by Lemma 2.3.1. Therefore we establishE
[
(2Y − µ(X))(µ(X)− µ(X̃))

]
=

〈2Y − µ(X), µ(X)− PSµ(X)〉 = f(µ).

B.1.3 Proofs in Section 2.3.5

Proof of Theorem 2.3.8. Recall the definition f(µ) = 〈2Y − µ(X), µ(X)− PSµ(X)〉 =

〈2Y − µ(X),PS⊥µ(X)〉. Due to the derivations in the proof of Theorem 2.2.4, it suffices to

quantify the difference between the expectation ofRi =
〈
2Yi − µ(Xi),PN

12µ(Xi)
〉
and f(µ), i.e.,

|E [Ri]− f(µ)| = |
〈
2Y − µ(X),PN

12µ(X)− PS⊥µ(X)
〉
|. (B.1.4)

To boundPN
12µ(X) − PS⊥µ(X), we apply the convergence result in Theorem 2.3.7 and (2.3.6)

withM = S⊥,M1 = S⊥
1 ,M2 = S⊥

2 and obtain

||PN
12µ(X)− PS⊥µ(X)|| ≤ ρ2N−1||µ(X)||, (B.1.5)
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where ρ = sup{〈v1, v2〉 : vj ∈ Mj ∩ (M)⊥, ||vj || ≤ 1}. Applying the Cauchy–Schwarz

inequality then (B.1.5) to (B.1.4), we have

|E [Ri]− f(µ)| ≤ ||2Y − µ(X)|| · ||µ(X)||ρ2N−1 ≤ 3c0ρ
2N−1, (B.1.6)

where the last inequality holds since c0 = max{E
[
Y 2
]
,E
[
µ2(X)

]
}. Choosing the number of

alternating stepsN such that 2N − 1 ≥ log(ε/3c0)
log(ρ) , we have 3c0ρ2N−1 ≤ ε since ρ ≤ 1. Then

following similar derivations in the proof of Theorem 2.2.4, we have

1− α ≤ lim inf
n→∞

P
(
Lαn(µ,N) ≤ I2

S + |E [Ri]− f(µ)|
)
≤ lim inf

n→∞
P
(
Lαn(µ,N) ≤ I2

S + ε
)

thus establish (2.3.7) in Theorem 2.3.8.

Proof of Lemma 2.3.9. ForN = 1, we have

RHS = 11−A(1,PS1 ,PS1)−A(1,PS2 ,PS2) + PS2PS1

= 11− PS1 − PS2 + PS2PS1 = (11− PS2)(11− PS1) = LHS.

We prove by induction. Assume (2.3.8) holds forN , and consider the case ofN + 1:

LHS = P21PN
21 = P21 +

N−1∑

s=1

P21 (A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1))

−
N∑

s=1

P21 (A(2s− 1,PS1 ,PS1) +A(2s− 1,PS2 ,PS2)) + P21(PS2PS1)
N

:= II1 + II2 + II3 + II4.
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First we have II1 = 11−A(1,PS1 ,PS1)−A(1,PS2 ,PS2) + PS2PS1 . As for II2, we have

II2 =
N−1∑

s=1

(11− PS1 − PS2 + PS2PS1) (A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1))

=
N−1∑

s=1

(A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1) +A(2s+ 1,PS2 ,PS2) +A(2s+ 2,PS2 ,PS1))

−
N−1∑

s=1

(A(2s,PS1 ,PS2) +A(2s+ 1,PS1 ,PS1) +A(2s+ 1,PS2 ,PS2) +A(2s,PS2 ,PS1))

=
N−1∑

s=1

(A(2s+ 2,PS2 ,PS1)−A(2s+ 1,PS1 ,PS1))

=
N∑

s=2

(A(2s,PS2 ,PS1)−A(2s− 1,PS1 ,PS1)) ,

where the second equality holds sinceP1A(s,P1,P0) = A(s,P1,P0) andP0A(s,P1,P0) =

A(s+ 1,P0,P0), the third equality comes from term cancelling and the last equality holds due to a

change of summation index. And similarly for II3, we obtain the following equations,

II3 = −
N∑

s=1

(11− PS1 − PS2 + PS2PS1) (A(2s− 1,PS1 ,PS1) +A(2s− 1,PS2 ,PS2))

= −
N∑

s=1

(A(2s− 1,PS1 ,PS1) +A(2s− 1,PS2 ,PS2) +A(2s,PS2 ,PS1) +A(2s+ 1,PS2 ,PS2))

+
N∑

s=1

(A(2s− 1,PS1 ,PS1) +A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1) +A(2s− 1,PS2 ,PS2))

= −
N∑

s=1

(A(2s+ 1,PS2 ,PS2)−A(2s,PS1 ,PS2)) .

244



Simply for II4, we have

II4 = (PS2PS1)
N −A(2N + 1,PS1 ,PS1)− (PS2PS1)

N + (PS2PS1)
N+1

= −A(2N + 1,PS1 ,PS1) + (PS2PS1)
N+1.

Combining the expressions of II1, II2, II3, II4 yields the following thus finally establish (2.3.8):

LHS = II1 + II2 + II3 + II4 = 11−A(1,PS1 ,PS1)−A(1,PS2 ,PS2) + PS2PS1

+
N∑

s=2

(A(2s,PS2 ,PS1)−A(2s− 1,PS1 ,PS1))−
N∑

s=1

(A(2s+ 1,PS2 ,PS2)−A(2s,PS1 ,PS2))

− A(2N + 1,PS1 ,PS1) + (PS2PS1)
N+1

= 11+
(
PS2PS1 +

N∑

s=2

A(2s,PS2 ,PS1) +
N∑

s=1

A(2s,PS1 ,PS2)

)

−
(
A(1,PS1 ,PS1) +

N∑

s=2

A(2s− 1,PS1 ,PS1) +A(2N + 1,PS1 ,PS1)

)

−
(
A(1,PS2 ,PS2) +

N∑

s=1

A(2s+ 1,PS2 ,PS2)

)
+ (PS2PS1)

N+1

= 11+
N∑

s=1

(A(2s,PS1 ,PS2) +A(2s,PS2 ,PS1))−
N+1∑

s=1

A(2s− 1,PS1 ,PS1)

−
N+1∑

s=1

A(2s− 1,PS2 ,PS2) + (PS2PS1)
N+1 = RHS.
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Proof of Lemma 2.3.10. The proof is based on induction. First, when t = 1, we have

E
[
(2Y − µ(X))µ(X̃(1,1)

1 , X̃(1,0)
2 , Z)

]
= E

[
(2Y − µ(X))µ(X̃(1,1)

1 , X2, Z)
]

= E
[
(2µ!(X)− µ(X))µ(X̃(1,1)

1 , X2, Z)
]

= E
[
(2µ!(X)− µ(X))E

[
µ(X̃(1,1)

1 , X2, Z) |X
]]

= E
[
(2µ!(X)− µ(X))E

[
µ(X̃(1,1)

1 , X2, Z) |X2, Z
]]

= E [(2µ!(X)− µ(X))E [µ(X1, X2, Z) |X2, Z]]

= E [(2µ!(X)− µ(X))A(1,PS2 ,PS2)µ(X)]

= E [(2Y − µ(X))A(1,PS2 ,PS2)µ(X)] ,

where the first and sixth equalities hold by definition, the second and seventh equalities holds due

to (B.1.1), the third equality holds by the law of total expectation, and the fourth and fifth equali-

ties hold due to the construction of X̃(1,1)
1 . Thus the second equation in (2.3.9) holds for t = 1.

Similarly we also have

E
[
(2Y − µ(X))µ(X̃(1,1)

1 , X̃(1,1)
2 , Z)

]

= E
[
(2µ!(X)− µ(X))E

[
µ(X̃(1,1)

1 , X̃(1,1)
2 , Z) |X

]]

= E
[
(2µ!(X)− µ(X))E

[
E
[
µ(X̃(1,1)

1 , X̃(1,1)
2 , Z) |X, X̃(1,1)

1

]
|X
]]

= E
[
(2µ!(X)− µ(X))E

[
E
[
µ(X̃(1,1)

1 , X̃(1,1)
2 , Z) |Z, X̃(1,1)

1

]
|X
]]

= E
[
(2µ!(X)− µ(X))E

[
g(X̃(1,1)

1 , Z) |X
]]

= E [(2µ!(X)− µ(X))A(1,PS2 ,PS2)g(X1, Z)]

= E [(2µ!(X)− µ(X))A(1,PS2 ,PS2)A(1,PS1 ,PS1)µ(X)]

= E [(2Y − µ(X))A(2,PS2 ,PS1)µ(X)] ,
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where g(X̃(1,1)
1 , Z) in the fourth line denotes E

[
µ(X̃(1,1)

1 , X̃(1,1)
2 , Z) |Z, X̃(1,1)

1

]
. Thus the

equation line in (2.3.9) holds for t = 1. Similarly, we can prove the last two lines in (2.3.9) hold

for the case t = 1. Now assume the four equations in (2.3.9) hold for t and consider the case of

t+ 1, we have

E
[
(2Y − µ(X))µ(X̃(1,t+1)

1 , X̃(1,t+1)
2 , Z)

]

= E
[
(2µ!(X)− µ(X))E

[
µ(X̃(1,t+1)

1 , X̃(1,t+1)
2 , Z) |X

]]

= E
[
(2µ!(X)− µ(X))E

[
E
[
µ(X̃(1,t+1)

1 , X̃(1,t+1)
2 , Z) |X, X̃(1,1)

1

]
|X
]]

= E
[
(2µ!(X)− µ(X))E

[
E
[
µ(X̃(1,t+1)

1 , X̃(1,t)
2 , Z) |Z, X̃(1,1)

1

]
|X
]]

= E
[
(2µ!(X)− µ(X))E

[
A(2t− 1,PS1 ,PS1)µ(X̃

(1,1)
1 , X2, Z) |X

]]

= E
[
(2µ!(X)− µ(X))E

[
µ11(X̃(1,1)

1 , X2, Z) |X1, X2, Z
]]

= E
[
(2µ!(X)− µ(X))E

[
µ11(X1, X2, Z) |X2, Z

]]

= E
[
(2µ!(X)− µ(X))A(1,PS2 ,PS2)µ

11(X1, X2, Z)
]

= E [(2µ!(X)− µ(X))A(1,PS2 ,PS2)A(2t− 1,PS1 ,PS1)µ(X1, X2, Z)]

= E [(2Y − µ(X))A(2t,PS2 ,PS1)µ(X)] ,

where the fourth equality holds by treating X̃(1,1)
1 as X̃(2,0)

1 in Algorithm 5 and applying the fourth

equation in (2.3.9) under t, and µ11(X̃(1,1)
1 , X2, Z) in the fifth line denotes the conditional expec-

tation E
[
A(2t− 1,PS1 ,PS1)µ(X̃

(1,1)
1 , X2, Z) |X

]
. Thus the second equation in (2.3.9) holds

for t+ 1. Similarly, we can show prove the other three equations for the case of t+ 1. Therefore, we

are done by induction.
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Proof of Lemma 2.3.11. Start from simplifyingP12µ(X) as below

P12µ(X)

= (11−A(1,PS1 ,PS1)−A(1,PS2 ,PS2) + PS2PS1)µ(X)

= µ(X)− E [µ(X) |X1, Z]− E [µ(X) |X2, Z] + PS2PS1µ(X)

= µ(X)− µ1(X1, Z)E [µ2(X2, Z) |X1, Z]− µ1(X2, Z)E [µ1(X1, Z) |X2, Z] + PS2PS1µ(X)

= µ(X)− µ1(X1, Z)E [µ2(X2, Z) |Z]− µ1(X2, Z)E [µ1(X1, Z) |Z] + E [µ1(X1, Z) |Z]E [µ2(X2, Z) |Z]

= (µ1(X1, Z)− E [µ1(X1, Z) |Z]) (µ2(X2, Z)− E [µ2(X2, Z) |Z]) .

Then we notice the following key result

PS1P12µ(X) = PS1 (µ1(X1, Z)− E [µ1(X1, Z) |Z]) (µ2(X2, Z)− E [µ2(X2, Z) |Z])

= (µ1(X1, Z)− E [µ1(X1, Z) |Z])PS1 (µ2(X2, Z)− E [µ2(X2, Z) |Z])

= (µ1(X1, Z)− E [µ1(X1, Z) |Z]) (E [µ2(X2, Z) |X1, Z]− E [µ2(X2, Z) |Z])

= (µ1(X1, Z)− E [µ1(X1, Z) |Z]) (E [µ2(X2, Z) |Z]− E [µ2(X2, Z) |Z]) = 0.

Hence (11 − PS1)P21µ(X) = P12µ(X) and similarly (11 − PS2)P12µ(X) = P12µ(X)

holds. ThereforePN
12µ(X) = P12µ(X) holds for anyN ≥ 1, and we obtainPS⊥µ(X) =

(µ1(X1, Z)− E [µ1(X1, Z) |Z]) (µ2(X2, Z)− E [µ2(X2, Z) |Z]). When µ1(X2, Z) =
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X1, µ2(X2, Z) = X2, we have

||PS⊥µ(X)||2 = E
[
(X1 − E [X1 |Z])2 (X2 − E [X2 |Z])2

]

= E
[
E
[
(X1 − E [X1 |Z])2 (X2 − E [X2 |Z])2 |Z

]]

= E
[
E
[
(X1 − E [X1 |Z])2 |Z

]
E
[
(X2 − E [X2 |Z])2 |Z

]]

= E [Var (X1 |Z)Var (X2 |Z)] ,

thus establish Lemma 2.3.11.

B.1.4 Proofs in Section 2.4

Proof of Lemma 2.4.1. Following similar derivations as in the proof of Lemma 2.2.3, we can reduce

f(µ) = 〈2Y − µ(X), µ(X)− PGµ(X)〉 to 〈2µ!(X)− µ(X), µ(X)− PGµ(X)〉. Then we

have

f(µ) = 〈2µ!(X)− µ(X), µ(X)− PGµ(X)〉

= 〈2(µ!(X)− PGµ
!(X))− (µ(X)− PGµ(X)), µ(X)− PGµ(X)〉

+ 〈2PGµ
!(X)− PGµ(X), µ(X)− PGµ(X)〉

≤ 〈2(µ!(X)− PGµ
!(X))− (µ(X)− PGµ(X)), µ(X)− PGµ(X)〉 := II, (B.1.7)

where the second equality is by rearranging and the inequality holds due to the non-positiveness of

〈2PGµ!(X)− PGµ(X), µ(X)− PGµ(X)〉 (which is a result of the property of a convex cone

(Ingram&Marsh, 1991)). When µ = µ!, we have 〈2PGµ!(X)− PGµ(X), µ(X)− PGµ(X)〉 =

〈PGµ!(X), µ!(X)− PGµ!(X)〉 = 0 (Ingram&Marsh, 1991). Regarding the term II in (B.1.7),
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we can rewrite it as

II = −||(µ!(X)− PGµ
!(X))− (µ(X)− PGµ(X))||2 + ||µ!(X)− PGµ

!(X)||2

= −||(µ!(X)− PGµ
!(X))− (µ(X)− PGµ(X))||2 + I2

G ≤ I2
G , (B.1.8)

where the first equality is by rearranging similarly as in the proof of Lemma 2.2.3, and the inequality

holds due to the derivations in the proof of Lemma 2.2.2 and attains equality at µ!. Combining

(B.1.7) and (B.1.8), we prove f(µ) ≤ I2
G . Since both the two inequalities in (B.1.7) and (B.1.8) are

tight at µ!, we have f(µ!) = I2
G .

Proof of Theorem 2.4.6. Recall that f(µ) = 〈2Y − µ(X), µ(X)− PGµ(X)〉. Due to the deriva-

tions in the proof of Theorem 2.2.4, it suffices to quantify the difference between the expectation of

Ri = (2Yi − µ(Xi))
(
µ(Xi)− gN (Xi)

)
and f(µ). We bound it as below:

|E [Ri]− f(µ)| = | 〈2Y − µ(X), gN (X)− PGµ(X)〉 |

≤ ||2Y − µ(X)||||gN (X)− PGµ(X)||

≤ 3
√
c0(E

[
(gN (X)− PGµ(X))2

]
)1/2,

where the first inequality is by the Cauchy–Schwarz inequality and the second inequality holds due

to the Minkowski inequality and the definition of c0. Then following similar derivations in the

proof of Theorem 2.2.4, we have

1− α ≤ lim inf
n→∞

P
(
Lαn(µ,N) ≤ I2

G + |E [Ri]− f(µ)|
)
≤ lim inf

n→∞
P
(
Lαn(µ,N) ≤ I2

G + εN
)

with εN = 3
√
c0(E

[
(gN (X)− PGµ(X))2

]
)1/2. Hence Theorem 2.4.6 is proved.
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B.2 Methodological details deferred

B.2.1 A simple example in Section 2.3.1

Here we present a simple example with Gaussian covariates and linear transformation and show how

to generate null samples.

Example B.2.1. SupposeX ∈ Rp andX ∼ N (0,Σ). The transformation function t : Rp → Rr

is a linear function t(x) = B)xwhereB) = (β1, · · · ,βr) ∈ Rr×p.

First denoteL = Σ1/2B ∈ Rp×r andΠS = L(L)L)−1L) ∈ Rp×p. Then we generate the

null sample X̃ as below:

Lemma B.2.2. X̃ satisfies the properties in (2.3.2) if it is constructed through the following procedure:

1. sample Z̃0 independently fromN (0, Ip);

2. letZ = Σ−1/2X and Z̃ = ΠSZ + (Ip −ΠS)Z̃0;

3. set X̃ = Σ1/2Z̃ .

In the above procedure, we note

ΠSZ = L(L)L)−1L)Σ−1/2X = L(L)L)−1(Σ1/2B))Σ−1/2X = L(L)L)−1t(X),

hence the sampling of X̃ is independent from (X,Y ) conditioning on t(X).

Proof of Lemma B.2.2. First note that

Z̃ = ΠSZ + (Ip −ΠS)Z̃
0 (B.2.1)

= L(L)L)−1B)Σ1/2Σ−1/2X + (Ip −ΠS)Z̃
0

= L(L)L)−1t(X) + (Ip −ΠS)Z̃
0.
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By construction, we immediate have X̃ = Σ1/2Z̃ satisfies X̃ ⊥⊥ (X,Y ) | t(X). Note we also have

Z = (ΠS + Ip −ΠS)Z = ΠSZ + (Ip −ΠS)Z (B.2.2)

= L(L)L)−1t(X) + (Ip −ΠS)Z.

Since bothZ and Z̃ follow the Gaussian distributionN (0, Ip), we have

(Ip −ΠS)Z̃
0 d∼ (Ip −ΠS)Z. (B.2.3)

and (Ip − ΠS)Z still follow a multivariate Gaussian distribution. We also have t(X) = B)X are

Gaussian random vectors and

Cov (t(X), (Ip −ΠS)Z) = Cov
(
L)Z, (Ip −ΠS)Z

)
(B.2.4)

= L)Ip(Ip −ΠS) = L) − L)L(L)L)−1L) = O.

Hence we have t(X) ⊥⊥ (Ip −ΠS)Z and

(Ip −ΠS)Z
d∼ (Ip −ΠS)Z | t(X). (B.2.5)

By the construction of Z̃0, we have

(Ip −ΠS)Z̃
0 d∼ (Ip −ΠS)Z̃

0 | t(X). (B.2.6)

Therefore we finally have

(Ip −ΠS)Z̃
0 | t(X)

d∼ (Ip −ΠS)Z | t(X) (B.2.7)
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and establish the property that X̃ | t(X)
d∼ X | t(X).

B.2.2 Details ofMCMC sampling for Section 2.3.1

In this section, we present the computation details of generating null sample X̃(1) ofX(1) given

U (2), more specifically, sampling from the conditional distribution ofX(1) givenU (2). Recall that

the linear transformation betweenX(1) andU (2) defines a connected manifold

M = {x ∈ Rr1 : qk(x) =
r1∑

j=1

W(2)
kj xj − U (2)

k = 0, k ∈ [r2]}

which is a linear subspace. Zappa et al. (2018) provides generic sampling algorithms for running

MCMC onmanifolds. We will follow the procedures to draw from the conditional distribution

ofX(1) givenU (2) i.e., sample from the distribution ofX(1) on the manifoldM. Specifically, let

Qx ∈ Rr1×r2 be the transpose of the Jacobian of the overall constraint function q : Rr1 → Rr2 .

The entries ofQx are

(Qx)jk =
∂qk(x)

∂xj
= W(2)

kj ,

which does not depend on x. Simply we haveQx = (W(2))). Obviously,Qx has full rank r2

everywhere onM. By the implicit function theorem, we have the dimension ofM is r1 − r2 and

the tangent space Tx := TxM at a point x ∈M is well-defined. And the gradients {∇qk(x)}r2k=1

form a basis of the orthogonal space T⊥
x := TxM⊥. M inherits the metric from the ambient space

Rr1 by restriction. The corresponding volume element is r1-dimensional Hausdorff measure, which

is denoted by σ(dx). Denote the density function ofX(1) as ρwith ρ(dx) ∝ p(x)σ(dx). We

leverage the transformation of random variable density function formula to compute the expression

of p(x). With the aboveU (2), ρ(dx) andM, applying the MCMC surface sampling algorithm
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produces a sequence of samples {X̃(1)
t } ∈M satisfying the property that

X̃(1)
t ∼ ρ =⇒ X̃(1)

t+1 ∼ ρ.

According to Zappa et al. (2018), the relevant MCMC theory shows that ifM is connected, com-

pact and smooth, then the algorithm is geometrically ergodic. Here in our example,M is a lin-

ear subspace thus satisfies the conditions. The proposal process begins with a tangential move

x→ x+ v with v ∈ Tx. We follow Zappa et al. (2018)’s choice and use an isotropic r1-dimensional

Gaussian distribution with some width s centered at x,

ϕ(v|x) = 1

(2π)r1/2sr1
exp

{
− ||v||2

2s2

}
.

And we generate v using an orthonormal basis for Tx. The orthonormal basis is found as the last

(r2 − r1) columns of the r1 × r1 matrix in the QR decomposition ofQx. Given x and v, the

projection step is nothing for our example since the tangent space Tx is the same as the constraint

manifoldM, i.e., y = x + v. To make sure the detailed balance condition, we also need to make

the reverse proposal. That is, we have to choose v′ ∈ Ty so that x = y + v′ + w′ withw′ ⊥ Ty .

In our example whereM is a linear subspace, this is also quite straightforward since we can choose

v′ = −v andw′ = 0. Obviously, we have v′ ∈ Ty andw′ ⊥ Ty (here Tx = Ty = M). Then, we

compute an acceptance probability a(y|x) using the Metropolis Hastings formula,

a(y | x) = min

{
1,

p(y)ϕ(v′ | x)
p(x)ϕ(v | x)

}
.

Nowwe can summarize the above MCMC sampling procedures as Algorithm 12.

In addition to the algorithm above, we also provide details on the initialization. There are two

choices:
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Algorithm 12MCMC surface sampling

Input: x = X̃(1)
t , the (unnormalized) density function p(x).

1: SetQx = (W(2))) and find orthonormal bases for Tx and T⊥
x using the QR decom-

position ofQx.
2: Generate v ∈ Tx with v ∈ ϕ(v | x) using the orthonormal basis of Tx and set the pro-

posal y = x+ v.
3: Accept the proposal with probability

a(y | x) = min

{
1,

p(y)ϕ(−v | x)
p(x)ϕ(v | x)

}
.

.
Output: Set X̃(1)

t+1 = y upon acceptance; otherwise set X̃(1)
t+1 = X̃(1)

t .

(a) Set the original sample X̃(1) to be the initialization point. Then we immediately have

X̃(1)
0 ∼ ρ =⇒ X̃(1)

t ∼ ρ, ∀t.

But the multiple null samples {X̃(1k)
t }Kk=1 will not be conditionally independent anymore.

(b) Randomly choose one initialization point from the linear subspaceM using the the implemen-

tation in Van denMeersche et al. (2009). By construction, the multiple null samples {X̃(1k)
t }Kk=1

will be conditionally independent. But X̃(1k)
t will not follow the target distribution exactly.

Either choice can be used in practice since we expect the conditional dependence in (a) or the ap-

proximation error in (b) will vanish thus we obtain valid null samples, as the number of iterations

goes to infinity.

B.2.3 Details in Section 2.3.2

SupposeX ∼ Rp follows a mean zero multivariate Gaussian distribution with covariance matrix

ΣX and the perturbation random variable δ ∼ N (0,Σδ). Following the notations in Example
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B.2.1, we have

(X, δ) ∈ R2p Linear transformaiton−→ t(X, δ) = B)(X, δ) ∈ Rp (B.2.8)

whereB) = (Ip, Ip) ∈ Rp×2p and the covariance matrix of (X, δ) is given by

Σ :=




ΣX O

O Σδ



 . (B.2.9)

Then the projection matrixΠS equals

ΠS =




Σ1/2
X

Σ1/2
δ



 (ΣX + Σδ)
−1

[
Σ1/2
X Σ1/2

δ

]
. (B.2.10)

With suchΣ andΠS , we can utilize the procedures in Appendix B.2.1 to generate null samples of

(X, δ).

B.2.4 Details in Section 2.3.5

For completeness, we present the multiple chain versions of Algorithms 4 and 5 as Algorithms 13

and 14.

Algorithm 13 Sampling with multiple null replicates
Input: (X1, X2, Z), number of alternating stepsN and number of null replicatesK . For

k ∈ [K], let X̃(2,0,k)
1 = X1, X̃

(2,0,k)
2 = X2.

for t from 1 toN do
Sample X̃(1,t,k)

1 conditional on (X̃(1,t−1,k)
2 , Z), independently for k ∈ [K].

Sample X̃(1,t,k)
2 conditional on (X̃(1,t,k)

1 , Z), independently for k ∈ [K].
end for

Output: {{X̃(1,t,k)
1 , X̃(1,t,k)

2 }Nt=1}Kk=1.
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Algorithm 14 Sampling with multiple null replicates
Input: (X1, X2, Z), number of alternating stepsN and number of null replicatesK . For

k ∈ [K], let X̃(2,0,k)
1 = X1, X̃

(2,0,k)
2 = X2.

for t from 1 toN do
Sample X̃(2,t)

2 conditional on (X̃(2,t−1)
1 , Z), independently for k ∈ [K].

Sample X̃(2,t)
1 conditional on (X̃(2,t)

2 , Z), independently for k ∈ [K].
end for

Output: {{X̃(2,t,k)
1 , X̃(2,t,k)

2 }Nt=1}Kk=1.
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C
Appendix of Chapter 3

Supplementary material to

StarTrek: Combinatorial Variable Selection with False Discovery Rate
Control

This document contains the supplementary material to the paper “StarTrek: Combinatorial Vari-

able Selection with False Discovery Rate Control”. Appendix C.1 presents the proofs of the FDR
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control results. In Appendix C.2, we provide the proofs of two types of Cramér-type comparison

bounds for Gaussian maxima. Appendix C.3 proves the Cramér-type deviation bounds for the

Gaussian multiplier bootstrap. In Appendix C.4, we establish the validity and a power result of our

test on the degree of a single node. Appendix C.5 contains some plots and tables deferred from the

main paper.

C.1 Proofs for FDR control

In this section, we aim to prove Theorem 3.5.2. In order to prove the theorem, we need Lemma

C.1.1 which is about the test of single node degree. Remark that this lemma proves the asymptotic

validity of the test in Algorithm 7 and provides a power analysis. The signal strength condition is

only required for the power analysis part. To see why Lemma C.1.1 is useful for establishing FDR

control for our StarTrek procedure in Algorithm 8, we notice the following equivalence:

{ψj,α = 1} = {αj ≤ α}, (C.1.1)

where α is a given type-I error level, ψj,α is the test described in Algorithm 7, and αj is defined in

Algorithm 8. First, we show {αj ≤ α} ⊂ {ψj,α = 1}. Note

{αj ≤ α} =
⋂

1≤s≤kτ

{ĉ−1(
√
n|Θ̃j,(s)|, E

(s)
j ) ≤ α}

=
⋂

1≤s≤kτ

{
√
n|Θ̃j,(s)| ≥ ĉ(α, E(s)

j )}, (C.1.2)

whereE(s)
j := {(j, $) : $ += j, |Θ̃j#| ≤ |Θ̃j,(s)|}. The first equality is due to the defini-

tion of αj and the second equality holds by the definition of ĉ−1. Examining (C.1.2), we imme-

diately know
√
n|Θ̃j,(1)| ≥ ĉ(α, E(1)

j ) (hereE(1)
j = E0 = {(k, j) : k ∈ [d], k += j}),
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thus the edge corresponding to Θ̃j,(1) will be rejected in the first iteration of Algorithm 7. Re-

garding the edge corresponding to Θ̃j,(2), if
√
n|Θ̃j,(2)| ≥ ĉ(α, E(1)

j ), then it will be rejected

in the first iteration, too. Otherwise, Algorithm 7 enters the second iteration. Since (C.1.2) im-

plies
√
n|Θ̃j,(2)| ≥ ĉ(α, E(2)

j ), we know the edge corresponding to Θ̃j,(2) must be rejected in

the second iteration of Algorithm 7. Following this kind of argument, we are able to show that

(C.1.2) implies that all those edges corresponding to {Θ̃j,(s), 1 ≤ s ≤ kτ}will be rejected ac-

cording to Algorithm 7. Since the number of rejected edges is at least kτ , we have ψj,α = 1. Sec-

ond, we show {ψj,α = 1} ⊂ {αj ≤ α}. If ψj,α = 1}, we know the edges corresponding to

{Θ̃j,(s), 1 ≤ s ≤ kτ}will be rejected, which immediately imply
√
n|Θ̃j,(1)| ≥ ĉ(α, E(1)

j ).

Regarding the edge corresponding to Θ̃j,(2), it must get rejected in the first two iterations of Algo-

rithm 7. In either cases, we always have
√
n|Θ̃j,(2)| ≥ ĉ(α, E(2)

j ) due toE(2)
j ⊂ E(1)

j and the fact

that ĉ(α, E) ≤ ĉ(α, E′)whenE ⊂ E′. Finally, we establish (C.1.1).

Lemma C.1.1. Under the same conditions as Lemma 3.2.1, given some 1 ≤ j ≤ d, we have the

following results.

(i) Additionally, suppose for any |Θjk| > 0, we also have |Θjk| ≥ c
√
log d/n for some constant

c > 0. Under the alternative hypothesisH1j : ‖Θj,−j‖0 ≥ kτ , we then have for any α ∈

(0, 1),

lim
(n,d)→∞

P(ψj,α = 1) = 1.

(ii) Under the null hypothesisH0j : ‖Θj,−j‖0 < kτ , we have for any u ∈ (0, 1),

lim
(n,d)→∞

P (ψj,α = 1) ≤ α.

The proof of the above lemma is deferred to Appendix C.4.1. The maximum statistic used in our
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testing procedure takes the form of TE = max(j,k)∈E
√
n|Θ̃d

jk|. In our key proof procedure, we

deal with the case whereE = {(j, k) : Θjk = 0}. Since some of the results hold for generalE,

we will work with the general notations. Specifically, through out Appendices C.1.1 and C.1.2, we

introduce the following notations: in order to approximate

TE := max
(j,k)∈E

√
n

∣∣∣∣(Θ̂
d
jk/
√
Θ̂d

jjΘ̂
d
kk −Θjk/

√
ΘjjΘjk)

∣∣∣∣ (C.1.3)

by the multiplier bootstrap process

TB
E := max

(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j (XiX

)
i Θ̂k − ek)ξi

∣∣∣∣, (C.1.4)

we define two intermediate processes:

T̆E := max
(j,k)∈E

∣∣∣∣
1√

nΘjjΘkk

n∑

i=1

Θ)
j (XiX

)
i Θk − ek)

∣∣∣∣, (C.1.5)

T̆B
E := max

(j,k)∈E

∣∣∣∣
1√

nΘjjΘkk

n∑

i=1

Θ)
j (XiX

)
i Θk − ek)ξi

∣∣∣∣. (C.1.6)

C.1.1 Proof of Theorem 3.5.2

Proof of Theorem 3.5.2. Given some j ∈ H0, denoteN0j = {(j, k) : Θjk = 0}. By the first part

of Lemma C.1.1, we have ∀j ∈ B,

P (ψj,α = 1) > 1− 3/d2, (C.1.7)
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when α = Ω(1/d), where B := {j ∈ Hc
0 : ∀k ∈ supp(Θj), |Θjk| > c

√
log d/n}. Note that we

have

P
(
q|B|
d
≤ α̂ ≤ 1

)
≥ P

(
q|B|/d · d∑
j∈[d] ψj,q|B|/d

≤ q

)
= P

(
|B|∑

j∈[d] ψj,q|B|/d
≤ 1

)
≥ 1− 3/d,

(C.1.8)

where the first inequality is by (3.2.2) and the last inequality is due to q |B|
d = Ω(1/d), (C.1.7) and

the the union bound. Rewrite the FDP (with α̂) as

FDP(α̂) :=

∑
j∈H0

ψj,α̂

max
{
1,
∑

j∈[d] ψj,α̂

} =
α̂d

max
{
1,
∑

j∈[d] ψj,α̂

} ·
∑

j∈H0
ψj,α̂

d0α̂
· d0
d
,

and notice that
α̂d

max
{
1,
∑

j∈[d] ψj,α̂

} · d0
d
≤ qd0

d
≤ q.

Then it suffices to control the FDP(α̂) by dealing with
(∑

j∈H0
ψj,α̂

)
/d0α̂. By (C.1.8), the FDP

control problem is now reduced to showing

sup
α∈[αL,1]

∑
j∈H0

ψj,α

d0α
≤ 1 + oP(1),

where αL = q|B|/d, By (C.4.4) in the proof of the second part of Lemma C.1.1, ψj,α = 1 implies

thatmaxe∈N0j

√
n|Θ̃d

e−Θ!
e| ≥ ĉ(α, N0j), whereN0j = {(j, k) : Θjk = 0} = {(j, k) : Θ!

jk =

0}. Therefore, we have

∑
j∈H0

ψj,α

d0α
≤
∑

j∈H0
1(maxe∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j))

d0α
.
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Hence it suffices to prove that

sup
α∈[αL,1]

∣∣∣∣∣

∑
j∈H0

1(maxe∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j))

d0α
− 1

∣∣∣∣∣→ 0 in probability. (C.1.9)

In order to prove (C.1.9), we construct a discrete grid of the interval [αL, 1]. The number of grid

points is denoted by λd and will be decided later. First, we let t1 := ĉ(1, N0j) = 0, tλd :=

ĉ(αL, N0j). Here ĉ(αL, N0j) = inf
{
t ∈ R : Pξ

(
TB
N0j
≤ t
)
≥ 1− α

}
is the quantile based

on the Gaussian multiplier bootstrap process and depends on the dataX . Note that the involv-

ing random vectors in the Gaussian multiplier bootstrap process are Gaussian conditioning on the

dataX and have bounded variances with probability growing to 1. Since αL = Ω(1/d), then by

the maximal inequalities for sub-Gaussian random variables (Lemma 5.2 in van Handel (2014)),

we have tλd = O(
√
log d)with probability growing to 1. Second, note there exists hd such that

hdtλd = o(1) and tλd/hd = O(log d). Based on such hd, we construct equally spaced se-

quences {tm}λdm=1 over the range [t1, tλd ] = [0, tλd ]with tm − tm−1 = hd. Then by setting

αm such that tm = ĉ(αm, N0j), we obtain a discrete grid {αm}λdm=1 of the interval [αL, 1]. For

such αm, 1 ≤ m ≤ λd, we have

max
1≤m≤λd

∣∣∣∣
αm−1

αm
− 1

∣∣∣∣ = max
1≤m≤λd

∣∣∣∣∣∣

P
(
TB
N0j

> tm−1

)

P
(
TB
N0j

> tm
) − 1

∣∣∣∣∣∣

≤ max
1≤m≤λd

C ′′(tm − tm−1)(tm + 1) exp(C ′(tm − tm−1)(tm + 1)) = o(1)

(C.1.10)

with probability growing to 1, where the first equality holds by the definition of αm, the first in-

equality holds due to part 2 and 3 of Theorem 2.1 in Kuchibhotla et al. (2021) (by first choosing

r − ε, r + ε in part 3 to be tm−1, tm respectively then letting r − ε, r in part 2 to be tm−1, tm re-

spectively). And the right hand side of the inequality is o(1) since (tm − tm−1)tm ≤ hdtλd = o(1)
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with probability growing to 1.

Denote Ij(α) = 1(maxe∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j)). Then given αm ≤ α ≤ αm−1,

form = 1, · · · ,λd, we have

∑
j∈H0

Ij(αm)

d0αm
· αm

αm−1
≤
∑

j∈H0
Ij(α)

d0α
≤
∑

j∈H0
Ij(αm−1)

d0αm−1
· αm−1

αm
. (C.1.11)

Hence by (C.1.10) and (C.1.11), showing (C.1.9) is reduced to proving

max
1≤m≤λd

∣∣∣∣

∑
j∈H0

Ij(αm)

d0αm
− 1

∣∣∣∣→ 0, in probability. (C.1.12)

Then it suffices to show that, for any ε > 0,

P
(

max
1≤m≤λd

∣∣∣∣

∑
j∈H0

Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε
)
→ 0.

By the union bound argument and Chebyshev’s inequality, we have

P
(

max
1≤m≤λd

∣∣∣∣

∑
j∈H0

Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε
)

≤
λd∑

m=1

P
(∣∣∣∣

∑
j∈H0

Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε
)

≤
λd∑

m=1

E
[∑

j∈H0
Ij(αm)− d0αm

]2

ε2d20α
2
m

(C.1.13)

=
λd∑

m=1

∑
j∈H0

Var (Ij(αm)− d0αm)

ε2d20α
2
m

︸ ︷︷ ︸
III1

+
λd∑

m=1

(
E
[∑

j∈H0
Ij(αm)− d0αm

])2

ε2d20α
2
m

︸ ︷︷ ︸
III2

+
λd∑

m=1

∑
j1,j2∈H0,j1 .=j2

Cov (Ij1(αm), Ij2(αm))

ε2d20α
2
m

︸ ︷︷ ︸
III3

.

(C.1.14)
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By Lemma C.1.2 and Lemma C.1.3, we have

III1 + III2 + III3 ≤ C ′tλd
ε2hd

(
d

d0|B|
+ η2(d, n)

)
+

C ′′′d

ε2|B|d0
· tλd
hd

·
(
1 + η(d, n)d0 +

|S| log d
d0p

)

≤ C1tλdη
2(d, n)

ε2hd
+

C2

ε2ρd0
· tλd
hd

·
(
1 + η(d, n)d0 +

|S| log d
d0p

)
, (C.1.15)

where we substitute ζ1 = s(log d)2/
√
n, ζ2 = 1/d2 and αL = q|B|/d = Ω(ρ) in η(d, n, ζ1, ζ2,αL)

of Lemma C.1.2 and note |B| > 0 then obtain the concise form η(d, n) below,

η(d, n) =
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+

s(log d)3

n1/2
+

1

d
.

Recall that tλd = q(αL;TB
N0j

) = O
(√

log d
)
with probability growing to 1 and tλd/hd =

O(log d). Under Assumption 3.5.1, we have

log d

ρ

(
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+

s(log d)3

n1/2

)
= o(1),

log d

ρd0
+

(log d)2|S|
ρd20p

= o(1),

and thus III1 + III2 + III3 = o(1)with probability growing to 1. Therefore, we have proved

(C.1.9), and finally establish the FDP control result below,

FDP(α̂) ≤ q
d0
d

+ oP(1).

In order to establish FDR control, it remains to check the uniformly integrability of the random

variable sequence in (C.1.12). We pause to note the following result: for a sequence of random

variableR1, R2, · · · , we supn E [|Rn|1(|Rn| > x)] ≤ x−1 supn E
[
R2

n

]
due toMarkov’s in-

equality. Then to show the uniform integrability of the random variable sequence {Rn}∞n=1, where
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Rn = max1≤m≤λd

∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣, it suffices to show supn E
[
R2

n

]
<∞. Indeed, we have

sup
n

E
[(

max
1≤m≤λd

∣∣∣∣

∑
j∈H0

Ij(αm)

d0αm
− 1

∣∣∣∣

)2
]

≤ sup
n

λd∑

m=1

E
[∑

j∈H0
Ij(αm)− d0αm

]2

d20α
2
m

= sup
n
ε2(III1 + III2 + III3).

Since III1+III2+III3 = o(1)with probability growing to 1, we immediately have supn E
[
R2

n

]
<

∞, thus finally establish the FDR control result:

lim
(n,d)→∞

FDR ≤ q
d0
d
.

C.1.2 Ancillary lemmas for Theorem 3.5.2

Lemma C.1.2. Recalling the definitions of III1, III2 in (C.1.14), we have

III1 + III2 ≤
C ′tλd
ε2hd

(
1

ρd0
+ η2(d, n, ζ1, ζ2,αL)

)
,

where η(d, n, ζ1, ζ2,αL) = O
( (log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ ζ1 log d+
ζ2
αL

)
with ζ1 = s(log d)2/

√
n,

ζ2 = 1/d2.

Proof of Lemma C.1.2. First note the definitions of TE , T̆E , TB
E and T̆B

E in (C.1.3), (C.1.5), (C.1.4)

and (C.1.6) respectively, then we apply Proposition C.3.2 to T = TE , TY = T̆E , TB = TB
E , TW =

T̆B
E withE = N0j . And we can find the terms ζ1, ζ2 in (C.3.4), (C.3.5) to be s(log d)2/

√
n, 1/d2

respectively, due to (C.4.29) and (C.4.34) (i.e., the bound on the differences TE − T0, TB
E − TB

0 ) in
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the proof of Lemma 3.2.1. Thus we have

∣∣∣∣∣
P(maxe∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j))

α
− 1

∣∣∣∣∣ = η(d, n, ζ1, ζ2,αL), (C.1.16)

whereΘ!
e = 0, e ∈ N0j and η(d, n, ζ1, ζ2,αL) = O

(
(log d)19/6

n1/6 + ζ1 log d+
ζ2
αL

)
with

ζ1 = s(log d)2/
√
n, ζ2 = 1/d2. Recalling the definition of III2 in (C.1.14), we have

III2 =
λd∑

m=1

(
E
[∑

j∈H0
Ij(αm)− d0αm

])2

ε2d20α
2
m

,

where Ij(α) = 1(maxe∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j)). Note that αm ∈ [αL, 1], ∀ 1 ≤ m ≤

λd, then we arrive at the following bound

III2 ≤
λd
ε2

· η2(d, n, ζ1, ζ2,αL) ≤
tλd
ε2hd

· η2(d, n, ζ1, ζ2,αL) (C.1.17)

up to some constant, where the first inequality holds by (C.1.16). As for the second inequality, we

recall the construction of {tm}λdm=1 (over the course of derivations from (C.1.9) to (C.1.10)) in the

proof of Theorem 3.5.2 thus note α1 = 1, t1 = 0 and tλd − t1 =
∑λd

m=2(tm − tm−1) =

(λd − 1)hd. Regarding the term III1, we have

III1 =
λd∑

m=1

∑
j∈H0

Var (Ij(αm)− d0αm)

ε2d20α
2
m

=
λd∑

m=1

∑
j∈H0

E(Ij(αm))(1− E(Ij(αm))

ε2d20α
2
m

≤ 1

ε2d0

λd∑

m=1

C

αm
≤ C

ε2d0αL
· tλd
hd

, (C.1.18)

where the first inequality holds due to (C.1.16) and the second inequality holds since αm ≥ αL
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∀ 1 ≤ m ≤ λd and tλd = (λd − 1)hd. Therefore, combining (C.1.17) with (C.1.18), we obtain

III1 + III2 ≤
1

ε2
· tλd
hd

(
C

d0αL
+ η2(d, n, ζ1, ζ2,αL)

)
≤ C ′tλd

ε2hd

(
1

ρd0
+ η2(d, n, ζ1, ζ2,αL)

)

for some constantC ′, where the second inequality holds by the definition αL = q|B|/d in the

proof of Theorem 3.5.2 and the definition ρ = |B|/d in Section 3.5.

Lemma C.1.3. Recalling the definition of III3 in (C.1.14), we have

III3 ≤
C ′′′tλd
ρε2d0hd

(
1 + η(d, n, ζ1, ζ2,αL)d0 +

|S| log d
d0p

)
,

where η(d, n, ζ1, ζ2,αL) = O
( (log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ ζ1 log d+
ζ2
αL

)
with ζ1 = s(log d)2/

√
n,

ζ2 = 1/d2.

Proof of Lemma C.1.3. Note that III3 in (C.1.14) equals

III3 =
λd∑

m=1

∑
j1,j2∈H0,j1 .=j2

Cov (Ij1(αm), Ij2(αm))

ε2d20α
2
m

,

where Ij(α) = 1(max
e∈N0j

√
n|Θ̃d

e −Θ!
e| ≥ ĉ(α, N0j))

(C.1.19)

for j ∈ {j1, j2}. To quantify the covariance between Ij1(αm) and Ij2(αm) for j1, j2 ∈ H0, j1 +=

j2, we define

Wj(α) = 1(max
e∈N0j

|Ze| ≥ c(α, N0j)), (C.1.20)

where (Ze)e∈E (withE = N0j) is a Gaussian random vector and shares the same mean vector and

covariance matrix as the term ( 1√
n ΘjjΘkk

∑n
i=1Θ

)
j (XiX)

i Θk − ek))(j,k)∈E in T̆E . Here T̆E
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(withE = N0j) has the explicit form below

T̆E = max
(j,k)∈E

1√
nΘjjΘkk

∣∣∣∣
n∑

i=1

Θ)
j (XiX

)
i Θk − ek)

∣∣∣∣.

Remark here T̆E corresponds to the term TY in Proposition C.3.2 andmaxe∈E |Ze| corresponds

to the term TZ in Proposition C.3.1. And c(α, N0j) is the corresponding Gaussian maxima quan-

tile q(α;TZ) (which does not need to be computed). Since P(TZ > q(α;TZ)) = α, we immedi-

ately have haveE[Wj(α)] = P
(
maxe∈N0j

√
n|Ze| ≥ c(α, N0j)

)
= α.

Now we replace Ij1(α), Ij2(α) in III3 byWj1(α),Wj2(α) and define III′3 as

III′3 :=
λd∑

m=1

∑
j1,j2∈H0,j1 .=j2

Cov (Wj1(αm),Wj2(αm))

ε2d20α
2
m

. (C.1.21)

To bound the difference between III3 and III′3, we first noteCov(Ij1(α), Ij2(α)) = E[Ij1(α)Ij2(α)]−

E[Ij1(α)]E[Ij2(α)] then separately deal with the term |E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]|

and the term |E [Ij1(α)]E [Ij2(α)]− E [Wj1(α)]E [Gj2(α)]|.

By Lemma C.1.5, we have up to some constant factor,

|E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]|
α2

≤ η(d, n, ζ1, ζ2,αL)

α
.

Applying the same strategy to the term E [Ij1(α)]E [Ij2(α)], we obtain

|E [Ij1(α)]E [Ij2(α)]− E [Wj1(α)]E [Gj2(α)]|
α2

≤ η(d, n, ζ1, ζ2,αL)

α
.

Combining the above two inequalities, and noting the definition of III′3 in (C.1.21), we derive the
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following bound on the difference between III3 and III′3,

∣∣III3 − III′3
∣∣ ≤ 1

ε2

λd∑

m=1

η(d, n, ζ1, ζ2,αL)

αm
≤ C ′tλd
ρε2hd

· η(d, n, ζ1, ζ2,αL).

where the second inequality holds due to the fact αm ≥ αL ∀ 1 ≤ m ≤ λd and tλd = (λd − 1)hd,

the definition αL = q|B|/d in the proof of Theorem 3.5.2, and the definition ρ = |B|/d in Section

3.5.

The above bound on |III3 − III′3|, when combined with Lemma C.1.4, immediately establishes

III3 ≤ C ′tλd
ρε2hd

· η(d, n, ζ1, ζ2,αL) +
C ′′tλd
ρε2d0hd

(
1 + CΘ

|S| log d
d0p

)

≤ C ′′′tλd
ρε2d0hd

(
1 + η(d, n, ζ1, ζ2,αL)d0 +

|S| log d
d0p

)
,

for some constantC ′′′.

Lemma C.1.4. Recalling the term III′3 from (C.1.21) in the proof of Lemma C.1.3, we have

III′3 =
λd∑

m=1

∑
j1,j2∈H0,j1 .=j2

Cov(Wj1(αm),Wj2(αm))

ε2d20α
2
m

≤ C ′′tλd
ρε2d0hd

(
1 + CΘ

|S| log d
d0p

)
.

Proof of Lemma C.1.4. Similarly as in the proof of Lemma C.1.3, we define (Ze)e∈N0j1∪N0j2
to

be jointly Gaussian such that this (|N0j1 | + |N0j2 |)-dimensional Gaussian random vector shares

the same mean vector and covariance matrix as the term ( 1√
n ΘjjΘkk

∑n
i=1Θ

)
j (XiX)

i Θk −

ek))(j,k)∈N0j1∪N0j2
. Note that the two sub-vectors (Ze)e∈N0j1

and (Ze)e∈N0j1
are generally de-

pendent. Then we define (Z ′
e)e∈N0j1

, (Z ′
e)e∈N0j2

to be two Gaussian random vectors such that
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(Z ′
e)e∈N0j1

d
= (Ze)e∈N0j1

, (Z ′
e)e∈N0j2

d
= (Ze)e∈N0j2

and (Z ′
e)e∈N0j1

⊥⊥ (Z ′
e)e∈N0j2

.

(C.1.22)

Recalling the definition ofWj(α) in (C.1.20): Wj(α) = 1(maxe∈N0j |Ze| ≥ c(α, N0j)), we thus

have the following,

IVj1j2(α) :=
|Cov(Wj1(αm),Wj2(αm))|

α2
(C.1.23)

=
|E [Wj1(α)Wj2(α)]− E [Wj1(α)]E [Wj2(α)]|

α2

=
1

α2

∣∣∣P( max
e∈N0j1

|Ze| ≥ c(α, N0j1), max
e∈N0j2

|Ze| ≥ c(α, N0j2))−

P( max
e∈N0j1

|Z ′
e| ≥ c(α, N0j1), max

e∈N0j2

|Z ′
e| ≥ c(α, N0j2))

∣∣∣

=
1

α2

∣∣∣P( max
e∈N0j1

|Ze| ≥ t, max
e∈N0j2

|Ze| ≥ t)− P( max
e∈N0j1

|Z ′
e| ≥ t, max

e∈N0j2

|Z ′
e| ≥ t)

∣∣∣

=
1

α2

∣∣∣P( max
e∈N0j1∪N0j2

|Ze| ≥ t)− P( max
e∈N0j1∪N0j2

|Z ′
e| ≥ t)

∣∣∣, (C.1.24)

where the third equality follows due to the construction of (Ze)e∈N0j1∪N0j2
, (Z ′

e)e∈N0j1∪N0j2
.

Note that in the fourth equality, we assume c(α, N0j1) = c(α, N0j2) := twithout loss of gen-

erality, since we can rescale one of the maximum statistic by rescaling the Gaussian random vec-

tors. Remark that the scaling will not break down the application of Theorem 3.3.2, which will

be explained in detail later in this proof. The last inequality holds by (C.1.22) and the fact that

P (A ∩B) = P (A) + P (B)− P (A ∪B).

Notice that we can apply the Cramér-type Gaussian comparison bound with $0 norm to con-

trol (C.1.24). Specifically, we first figure out the difference between the covariance matrices of

(Ze)e∈N0j1∪N0j2
and (Z ′

e)e∈N0j1∪N0j2
. Denote the covariance matrices byΣZ andΣZ′ respec-

tively. As these two Gaussian random vectors have two sub-vectors, we write their covariance matri-
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ces in a block form

ΣZ =




ΣZ

11 ΣZ
12

ΣZ
21 ΣZ

22



 , ΣZ′
=




ΣZ′

11 O

O ΣZ′
22



 .

whereΣZ′ is block diagonal due to (C.1.22). Note that we also haveΣZ
11 = ΣZ′

11 andΣZ
22 = ΣZ′

22 .

Then we have

ΣZ −ΣZ′
=




O ΣZ

12

ΣZ
21 O



 . (C.1.25)

Throughout the following proof, we assumeΘjj = 1, j ∈ [d]without loss of generality, since

the standardized version is considered in T̆E (C.1.5). Recall that (Ze)e∈N0j1∪N0j2
shares the same

covariance structure as (Ye)e∈N0j1∪N0j2
where Ye (with e = (j, k)) is defined as

Ye :=
1√
n

n∑

i=1

Θ)
j (XiX

)
i Θk − ek).

Then we are ready to calculate the covariance matrixΣZ . Specifically, we compute the entries in

each block. Regarding the blockΣZ
11, for any k, k′ ∈ N0j1 whereN0j1 = {k : Θj1k = 0}, we

have the corresponding (k, k′) entry inΣZ
11 equals

Cov(Θ)
j1(XiX

)
i Θk − ek),Θ

)
j1(XiX

)
i Θk′ − ek′)) = Θj1j1Θkk′ +Θj1kΘj1k′ = Θkk′ ,

(C.1.26)

by applying Isserlis’ theorem (Isserlis, 1918) and notingΘj1k = Θj1k′ = 0. Similar results hold

for the blockΣZ
22. Regarding the blockΣZ

12, consider k1 ∈ N0j1 , k2 ∈ N0j2 , then we have the

corresponding (k1, k2) entry in the block equals

Cov(Θ)
j1(XiX

)
i Θk1−ek1),Θ)

j2(XiX
)
i Θk2−ek2)) = Θj1j2Θk1k2+Θj1k2Θj2k1 . (C.1.27)
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Nowwe have fully characterized the covariance matrixΣZ and the covariance matrix difference in

(C.1.25) for any j1, j2 ∈ H0, j1 += j2. Specifically, we have ||ΣZ − ΣZ′ ||0 = ||ΣZ
12||0 =

∑
k1∈N0j1 ,k2∈N0j2

1(Θj1j2Θk1k2 +Θj1k2Θj2k1 += 0). Based on whetherΘj1j2 is zero or not, we

consider the following two cases then handle them separately:

• Case 1: Θj1j2 = 0. If k1 = k2, then we have the covariance matrix entry (C.1.27) equal

zero; If k1 += k2, then (C.1.27) is nonzero only ifΘj1k2 += 0,Θj2k1 += 0 (i.e., k2 /∈

N0j1 , k1 /∈ N0j2). By the fact j1, j2 ∈ H0, j1 += j2 and the definition ofH0 = {j :

‖Θj,−j‖0 < kτ}, we have#{(k1, k2) : k1 += k2,Θj1k2 += 0,Θj2k1 += 0} ≤ k2τ . Hence

||ΣZ −ΣZ′ ||0 ≤ k2τ .

• Case 2: Θj1j2 += 0. The covariance matrix entry (C.1.27) is nonzero only ifΘj1k2 +=

0,Θj2k1 += 0 (i.e., k2 /∈ N0j1 , k1 /∈ N0j2) orΘk1k2 += 0.

We start from the simpler case, i.e., Case 2 whereΘj1j2 += 0. Simply, we obtain

IVj1j2(α) =
|Cov(Wj1(α),Wj2(α))|

α2
≤ Var(Wj1(α))

α2
+

Var(Wj2(α))

α2
≤ C

α
,

for some constantC sinceVar (Wj(α)) = E [Wj(α)] (1−E [Wj(α)]) = α(1−α) for j = j1, j2.

For a fixed j1, we also know that |{j2 ∈ H0 : j2 += j1,Θj1j2 += 0}| < kτ . Then we have

λd∑

m=1

∑

Θj1j2 .=0

IVj1j2(αm)

ε2d20
≤

λd∑

m=1

d0kτ
ε2d20

· C

αm
≤ 1

ε2d0

λd∑

m=1

C ′

αm
, (C.1.28)

where the last inequality holds due to the same derivations for III1 in the proof of Lemma C.1.2.

Regarding Case 1whereΘj1j2 = 0, we will give a more careful treatment to IVj1j2(α) in

(C.1.23). Due to the discussion about Case 1, we have ||ΣZ − ΣZ′ ||0 ≤ k2τ . This fact will be

utilized to derive a nice bound on III′3. Indeed, we can apply Theorem 3.3.2 to (C.1.24) (withU
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and V chosen to beZe)e∈N0j1∪N0j2
and (Z ′

e)e∈N0j1∪N0j2
respectively) and obtain

IVj1j2(α) ≤
log d

αp




∑

k1∈N0j1 ,k2∈N0j2 ,k1 .=k2

1(Θj1k2Θj2k1 += 0)



 . (C.1.29)

whenΘj1j2 = 0 (i.e., under Case 1). Recall Theorem 3.3.2 assumes for Gaussian random vectors

U and V , there exists a disjoint p-partition of nodes ∪p#=1C# = [d] such that σUjk = σVjk = 0

when j ∈ C# and k ∈ C#′ for some $ += $′. This is the connectivity assumption. Theorem 3.3.2

also assumes thatU and V have unit variances i.e., σUjj = σVjj = 1, j ∈ [d] and there exists some

σ0 < 1 such that |σVjk| ≤ σ0 for any j += k and |{(j, k) : j += k, |σUjk| > σ0}| ≤ b0 for

some constant b0. Under its general version (which is actually proved in Appendix C.2.2), we only

need to assume a0 ≤ σUjj = σVjj ≤ a1, ∀j ∈ [d], and given any j ∈ C# with some $, there

exists at least onem ∈ C#′ such that σUjj = σVjj = σUmm = σVmm for any $′ += $. From now, we

will call it the general variance condition. Accordingly, we assume there exists some σ0 < 1 such

that |σVjk/
√
σVjjσ

V
kk| ≤ σ0 for any j += k and |{(j, k) : j += k, |σUjk|

√
σUjjσ

U
kk > σ0}| ≤ b0

for some constant b0. Such condition is referred as the general covariance assumption. Below we

give the details of applying Theorem 3.3.2 (with a general version of the variance assumption) by

checking those three conditions.

We start from the connectivity assumption and the general variance condition. Notice that in

Section 3.5, p denotes the number of connected components in the associated graph G ofX . Then

we know there exist disjoint partitions of nodes ∪p#=1CX
# = [d] such thatΘjk = 0when j ∈

CX
# , k ∈ CX

#′ for some $ += $′. We will utilize this fact to examine the covariance matrices ofU :=

(Ze)e∈N0j1∪N0j2
and V := (Z ′

e)e∈N0j1∪N0j2
and show the connectivity assumption holds. Note

that for given j1, j2 ∈ H0, j1 += j2, there exist at least p − 2 components∪p−2
#=1CX

# such that j1

and j2 do not belong to them. Without loss of generality, we write j1, j2 /∈ ∪p−2
#=1CX

# . Thus we have

∪p−2
l=1 CX

# ⊂ N0j1 ∩N0j2 by definition.
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In the following, we will show the number of connected components on the associated graph of

the Gaussian random vectorU := (Ze)e∈N0j1∪N0j2
is at least 2(p− 2) by examining its covariance

matrixΣZ . First we focus on the covariance entries in the blockΣZ
11. When $1, $2 ∈ [p − 2] and

$1 += $2, we have for any k ∈ CX
#1
, k′ ∈ CX

#2
(thus k, k′ ∈ N0j1 ∩N0j2), the (k, k′) covariance entry

(C.1.26) in the blockΣZ
11 equals

Θj1j1Θkk′ +Θj1kΘj1k′ = Θj1j1Θkk′ = 0, (C.1.30)

where the first equality holds since k, k′ ∈ N0j1 , and the second equality holds since $1 += $2. Simi-

larly, we have the (k, k′) covariance entry in the blockΣZ
22 also equals to zero. Next we compute the

covariance entries in the blockΣZ
12. For the same (k, k′), we know that k ∈ N0j1 , k

′ ∈ N0j2 . Thus

the corresponding covariance entry (C.1.27) equals

Θj1j2Θkk′ +Θj1k′Θj2k = 0, (C.1.31)

since we also have k ∈ N0j2 , k
′ ∈ N0j1 and k ∈ CX

#1
, k′ ∈ CX

#2
for some $1 += $2. Denote the

nodes in the associated graph ofΣZ by VZ := {(j, k) : k ∈ N0j , j = j1, j2}. Remark here we

use a pair (j, k) to represent a node since there exists some k ∈ N0j1 ∩ N0j2 and we have to distin-

guish the covariance entries (j1, k) and (j2, k). Based on previous calculations, we immediately find

∪2(p−2)
#=1 CZ

# ⊂ VZ , where CZ
# is chosen to be

CZ
# =






{(j1, k) : k ∈ CX
# } when 1 ≤ $ ≤ p− 2,

{(j2, k) : k ∈ CX
# } when p− 1 ≤ $ ≤ 2(p− 2).

(C.1.32)

Further, we know they form different components on the associated graph ofΣZ . This is due to

(C.1.30) and (C.1.31). The above results also apply to the Gaussian random vector V := (Z ′
e)e∈N0j1∪N0j2
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by construction ofZ ′
e, i.e., we have the same subset of nodes ∪2(p−2)

#=1 CZ
# ⊂ VZ from different com-

ponents on the associated graph ofΣZ′ .

When k ∈ C# for some $ ∈ [p− 2], the corresponding diagonal entries of the covariance matrices

ΣZ ,ΣZ′ equal

Θj1j1Θkk +Θj1kΘj1k = Θj1j1Θkk = 1 = Θj2j2Θkk,

where the first equality holds sinceΘj1k = 0when k ∈ C# ⊂ N0j1 . As for the second equality,

we use the fact thatΘjj = 1, j ∈ [d]. This is because T̆E in (C.1.5) considers the standardized ver-

sionΘjk/
√
ΘjjΘkk. Remark that the rescaling in Lemma C.1.4 is performed on one of the two

random vectors (Z ′
e)e∈N0j1

, (Z ′
e)e∈N0j2

. Then we have the variances across the p − 2 components

∪p−2
#=1CZ

# are the same. The variances across the other p − 2 components ∪2(p−2)
#=p−1CZ

# are also the

same. Finally, we show there exist at least p − 2 components ∪p−2
#=1CZ

# (or ∪2(p−2)
#=p−1CZ

# ) satisfying the

requirement in the connectivity assumption and the general variance condition.

Regarding the general covariance condition, we first note thatΘ ∈ U(M, s, r0)which says

that λmin(Θ) ≥ 1/r0,λmax(Θ) ≤ r0. Thus we havemaxj,k∈[d],j .=k |Θjk| ≤ σ0 for some

σ0 < 1. Below we will examine all the off-diagonal entries ofΣZ andΣZ′ . Regarding the block

ΣZ
11, for any k, k′ ∈ N0j1 , k += k′ whereN0j1 = {k : Θj1k = 0}, (C.1.26) says that the

corresponding (k, k′) entry inΣZ
11 equalsΘkk′ (here we have |Θkk′ | ≤ σ0). Similar results hold

for the blockΣZ
22. Regarding the blockΣZ

12, consider k1 ∈ N0j1 , k2 ∈ N0j2 , then we have the

corresponding (k1, k2) entry in the block equalsΘj1k2Θj2k1 . This is due to (C.1.27) and the fact

thatΘj1j2 = 0 under Case 1. Only when k2 = j1, k1 = j2, we haveΘj1k2Θj2k1 = 1. Otherwise,

|Θj1k2Θj2k1 | ≤ σ20 < σ0 always holds. As for theΣZ′ , since its blockΣZ′
12 = O, we immedi-

ately have the absolute values of all its off-diagonal entries is bounded by σ0. In summary, we verify

the covariance condition of Theorem 3.3.2 (hereU and V are chosen to beZe)e∈N0j1∪N0j2
and
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(Z ′
e)e∈N0j1∪N0j2

respectively).

Having checked all the three conditions, we now obtain

λd∑

m=1

∑

Θj1j2=0

IVj1j2(αm)

ε2d20

≤
λd∑

m=1

{
1

ε2d20
· log d
αmp

( ∑

k1∈N0j1 ,k2∈N0j2 ,k1 .=k2

1(Θj1k2Θj2k1 += 0)

)}

≤ CΘ|S| log d
ε2d0p

(
1

d0

λd∑

m=1

C ′

αm

)
, (C.1.33)

where S represents the set

S = {(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 += j2, k1 += k2,Θj1j2 = Θj1k1 = Θj2k2 = 0,Θj1k2 += 0,Θj2k1 += 0}

as defined in Section 3.5, andCΘ is some universal constant overΘ ∈ U(M, s, r0). Finally, com-

bining (C.1.33) with (C.1.28), we obtain the following bound on III′3,

III′3 ≤ CΘ|S| log d
ε2d0p

(
1

d0

λd∑

m=1

C ′

αm

)
+

1

ε2d0

λd∑

m=1

C ′

αm

=

(
1 +

CΘ|S| log d
d0p

)
· 1

ε2d0

λd∑

m=1

C ′

αm

≤ C ′′tλd
ρε2d0hd

(
1 +

CΘ|S| log d
d0p

)
,

where the last inequality holds due to the same derivations for III1 in the proof of Lemma C.1.2.

Lemma C.1.5. Recall the definitions of Ij(α) andWj(α) in (C.1.19) and (C.1.20), for j1, j2 ∈
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H0, j1 += j2, when α ∈ [αL, 1], we have

∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]
∣∣ ≤ η(d, n, ζ1, ζ2,αL)α. (C.1.34)

Proof of Lemma C.1.5. First express
∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]

∣∣ as

∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]
∣∣

=
∣∣∣P
(

max
e∈N0j1

√
n|Θ̃d

e| ≥ ĉ(α, N0j1), max
e∈N0j2

√
n|Θ̃d

e| ≥ ĉ(α, N0j2)
)

− P
(

max
e∈N0j1

|Ze| ≥ c(α, N0j1), max
e∈N0j1

|Ze| ≥ c(α, N0j2)
)∣∣∣

=
∣∣∣P
(
TN0j1

≥ ĉ(α, N0j1), TN0j2
≥ ĉ(α, N0j2)

)

− P
(

max
e∈N0j1

|Ze| ≥ c(α, N0j1), max
e∈N0j1

|Ze| ≥ c(α, N0j2)
)∣∣∣,

(C.1.35)

where the second equality holds by the definition of TE in (C.1.3) and the definitions ofN0j1 , N0j2 .

Now proving the bound in (C.1.34) is reduced to showing

∣∣∣P
(
TN0j1

≥ ĉ(α, N0j1), TN0j2
≥ ĉ(α, N0j2)

)
− P

(
max
e∈N0j1

|Ze| ≥ c(α, N0j1), max
e∈N0j1

|Ze| ≥ c(α, N0j2)
)∣∣∣

≤ η(d, n, ζ1, ζ2,αL)α.

(C.1.36)

We first relate the notations in the above expression to the notations in Appendix C.3: TN0j1
, TN0j2

correspond to T ; ĉ(α, N0j1), ĉ(α, N0j2) correspond to qξ(α, TB);maxe∈N0j1
|Ze|,maxe∈N0j2

|Ze|

correspond to TZ ; c(α, N0j1), c(α, N0j2) correspond to q(α;TZ). In Appendix C.3, we prove

Propositions C.3.1 and C.3.2. And the strategy can be used to derive the bound on (C.1.35). First,

we note that TN0j1
, TN0j2

satisfy the conditions of Proposition C.3.2, i.e., (C.3.4) and (C.3.5). This

is due to the same derivations as the first parapraph of the proof of Lemma C.1.2. Since the proving

278



strategy is quite similar, we omit the proof of (C.1.36) for simplicity. Instead, we prove (C.1.37),

i.e., when α ∈ [αL, 1],

D :=
∣∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))

∣∣∣

≤ Cα

(
(log d)11/6

n1/6α1/3
L

+
(log d)19/6

n1/6

)
,

(C.1.37)

where TY1 , TY2 correspond to T̆E withE = N0j1 , N0j2 respectively, TW1 , TW2 correspond to

T̆B
E withE = N0j1 , N0j2 respectively, and TZ1 = maxe∈N0j1

|Ze|, TZ2 = maxe∈N0j2
|Ze|. As

for the quantiles, qξ(α;TW1), qξ(α;TW2) are the Gaussian multiplier bootstrap quantiles based

on TW1 , TW2 . q(α;TZ1), q(α;TZ2) are the quantiles of the Gaussian maxima TZ1 , TZ2 . Denote

A1 = {TY1 ≥ qξ(α;TW1)}, A2 = {TY2 ≥ qξ(α;TW2)},B1 = {TY1 ≥ q(α;TZ1)},

B2 = {TY2 ≥ q(α;TZ2)}, we have

D12 :=
∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TY1 ≥ q(α;TZ1), TY2 ≥ q(α;TZ2))

∣∣

≤ P ((A1 ∩A2)3 (B1 ∩B2))

= P ((A1 ∩A2) ∩ (Bc
1 ∪Bc

2)) + P ((B1 ∩B2) ∩ (Ac
1 ∪Ac

2))

≤ P (A1 ∩Bc
1) + P (A2 ∩Bc

2) + P (B1 ∩Ac
1) + P (B2 ∩Ac

2)

= P ((A1 ∩Bc
1) ∪ (B1 ∩Ac

1)) + P ((A2 ∩Bc
2) ∪ (B2 ∩Ac

2))

= P (A1 3B1) + P (A2 3B2) . (C.1.38)

By (C.3.14) and (C.3.15), we can bound (C.1.38) as

D12 ≤ P (A1 3B1) + P (A2 3B2) ≤ 2C ′α

(
(log d)11/6

n1/6α1/3
L

+
(log d)19/6

n1/6

)
. (C.1.39)
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By the triangle inequality, we have the following bound onD,

D =
∣∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))

∣∣∣

≤ D12 +
∣∣∣P (TY1 ≥ q(α;TZ1), TY2 ≥ q(α;TZ2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))

∣∣∣.

≤ D12 +
∣∣∣P (TY1 ≥ q(α;TZ1))− P (TZ1 ≥ q(α;TZ1))

∣∣+
∣∣P (TY2 ≥ q(α;TZ2))− P (TZ2 ≥ q(α;TZ2))

∣∣∣

+
∣∣∣P ({TY1 ≥ q(α;TZ1)} ∪ {TY2 ≥ q(α;TZ2)})− P ({TZ1 ≥ q(α;TZ1)} ∪ {TZ2 ≥ q(α;TZ2)})

∣∣∣
︸ ︷︷ ︸

D′
12

,

(C.1.40)

where the last inequality holds since P (A ∩B) = P (A) + P (B) − P (A ∪B). For the second

term and the third term in (C.1.40), we can directly apply the results (C.3.10) in Proposition C.3.1

and bound them as

∣∣∣P (TY1 ≥ q(α;TZ1))− P (TZ1 ≥ q(α;TZ1))
∣∣+
∣∣P (TY2 ≥ q(α;TZ2))− P (TZ2 ≥ q(α;TZ2))

∣∣∣

≤ Cα · (log d)
19/6

n1/6

(C.1.41)

for some constantC . Regarding the termD′
12, we assume q(α;TZ2) = q(α;TZ2) := twith-

out loss of generality. This is because q(α;TZ1), q(α;TZ2) are all deterministic values and we can

rescale the random vector inside one of the maximum statistics TZ1 , TZ2 . Now we rewriteD′
12
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based on q(α;TZ2) = q(α;TZ2) = t and derive the following bound:

D′
12 =

∣∣∣P (max{TY1 , TY2} ≥ t)− P (max{TZ1 , TZ2} ≥ t)
∣∣∣ (C.1.42)

≤ C ′′(log d)19/6

n1/6
· P (max{TZ1 , TZ2} ≥ t)

≤ C ′′(log d)19/6

n1/6
·
(
P (TZ1 ≥ q(α;TZ1)) + P (TZ2 ≥ q(α;TZ2))

)

= 2C ′′α · (log d)
19/6

n1/6
, (C.1.43)

where the first inequality holds by applying Corollary 5.1 of Kuchibhotla et al. (2021) similarly as in

the derivation of (C.3.10). Here we briefly explain why Corollary 5.1 of Kuchibhotla et al. (2021)

is applicable to (C.1.42). Note thatmax{TY1 , TY2} = TY12 is the maximum statistic with respect

to the random vectors which concatenate the random vectors involved in TY1 , TY2 . Write TY1 , TY2

explicitly as

TY1 :=

∥∥∥∥∥
1√
n

n∑

i=1

Y (1)
i

∥∥∥∥∥
∞

, TY2 :=

∥∥∥∥∥
1√
n

n∑

i=1

Y (2)
i

∥∥∥∥∥
∞

,

and denoteY (12)
i = (Y (1)

i ,Y (2)
i ), then TY12 is defined as

TY12 :=

∥∥∥∥∥
1√
n

n∑

i=1

Y (12)
i

∥∥∥∥∥
∞

.

By the definition ofZ1,Z2, we haveCov((Z)
1 ,Z)

2 ))) = Cov((Y )
1 ,Y )

2 ))). Hence we can

apply Corollary 5.1 of Kuchibhotla et al. (2021) to (C.1.42). Now we combine (C.1.39), (C.1.40),

(C.1.41) with (C.1.43) and obtain the following bound

D ≤ Cα

(
(log d)11/6

n1/6α1/3
L

+
(log d)19/6

n1/6

)
,

for some constantC , thus (C.1.37) is established. The above strategy of obtaining (C.1.37) can be
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similarly applied to the term in (C.1.35), then establishes the bound in (C.1.34).

C.1.3 Proof of Theorem 3.4.2

Proof of Theorem 3.4.2. Throughout the proof, we condition on the design matrixX , but without

explicitly writing it out in order to simplify the notation. In the context of selecting hub response

variables, we recallH0 = {j ∈ [d1] : ||Θj ||0 ≥ kτ} and d0 = |H0|. For a non-hub response

variable j ∈ H0, letN0j be the set of its null covariates, i.e.,N0j = {(j, k) : Θjk = 0}.

To establish FDR control, we follow the same derivations as in the proof of Theorem 3.5.2.

Specifically, it suffices to bound

λd∑

m=1

Var[
∑

j∈H0
Ij(αm)− d0αm]

ε2d20α
2
m

+
λd∑

m=1

(E[
∑

j∈H0
Ij(αm)− d0αm])2

ε2d20α
2
m

+
λd∑

m=1

∑
j1,j2∈H0,j1 .=j2

Cov(Ij1(αm), Ij2(αm))

ε2d20α
2
m

:= III1 + III2 + 0 (C.1.44)

for any ε > 0. In the above terms, the sequence {αm}λdm=1 is chosen similarly as in the proof of

Theorem 3.5.2 and Ij(α) is defined as

Ij(α) = 1(max
e∈N0j

√
n|Θ̃d

e| ≥ ĉ(α, N0j)),

where Θ̃d
j is the debiased Lasso estimator defined in (3.4.2). Note that the cross term in (C.1.44)

equals zero asCov(Ij1(αm), Ij2(αm)) = 0. This is becauseY (j), j ∈ [d1] are conditionally

independent givenX. Therefore it suffices to bound III1 and III2. By applying Lemma C.1.2 with

the term η(d, n, ζ1, ζ2,αL) replaced by η0(d1, d2, n, ζ1, ζ2,αL) in Lemma C.1.8, (C.1.44) can be
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controlled by

III2 + III2 ≤
C ′tλd2
ε2hd2

(
d1

d0|B|
+ η0(d1, d2, n, ζ1, ζ2,αL)

)
,

where αL = q|B|/d1 and tλd2 , hd2 are similarly defined as in the proof of Theorem 3.5.2. Accord-

ing to Lemma C.1.8, we have the explicit form of η0(d1, d2, n, ζ1, ζ2, δ,αL):

η0(d1, d2, n, ζ1, ζ2, δ,αL) = ζ1 log d2 + (log d2)
5/2δ1/2 +

η + ζ2
αL

,

where ζ1 = O(s log d2/
√
n), ζ2 = O(e−c1n + d−c̃0∧c2

2 ), δ satisfies 1
δ

√
s log d2

n = O(1) and

η = e−c1n + 1
d2

+ 1
nδ2 . By rearranging, we obtain the following bound on III2 + III2:

log d2
ε2

(
1

d0ρ
+

s(log d2)2

n1/2
+ (log d2)

5/2δ1/2 +
1

nδ2ρ
+

1

ρ

( 1
d2

+ e−c1n + d−c̃0∧c2
2

))
.

where ρ = B/d1. We choose δ to be 1
(nρ)2/5 log d2

and have δ > 1
n2/5 log d2

(since ρ < 1). Thus this

choice of δ satisfies the requirement in Lemma C.1.8. Finally we have (C.1.44) is bounded as

log d2
ε2

(
1

d0ρ
+

s(log d2)2

n1/2
+

(log d2)2

(nρ)1/5
+

1

ρd2

)
.

Under the stated assumption in Theorem 3.4.2, the above term is o(1). Thus the FDP control result

is established. Due to similar derivations as in Theorem 3.5.2, the FDR control result follows.

C.1.4 Ancillary lemmas for Theorem 3.4.2

To prove FDR control, we will establish a key result, i.e., Lemma C.1.8 in this section. Recall that in

Section 3.4, we utilize the following result

√
n(Θ̃d

j −Θj) = Zj + Ξ, Zj |X ∼ N (0,σ2jMΣ̂M)).
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and approximate the quantile of the maximum statistics TE = max(j,k)∈E
√
n|Θ̃d

jk| by TN
E =

max(j,k)∈E |Zjk|. Lemma C.1.8 basically establishes the Cramér deviation bounds for such quan-

tile approximation. Note that this lemma can be seen as a special case of Proposition C.3.1 since the

involving random vector
√
n(Θ̃d

j − Θj) can be decomposed into a Gaussian random vector plus

some error term. Hence we do not need to use the results in Kuchibhotla et al. (2021) to handle the

case of a general random vector (and quantify Gaussian approximation errors).

In this section, we will define some notations similar to the theoretical results in Appendix C.3.

First, we will drop the j-th subscript for simplicity. Without loss of generality, we prove relevant

results forE = {(j, k) : k ∈ [d2]} and drop the subscriptE. Note the results hold for any j ∈ [d1]

and any subset of {(j, k) : k ∈ [d2]}. Now we rewrite (3.4.4) using new notations, i.e.,

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0,σ2jMΣ̂M)), (C.1.45)

and denote its maximum by TZ = ||Z||∞. Intuitively, we can use the quantile of TZ to approxi-

mate the quantile of T :=
√
n||Θ̃d

j −Θj ||∞. Since the covariance matrix σ2jMΣ̂M) of the Gaus-

sian random vectorZ is not completely known, we can not directly compute its quantile (denoted

by q(α;Z)). Instead, we first estimate the unknown parameter σj by σ̂j , which is constructed ac-

cording to (3.4.5). Then we defineW ∼ N (0, σ̂2jMΣ̂M)) (given the dataX,Y (j)), and denote

its maximum by TW = ||W ||∞. We will approximate the unknown quantile of T by the condi-

tional quantile qξ(α;TW ). Here we use the ξ subscript to emphasize that we are conditioning on

the data when defining such quantiles.

Due to the existence of the term Ξ in (C.1.45), there also exist additional estimation errors when

we approximate the quantiles of T by the conditional quantiles qξ(α;TW ). Lemma C.1.7 charac-

terizes such approximation errors. As for the difference between the distributions of the two Gaus-

sian random vectorsW andZ , Lemma C.1.7 provides a bound on the maximal difference of their
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covariance matrices, which is denoted by∆∞. Finally, Lemma C.1.8 builds on these results and

establishes the Cramér-type deviation bounds for the quantile approximation of T .

Lemma C.1.6. In the context of multiple linear models, we have

P(|T − TZ | > ζ1) < ζ2,

where ζ1 = O(s log d2/
√
n) and ζ2 = O(e−c1n + d−c̃0∧c2

2 ).

Proof of Lemma C.1.6. By Theorem 2.5 in Javanmard &Montanari (2014a), we have

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0,σ2jMΣ̂M)),

and

P
(
‖Ξ‖∞ ≥

(16acσ
Cmin

)s log d2√
n

)
≤ 4 e−c1n + 4 d−c̃0∧c2

2 .

Thus we immediately obtain the following bound on the difference between T and TZ :

P(|T − TZ | > ζ1) < ζ2

where ζ1 = O(s log d2/
√
n) and ζ2 = O(e−c1n + d−c̃0∧c2

2 ).

Lemma C.1.7. For the the maximal difference term∆∞ = ||σ̂2MΣ̂M) − σ2MΣ̂M)||max, we

have

P (∆∞ ≥ δ) ≤ η, (C.1.46)

where δ satisfies 1
δ

√
s log d2

n = O(1) and η = O
(
e−c1n + 1

d2
+ 1

nδ2

)
.
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Proof of Lemma C.1.7. To bound∆∞, we start with the term |σ̂/σ − 1|. First we denote

En = En(φ0, s0,K) :=
{
X ∈ Rn×d1 : min

S:|S|≤s0
φ(Σ̂, S) ≥ φ0, max

j∈[d1]
Σjj ≤ K,Σ = (X)X)/n

}

similarly as in Theorem 7.(a) of Javanmard &Montanari (2014a), where φ(Σ̂, S) is the compatibil-

ity constant as defined in Definition 1 of Javanmard &Montanari (2014a). Following the proof of

Lemma 14 in Javanmard &Montanari (2014a), we have

P
(∣∣∣
σ̂

σ
− 1
∣∣∣ ≥ ε

)
≤ P (X /∈ En) + sup

X∈En
P
(∣∣∣
σ̂

σ
− 1
∣∣∣ ≥ ε

∣∣∣X
)

≤ 4e−c1n + sup
X∈En

P
( ||X)E||∞

nσ!
≥ λ̃/4

∣∣∣X
)
+ sup

X∈En
P
(∣∣∣
σ!

σ
− 1
∣∣∣ ≥

ε

10

∣∣∣X
)

(C.1.47)

where λ̃ = 10
√
(2 log d2)/n, σ! is the oracle estimator of σ introduced in Sun & Zhang (2012)

and ε satisfies 2
√
sλ̃

σ#φ0
≤ ε

2 < a0.

Now we separately bound the last two terms in (C.1.47). The second term in (C.1.47) can be

bounded by the derivation in the proof of Theorem 2 (ii) (Sun & Zhang, 2012), i.e.,

sup
X∈En

P
( ||X)E||∞

nσ!
≥ λ̃/4

∣∣∣X
)
≤ d2P

(
|Lk| ≥

√
2 log(d25/42 )/n

∣∣∣X
)

≤ d2 ·
C

d25/42

√
log d2

≤ C

d2
, (C.1.48)

whereLk is the k-th element of X&E
nσ# and

√
n−1Lk√
1−L2

k

follows the Student’s t-distribution with n − 1

degrees of freedom. Then (C.1.48) holds due to equation (A7) in Sun & Zhang (2012) together

with the union bound. As for the last term in (C.1.47), we note n(σ!/σ)2 follows the χ2
n distribu-
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tion according to Sun & Zhang (2012). Thus byMarkov’s inequality, we have

sup
X∈En

P
(∣∣∣
σ!

σ
− 1
∣∣∣ ≥

ε

10

∣∣∣X
)
≤

C ′E
[
(n(σ!/σ)2 − n)2

]

n2ε2
≤ 2C ′

nε2
. (C.1.49)

Now we arrive at the following bound on∆∞:

P
(
∆∞ ≥ (ε2 + 2ε) · σ2||MΣ̂M)||max

)

= P
(
||σ̂2MΣ̂M) − σ2MΣ̂M)||max ≥ (ε2 + 2ε) · σ2||MΣ̂M)||max

)

≤ P
(∣∣∣
σ̂

σ
− 1
∣∣∣ ≥ ε

)

≤ 4e−c1n +
C

d2
+

2C ′

nε2
,

where the last inequality comes from combining (C.1.47), (C.1.48) with (C.1.49). Note that the

proof of Theorem 16 in Javanmard &Montanari (2014a) shows that ||MΣ̂M)||max = O(1).

Hence, we finally establish (C.1.46) with

δ = σ2(ε2 + 2ε)||MΣ̂M)||max = Cσε, η = O

(
e−c1n +

1

d2
+

1

nδ2

)
.

whereCσ is some constant and δ = Cσε satisfies 1
δ

√
s log d2

n = O(1) due to the choice of ε.

Lemma C.1.8. Based on the result about the approximation error between T and TZ (Lemma C.1.6)

and the bound on ||∆||∞ in Lemma C.1.7, we have

sup
α∈[αL,1]

∣∣∣∣
P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O (η0(d1, d2, n, ζ1, ζ2, δ,αL)) , (C.1.50)

where η0(d1, d2, n, ζ1, ζ2, δ,αL) := ζ1 log d2+(log d2)5/2δ1/2+
η+ζ2
αL

with ζ1 = O(s log d2/
√
n),

ζ2 = O(e−c1n + d−c̃0∧c2
2 ). Here δ is a term to be determined and we requite 1

δ

√
s log d2

n = O(1). η
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depends on δ, i.e., η = e−c1n + 1
d2

+ 1
nδ2 .

Proof of Lemma C.1.8. First we have P(|T − TZ | > ζ1) < ζ2 by Lemma C.1.6, thus we obtain

∣∣∣∣
P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ max{II1, II2}+
2ζ2
α

for α ∈ [αL, 1], where II1 and II2 are defined as:

II1 :=

∣∣∣∣
P(TZ > q(α;TW ) + ζ1)

P(TZ > q(α;TZ))
− 1

∣∣∣∣ , II2 :=

∣∣∣∣
P(TZ > q(α;TW )− ζ1)

P(TZ > q(α;TZ))
− 1

∣∣∣∣ .

The above two terms can be bounded similarly. Take II1 as an example, we use similar strategy as in

Proposition C.3.1. Consider the event S := {∆∞ ≤ δ}where δ satisfies 1
δ

√
s log d2

n = O(1), we

apply Lemma C.3.3 and bound II1 by

1

1− π(δ) · II11 + II12 +
P (∆∞ > δ)

α
,

where II11 and II11 are defined as

II11 :=
1− π(δ)

α

∣∣∣P
(
TZ > q(

α

1− π(δ) ;TZ) + ζ1
)
− P(TZ > q(

α

1− π(δ) ;TZ))
∣∣∣,

II12 :=
1

α

∣∣∣P
(
TZ > q(

α

1− π(δ) ;TZ)
)
− P(TZ > q(α;TZ))

∣∣∣, (C.1.51)

where π(∆∞) = [A(∆∞) + 1]eM1(log d)3/2A(∆∞) − 1. By applying the part 3 of Theorem 2.1

in Kuchibhotla et al. (2021) (with r + ε = q( α
1−π(δ) ;TZ) + ζ1, r − ε = q( α

1−π(δ) ;TZ)) to the

Gaussian random vectorZ , we have

II11 ≤ K4ζ1
(
q(

α

1− π(δ) ;TZ) + ζ1/2
)
≤ Cζ1 log d2. (C.1.52)
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where the second inequality holds due to the similar reason stated in the proof of Proposition C.3.2.

And the term II11 can be simply derived as

II12 =
1

α

∣∣∣
α

1− π(δ) − α
∣∣∣ =

π(δ)

1− π(δ) . (C.1.53)

Combing the results above, we have

∣∣∣∣
P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ C ′ζ1 log d2 +
π(δ)

1− π(δ) +
π(δ)

1 + π(δ)
+

2P (∆∞ > δ)

α
+

2ζ2
α

.

Applying the bound in Lemma C.1.7, we finally establish (C.1.50) i.e., η0(d1, d2, n, ζ1, ζ2,αL) :=

ζ1 log d2 + (log d2)5/2δ1/2 +
η+ζ2
αL

up to some constant factor, where η = e−c1n + 1
d2

+ 1
nδ2 .

C.2 Proofs of Cramér-type comparison bounds

In this section, we will prove two types of Cramér-type comparison bounds: Theorems 3.3.1 and

3.3.2. One of the challenges to derive the comparison bounds for Gaussian maxima is that the max-

imum function is non-smooth. In order to show the Cramér-type comparison bound, we first con-

sider smooth approximation of the maximum. The following lemma from Bentkus (1990) show the

existence of such smooth approximation.

Lemma C.2.1 (Theorem 1, Bentkus (1990)). Consider the Euclidean spaceRd with $∞-norm, for

any t, ε ≥ 0, there exists a smooth approximating function ϕr,ε satisfying the following:

(a) ϕr,ε : Rd → [0, 1],ϕr,ε ∈ C∞, whereC∞ is the smooth function class with functions differen-

tiable for all degrees of differentiation.

(b) ϕr,ε(x) = 1 if ||x||∞ ≤ r, ϕr,ε(x) = 0 if ||x||∞ ≥ r + ε,

(c) supx∈Rd ||Djϕr,ε(x)||1 ≤ c(j)ε−j logj−1(d+ 1),
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where ||Djϕr,ε(x)||1 =
∑d

i1=1 · · ·
∑d

ij=1

∣∣∣ ∂
jϕr,ε(x)

∂xi1 ···∂xij

∣∣∣ and the constants c(j) only depends on j.

Remark C.2.1.1. Kuchibhotla et al. (2021) gives a concrete example of ϕr,ε(x) satisfying the three

properties in Lemma C.2.1:

ϕr,ε(x) = g0

(
2(Fβ(zx − r12d)− ε/2)

ε

)
, (C.2.1)

where β = 2 log(2d)/ε, g0(t) := 301(0 ≤ t ≤ 1)
∫ 1
t s2(1 − s)2ds + 1(t ≤ 0), Fβ(·) is the

“softmax” function

Fβ(z) :=
1

β
log
( 2d∑

m=1

exp (βzm)
)

for z ∈ R2d,

zx = (x),−x))), and 12d is the vector of 1’s of dimension 2d.

In fact, in the proof of Theorem 3.3.1, we do not need a specific form of ϕr,ε(x) and any function

satisfying Lemma C.2.1 will work. While in the proof of Theorem 3.3.2, we need to utilize the specific

form in (C.2.1).

C.2.1 Proof of Theorem 3.3.1

As mentioned in Remark 3.3.1.1, we can prove the Cramér-type comparison bound with max norm

difference asM3(log d)3/2A(∆∞)eM3(log d)3/2A(∆∞),without the assumption on∆∞. Therefore

we state the more general form of Theorem 3.3.1 below and give its proof. Note that under the

assumption (log d)5∆∞ = O(1) and the discussions in Remark 3.3.1.1, the bound (3.3.1) in

Theorem 3.3.1 immediately follows from Theorem C.2.2.

Theorem C.2.2 (CCB with max norm difference). LetU and V be two Gaussian random vectors
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and we have

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤M3(log d)
3/2A(∆∞)eM1(log d)3/2A(∆∞), (C.2.2)

whereC0 > 0 is some constant,A(∆∞) = M1 log d∆
1/2
∞ exp (M2 log

2 d∆1/2
∞ ), the constants

M1,M2 only depend onmin1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj}, andM3 is a universal con-

stant.

Proof of Theorem C.2.2. Using the smooth approximation in Lemma C.2.1, we can bound the dif-

ference between the distribution functions of Gaussian maxima as

∣∣P(||U ||∞ > t)− P(||V ||∞ > t)
∣∣

=
∣∣E[1(||U ||∞ ≤ t)− 1(||V ||∞ ≤ t)]

∣∣

≤ P(t− ε ≤ ||V ||∞ ≤ t+ ε) + max
j=1,2

|Eϕj(U)− Eϕj(V )| , (C.2.3)

where ϕ1(x) := ϕt,ε(x),ϕ2(x) := ϕt−ε,ε(x). Regarding the inequality in (C.2.3), we first notice

that

1(||x||∞ ≤ t) = ϕt,ε(x)−1(t < ||x||∞ < t+ ε)·ϕt,ε(x) = ϕt−ε,ε(x)−1(t− ε < ||x||∞ < t)·ϕt−ε,ε(x),

where the first equality is due to property (b) in Lemma C.2.1. Hence we have

1(||U ||∞ ≤ t) ≤ ϕj(U), j = 1, 2

1(||V ||∞ ≤ t) ≥ ϕ1(V )− 1(t < ‖V ‖ < t+ ε),

1(||V ||∞ ≤ t) ≥ ϕ2(V )− 1(t− ε < ‖V ‖ < t),
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then (C.2.3) immediately follows by combining the above three inequalities.

The first term in (C.2.3) is related to the anti-concentration inequalities for the Gaussian max-

ima. By applying Theorem 2.1 in Kuchibhotla et al. (2021), we have

P(t− ε ≤ ||V ||∞ ≤ t+ ε) ≤ K1(t+ 1)ε exp(K2(t+ 1)ε)P(||V ||∞ > t). (C.2.4)

The explicit forms ofK1,K2 can be found in Theorem 2.1 of Kuchibhotla et al. (2021). They

only depend onmin1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj} and the median of Gaussian maxima.

Remark that the median of ||V ||∞ is bounded byO(
√
log d) by the maximal inequalities for sub-

Gaussian random variables (Lemma 5.2 in van Handel (2014)). Plugging this into the explicit form

ofK1,K2 in Theorem 2.1 of Kuchibhotla et al. (2021), we haveK1 = O(log d),K2 = O(log2 d).

Then (C.2.4) can be written as

P(t− ε ≤ ||V ||∞ ≤ t+ ε) ≤M1 log d(t+ 1)ε exp(M2 log
2 d (t+ 1)ε)P(||V ||∞ > t),

for some constantsM1,M2 only depending onmin1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj}.

Overall the above bound has only a logarithmic dependence on the dimension d, similar to the

anti-concentration bounds from Chernozhukov et al. (2014). But it quantifies the deviation with

respect to the tail probability of the Gaussian maxima, thus offers a more refined characterization,

which is crucial to our proof.

Now we deal with the second term in (C.2.3). It is not hard to check that the following proof

works for both ϕ1 and ϕ2. Therefore, without loss of generality, we use a unified notation ϕ to

represent either functions. We consider the Slepian interpolation betweenU and V : W (s) :=
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√
sU +

√
1− sV, s ∈ [0, 1]. LetΨt(s) = E[ϕ(W (s))], then we have

|Eϕ(U)− Eϕ(V )| = |Ψt(1)−Ψt(0)| =
∣∣∣∣
∫ 1

0
Ψ′

t(s)ds

∣∣∣∣ , (C.2.5)

whereΨ′
t(s) = 1

2

∑d
j=1 E[∂jϕ(W (s))(s−1/2Uj − (1 − s)−1/2Vj)]. Applying Stein’s iden-

tity (Lemma 2 of Chernozhukov et al. (2015)) to (s−1/2Uj − (1 − s)−1/2Vj ,W (s)))) and

∂jϕ(W (s)), we have

Ψ′
t(s) =

1

2

d∑

j,k=1

(σUjk − σVjk)E[∂j∂kϕ(W (s))]. (C.2.6)

Hence we obtain the following bound on (C.2.5),

∣∣∣∣
∫ 1

0
Ψ′

t(s)ds

∣∣∣∣ ≤
1

2

d∑

j,k=1

|σUjk − σVjk| ·
∣∣∣∣
∫ 1

0
E[∂j∂kϕ(W (s))]ds

∣∣∣∣

≤ ∆∞
2

∫ 1

0

d∑

j,k=1

E[|∂j∂kϕ(W (s))|]ds

≤ ∆∞
2

∫ 1

0

d∑

j,k=1

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds

≤ ∆∞
2

∫ 1

0
sup
x∈Rd

||D2ϕ(x)||1 · E[1(t− ε ≤ ||W (s)||∞ ≤ t+ ε))]ds

≤ c(2)∆∞ log(d+ 1)

2ε2

∫ 1

0
P(t− ε ≤ ||W (s)||∞ ≤ t+ ε)ds (C.2.7)

where the second inequality is by the definition of∆∞ and the third one comes from the property

(b) in Lemma C.2.1 for ϕj(x), j = 1, 2 (recalling ϕ1(x) = ϕt,ε(x) and ϕ2(x) = ϕt−ε,ε(x)). Note

that property (c) gives a upper bound for the partial derivative terms. Thus the fourth inequality

holds.

By the definition of Slepian interpolation, we have, for any s ∈ [0, 1],W (s) is a Gaussian ran-
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dom vector and the variances can be controlled betweenmin1≤j≤d{σUjj ,σVjj} andmax1≤j≤d{σUjj ,σVjj}.

The median of ||W (s)||∞ can also be similarly bounded byO(
√
log d) as ||V ||∞. Applying the

anti-concentration inequalities again toW (s) in (C.2.7), we thus obtain

∣∣∣∣
∫ 1

0
Ψ′

t(s)ds

∣∣∣∣ ≤
c(2)∆∞ log(d+ 1)

2ε2
·M1 log d(t+ 1)ε exp(M2 log

2 d(t+ 1)ε) ·
∫ 1

0
P(||W (s)||∞ > t)ds.

(C.2.8)

LetQt(u) = P(||W (u)||∞ > t) andRt(u) = Qt(u)/Qt(0) − 1. Combining (C.2.3), (C.2.4),

(C.2.5) and (C.2.8), we have

|Qt(1)−Qt(0)| =
∣∣P(||U ||∞ > t)− P(||V ||∞ > t)

∣∣

≤ M1 log d(t+ 1)ε exp(M2 log
2 d(t+ 1)ε)Qt(0)

+
c(2)∆∞ log(d+ 1)

2ε2
M1 log d(t+ 1)ε exp(M2 log

2 d(t+ 1)ε)

∫ 1

0
Qt(s)ds.

(C.2.9)

If starting with the interpolation betweenW (s) and V instead of that betweenU and V , we can

similarly obtain the bound on |Qt(s) − Qt(0)|. And the integral
∫ 1
0 Qt(s)ds in (C.2.9) can be

directly replaced by
∫ u
0 Qt(s)ds. Namely, we have

|Qt(u)−Qt(0)|
|Qt(0)|

= |Rt(u)| ≤ A(t, ε)B(∆∞, ε)

∫ u

0
|Rt(s)|ds+A(t, ε)B(∆∞, ε) ·u+A(t, ε),

(C.2.10)

where we denoteA(t, ε) = M1 log d(t + 1)ε exp(M2 log
2 d(t + 1)ε) andB(∆∞, ε) =

c(2)∆∞ log(d+1)
2ε2 .

Notice that (C.2.10) is an integral inequality and we can thus boundRt(s) by Grönwall’s in-
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equality (Grönwall, 1919)

|Rt(u)| ≤ (A(t, ε)B(∆∞, ε)u+A(t, ε))eA(t,ε)B(∆∞,ε)u.

In particular, we have |Rt(1)| ≤ (A(t, ε)B(∆∞, ε) + A(t, ε))eA(t,ε)B(∆∞,ε). Remember that ε is

the smoothing parameter that controls the level of approximation. Choosing ε = ∆1/2
∞ /(t+ 1), we

then haveA(∆∞) := A(t, ε) = M1 log d∆
1/2
∞ exp (M2 log

2 d∆1/2
∞ ) for some constantsM1,M2

only depending onmin1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj} andB(t) := B(∆∞, ε) =

c(2) log(d+1)(t+1)2

2 . When 0 ≤ t ≤ C0
√
log d, we haveB(t) ≤ M1(log d)3/2 for some universal

constantM3. Therefore the bound in (C.2.2) is established, i.e.,

sup
0≤t≤C0

√
log d

|Rt(1)| ≤M3(log d)
3/2A(∆∞)eM3(log d)3/2A(∆∞).

C.2.2 Proof of Theorem 3.3.2

Before proving Theorem 3.3.2, we note its assumption about the connectivity can be relaxed. There-

fore, we first present Theorem C.2.4 with a weaker connectivity assumption, which is stated below.

Assumption C.2.3 (p-connectivity property). We say two Gaussian random vectorsU and V sat-

isfy the p-connectivity property if for any j such that σUjk += σVjk for some k, there exists a subset

E0 ⊂ [d] satisfying the following three requirements:

(a) j ∈ E0, |E0| = p+ 1;

(b) Whenm,m′ ∈ E0 andm += m′, σUmm = σUm′m′ and σUmm′ = σVmm′ = 0 hold;

(c) ∀ k ∈ [d], |{m ∈ E0 : |σUkm|+ |σVkm| += 0}| ≤ c0 for some constant c0.
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This assumption gives a characterization of the connectivity of the associated graphs of the Gaus-

sian random vectorsU and V . Below we give a few sufficient conditions (SC) for it.

SC1 U and V have unit variances. There exists a disjoint (p + 2)-partition of nodes ∪p+2
#=1C# = [d]

such that σUjk = σVjk = 0when j ∈ C# and k ∈ C#′ for some $ += $′.

SC2 U and V have unit variances. There exist disjoint partitions of nodes ∪p+2
#=1CU

# = ∪p+2
#=1CV

# =

[d], such that σUjk (σVjk) equals 0when j, k belong to different elements CU
# (CV

# ), and ∀$ ∈

[p+ 2], CU
# ∩ CV

# += ∅.

SC3 ∀ s ∈ [0, 1], the Gaussian random vectorW (s) :=
√
sU +

√
1− sV always has the same

variances σ2s across different components. The associated graph ofW (s) has at least p + 2

components, i.e., there exists a disjoint partition of nodes ∪p+2
#=1CW

# = [d], such that each CW
#

comes from a different component. And the partition∪p+2
#=1CW

# = [d]works any s ∈ [0, 1].

Remark C.2.3.1. Note that the above first condition SC1 is the main assumption of Theorem 3.3.2

(except that p+ 2 is replaced by p). It is immediate that the condition SC1 implies SC2. We will verify

SC2 is indeed a sufficient condition of Assumption C.2.3 in the following paragraph. Regarding SC3,

its sufficiency can be verified similarly, thus we omit the details.

Simply, we have σUjj = σVjj = 1, j ∈ [d] by the unit variance assumption. For any j such that

σUjk += σVjk for some k, we will construct a subset E0 and show it satisfies the three requirements (a), (b)

and (c). Note that the condition SC1 assumes the existence of disjoint partitions of nodes ∪p+2
#=1CU

# =

∪p+2
#=1CV

# = [d]. We suppose j ∈ CU
#1
∩ CV

#2
for some $1, $2, then E0 is constructed by including j

and picking one elementm# from CU
# ∩ CV

# for each $ ∈ [p + 2] \ {$1, $2}. As CU
# ∩ CV

# +=

∅, ∀$ ∈ [p + 2], we have |E0| ≥ 1 + p, hence the requirement (a) is satisfied. Regarding the

requirement (b), whenm,m′ ∈ E0,m += m′, we immediately have σUmm = σVm′m′ = 1 by the

unit variance assumption. Since every element in E0 comes from a different component CU
# (CV

# ), we
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also have σUmm′ = σVmm′ = 0 whenm,m′ ∈ E0,m += m′. Lastly, due to the same reason, we have

∀k ∈ [d], |{m ∈ E0 : |σUkm|+ |σVkm| += 0}| ≤ 2. Hence the requirement (c) is also satisfied.

Nowwe prove Theorem C.2.4, which is stated below. Note that it requires weaker connectivity

assumption compared with Theorem 3.3.2 but needs to assume minimal eigenvalue conditions.

Theorem C.2.4 (CCB with elementwise $0 norm difference). Consider the two Gaussian ran-

dom vectorsU and V to have equal variances σUjj = σVjj = O(1), for j ∈ [d] and we assume

λmin(ΣU ) ≥ 1/b0 > 0,λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0. SupposeU and V also

satisfy Assumption C.2.3, we then have

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O

(
∆0 log d

p

)
. (C.2.11)

for some constantC0 > 0.

Proof of Theorem C.2.4. Following the same derivations as in Theorem C.2.2, we have

|P(||U ||∞ > t)− P(||V ||∞ > t)|

≤ M1 log d(t+ 1)ε exp(M2 log
2 d(t+ 1)ε)P(||V ||∞ > t) + max

j=1,2
|E[ϕj(U)]− E[ϕj(V )]|

≤ M1 log d(t+ 1)ε exp(M2 log
2 d(t+ 1)ε)P(||V ||∞ > t) +

∣∣∣∣
∫ 1

0
Ψ′

t(s)ds

∣∣∣∣ , (C.2.12)

where ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, and the constants

M1,M2 only depend onmin1≤j≤d{σUjj},max1≤j≤d{σUjj}. The above two inequalities hold by
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(C.2.3), (C.2.4) and (C.2.5). We further bound
∣∣∣
∫ 1
0 Ψ′

t(s)ds
∣∣∣ as below,

∣∣∣∣
∫ 1

0
Ψ′

t(s)ds

∣∣∣∣

≤ 1

2

d∑

j,k=1

|σUjk − σVjk|
∣∣∣∣
∫ 1

0
E[∂j∂kϕ(W (s))]ds

∣∣∣∣

≤ M

2

∑

j .=k,σU
jk .=σ

V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))|]ds

≤ M

2

∑

j .=k,σU
jk .=σ

V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds

≤ M∆0

2
max

j .=k,σU
jk .=σ

V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds, (C.2.13)

where the first inequality holds due to (C.2.6), the second inequality is because σUjk = O(1),σVjk =

O(1) for all j, k and the constantM only depends on the maximal variances of the elements of

U, V , the third inequality holds by the property (b) in Lemma C.2.1 for ϕj(x), j = 1, 2, and the

last inequality holds by the definition of∆0. Note that ϕ1(x) := ϕt,ε(x),ϕ2(x) := ϕt−ε,ε(x)

as defined in the proof of Theorem C.2.2. We use the same strategy to deal with ϕ1(x) and ϕ2(x).

Below we give the derivations when ϕ = ϕ1(x) and it is not hard to check these derivations work

for ϕ2(x) as well. Recall the explicit construction of ϕ : Rd → R introduced in Remark C.2.1.1,

ϕ(x) = ϕr,ε(x) = g0

(
2(Fβ(zx − r12d)− ε/2)

ε

)
,

where β = 2 log(2d)/ε, g0(t) := 301(0 ≤ t ≤ 1)
∫ 1
t s2(1 − s)2ds + 1(t ≤ 0), Fβ is the

“softmax” function

Fβ(z) :=
1

β
log
( 2d∑

m=1

exp (βzm)
)

for z ∈ R2d,
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zx = (x),−x))) and 12d is the vector of 1’s of dimension 2d.

To bound (C.2.13), we consider the case where j += k and σUjk += σVjk. Note that

|∂j∂kϕ(W (s))| ≤ ||g′′||∞|π̃j(Z)π̃k(Z)|+ β||g′||∞|π̃j(Z)π̃k(Z)|, (C.2.14)

where g(t) := g0(
2(t−ε/2)

ε ),Z := W (s) and

π̃j(z) :=
eβzj − e−βzj

∑d
m=1 e

βzm +
∑d

m=1 e
−βzm

.

The above result follows from a direct calculation. Due to the boundedness of ||g′0||∞, ||g′′0 ||∞ and

β = 2 log(2d)/ε, we obtain the following bound on (C.2.14),

|∂j∂kϕ(W (s))| ≤ (||g′′||∞ + β||g′||∞)|π̃j(Z)π̃k(Z)|

≤
( 4

ε2
||g′′0 ||∞ +

2β

ε
||g′0||∞

)
|π̃j(Z)π̃k(Z)|

≤ C1 log(2d)

ε2
|π̃j(Z)π̃k(Z)| ≤ C1 log(2d)

ε2
|πj(Z)πk(Z)|,

for some constantC1, where πj(z) = eβ|zj |/
∑d

m=1 e
β|zm|. RecallingZ = W (s), we have

∫ 1

0
E [|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] ds

≤ C1 log(2d)

ε2

∫ 1

0
E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]ds

=
C1 log(2d)

ε2
P(||V ||∞ > t)

∫ 1

0

E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)︸ ︷︷ ︸
II(s)

ds. (C.2.15)

Below we focus on bounding the term II(s) for any s ∈ [0, 1]. First we rewrite πj(Z)πk(Z) and
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simply derive the following inequality,

πj(Z)πk(Z) =
eβ|Zj |

∑d
m=1 e

β|Zm|
· eβ|Zk|
∑d

m=1 e
β|Zm|

=
e−β(||Z||∞−|Zj |) · e−β(||Z||∞−|Zk|)

(1 +
∑

|Zm| .=||Z||∞ e−β(||Z||∞−|Zm|))2

≤ e−β(||Z||∞−|Zj |) · e−β(||Z||∞−|Zk|), (C.2.16)

where the second equality comes from dividing both the numerator and denominator by e2β||Z||∞

in the first line. Note that P(|Zj | = |Zk|) = 0 since the random vectorZ follows a non-degenerate

d-dimensional multivariate Gaussian distribution. Hence we have

1 = 1(|Zj | = ||Z||∞, |Zk| < ||Z||∞) + 1(|Zj | < ||Z||∞), almost surely. (C.2.17)

Plugging the equality (C.2.17) into (C.2.16), we can further bound πj(Z)πk(Z) as

πj(Z)πk(Z) ≤ e−β(||Z||∞−|Zk|)·1(|Zk| < ||Z||∞)+e−β(||Z||∞−|Zj |)·1(|Zj | < ||Z||∞), almost surely.

Then we can bound II(s) by

II(s) =
E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)

≤ E[e−β(||Z||∞−|Zk|) · 1(|Zk| < ||Z||∞)1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)
(C.2.18)

+
E[e−β(||Z||∞−|Zj |) · 1(|Zj | < ||Z||∞)1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)
. (C.2.19)

We use the same strategy to bound (C.2.18) and (C.2.19). Below we give the derivations for

bounding (C.2.19) and note these also work for (C.2.18).

For any j += k and σUjk += σVjk, Assumption C.2.3 says that there exists a subset E0 ⊂ [d]
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satisfying j ∈ E0, |E0| = p+ 1, and σUmm = σUm′m′ , σUmm′ = σVmm′ = 0whenm,m′ ∈ E0,m +=

m′. This implies the following: when s = 0 or 1 (i.e.,Z = U or V ), we can find a p−dimensional

random vectorG such that (Zj , G) are all independent andVar(G#) = Var(Zj) = σ2j for $ ∈ [p].

Note thatG is constructed as (Zm)m∈E0,m .=j with E0 being the same forZ = U and V . Therefore,

for any s ∈ (0, 1), Z = W (s) =
√
sU +

√
1− sV , we can constructG = (Zm)m∈E0,m .=j

such that (Zj , G) are all independent andVar(G#) = Var(Zj) = σ2j for $ ∈ [p]. Throughout the

following proof and the lemmas in Appendix C.2.3, we will use the notationZ,Gwithout making

the dependence on s explicitly. And we denote the indices of the random variables inG (amongZ)

by EG, i.e., EG = E0 \ {j} = {m ∈ [d] : Zm = G# for some $ ∈ [p]}.

We will consider two separate cases based on whether ||G||∞ = ||Z||∞ holds. Formally, we write

1(|Zj | < ||Z||∞) ≤ 1(E1) + 1(E2)withE1 andE2 defined as

E1 := {||Z||∞ > ||G||∞, ||Z||∞ > |Zj |}, (C.2.20)

E2 := {||G||∞ = ||Z||∞ > |Zj |}. (C.2.21)

Then the numerator of the fraction in (C.2.19) can be bounded by the summation of the following

two terms:

II1 := E
[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
,

II2 := E
[
e−β(||Z||∞−|Zj |) · 1(E2) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
.

(C.2.22)

Combining (C.2.19) with (C.2.22) and applying Lemmas C.2.5 and C.2.6, we have

II(s) ≤ 2(II1 + II2)

P(||V ||∞ > t)
≤ C ′ε log d

βp
, ∀s ∈ [0, 1], (C.2.23)

for some constantC ′. By (C.2.12), (C.2.13), (C.2.15) and (C.2.23), we thus obtain the following
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inequality

|P(||U ||∞ > t)− P(||V ||∞ > t)|

≤ A(t, ε)P(||V ||∞ > t) +
C1M∆0 log(2d)

2ε2
P(||V ||∞ > t) · C

′ε log d

βp

= P(||V ||∞ > t) (A(t, ε) +B(∆0, p)) , (C.2.24)

whereA(t, ε) := M1 log d(t + 1)ε exp(M2 log
2 d(t + 1)ε),B(∆0, p) := C ′′(log d/p)∆0

for some constantsM1,M2, C ′′. In the last line, we also subsitute β = 2 log(2d)
ε . By re-arranging

(C.2.24), we finally have

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ A(t, ε) +B(∆0, p).

Since 0 ≤ t ≤ C0
√
log d and ε = c/max{(log d)3/2, p log d} for some small enough constant

c > 0, we haveA(t, ε) = O(B(∆0, p)). Then (C.2.11) can be established, i.e.,

sup
0≤t≤C0

√
log d

∣∣∣∣
P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ C ′′′B(∆0, p) = O

(
∆0 log d

p

)
.

Nowwe prove Theorem 3.3.2 using similar strategies as in Theorem C.2.4. Recall that the con-

nectivity assumption in Theorem 3.3.2 assumes that there exists a disjoint p-partition of nodes

∪p#=1C# = [d] such that σUjk = σVjk = 0when j ∈ C# and k ∈ C#′ for some $ += $′. Since

this connectivity assumption is stronger than that in Theorem C.2.4, we are able to do slightly more

careful analysis in Lemma C.2.5. As a result, the minimal eigenvalue condition is no longer needed.

Also note that Theorem 3.3.2 assumes the unit variance condition and there exists some σ0 < 1

such that |σVjk| ≤ σ0, |σUjk| ≤ σ0 for any j += k. Both the variance condition and the covariance
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condition can be relaxed. In the following proof, we establish the Cramér-type comparison bound

under a general variance condition. This general version is actually used in the proof of Theorem

3.5.2. Specifically, the general variance condition says that a0 ≤ σUjj = σVjj ≤ a1, ∀j ∈ [d]. After

relaxing the unit variance assumption, some balanced variance assumption on the above compo-

nents C# is required. It says that given any j ∈ C# with some $, there exists at least onem ∈ C#′ such

that σUjj = σVjj = σUmm = σVmm for any $′ += $. Remark this condition is mainly needed for Lemma

C.2.12. We will call all these assumptions about variances as general variance condition. Denote

σ̃Ujk = σUjk/
√
σUjjσ

U
kk. Accordingly, the covariance condition on σjk in Theorem 3.3.2 can also be

relaxed into the following: there exists some σ0 < 1 such that |σ̃Vjk| = |σVjk|/
√
σVjjσ

V
kk ≤ σ0 for

any j += k and |{(j, k) : j += k, |σ̃Ujk| = |σUjk|/
√
σUjjσ

U
kk > σ0}| ≤ b0 for some constant b0. We

will call this condition as general covariance condition.

Proof of Theorem 3.3.2. Following exactly the same derivations in Theorem C.2.4 (up to (C.2.22)),

we arrive at the following

II(s) ≤ 2(II1 + II2)

P(||V ||∞ > t)
,

where II(s), II1, II2 are defined in (C.2.15) and (C.2.22), except that the random vectorG can be

constructed to satisfy more properties. Assuming the connectivity assumption of Theorem 3.3.2

and the general variance condition, we constructG by choosing one random variableZm from

each component (except the one to whichZj belongs) satisfyingVar (Zm) = σUmm = σVmm =

σUjj = σVjj = Var (Zj). Such construction still satisfies the mentioned properties in Theorem

C.2.4. Specifically, (G,Zj) consists of (p + 1) i.i.d. Gaussian random variables. Moreover, for any

k += j, k /∈ EG = {m ∈ [d] : Zm = G# for some $ ∈ [p]}, there exists at most onem ∈ {j} ∪ EG,

such thatZk andZm belong to the same component. Based on this property, we prove Lemma

C.2.12 and Lemma C.2.13, which do not require minimal eigenvalue conditions compared with

Lemma C.2.5 and Lemma C.2.7. We still apply Lemma C.2.13 to bound the term II2. Regarding
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the term II1, we control it by using Lemma C.2.6. Therefore, we obtain the following

II(s) ≤ C ′ε log d

βp

(
1 +

b0√
1− (s+ (1− s)σ0)2

)
. (C.2.25)

Note a simple calculus result:

∫ 1

0

b0√
1− (s+ (1− s)σ0)2

≤ 0.5πb0
1− σ0

< C ′′

for some constantC ′′ when σ0 < 1. Combining the above bound with (C.2.25), (C.2.12), (C.2.13),

(C.2.15) and (C.2.23), we establish the bound (3.3.2) thus prove Theorem 3.3.2.

C.2.3 Ancillary lemmas for Theorem C.2.4

Throughout the lemmas in this section, we will useZ andGwithout making the dependence on s

explicitly, as mentioned in the proof of Theorem C.2.4.

Lemma C.2.5. Suppose λmin(ΣU ) ≥ 1/b0 > 0,λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0.

For the term II1 = E
[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
withE1 defined in

(C.2.20) and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, whenever t

satisfies 0 ≤ t ≤ C0
√
log d for some constantC0 > 0, we have

II1
P(||V ||∞ > t)

≤ C ′ε log d

βp
. (C.2.26)

Proof of Lemma C.2.5. Wewill bound II1 by the law of total expectation. Specifically, we first cal-

culate the conditional expectation given (G,Zj) then take expectation with respect to (G,Zj).

Denoting the conditional density function of ||Z||∞ | Zj = zj , G = g by fg,zj (u), we write out

the integral form of II1 as
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II1 = E
[
e−β(||Z||∞−|Zj |) · 1(||Z||∞ > ||G||∞, ||Z||∞ > Zj) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]

= E
[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
fG,Zj (u)e

−βu1(u > ||G||∞, u > |Zj |)du
)]

≤ E
[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
C
√
log d · e−βu1(u > |Zj |)du

)]

≤ C
√
log d P(||G||∞ ≤ t+ ε)E

[∫

|zj |≤t+ε
φ

(
zj
σj

)
eβ|zj |

(∫ t+ε

t−ε
e−βu1(u > |zj |)du

)
dzj

]

≤ C
√
log d P(||G||∞ ≤ t+ ε)

∫

|zj |≤t+ε
φ

(
zj
σj

)
eβ|zj |

(∫ t+ε

t−ε
e−βu1(u > |zj |)du

)
dzj

︸ ︷︷ ︸
III

,

(C.2.27)

where the first inequality holds since 1(u > ||G||∞, |Zj |) ≤ 1(u > |Zj |) and the conditional

density function fg,zj (u) is bounded byC
√
log dwhen ||g||∞, |zj | < u ≤ t + ε and 0 ≤ t ≤

C0
√
log d, as a result of Lemma C.2.7. Recall that φ(·) denotes the standard Gaussian PDF. We use

the fact thatZj ⊥⊥ G,Zj ∼ N (0,σ2j ) and write out the integral form of the expectation with
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respect toZj , thus the second inequality follows. Then the integral III can be further rewritten as

III = 2

∫ t+ε

t−ε
e−βu

(∫ u

0
φ

(
x

σj

)
eβxdx

)
du

= 2

∫ t+ε

t−ε
e−βu

(
e

β2σ2
j

2

∫ u

0
φ

(
x

σj
− βσj

)
dx

)
du

= 2

∫ t+ε

t−ε
e−βu

(
e

β2σ2
j

2

∫ u/σj−βσj

−βσj
φ (x) dx

)
du

≤ 2

∫ t+ε

t−ε
e−βu

(
e

β2σ2
j

2 Φ̄
(
βσj − u/σj

))
du

≤ 2

∫ t+ε

t−ε
e−βu



e
β2σ2

j
2

e−
(βσj−u/σj)

2

2

βσj − u/σj



 du

≤ 4

βσj

∫ t+ε

t−ε
e−βu

(
eβue

− u
2σj

)
du ≤ 8ε

βσj
exp

(
−(t− ε)2

2σ2j

)
, (C.2.28)

where the first equality holds by Fubini’s theorem, and the second equality holds by the definition

of φ(·). Regarding the first inequality, we use the fact that u/σj − βσj < 2u/σj − βσj < 0 for

u ≤ t + ε and t ≤ C0
√
log d. This is because β = 2 log(2d)

ε and ε = c/max{(log d)3/2, p log d}

for some small enough constant c > 0. Then
∫ u/σj−βσj
−βσj φ (x) dx ≤ Φ̄(βσj − u/σj), recalling

Φ̄ = 1 − Φ, whereΦ is the standard Gaussian CDF. The second inequality holds as a result of

Lemma C.2.8. The third inequality holds due to βσj > 2u/σj for u ≤ t+ ε.

By (C.2.27) and (C.2.28), we arrive at the following bound

II1
P(||V ||∞ > t)

≤ C
√
log d · P(||G||∞ ≤ t+ ε)

P(||V ||∞ > t)
· 8ε

βσj
exp

(
−(t− ε)2

2σ2j

)

≤ C
√
log d · C1ε

β
· P(||G||∞ ≤ t+ ε)

P(||G||∞ > t)
· φ
( t− ε
σj

)
/σj

= C
√
log d · C1ε

β
·

(1− 2Φ̄( t+εσj ))
p

1− (1− 2Φ̄
(

t
σj
)
)p · φ

( t− ε
σj

)
/σj

︸ ︷︷ ︸
Λ(t,ε,p)

,
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for some constantsC,C1, where the second inequality holds due to the definition of φ(z) and

P(||V ||∞ > t) ≥ P(||G||∞ > t). This is because

P(||V ||∞ > t) ≥ P(max
k∈EG

|Vk| > t) = P(||GV ||∞ > t) = P(||G||∞ > t), (C.2.29)

whereGV = (Zm)m∈E0,m .=j withZ = V has the same distribution asG. Regarding the last line,

by the construction ofG = (G#)#∈[p] = (Zm)m∈E0,m .=j in the proof of Theorem C.2.4, we have

{G#}#∈[p] are p i.i.d. Gaussian random variables withVar (G#) = Var (Zj) = σ2j . By applying

Lemma C.2.9 to the termΛ(t, ε, p) in the last line, we further obtain,

II1
P(||V ||∞ > t)

≤ C ′√log d · ε
β

√
log d

p
=

C ′ε log d

βp
,

for some constantC ′, therefore (C.2.26) is established.

Lemma C.2.6. For the term II2 = E
[
e−β(||Z||∞−|Zj |) · 1(E2) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
with

E2 defined in (C.2.21) and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0,

whenever t satisfies 0 ≤ t ≤ C0
√
log d for some constantC0 > 0, we have

II2
P(||V ||∞ > t)

≤ C ′′ε
√
log d

βp
. (C.2.30)

Proof of Lemma C.2.6. By the definition ofE2 in (C.2.21) and the tower property, we have

II2 = E
[
e−β(||Z||∞−|Zj |) · 1(||G||∞ = ||Z||∞ > |Zj |) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]

= E
[
e−β(||G||∞−|Zj |) · 1(||G||∞ = ||Z||∞, ||G||∞ > |Zj |) · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]

≤ E
[
e−β(||G||∞−|Zj |) · 1(||G||∞ > |Zj |) · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]

= E
[
E
[
eβ|Zj |1(|Zj | < ||G||∞) |G

]
e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
. (C.2.31)
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First we bound III(g) := E
[
eβ|Zj |1(|Zj | < ||G||∞) |G = g

]
when ||g||∞ ∈ [t − ε, t + ε].

Specifically,

III(g) =
2

σj

∫ ||g||∞

0
eβxφ

( x

σj

)
dx =

2eβ
2σ2

j /2

σj

∫ ||g||∞

0
φ
(x− βσ2j

σj

)
dx

≤ 2eβ
2σ2

j /2
∫ ||g||∞/σj−βσj

−∞
φ(y)dy

= 2eβ
2σ2

j /2 Φ̄(βσj − ||g||∞/σj)

≤ 2eβ
2σ2

j /2
φ (βσj − ||g||∞/σj)

βσj − ||g||∞/σj

≤ 4

βσj
φ

(
||g||∞
σj

)
eβ||g||∞ , (C.2.32)

where the first equality holds due toZj ⊥⊥ G, and the second equality comes from rearranging. The

first inequality holds by the change of variable y = (x − βσ2j )/σj and setting the lower limit of

the integral as−∞. Because β = 2 log(2d)
ε and ε = c/max{(log d)3/2, p log d} for some small

enough constant c > 0, we have ||g||∞/σj < βσj for ||g||∞ ≤ t + ε and t ≤ C0
√
log d. Then

the second inequality holds as a result of Lemma C.2.8 and the fact that βσj − ||g||∞/σj > 0. The

last inequality comes from rearranging and the fact that βσj > 2||g||∞/σj for ||g||∞ ≤ t + ε and

t ≤ C0
√
log d. Combining (C.2.32) with (C.2.31), we have

II2 ≤ E
[
III(G) · e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]

≤ 4

βσj
E
[
φ
( ||G||∞

σj

)
eβ(||G||∞) · e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]

≤ 4

βσj

∫ t+ε

t−ε
φ
( y
σj

)
f(y)dy, (C.2.33)

where f(y) denotes the PDF of ||G||∞. As {G#}#∈[p] are i.i.d. Gaussian random variables satisfying
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∀ $ ∈ [p], E [G#] = 0 andVar (G#) = σ2j , we have for y > 0,

P(||G||∞ ≤ y) = P(
⋃

#∈[p]

|G#| ≤ y) = (1− 2P(G#/σj > y/σj))
p = (1− 2Φ̄(y/σj))

p.

(C.2.34)

Thus we have the PDF of ||G||∞ equals f(y) = 2p
σj

(
1− 2Φ̄( y

σj
))p
) p−1

p
φ( y

σj
). Plugging the

expression of f(y) into (C.2.33), we further derive the following bound

II2
P(||V ||∞ > t)

≤ 8p

βσ2j

∫ t+ε

t−ε

(
1− 2Φ̄( y

σj
))p
) p−1

p
φ2( y

σj
)

P(||V ||∞ > t)
dy

≤ 8p

βσ2j

∫ t+ε

t−ε

(
1− 2Φ̄( y

σj
))p
) p−1

p
φ2( y

σj
)

1− P(||G||∞ ≤ t)
dy

=
8p

βσ2j

∫ t+ε

t−ε

(
(1− 2Φ̄( y

σj
))p
) p−1

p
φ2( y

σj
)

1− (1− 2Φ̄( t
σj
))p

dy

≤ 16ε

βσ2j p

(
(1− 2Φ̄( t+εσj ))

p
) p−1

p
(pφ( t−εσj ))

2

1− (1− 2Φ̄( t+εσj ))
p

≤ C ′′ε
√
log d

βp
,

for some constantC ′, where the second inequality holds due to (C.2.29), as mentioned in the proof

of Lemma C.2.5. The equality holds as a result of substituting the expression of P(||G||∞ ≤ t)

by (C.2.34). The third inequality holds since 1 − 2Φ̄(z) is monotonically increasing and φ(z)

is monotonically decreasing when z ≥ 0. As for the last line, we apply Lemma C.2.10. Finally,

(C.2.30) is established.

Lemma C.2.7. Suppose λmin(ΣU ) ≥ 1/b0 > 0,λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0.

Recall that the density function of the conditional distribution of ||Z||∞ | {Zj = zj , G = g} is

denoted by fg,zj (z). Suppose ε > 0, when 0 ≤ t ≤ C0
√
log d for some constantC0 > 0 and
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|zj |, ||g||∞ ≤ t+ ε, we have

fg,zj (z) ≤ C
√

log d, ∀ z ∈ (max{|zj |, ||g||∞}, t+ ε].

Proof of Lemma C.2.7. First we introduce some new notations. Let (σjk)1≤j,k≤d ∈ Rd×d be the

covariance matrix ofZ . For given j, we denote

σkk·j := σkk − σ2kjσ−1
jj −

∑

m∈EG

σ2kmσ
−1
mm. (C.2.35)

As z ∈ (max{|zj |, ||g||∞}, t + ε], we can choose δ such that 0 < δ < z − max{|zj |, ||g||∞}.

Throughout the following proof, we will work with such δ. Sincemax{|zj |, ||g||∞}− z < −δ, we

have

P
(∣∣||Z||∞ − z

∣∣ ≤ δ |Zj = zj , G = g
)
= P

(∣∣||X||∞ − z
∣∣ ≤ δ |Zj = zj , G = g

)
, (C.2.36)

whereX denotes the (d − p − 1)-dimensional random vector by excludingZj , G fromZ and

therefore ||Z||∞ = max{||X||∞, |Zj |, ||G||∞}.

RecallingG = (G#)#∈[p] = (Zm)m∈EG , where EG denotes the indices of the random variables

inG (amongZ), i.e., EG = {m ∈ [d] : Zm = G# for some $ ∈ [p]}, we have

||X||∞ = max
k∈[d], k /∈{j,EG}

{max{Zk,−Zk}}.

Given j and the choice ofG, we also denote

σ·j := min
k∈[d],k /∈{j,EG}

√
σkk·j , ρ̄j := max

k∈[d],k /∈{j,EG}

|σjk|
σjj

. (C.2.37)
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For each k ∈ [d], k /∈ {j, EG}, the conditional expectationE [Zk |Zj , G] has the following

expression,

E [Zk |Zj , G] = σkjσ
−1
jj Zj +

∑

m∈EG

(σkmσ
−1
mmZm), (C.2.38)

since (Zj , G) are all independent. Note that the requirement (c) in Assumption C.2.3 says ∀ k ∈

[d], |{m ∈ E0 : |σUkm|+ |σVkm| += 0}| ≤ c0, we thus have

∑

m∈EG

1(σkm += 0) =
∑

m∈EG

1((sσUkm + (1− s)σVkm) += 0)

≤
∑

m∈EG

1(σUkm += 0 or σVkm += 0) ≤ c0, (C.2.39)

where the first equality holds by the definition of σkm andZ = W (s) =
√
sU +

√
1− sV .

Combining (C.2.39) with (C.2.38), it yields the following bound on |E [Zk |Zj = zj , G = g] |,

|E [Zk |Zj = zj , G = g] | =
∣∣σkjσ−1

jj zj +
∑

m∈EG

(σkmσ
−1
mmzm)

∣∣

≤ ρ̄j(|zj |+ c0||g||∞), (C.2.40)

where ρ̄j = maxk∈EX
|σjk|
σjj

as defined. Denoting EX := {k : k ∈ [d], k /∈ {j, EG}}, we define

the following random variables,

W̃2k−1 =
Zk − z
√
σkk·j

+
z̃

σ·j
, W̃2k =

−Zk − z
√
σkk·j

+
z̃

σ·j
, k ∈ EX , (C.2.41)

where z̃ = z + ρ̄j(|zj | + c0||g||∞). Then by the definitions of σkk·j ,σ·j and ρ̄j in (C.2.35) and
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(C.2.37), we have the above random variables satisfy the following properties,

E
[
W̃m |Zj = zj , G = g

]
≥ 0, Var

(
W̃m |Zj = zj , G = g

)
= 1,

wherem = 2k − 1 or 2k and k ∈ EX . Denote those random variables defined in (C.2.41)

by {W̃m} for notation simplicity. We let qzj ,g(w) be the PDF of the conditional distribution of

maxm{W̃m} | Zj = zj , G = g. Then we will apply the derivation of Step 2 in Theorem 3

of Chernozhukov et al. (2015) to bound qzj ,g(w). Note that for the following derivations, we al-

ways conditional on the eventZj = zj , G = g. First, we verify the condition on {W̃m}. Since

|Corr(Uj , Uk)| += 1, |Corr(Vj , Vk)| += 1 for distinct j, k ∈ [d], we then have the correlation

between W̃m1 and W̃m2 form1 += m2 is less than 1. Therefore, by applying the derivation of Step

2 in Theorem 3 of Chernozhukov et al. (2015) to {W̃m}, we have

qzj ,g(w) ≤ h(w) := 2(w ∨ 1) exp

{
−
(w − w̄ − ad)2+

2

}
,

where w̄ = maxm E
[
W̃m |Zj = zj , G = g

]
and

ad = max
m

E
[(

W̃m − E
[
W̃m |Zj = zj , G = g

] )
|Zj = zj , G = g

]
.

Whenw ≤ w̄ + ad, we have h(w) ≤ 2(w̄ + ad). To deal with the case wherew > w̄ + ad, we

consider

log(h(w)) = log(2w)− (w − w̄ − ad)2

2
,

d log(h(w))

dw
=

1

w
− (w − w̄ − ad),

d2 log(h(w))

dw2
= − 1

w2
− 1 < 0.
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Solving d
dw log(h(w)) = 0 yieldsw! =

w̄+ad+
√

(w̄+ad)2+4
2 . Therefore, the PDF of the condi-

tional distribution ofmaxm{W̃m} | Zj = zj , G = g can be bounded by

h(w) ≤ h(w!) ≤ 3(w̄ + ad). (C.2.42)

Now we have

P
(∣∣||Z||∞ − z

∣∣ ≤ δ |Zj = zj , G = g
)

= P (|||X||∞ − z| ≤ δ |Zj = zj , G = g)

= P
(∣∣∣∣max

k∈EX
{Zk,−Zk}− z

∣∣∣∣ ≤ δ |Zj = zj , G = g

)

≤ P
(∣∣∣∣max

k∈EX

{
Zk − z
√
σkk·j

,
−Zk − z
√
σkk·j

}∣∣∣∣ ≤
δ

σ·j
|Zj = zj , G = g

)

≤ sup
y∈R

P
(∣∣∣∣∣max

k∈EX

{
Zk − z
√
σkk·j

+
z̃

σ·j
,
−Zk − z
√
σkk·j

+
z̃

σ·j

}
− y

∣∣∣∣∣ ≤
δ

σ·j
|Zj = zj , G = g

)

= sup
y∈R

P
(∣∣∣max

m
{W̃m}− y

∣∣∣ ≤
δ

σ·j
|Zj = zj , G = g

)
≤ 6δ

σ·j
(w̄ + ad), (C.2.43)

where the first equality holds by (C.2.36), the second equality holds by the definition ofX and EX ,

the first inequality holds since σ·j = mink .=j
√
σkk·j , the third equality holds by the definition of

{W̃m} in (C.2.41), and the last inequality holds by the bound on h(w) in (C.2.42). Regarding the
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quantity w̄ = maxm E
[
W̃m |Zj = zj , G = g

]
, we have

w̄ = max
k∈EX

{
±E [Zk |Zj = zj , G = g]− z

√
σkk·j

+
z̃

σ·j

}

≤ max
k∈EX

{
±E [Zk |Zj = zj , G = g]

√
σkk·j

}
+ max

k∈EX

{
1

σ·j
− 1
√
σkk·j

}
z +

ρ̄j(|zj |+ c0||g||∞)

σ·j

≤ max
k∈EX

{
±
(
σkjσ

−1
jj zj +

∑
m∈EG(σkmσ

−1
mmzm)

)

√
σkk·j

}
+

z

σ·j
+
ρ̄j(|zj |+ c0||g||∞)

σ·j

≤ 2ρ̄j(|zj |+ c0||g||∞)

σ·j
+

z

σ·j
≤ 2ρ̄j(1 + c0) + 1

σ·j
(t+ ε), (C.2.44)

wheremax{±A} := max{A,−A}, the first inequality holds by the definition of z̃, the second

inequality holds by (C.2.38), and the last inequality holds by the definitions of ρ̄j and σ·j and the

fact
∑

m∈EG 1(σkm += 0) ≤ c0.

Let δ in (C.2.43) go to 0, we get the following bound on the density function of the conditional

distribution of ||Z||∞ | {Zj = zj , G = g}, i.e., when 0 ≤ t ≤ C0
√
log d and |zj |, ||g||∞ ≤ t+ ε,

fg,zj (z) ≤
6

σ·j
(w̄ + ad) ≤

6

σ·j

(
2ρ̄j(1 + c0) + 1

σ·j
C1

√
log d+ C2

√
log d

)
, (C.2.45)

for any z ∈ (max{|zj |, ||g||∞}, t+ε]. The first inequality holds by (C.2.43). Regarding the second

inequality, we apply the result in (C.2.44) and bound (t+ε) and ad byC1
√
log d for some constant

C1. Note ad ≤ C1
√
log d is because of the maximal inequalities for sub-Gaussian random variables

(Lemma 5.2 in van Handel (2014)). As for ρ̄j = maxk∈EX
|σjk|
σjj

, we have

ρ̄2j ≤ max
k .=j

σkk
σjj
≤

maxj σUjj
minj σUjj

≤
maxj σUjj
λmin(ΣU )

= O(1),

where the first inequality holds by the Cauchy-Schwarz inequality, the second inequality holds
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by the definition ofZ and σUjj = σVjj , the third inequality holds by the fact thatminj σUjj ≥

λmin(ΣU ), and the last step holds under the stated assumption of Theorem C.2.4. As for σ·j =

mink∈EX
√
σkk·j where σkk·j = σkk−σ2kjσ

−1
jj −

∑
m∈EG σ

2
kmσ

−1
mm = Var (Zk |Zj , G), we have

1

σ2·j
=

1

mink∈EX Var (Zk |Zj , G)

≤ 1

mink Var (Zk |Z-k)

= max
k

((ΣZ)−1)kk

≤ λmax((Σ
Z)−1)

= 1/λmin(Σ
Z)

≤ (min{λmin(Σ
U ),λmin(Σ

V })−1 ≤ b0,

under the stated assumption that λmin(ΣU ) ≥ 1/b0,λmin(ΣV ) ≥ 1/b0, where the first inequality

holds since (Zj , G) is a sub-vector ofZ-k := Z(1:d)\k, the second equality holds by the relationship

between the partial variances and the inverse covariance matrix, and the last three hold by the defi-

nitions of λmin(·),λmax(·). Thus we have fg,zj (z) ≤ C
√
log d for some constantC , i.e., Lemma

C.2.7 is proved.

Lemma C.2.8. For z > 0, we have

φ(z)

2(z ∨ 1)
≤ Φ̄(z) = 1− Φ(z) ≤ φ(z)

z
,

where φ(z),Φ(z) is the PDF and CDF of the standard Gaussian distribution respectively.

Proof of Lemma C.2.8. This is a simple fact derived fromMill’s inequality; see the derivations in the

proof of Theorem 3 in Chernozhukov et al. (2015).
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Lemma C.2.9. Whenever 0 ≤ t ≤ C0
√
log d for some constantC0 > 0, and ε = c/max{(log d)3/2, p log d}

for some small enough constant c > 0, we have

Λ(t, ε, p) :=
(1− 2Φ̄( t+εσj ))

p

1− (1− 2Φ̄( t
σj
))p

· φ
( t− ε
σj

)
= O

(√
log d

p

)
. (C.2.46)

Proof of Lemma C.2.9. By Lemma C.2.8, we can simplifyΛ(t, ε, p) into the following

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

∨1

)p

1−
(
1−

φ( t
σj

)

t
σ ∨1

)p · φ
( t− ε
σj

)
.

When t
σj
≤ 1, we have t+ε

σj
≤ 2 due to the choice of ε. Because t

σj
> 0, t+εσj > 0 and φ(z) is

monotonically decreasing when z > 0, we then have the the bound below,

Λ(t, ε, p) ≤ (1− φ(2)/2)p

1− (1− φ(1))p = O

(√
log d

p

)
,

where the second inequality holds due to 0 < φ(2) < φ(1) < 0.5 and p > 1. Now it suffices to

consider the case where t+ε
σj

> t
σj

> 1 and deal with the following

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
(
t− ε
σj

)
.
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We further boundΛ(t, ε, p) as

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)
· e

tε
2σ2

j

≤ 2

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)

:= 2eH(λ) · t+ ε

pσj

where the first inequality comes from rearranging, the second inequality holds since exp ( tε
2σ2

j
) < 2

for t ≤ C0
√
log d. This is because ε = c/max{(log d)3/2, p log d} for some small enough

constant c > 0. The last line holds by rewriting using some new notations: λ := p
φ( t+ε

σj
)

t+ε
σj

and

H(λ) := log

(
(1− λ

p )
p

1− (1− λ
p )

p
· λ
)

= p log
(
1− λ

p

)
− log

(
1− (1− λ

p
)p
)
+ log λ.(C.2.47)

Since t+ε
σj

> 1, we have 0 < λ < p. Below we will first deal withH(λ) then obtain the bound on
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Λ(t, ε, p). To boundH(λ), consider taking the derivative ofH(λ)with respect to λ, then we have

H ′(λ) =
p

λ− p
−

(1− λ
p )

(p−1)

1− (1− λ
p )

p
+

1

λ

=
p

λ− p
− 1

1− λ
p

·
(1− λ

p )
p

1− (1− λ
p )

p
+

1

λ

≤ p

λ− p
− 1

1− λ
p

· 1− λ
1− (1− λ) +

1

λ

=
p

λ− p
+

1

1− λ
p

− 1

λ
· 1

1− λ
p

+
1

λ

≤ 1

λ

(
1− p

p− λ

)
< 0,

where the first inequality holds by the Bernoulli’s inequality: (1 + x)r ≥ 1 + rxwhen r ∈ N, 1 +

x ≥ 0, and the last inequality holds since 0 < λ < p. Now we haveH(λ) is monotone decreasing.

When 0 ≤ t ≤ C0
√
log d, we will first find the lower bound on λ = p

φ( t+ε
σj

)

t+ε
σj

, denoted by λ.

Then we haveH(λ) is bounded byH(λ) due to its monotonicity. Regarding λ, we denote x̄ :=

2C0
√
log d/σj and note φ(x)x is monotone decreasing when x ≥ 0. Then we have, when 0 ≤ t ≤

C0
√
log d,

p
φ( t+εσj )

t+ε
σj

≥ p
φ(x̄)

x̄
≥ p

da1
:= λ,

where a1 > 2. Therefore we obtain

H(λ) ≤ H(λ) = log

(
(1− λ

p )
p

1− (1− λ
p )

p
· λ
)∣∣∣∣∣

λ=λ

≤ log



 λ

1− (1− pλp + (p−1)p
2

λ2

p2 )





∣∣∣∣∣∣
λ=λ

≤ C ′,

(C.2.48)

where the second inequality holds due to the fact that (1− λ
p )

p ≤ 1, λp ∈ [0, 1] and Lemma C.2.11.
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The third inequality holds since λ = p
da1 ≤

1
da1−1 < 1

d , then we have



 λ

1− (1− pλp + (p−1)p
2

λ2

p2 )





∣∣∣∣∣∣
λ=λ

=
λ

λ− 2(p−1)
p λ2

≤ λ

λ− 2λ2
=

1

1− 2λ
≤ C ′

1,

for some constantC ′
1. Now we figure out the bound onΛ(t, ε, p),

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t− ε
σj

)

≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)
· e

tε
2σ2

j

≤ 2

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)

≤ 2eH(λ) · t+ ε

pσj
≤ C
√
log d

p
,

where the second inequality comes from rearranging, the third inequality holds since exp ( tε
2σ2

j
) <

2 for t ≤ C0
√
log d. This is because ε = c/max{(log d)3/2, p log d} for some small enough

constant c > 0. And the last line holds by (C.2.47) and (C.2.48). Therefore Lemma C.2.9 is estab-

lished.

Lemma C.2.10. Under the same conditions as Lemma C.2.9, we have

(1− 2Φ̄( t+εσj ))
p−1

1− (1− 2Φ̄( t
σj
))p

·
(
pφ
( t− ε
σj

))2
= O

(√
log d

)
. (C.2.49)
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Proof. Note that the result (C.2.46) in Lemma C.2.9 can be rewritten as

pΛ(t, ε, p) =
(1− 2Φ̄( t+εσj ))

p

1− (1− 2Φ̄( t
σj
))p

·
(
pφ
( t− ε
σj

))
= O

(√
log d

)
.

By similar derivations as in the proof of Lemma C.2.9, we can establish

(1− 2Φ̄( t+εσj ))
p−1

1− (1− 2Φ̄( t
σj
))p

·
(
pφ
( t− ε
σj

))2
= O

(√
log d

)
.

Lemma C.2.11. For x ∈ [0, 1], we have (1− x)p ≤ 1− px+ 0.5p(p− 1)x2.

Proof. When p = 1, the above simply holds. Now we consider the case where p > 1. LetQ(x) =

(1− x)p − (1− px+ 0.5p(p− 1)x2), we haveQ(0) = 0 and

Q′(x) = −p(1− x)(p−1) + p− p(p− 1)x ≤ −p(1− (p− 1)x) + p− p(p− 1)x = 0,(C.2.50)

where the inequality holds by applying Bernoulli’s inequality to (1− x)(p−1) for p > 1, x ∈ [0, 1].

Therefore,Q(x) is monotonically decreasing, and the statement is proved.

C.2.4 Ancillary lemmas for Theorem 3.3.2

Remark C.2.11.1. Recall that the connectivity assumption of Theorem 3.3.2 assumes that there exists

a disjoint p-partition of nodes ∪p#=1C# = [d] such that σUjk = σVjk = 0 when j ∈ C# and k ∈ C#′

for some $ += $′. The more general version of the variance condition assumes: a0 ≤ σUjj = σVjj ≤

a1, ∀j ∈ [d]; given any j ∈ CU
# with some $, there exists at least onem ∈ CU

#′ such that σUjj = σUmm

for any $′ += $. Denote σ̃Ujk = σUjk/
√
σUjjσ

U
kk . And the general covariance condition says that there
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exists some σ0 < 1 such that |σ̃Vjk| = |σVjk|/
√
σVjjσ

V
kk ≤ σ0 for any j += k and |{(j, k) : j +=

k, |σ̃Ujk| = |σUjk|/
√
σUjjσ

U
kk > σ0}| ≤ b0 for some constant b0.

Lemma C.2.12. For the term II1 = E
[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]

withE1 defined in (C.2.20) and ε = c/max{(log d)3/2, p log d} for some small enough constant

c > 0, whenever t satisfies 0 ≤ t ≤ C0
√
log d for some constantC0 > 0, we have

II1
P(||V ||∞ > t)

≤ C ′ε log d

βp

(
1 +

b0√
1− (s+ (1− s)σ0)2

)
. (C.2.51)

for any s ∈ (0, 1), where σ0 < 1 and b0 are the constants in the assumption of Theorem 3.3.2.

Remark C.2.12.1. Recall the definition ofZ = W (s). Hence the term II1 depends on s. In Lemma

C.2.5, we are able to derive a uniform upper bound when assuming the minimal eigenvalue condition

as in Theorem C.2.4. Since Theorem 3.3.2 does not make assumptions about the minimal eigenvalue

condition, we will bound the term II1 differently and the upper bound depend on s, as showed in the

following proof.

Proof of Lemma C.2.12. We basically use the same proof strategy as Lemma but will separately deal

with two cases. First recall that

II1 = E
[
e−β(||Z||∞−|Zj |) · 1(||Z||∞ > ||G||∞, ||Z||∞ > Zj) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
.

We defineZ† = (Zk)k∈E† where

E† = {j} ∪ EG ∪ {k ∈ [d] : |σ̃Ujk| ≤ σ0, max
m∈EG

{|σ̃Umk|} ≤ σ0}. (C.2.52)

Under the condition of Theorem 3.3.2, we have |[d] \ E†| ≤ |{(j, k) : j += k, |σ̃Ujk|} > σ0}| ≤ b0

for some constant b0. Note we can write 1 = 1(||Z†||∞ = ||Z||∞)+
∑

k∈[d]\E† 1(|Zk| = ||Z||∞).
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Then we have

II1
P(||V ||∞ > t)

≤ II†1
P(||V ||∞ > t)

+ b0 · max
k∈[d]\E†

II(k)1

P(||V ||∞ > t)
, (C.2.53)

where II†1 and II
(k)
1 are defined as

II†1 :=E
[
e−β(||Z

†||∞−|Zj |) · 1(||Z†||∞ > ||G||∞, ||Z†||∞ > Zj) · 1(t− ε ≤ ||Z†||∞ ≤ t+ ε)
]
,

II(k)1 :=E
[
e−β(|Zk|−|Zj |) · 1(|Zk| > ||G||∞, |Zk| > Zj) · 1(t− ε ≤ |Zk| ≤ t+ ε)

]
.

(C.2.54)

Denote the conditional density function of ||Z†||∞ | Zj = zj , G = g by f †
g,zj (u). Then we ap-

ply exactly the same derivations as in Lemma C.2.5 (except that f †
g,zj (u) is bounded using Lemma

C.2.13 instead of Lemma C.2.7) and obtain the following bound

II†1
P(||V ||∞ > t)

≤ C ′ε log d

βp
. (C.2.55)

Regarding the term II(k)1 , we follow the same derivations as in the beginning of the proof of Lemma

C.2.5. Specifically, we have

II(k)1 = E
[
e−β(|Zk|−|Zj |) · 1(|Zk| > ||G||∞, |Zk| > Zj) · 1(t− ε ≤ |Zk| ≤ t+ ε)

]

= E
[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
fZj (u)e

−βu1(u > ||G||∞, u > |Zj |)du
)]

,

(C.2.56)

where fZj ,G(u) denotes the conditional density ofZk givenZj , G. Recall the construction ofG

described in the proof of Theorem 3.3.2, we have for any k += j, k /∈ EG = {m ∈ [d] : Zm =

G# for some $ ∈ [p]}, there exists at most onem ∈ {j} ∪ EG, such thatZk andZm belong to
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the same component. Denote that random variable byZm0 , then fZj ,G(u) is just the conditional

density function ofZk givenZm0 . SinceZ follows a multivariate Gaussian distribution, we can im-

mediately figure out the expression of the conditional density fZm0
(u) and simply derive a bound

fZj ,G(u) = fZm0
(u) ≤ 1√

2πVar (Zk |Zm0)

=
1√

2π(σkk − σ2km0
/σm0m0))

=
1√

2πσkk
· 1

1− σ2km0
/(σkkσm0m0)

≤ 1√
2πa0

· 1

1− σ2km0
/(σkkσm0m0)

, (C.2.57)

where σkk = Var (Zk) ,σm0m0 = Var (Zm0) ,σkm0 = Cov (Zk, Zm0) and we use the fact

that σkk = Var (Zk) = σUkk ≥ a0 (under the general variance assumption). NoteZ =
√
sU +

√
1− sV , then we have σ2km0

= (Cov (Zk, Zm0))
2 = (sσUkm0

+ (1 − s)σVkm0
)2 wherem0 ∈

{j} ∪ EG. Since |σ̃Ukm0
| ≤ 1 by definition and |σ̃Vkm0

| ≤ σ0 under the assumption of Theorem

3.3.2, we have

(sσUkm0
+(1−s)σVkm0

)2/(σkkσm0m0) = (sσ̃Ukm0
+(1−s)σ̃Vkm0

)2 ≤ (s+(1−s)σ0)2. (C.2.58)

Now we obtain a upper bound on the conditional density function fZj ,G(u) based on (C.2.57)

and (C.2.58). Combining this bound and following the same derivations as in Lemma C.2.5 to deal

with the term in (C.2.56), we establish the upper bound on the term II(k)1 /P(||V ||∞ > t) for any

k ∈ [d] \ E†,
II(k)1

P(||V ||∞ > t)
≤ C ′ε log d

βp
· 1√

1− (s+ (1− s)σ0)2
. (C.2.59)

Combining (C.2.53), (C.2.54),(C.2.55) with (C.2.59), we derive the bound in (C.2.51).
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Lemma C.2.13. Recall that the density function of the conditional distribution of ||Z†||∞ | {Zj =

zj , G = g} is denoted by f †
g,zj (z) whereZ† is defined in .... Suppose ε > 0, when 0 ≤ t ≤ C0

√
log d

for some constantC0 > 0 and |zj |, ||g||∞ ≤ t+ ε, we have

f †
g,zj (z) ≤ C

√
log d, ∀ z ∈ (max{|zj |, ||g||∞}, t+ ε]. (C.2.60)

where the finite constantC depends on a0 and σ0 < 1.

Proof of Lemma C.2.13. Following exactly the same derivations as in Lemma C.2.7 (up to (C.2.45)),

we have

f †
g,zj (z) ≤

6

σ·j

(
2ρ̄j(1 + c0) + 1

σ·j
C1

√
log d+ C2

√
log d

)
, (C.2.61)

for any z ∈ (max{|zj |, ||g||∞}, t + ε], whereC1, C2 are some constants. First, ρ̄j is defined in

(C.2.37). Simply, we have

ρ̄j ≤ max
k .=j

|σjk|
σjj

≤
maxj σUjj
minj σUjj

≤ a1
a0

under the general variance assumption. Recall the construction ofG described in the proof of The-

orem 3.3.2, we have for any k += j, k /∈ EG = {m ∈ [d] : Zm = G# for some $ ∈ [p]}, there is at

most onem ∈ EG, such thatZk andZm belong to the same component. Then we have

∑

m∈EG

1(σkm += 0) ≤ 1,

hence c0 = 1 by definition. Also note by the definition ofZ† and E† in (C.2.52), for any k ∈

E†, k += j, k += EG, we have

max{|σ̃Ujk|, |σ̃Vjk|}} ≤ σ0, max
m∈EG

{|σ̃Umk|, |σ̃Vmk|} ≤ σ0 (C.2.62)

under the assumption of Theorem 3.3.2. We will take advantage of this together with the above
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property ofG to derive a bound on σ·j . Similarly as in (C.2.37), we have σ2·j := mink∈EX Var (Zk |Zj , G)

with EX := {k ∈ E† : k += j, k /∈ EG}. For each k ∈ EX , we have it can at most belong to the

same component as one of {j} ∪ EG, due to the property ofG. Then we have

Var (Zk |Zj , G) ≥ min{Var (Zk |Zj) , min
m∈EG

{Var (Zk |Zm)}}

= σkk ·min{1− σ2jk/(σjjσkk), min
m∈EG

{1− σ2mk/(σmmσkk)}}

≥ a0 ·min{1− σ2jk/(σjjσkk), min
m∈EG

{1− σ2mk/(σmmσkk)}}. (C.2.63)

since (Zj , G) are all independent and σkk = Var (Zk) = σUkk ≥ a0 (under the general variance

assumption). Recall the definition ofZ =
√
sU +

√
1− sV , we have

|σmk|/
√
σmmσkk = |Cov (Zk, Zm) |/√σmmσkk = |sσ̃Umk + (1− s)σ̃Vmk| ≤ σ0, ∀ s ∈ [0, 1],

(C.2.64)

whenm ∈ {j} ∪ EG. This is due to (C.2.62). Then we can derive a bound on 1/σ2·j , i.e.,

1

σ2·j
=

1

mink∈EX Var (Zk |Zj , G)

≤ 1

a0mink∈EX min{1− σ2jk/(σjjσkk),minm∈EG{1− σ2mk/(σmmσkk)}}

≤ 1

a0(1− σ20)
,

where the first inequality holds by (C.2.63) and the second equality holds by (C.2.64). Combining

the above bound with (C.2.61), we finally establish (C.2.60) for some finite constantC .

325



C.3 Ancillary propositions for FDR control

Throughout this section, we introduce some new notations. For a given mean zero random vector

Y ∈ Rd with positive semi-definite covariance matrixΣY := E
[
Y Y )] ∈ Rd×d, we denote its

Gaussian counterpart byZ ∈ Rd (i.e.,E [Z] = 0 and its covariance matrix E
[
ZZ)] := ΣZ

equalsΣY = (σYjk)1≤j,k≤d ). Consider n i.i.d. copies ofY , denoted byY1, · · · ,Yn ∈ Rd. We

define the maximum TY and TZ as below,

TY :=

∥∥∥∥∥
1√
n

n∑

i=1

Yi

∥∥∥∥∥
∞

, TZ := ||Z||∞, (C.3.1)

where q(α;TY ) and q(α;TZ) (α ∈ [0, 1]) are the corresponding upper quantile functions. Define

the Gaussian multiplier bootstrap counterpart as

TW :=

∥∥∥∥∥
1√
n

n∑

i=1

Yiξi

∥∥∥∥∥
∞

, (C.3.2)

where ξi
i.i.d.∼ N (0, 1) and are independent fromY1, · · · ,Yn. Let qξ(α;TW ) be the conditional

quantile of TW , then we have Pξ (TW ≥ qξ(α;TW )) = α. Note that we use the ξ subscript to

remind ourselves that the probability measure is induced by the multiplier random variables {ξi}ni=1

conditional on {Yi}ni=1. And we have the covariance matrix of 1√
n

∑n
i=1 Yiξi (conditional on

{Yi}ni=1) equalsΣW := 1
n

∑n
i=1 YiY )

i . Denote∆∞ = ||ΣZ − ΣW ||∞, which measures the

maximal differences between the true covariance matrixΣZ and the sample versionΣW .

C.3.1 Cramér-type deviation bounds for the Gaussian multiplier bootstrap

Based on the Cramér-type Gaussian comparison bound in Theorem 3.3.1, the Cramér-type ap-

proximation bound (Kuchibhotla et al., 2021), the maximal inequalities and a careful treatment to
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the comparison of quantiles, we will establish the Cramér-type deviation bounds for the Gaussian

multiplier bootstrap (CGMB) in this section.

Proposition C.3.1 (CGMB). Assuming the covariance matrixΣY satisfies 0 < c1 ≤ σYjj ≤ c2 <

∞, for any j ∈ [d] andY satisfies the tail condition thatmax1≤i≤nmax1≤j≤p ||Yij ||ψ1 ≤ K3 for

some constants c1, c2,K3, under the scaling condition (log ed)3(log(ed + n))56/3/n = o(1), we

have the following bound,

sup
α∈[αL,1]

∣∣∣∣
P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)11/6

n1/6α1/3
L

+
(log d)19/6

n1/6

)
, (C.3.3)

where αL satisfies q(αL;TZ) = O
(√

log d
)
and log11 d

nαL
= O(1).

The proof can be found in Appendix C.3.2. In practice, there are many situations where the

relevant statistics come from the maxima of approximated averages. In particular, the test statis-

tics in our node selection problem can not be directly expressed as maxima of scaled averages, but

can be approximated by a TY -like term with the approximation error suitably controlled. There-

fore, we also prove an extended version of Proposition C.3.1. Suppose the statistics of interest and

its Gaussian multiplier bootstrap counterpart, denoted by T and TB respectively, can be approxi-

mated by TY (defined in (C.3.1)) and TW (defined in (C.3.2)). The quantile functions q(α;T ) and

qξ(α;TB) are defined correspondingly.

Proposition C.3.2 (CGMBwith approximation). Under the same conditions as in Proposition C.3.1

and the additional assumption about the differences between the maximum statistics:

P(|T − TY | > ζ1) < ζ2, (C.3.4)

P(Pξ(|TB − TW | > ζ1) > ζ2) < ζ2, (C.3.5)

where ζ1, ζ2 ≥ 0 characterize the approximation error and satisfy ζ1 log d = O(1), ζ2 = O(αL), we
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have the following Cramér-type deviation bound

sup
α∈[αL,1]

∣∣∣∣
P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = η(d, n, ζ1, ζ2,αL), (C.3.6)

where η(d, n, ζ1, ζ2,αL) = O

(
(log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ ζ1 log d+
ζ2
αL

)
.

C.3.2 Proof of Proposition C.3.1

Before proving Proposition C.3.1, we present Lemma C.3.3. It bounds the conditional quantile

qξ(α;TW ) in terms of the quantile q(α;TZ) of the Gaussian maxima TZ when the maximal co-

variance matrix differences are controlled. In the proof of Lemma C.3.3, we apply the Cramér-type

comparison bound (3.3.1), which is establised in Theorem 3.3.1. To simplify the notation, we de-

note the boundC1(log d)5/2∆
1/2
∞ in (3.3.1) by π(∆∞), where the constantC1 only depends on

min1≤j≤d{σUjj ,σVjj},max1≤j≤d{σUjj ,σVjj}.

Lemma C.3.3. Suppose δ satisfies (log d)5δ = O(1). On the event {∆∞ ≤ δ}, we have

qξ(α;TW ) ≥ q
( α

1− π(δ) ;TZ

)
, (C.3.7)

qξ(α;TW ) ≤ q
( α

1 + π(δ)
;TZ

)
. (C.3.8)

Proof of Lemma C.3.3. On the event {∆∞ ≤ δ}, we have (log d)5∆∞ ≤ (log d)5δ = O(1), then

by applying Theorem 3.3.1 toZ andW , we obtain the following,

sup
0≤t≤C0

√
log d

∣∣∣∣
Pξ(TW > t)

P(TZ > t)
− 1

∣∣∣∣ ≤ π(δ).
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Therefore we have

Pξ
(
TW ≥ q

( α

1− π(δ) ;TZ

))
≥ P

(
TZ ≥ q

( α

1− π(δ) ;TZ

))
· (1− π(δ)) = α,

when t satisfies 0 ≤ t ≤ C0
√
log d. Then qξ(α;TW ) ≥ q

(
α

1−π(δ) ;TZ

)
immediately follows, i.e.,

(C.3.7) holds. Similarly, on the event {∆∞ ≤ δ}, we have

Pξ
(
TW ≥ q

( α

1 + π(δ)
;TZ

))
≤ P

(
TZ ≥ q

( α

1 + π(δ)
;TZ

))
· (1 + π(δ)) = α.

Thus qξ(α;TW ) ≤ q
(

α
1+π(δ) ;TZ

)
, i.e., (C.3.8) holds.

Proof of Proposition C.3.1. By the triangle inequality, we have

∣∣∣∣
P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤
∣∣∣∣
P(TY > q(α;TZ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣
︸ ︷︷ ︸

I

+
|P(TY > qξ(α;TW ))− P(TY > q(α;TZ))|

P(TZ > q(α;TZ))︸ ︷︷ ︸
II

.

(C.3.9)

Regarding the first term I, we will directly apply Corollary 5.1 in Kuchibhotla et al. (2021). Specif-

ically, we verify the tail assumption onY and the condition on the quantile that q(α;TZ) ≤

q(αL;TZ) = O
(√

log d
)
when α ∈ [αL, 1]. Then we obtain the following bound

I =

∣∣∣∣
P(TY > q(α;TZ))

P (TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)19/6

n1/6

)
. (C.3.10)
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Regarding the second term II, we write it as

II =
1

α
|P(TY > qξ(α;TW ))− P(TY > q(α;TZ))|

≤ 1

α
P({TY > qξ(α;TW )}3 {TY > q(α;TZ)})

=
1

α

(
P(TY > qξ(α;TW ), TY ≤ q(α;TZ)) + P(TY ≤ qξ(α;TW ), TY > q(α;TZ))

)

≤ 1

α
P(TY > qξ(α;TW ), TY ≤ q(α;TZ),∆∞ ≤ δ)

+
1

α
P(TY ≤ qξ(α;TW ), TY > q(α;TZ),∆∞ ≤ δ) +

2P (∆∞ > δ)

α
,

where the first inequality holds by the definition of the symmetric difference; recall the symmetric

difference betweenA andB is defined asA 3 B = (A \ B) ∪ (B \ A)). Remark that we will

give the explicit choice of δ later in the proof. Now we apply Lemma C.3.3 (whose condition will be

verified in (C.3.16)) and further bound II as,

II ≤ 1

α

(
P
(
TY ≥ q

( α

1− π(δ) ;TZ
)
, TY ≤ q(α;TZ)

)

+ P(TY ≤ q
( α

1 + π(δ)
;TZ

)
, TY > q(α;TZ))

)
+

2P (∆∞ > δ)

α

=
1

α
P
(
q
( α

1− π(δ) ;TZ
)
≤ TY ≤ q

( α

1 + π(δ)
;TZ

))
+

2P (∆∞ > δ)

α
(C.3.11)

≤ 1

α
P
(
q
( α

1− π(δ) ;TZ
)
≤ TZ ≤ q

( α

1 + π(δ)
;TZ

))
+

2P (∆∞ > δ)

α
+ III

=
2π(δ)

1− π2(δ) +
2P (∆∞ > δ)

α
+ III, (C.3.12)

where the term III in the second inequality is defined as,

III :=
1

α

∣∣∣∣P
(
q
( α

1− π(δ) ;TZ
)
≤ TY ≤ q

( α

1 + π(δ)
;TZ

))
− P

(
q
( α

1− π(δ) ;TZ
)
≤ TZ ≤ q

( α

1 + π(δ)
;TZ

))∣∣∣∣ .
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Below we further rewrite III as

III =
1

α

∣∣∣∣
α

1− π(δ) · III1 −
α

1 + π(δ)
· III2

∣∣∣∣ ,

with III1, III2 defined as

III1 =
P
(
TY > q

(
α

1−π(δ) ;TZ
))
− P

(
TZ > q

(
α

1−π(δ) ;TZ
))

P
(
TZ > q

(
α

1−π(δ) ;TZ
)) ,

III2 =
P
(
TY > q

(
α

1+π(δ) ;TZ
))
− P

(
TZ > q

(
α

1+π(δ) ;TZ
))

P
(
TZ > q

(
α

1+π(δ) ;TZ
)) .

Thus by applying Corollary 5.1 of Kuchibhotla et al. (2021) to III1, III2 similarly as in (C.3.10), we

have the following bound on III,

III = O

(
(log d)19/6

n1/6

)
. (C.3.13)

Combining (C.3.12) and (C.3.13) yields the following bound,

II ≤ 1

α
P({TY > qξ(α;TW )}3 {TY > q(α;TZ)})

≤ C(log d)19/6

n1/6
+ C ′

0π(δ) +
C ′′ P (∆∞ > δ)

α

≤ C(log d)19/6

n1/6
+ C ′(log d)5/2δ1/2 +

C ′′ E [∆∞]

δα

= O

((
E [∆∞] log5 d

α

)1/3

+
(log d)19/6

n1/6

)
, (C.3.14)

where the second inequality holds due to the definition of π(δ) andMarkov’s inequality, the last

line holds by choosing δ to be (E [∆∞])2/3/(α1/3(log d)5/3). We will bound the term E [∆∞]

using Lemma C.1 in Chernozhukov et al. (2013). Specifically, under the stated tail assumption on
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Y , the condition (E.1) of Lemma C.1 in Chernozhukov et al. (2013) is satisfied; see Comment 2.2

in Chernozhukov et al. (2013). Thus we have

E [∆∞] ≤
√

B2
n log d

n
∨ B2

n(log(dn))
2(log d)

n
, (C.3.15)

whereBn equals some constantC which does not depend on n. As promised previously, we verify

the assumption of Lemma C.3.3 for our choice of δ. Specifically, for δ = (E [∆∞])2/3/(α1/3(log d)5/3),

we have (log d)5δ satisfies the following

(log d)5δ ≤ (log d)5(E [∆∞])2/3

α1/3
L (log d)5/3

=

(
log11 d

nαL

)1/3

= O(1), (C.3.16)

under the stated condition on αL. Finally, when α ∈ [αL, 1], we combine (C.3.9), (C.3.10),

(C.3.14) with (C.3.15), then establish (C.3.3), i.e.,

sup
α∈[αL,1]

∣∣∣∣
P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)11/6

n1/6α1/3
L

+
(log d)19/6

n1/6

)
.

C.3.3 Proof of Proposition C.3.2

Before proving Proposition C.3.2, we need to present a simple lemma. It translates the approxi-

mation error ζ1, ζ2 into the bounds on the quantiles. And its proof is quite straightforward thus

omitted.

Lemma C.3.4. Under the assumption in (C.3.5), we have, for α ∈ (0, 1),

P(qξ(α;TB) ≤ qξ(α+ ζ2;TW ) + ζ1) ≥ 1− ζ2,

P(qξ(α;TB) ≥ qξ(α− ζ2;TW )− ζ1) ≥ 1− ζ2.
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Proof of Proposition C.3.2. By the triangle inequality, we have

∣∣∣∣
P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤
∣∣∣∣
P(TY > q(α;TZ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣
︸ ︷︷ ︸

I

+
|P(T > qξ(α;TB))− P(TY > q(α;TZ))|

P(TZ > q(α;TZ))︸ ︷︷ ︸
II

.

(C.3.17)

Note that (C.3.10) in the proof of Proposition C.3.1 immediately gives the bound on I, i.e.,

I = O
((log d)19/6

n1/6

)
. (C.3.18)

Regarding the term II, we have

II =
1

α

∣∣P(T > qξ(α;T
B))− P(TY > q(α;TZ))

∣∣

≤ 1

α

∣∣P({T > qξ(α;T
B)}3 {TY > q(α;TZ)})

∣∣

=
1

α
P(T > qξ(α;T

B), TY ≤ q(α;TZ)) +
1

α
P(T ≤ qξ(α;T

B), TY > q(α;TZ)).(C.3.19)

To bound the two terms in (C.3.19), first notice that on the event |T − TY | > ζ1, we have

{T > qξ(α;T
B), TY ≤ q(α;TZ)} ⊂ {TY > qξ(α;T

B)− ζ1, TY ≤ q(α;TZ)}.

Then under the assumption in (C.3.4), i.e., P(|T − TY | > ζ1) < ζ2, we obtain

P(T > qξ(α;T
B), TY ≤ q(α;TZ)) ≤ P(TY > qξ(α;T

B)− ζ1, TY ≤ q(α;TZ)) + ζ2.
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Applying such strategies to the second term in (C.3.19) similarly, we get the following,

II ≤ II1 + II2 +
2ζ2
α

, where (C.3.20)

II1 :=
1

α
P(TY > qξ(α;T

B)− ζ1, TY ≤ q(α;TZ)),

II2 :=
1

α
P(TY ≤ qξ(α;T

B) + ζ2, TY > q(α;TZ)).

Under the assumption (C.3.5), by Lemma C.3.4, we have

P(qξ(α;TB) ≤ qξ(α+ ζ2;TW ) + ζ1) ≥ 1− ζ2,

P(qξ(α;TB) ≥ qξ(α− ζ2;TW )− ζ1) ≥ 1− ζ2.

Hence we can bound II1, II2 as below,

II1 ≤ 1

α
P (TY > qξ(α− ζ2;TW )− 2ζ1, TY ≤ q(α;TZ)) +

ζ2
α
,

II2 ≤ 1

α
P (TY ≤ qξ(α+ ζ2;TW ) + 2ζ1, TY > q(α;TZ)) +

ζ2
α
.

Nowwe will use the strategy of deriving (C.3.11) in the proof of Proposition C.3.1, i.e., apply

Lemma C.3.3, then we have,

II1 ≤ 1

α
P
(
TY > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1, TY ≤ q(α;TZ)

)
+

P (∆∞ > δ)

α
+
ζ2
α
,

II2 ≤ 1

α
P
(
TY ≤ q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1, TY > q(α;TZ)

)
+

P (∆∞ > δ)

α
+
ζ2
α
.

Combining the above two inequalities with (C.3.20), we have

II ≤ III +
2P (∆∞ > δ)

α
+

4ζ2
α

, (C.3.21)
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where III is defined as below,

III :=
1

α

∣∣∣∣P
(
TY > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TY > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)∣∣∣∣

=
1

α

∣∣∣P
(
TY > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)

− P
(
TY > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)
+ P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)

+ P
(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

) ∣∣∣

≤ III1 + III2 + III3.

The last line comes from the triangle inequality, with III1, III2, III3 defined as,

III1 :=
1

α

∣∣∣P
(
TY > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)
− P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)∣∣∣,

III2 :=
1

α

∣∣∣P
(
TY > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)∣∣∣,

III3 :=
1

α

∣∣∣P
(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)∣∣∣.

We first bound III3 by the triangle inequality,

III3 =
1

α

∣∣∣P
(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)∣∣∣

≤ 1

α

∣∣∣P
(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)
− α+ ζ2

1 + π(δ)

∣∣∣
︸ ︷︷ ︸

III31

+
1

α

∣∣∣P
(
TZ > q

( α− ζ2
1− π(δ) ;TZ

)
− 2ζ1

)
− α− ζ2

1− π(δ)

∣∣∣
︸ ︷︷ ︸

III32

+
1

α

∣∣∣
α− ζ2
1− π(δ) −

α+ ζ2
1 + π(δ)

∣∣∣
︸ ︷︷ ︸

III33

.
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Note that III31 can be rewritten as

III31 =
α+ ζ2

α(1 + π(δ))
·

∣∣∣P
(
TZ > q

( α+ζ2
1+π(δ) ;TZ

)
+ 2ζ1

)
− P

(
TZ > q

( α+ζ2
1+π(δ) ;TZ

)) ∣∣∣

P
(
TZ > q

( α+ζ2
1+π(δ) ;TZ

))

(C.3.22)

≤ α+ ζ2
α(1 + π(δ))

·K4ζ1
(
q
( α+ ζ2
1 + π(δ)

;TZ
)
+ ζ1

)
≤ Cζ1 log d, (C.3.23)

where the first inequality holds by applying a non-uniform anti-concentration bound. Specifically,

we apply the part 3 of Theorem 2.1 in Kuchibhotla et al. (2021) (with r − ε = q
( α+ζ2
1+π(δ) ;TZ

)
, r +

ε = q
( α+ζ2
1+π(δ) ;TZ

)
+ 2ζ1 ) to the Gaussian random vectorZ . Remark that the termK3 is a

constant only depending onmin1≤j≤d{σYjj},max1≤j≤d{σYjj} and the median of Gaussian max-

ima (up to 2-nd power, hence at most of rateO(log d)). As for the second inequality, under the

assumption ζ2 = O(αL), we have ζ2α ≤
ζ2
αL

= O(1)when α ∈ [αL, 1]; we also use the fact that

ζ1 = O(
√
log d) (which holds under the stated assumption), and q

( α+ζ2
1+π(δ) ;TZ

)
= O(

√
log d)

(which will be verified later in (C.3.27)). Thus we show III31 = O(ζ1 log d). Similarly, III32 can be

bounded asO(ζ1 log d). As for III33, we have

III33 =
1

α

∣∣∣
α− ζ2
1− π(δ) −

α+ ζ2
1 + π(δ)

∣∣∣ ≤
2π(δ)

1− π2(δ) +
2ζ2

α(1− π2(δ)) .

Thus by combining the bounds on III31, III32, III33, we obtain

III3 ≤ III31 + III32 + III33 ≤ C ′ζ1 log d+
2π(δ)

1− π2(δ) +
2ζ2

α(1− π2(δ)) . (C.3.24)
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Regarding the term III1, we first consider the following,

III11 :=
1

α
P
(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ
)
+ 2ζ1

)

≤ 1

α
P
(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ
))

·
(
1 +K4ζ1

(
q
( α+ ζ2
1 + π(δ)

;TZ
)
+ ζ1

))

=
α+ ζ2

α(1 + π(δ))
·
(
1 +K4ζ1

(
q
( α+ ζ2
1 + π(δ)

;TZ
)
+ ζ1

))

≤ C ′′ + Cζ1 log d = O(1),

where the first inequality holds due to the derivations from (C.3.22) to (C.3.23), the second in-

equality holds due to the last inequality in (C.3.23) and the stated assumption ζ2 = O(αL). Then

we bound III1 in terms of III11 and write

III1 =
1

α

∣∣∣P
(
TY > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)
− P

(
TZ > q

( α+ ζ2
1 + π(δ)

;TZ

)
+ 2ζ1

)∣∣∣

= III11 ·

∣∣∣∣∣
P
(
TY > q

(
α+ζ2
1+π(δ) ;TZ

)
+ 2ζ1

)
− P

(
TZ > q

(
α+ζ2
1+π(δ) ;TZ

)
+ 2ζ1

)

P
(
TZ > q

(
α+ζ2
1+π(δ) ;TZ

)
+ 2ζ1

)
∣∣∣∣∣

≤ III11 ·
(log d)19/6

n1/6
= O

((log d)19/6

n1/6

)
,

where the inequality holds by applying Corollary 5.1 in Kuchibhotla et al. (2021) again to TY as the

derivations of (C.3.10) in the proof of Proposition C.3.1. The term III2 can be similarly bounded

as III1. Combining the above bounds on III1, III2 and (C.3.24) yields the following bound on III,

III ≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

2π(δ)

1− π2(δ) +
2ζ2

α(1− π2(δ)) . (C.3.25)
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By (C.3.17), (C.3.18), (C.3.21) and (C.3.25), we have, when α ∈ [αL, 1],

∣∣∣∣
P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ I + II ≤ I + III +
2P (∆∞ > δ)

α
+

4ζ2
α

≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

C ′′ζ2
α

+
2π(δ)

1− π2(δ) +
2P (∆∞ > δ)

α

≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

C ′′ζ2
α

+
C(log d)11/6

n1/6α1/3
L

= O

(
(log d)19/6

n1/6
+

(log d)11/6

n1/6α1/3
L

+ ζ1 log d+
ζ2
αL

)
. (C.3.26)

where the third line holds due to the derivations between (C.3.13) and (C.3.16) in the proof of

Proposition C.3.1. Remark by the choice of δ and (C.3.16), we have π(δ) = O(1). Also note that

ζ2 = O(αL), hence we can show

q
( α+ ζ2
1 + π(δ)

;TZ
)
= O(

√
log d). (C.3.27)

when α ∈ [αL, 1]. Hence we are able to verify q
( α+ζ2
1+π(δ) ;TZ

)
= O(

√
log d), as promised when de-

riving (C.3.23). Denoting the bound in (C.3.26) by η(d, n, ζ1, ζ2,αL), we finally establish (C.3.6),

i.e.,

sup
α∈[αL,1]

∣∣∣∣
P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = η(d, n, ζ1, ζ2,αL).

C.4 Validity and power analysis of single node testing

In this section, we focus on Lemma C.1.1 and Lemma C.3.4. Note that these results are established

using the same strategies as Theorem 4.1, Lemma S.1 and Theorem S.7 in Lu et al. (2017). We still

present their proofs for completeness.
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C.4.1 Proof of Lemma C.1.1

Proof. For given node j, we denoteN0j = {(j, k) : Θjk = 0}, thenN c
0j = {(j, k) : |Θjk| > 0}.

First we consider the following event,

E =
{

min
e∈Nc

0j

√
n|Θ̃d

e| > ĉ(α, E0)
}
, whereE0 = {(j, k) : k += j, k ∈ [d]}.

By the definition of Algorithm 7, we immediately have the rejected edge set in the first iteration can

be written as

E1 = {(j, k) ∈ E0 :
√
n|Θ̃d

jk| > ĉ(α, E0)}.

Regarding (i) i.e., under the alternative hypothesisH1j : ‖Θj,−j‖0 ≥ kτ , we first note ψj,α = 1 on

the event E . Also notice thatN c
0j ⊆ E1 given E . Then the following bound immediately follows:

P (ψj,α = 1) ≥ P (E) . (C.4.1)

We further derive a lower bound for P (E) by the triangle inequality:

P (E) ≥ P
(

min
e∈Nc

0j

|Θ!
e| >

ĉ(α, E0)√
n

+ C0

√
log d

n
and ||Θ̃d −Θ!||max ≤ C0

√
log d

n

)
.

(C.4.2)

For any fixed α ∈ (0, 1), we consider sufficiently large d such that 1/d ≤ α. By applying Lemma

C.4.1, we have

P
(
Pξ(TB

E0
≥ C0

√
log d | {Xi}ni=1) ≤ 1/d

)
≥ 1− 1/d2, (C.4.3)
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whereE0 = {(j, k) : k += j, k ∈ [d]}. Recall the definition of ĉ(α, E)

ĉ(α, E) = inf
{
t ∈ R : Pξ

(
TB
E ≤ t

)
≥ 1− α

}
.

We then have ĉ(α, E0) ≤ C0
√
log d for some constantC0 > 0, with probability greater than

1 − 1/d2. Choosing the constant in the signal strength condition of Lemma C.1.1 to be 2C0 (i.e.,

for any (j, k) ∈ N c
0j , |Θjk| ≥ 2C0

√
log d/n) and applying (C.4.37), we have with probability

greater than 1− 1/d2

min
e∈Nc

0j

|Θ!
e| ≥ 2C0

√
log d

n
≥ ĉ(α, E0)√

n
+ C0

√
log d

n
and

P
(
||Θ̃d −Θ!||max ≤ C0

√
log d

n

)
≥ 1− 2/d2.

Combining the above two inequalities with the earlier bounds (C.4.1) and (C.4.2), we obtain a

lower bound for P (ψj,α = 1) i.e., P (ψj,α = 1) ≥ P (E) > 1− 3/d2. Therefore, we establish

lim
(n,d)→∞

P (ψj,α = 1) = 1.

Nowwe consider (ii), i.e., the case when ‖Θj,−j‖0 < kτ . Since ‖Θj,−j‖0 ≤ kτ − 1, ψj,α = 1

implies at least one edge inN0j is rejected in Algorithm 7. Suppose the first rejected edge inN0j is

(j, k∗) and it is rejected at the t∗-th iteration. Then we haveN0j ⊆ Et∗−1 and

max
e∈N0j

√
n|Θ̃d

e −Θ!
e| ≥

√
n|Θ̃d

jk∗ −Θ!
jk∗ | ≥ ĉ(α, Et∗−1) ≥ ĉ(α, N0j), (C.4.4)

where the first inequality holds since (j, k∗) ⊂ N0j , the second inequality holds sinceΘ!
jk∗

= 0

and the edge (j, k∗) is rejected at the t∗-th iteration. The last inequality holds simply becauseN0j ⊆
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Et∗−1. Therefore by applying Lemma 3.2.1 withE chosen to beN0j , we have

lim
(n,d)→∞

P (ψj,α = 1) ≤ α.

Lemma C.4.1. Under the same conditions as Lemma 3.2.1, we have for any j ∈ [d],

P
(
Pξ(TB

E0j
≥ C0

√
log d | {Xi}ni=1) ≤ 1/d

)
≥ 1− 1/d2 (C.4.5)

holds for some constantC0 > 0, whereE0j := {(j, k) : k += j, k ∈ [d]}.

Proof of Lemma C.4.1. Recall the definition of TB
E

TB
E := max

(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
ξi

∣∣∣∣.

First we notice the following,

Pξ
(
TB
E0j
≥ C0

√
log d | {Xi}ni=1

)

= Pξ
(

max
(j,k)∈E0j

1√
n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
ξi

∣∣∣∣ ≥ C0

√
log d | {Xi}ni=1

)

≤
∑

(j,k)∈E0j

Pξ
( 1√

n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
ξi

∣∣∣∣ ≥ C0

√
log d | {Xi}ni=1

)
.

(C.4.6)

where the equality holds by the definition of TB
E0j

and the inequality holds by the union bound. In

the following, we will bound (C.4.6) for each (j, k) ∈ E0j . Note that conditioning on {Xi}ni=1,
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the following random variable is a mean zero Gaussian random variable

Gjk :=
1√

n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
ξi.

Hence we will bound its conditional variance then apply the sub-Gaussian tail probability bound

(in Section 2.1.2 of Wainwright (2019)). Specifically, we have with probability greater than 1−1/d2,

Var(Gjk | {Xi}ni=1) =

∑n
i=1

[
Θ̂)

j (XiX)
i Θ̂k − ek)

]2

n Θ̂jjΘ̂kk

=

∑n
i=1

[
Θ̂)

j (XiX)
i Θ̂k − ek)

]2

nΘjjΘkk

(
ΘjjΘkk − Θ̂jjΘ̂kk

Θ̂jjΘ̂kk

+ 1

)

≤C ′
∑n

i=1

[
Θ̂)

j (XiX)
i Θ̂k − ek)

]2

nΘjjΘkk

≤ 2C ′
n∑

i=1

[
Θ)

j (XiX)
i Θk − ek)

]2
+
[
Θ̂)

j (XiX)
i Θ̂k − ek)−Θ)

j (XiX)
i Θk − ek)

]2

nΘjjΘkk

≤ 2C ′

ΘjjΘkk

([
M2max

i
‖XiX

)
i −Σ‖max

]2
+
[
2M‖Θ̂−Θ‖1max

i
‖XiX

)
i −Σ‖max

]2)

(C.4.7)

≤ 2C ′

ΘjjΘkk

[(
CM2

√
log(dn)

)2
+
(
2MC log(dn)

√
s2 log d

n

)2]

(C.4.8)

≤ 2C ′r20

[(
CM2

√
log(dn)

)2
+
(
2MC log(dn)

√
s2 log d

n

)2]

≤C ′′log d

for some constantC ′′ > 0, where the first inequality holds by (C.4.30) and the fact min
(j,k)∈E

√
ΘjjΘkk ≥

λmin(Θ) ≥ 1/r0 (asΘ ∈ U(M, s, r0)), the second inequality holds by the triangle inequality,

(C.4.7) and (C.4.8) holds due to (C.4.31), (C.4.32), (C.4.33) and (C.4.11), and the last two inequal-
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ities hold due to the fact min
(j,k)∈E

√
ΘjjΘkk ≥ 1/r0 and the conditions of Lemma 3.2.1. Therefore,

we have with probability greater than 1− 1/d2,

Pξ
(
Gjk ≥ C0

√
log d | {Xi}ni=1

)
≤ 1

d2

for some constantC0 > 0 by the sub-Gaussian tail probability bound (in Section 2.1.2 of Wain-

wright (2019)). Combining the above bound with (C.4.6), we have

P
(
Pξ
(
TB
E0j
≥ C0

√
log d | {Xi}ni=1

)
≤ d · 1

d2

)
≥ 1− 1/d2

since |E0j | ≤ d. The above derivations hold for any j ∈ [d], thus (C.4.5) is established.

C.4.2 Proof of Lemma 3.2.1

We first recall the definition of U(M, s, r0) and write down the statement of Lemma 3.2.1 below.

U(M, s, r0) =
{
Θ ∈ Rd×d

∣∣λmin(Θ) ≥ 1/r0,λmax(Θ) ≤ r0,max
j∈[d]
‖Θj‖0 ≤ s, ‖Θ‖1 ≤M

}
.

(C.4.9)

Lemma C.4.2. Suppose thatΘ ∈ U(M, s, r0). If (log(dn))7/n+ s2(log dn)4/n = o(1), for any

edge setE ⊆ V × V , we have for any α ∈ [0, 1],

lim
(n,d)→∞

sup
Θ∈U(M,s,r0)

sup
α∈(0,1)

∣∣∣∣P
(
max
e∈E

√
n|Θ̃d

e −Θ!
e| > ĉ(α, E)

)
− α

∣∣∣∣ = 0. (C.4.10)

Throughout the following parts, we will write the standardized one-step estimator explicitly:

Θ̂d
jk/
√
Θ̂d

jjΘ̂
d
kk, where Θ̂d

jk := Θ̂jk −
Θ̂)

j

(
Σ̂Θ̂k − ek

)

Θ̂)
j Σ̂j

.
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In order to prove (C.4.10), we need preliminary results on the estimation rates of CLIME estima-

tor. Cai et al. (2011) gives the following theorem. We can also prove the same result for the GLasso

estimator (Janková & van de Geer, 2018). Therefore, Lemma C.4.2 applies for both the CLIME

estimator and the GLasso estimator. This also implies that the results in our paper apply to both the

CLIME estimator and the GLasso estimator.

Lemma C.4.3. SupposeΘ ∈ U(M, s, r0) and we choose the tuning parameter λ ≥ CM
√

log d/n

in the CLIME estimator. With probability greater than 1− c/d2, we have the following bounds:

||Σ̂−Σ||max ≤ C

√
log d

n
, ||Θ̂Σ̂− I||max ≤ CM

√
log d

n
, and

||Θ̂−Θ||max ≤ CM

√
log d

n
, ||Θ̂−Θ||1 ≤ CM

√
s2 log d

n
,

(C.4.11)

whereC is a universal constant only depending on r0 in (C.4.9).

Remark C.4.3.1. Note the first inequality in (C.4.11) directly follows from Equation (26) in Cai

et al. (2011), the second inequality follows from the constraint in the CLIME estimator and the third

inequality holds due to Theorem 6 in Cai et al. (2011).

Given a random variableZ , we define its ψ#-norm for $ ≥ 1 as ‖Z‖ψ'
= supp≥1 p

−1/#(E|Z|p)1/p.

The following lemma controls the ψ#-norm ofX and gives the lower bound of the variance of the

debiased estimator.

Lemma C.4.4. There exist universal constants c andC only depending on r0 in (C.4.9) such that

sup
‖v‖2=1

‖v)Σ−1/2X‖ψ2 ≤ C and min
j,k∈[d]

E[(Θ)
j (XX) −Σ)Θk)

2] ≥ c. (C.4.12)

Proof. The first inequality in (C.4.12) immediately follows since v)Σ−1/2X ∼ N(0, 1) for

any ‖v‖2 = 1. Regarding the second inequality, note that E[(Θ)
j (XX) − Σ)Θk)2] =
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Var
(
Θ)

j XX)Θk

)
. Below we calculate the expression of the general formVar

(
u)XX)v

)
.

Specifically, we apply Isserlis’ theorem (Isserlis, 1918) to deal with the moments of Gaussian ran-

dom variables. For any deterministic vectors u,v ∈ Rd, Isserlis’ theorem says

Var(u)XX)v) = E[(u)X)2(v)X)2]− (E[u)Xv)X])2

= E[(u)X)2]E[(v)X)2] + (E[u)Xv)X])2

= (u)Σu))(v)Σv)) + (u)Σv))2.

Therefore, we obtain the following,

E[(Θ)
j (XX)−Σ)Θk)

2] = (Θ)
j ΣΘ)

j )(Θ
)
k ΣΘ)

k )+(Θ)
j ΣΘ)

k )
2 = ΘjjΘkk+Θ2

jk ≥ 1/r20,

where the last inequality holds since λmin(Θ) ≥ 1/r0 whenΘ ∈ U(M, s, r0).

Now we are ready to prove Lemma 3.2.1. Note the proof of this lemma follows a similar idea as

the one used in Proposition 3.1 of Neykov et al. (2019). Since Lemma 3.2.1 involves the standard-

ized version of the one-step estimator in Neykov et al. (2019), we still present the detailed proof for

completeness.

Proof of Lemma 3.2.1. To approximate

TE := max
(j,k)∈E

√
n

∣∣∣∣(Θ̂
d
jk/
√
Θ̂d

jjΘ̂
d
kk −Θjk/

√
ΘjjΘjk)

∣∣∣∣ , (C.4.13)

by the multiplier bootstrap process

TB
E := max

(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣
n∑

i=1

Θ̂)
j (XiX

)
i Θ̂k − ek)ξi

∣∣∣∣, (C.4.14)
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we define two intermediate processes

T̆E := max
(j,k)∈E

∣∣∣∣
1√

nΘjjΘkk

n∑

i=1

Θ)
j (XiX

)
i Θk − ek)

∣∣∣∣, (C.4.15)

T̆B
E := max

(j,k)∈E

∣∣∣∣
1√

nΘjjΘkk

n∑

i=1

Θ)
j (XiX

)
i Θk − ek)ξi

∣∣∣∣. (C.4.16)

The strategy of proving this lemma is to verify the three conditions in Corollary 3.1 of Chernozhukov

et al. (2013):

(a) minj,k E[(Θ)
j (XX)Θk − ek))2] > c andmaxj,k∈[d] ||Θ)

j (XX)Θk − ek)||ψ1 ≤ C for

some positive constants c andC ;

(b) P(|TE − T̆E | > ζ1) < ζ2 holds for some ζ1, ζ2 > 0;

(c) And P(Pξ(|TB
E − T̆B

E | > ζ1 | {Xi}ni=1) > ζ2) < ζ2 holds for ζ1
√
log d+ ζ2 = o(1).

Notice that in Chernozhukov et al. (2013), the original conditions require the last scaling to be

ζ1
√
log d + ζ2 = o(n−c1) for some c1. This is because they pursue a stronger result that |P(TE >

ĉ(α, E)) − α| = O(n−c1). Since we do not emphasize on the polynomial decaying in our result,

we only require ζ1
√
log d+ ζ2 = o(1).

We start by checking the first condition (a). Lemma C.4.4 immediately implies the first part. By

the second condition in (C.4.12), we have ‖XjXk − E[XjXk]‖ψ1 ≤ C . By the definition of the

ψ-norms, we have

max
j,k∈[d]

‖Θ)
j (XiX

)
i Θk − ek)‖ψ1 ≤ r20‖(XjXk − E[XjXk])‖ψ1

≤ r20 sup
‖v‖2=1

‖v)XX)v − E[v)XX)v]‖ψ1 = O(1).

Regarding the condition (b), we check by bounding the difference |TE−T̆E |. Recall the one-step
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estimator

Θ̂d
jk = Θ̂jk −

Θ̂)
j

(
Σ̂Θ̂k − ek

)

Θ̂)
j Σ̂j

,

and plug it into TE . Then we have the following bound,

|TE − T̆E | =

∣∣∣∣∣∣
max

(j,k)∈E

√
n ·
∣∣∣∣

Θ̂d
jk√

Θ̂d
jjΘ̂

d
kk

−
Θjk√
ΘjjΘkk

∣∣∣∣− max
(j,k)∈E

√
n√

ΘjjΘkk

∣∣∣∣Θ
)
j (Σ̂Θk − ek)

∣∣∣∣

∣∣∣∣∣∣

≤ I1I2
min

(j,k)∈E

√
ΘjjΘkk

+
I3

min
(j,k)∈E

√
Θ̂d

jjΘ̂
d
kk

, (C.4.17)

where I1 = max
(j,k)∈E

|Θ̂d
jjΘ̂

d
kk −ΘjjΘkk|, I2 = max

(j,k)∈E
|
√
n ·Θ)

j

(
Σ̂Θk − ek

)
| and

I3 = max
(j,k)∈E

∣∣∣
√
n(Θ̂d

jk −Θjk)−
√
n ·Θ)

j

(
Σ̂Θk − ek

)∣∣∣.

Note I1 can be bounded using Lemma C.4.5, i.e.,

I1 = max
(j,k)∈E

|Θ̂d
jjΘ̂

d
kk −ΘjjΘkk| ≤ 2M

∥∥Θ̂d −Θ
∥∥
max
≤ CM2

√
log d

n
, (C.4.18)

with probability 1− 1/d2. As for the term I2, we have

I2 = max
(j,k)∈E

∣∣∣
√
nΘ)

j

(
Σ̂Θk − ek

∣∣∣ = max
(j,k)∈E

√
n
∣∣∣Θ)

j

(
Σ̂−Σ

)
Θk

∣∣∣

≤
√
nM2

∥∥Σ̂−Σ
∥∥
max
≤ CM2

√
log d. (C.4.19)

Denote Θ̆k = (Θ̂k1, . . . , Θ̂k(j−1),Θkj , Θ̂k(j+1), . . . , Θ̂kd)) ∈ Rd. To deal with the term I3, we

first rewrite the following

√
n(Θ̂d

jk −Θjk) = −
√
n ·

Θ̂)
j

(
Σ̂Θ̆k − ek

)

Θ̂)
j Σ̂j

, (C.4.20)
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then quantify
√
nΘ̂)

j

(
Σ̂Θ̆k − e)k

)
. Notice that

√
n · Θ̂)

j

(
Σ̂Θ̆k − e)k

)
=
√
n · Θ̂)

j

(
Σ̂Θk − e)k

)
︸ ︷︷ ︸

II1

+
√
n · Θ̂)

j Σ̂
(
Θ̆k −Θk

)
︸ ︷︷ ︸

II2

. (C.4.21)

Further we expand II1 as

II1 =
√
n ·Θ)

j

(
Σ̂Θk − ek

)
︸ ︷︷ ︸

II11

+
√
n ·
(
Θ̂)

j −Θ)
j

)(
Σ̂Θk − ek

)
︸ ︷︷ ︸

II12

, (C.4.22)

where II11 can be rewritten as II11 = 1√
n

∑n
i=1Θ

)
j (XiX)

i Θk − ek). We bound |II12| as

|II12| =
√
n ·
(
Θ̂j −Θj

))(
Σ̂−Σ

)
Θk ≤

√
n ·
∥∥Θ̂j −Θj

∥∥
1

∥∥Σ̂−Σ
∥∥
max
‖Θk‖1. (C.4.23)

According to Lemma C.4.3, (C.4.23) yields that

max
j,k∈[d]

|II12| ! M2 s log d√
n

, (C.4.24)

with probability 1 − 1/d2. By Hölder’s inequality and Lemma C.4.3, we finally obtain the bound

on II2:

max
j,k∈[d]

|II2| ≤
√
n · max

j,k∈[d]
‖Θ̂)

j Σ̂−j‖∞
∥∥Θ̂k −Θk

∥∥
1
! M2 s log d√

n
, (C.4.25)

with probability 1 − 1/d2. Therefore, we conclude that by (C.4.24) and (C.4.25), with probability

1− 1/d2, the following holds:

max
j,k∈[d]

√
n ·
∣∣∣Θ̂)

j

(
Σ̂Θ̆k − e)k

)
−Θ)

j

(
Σ̂Θk − e)k

)∣∣∣ ! M2 s log d√
n

. (C.4.26)
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Lemma C.4.3 also implies

max
j∈[d]

|Θ̂)
j Σ̂j − 1| ≤ max

j∈[d]
||Θ̂)

j Σ̂− ej ||∞ ! M

√
log d

n
. (C.4.27)

Combining (C.4.21), (C.4.22) with (C.4.26) and (C.4.27), for sufficiently large d, n, we have, with

probability 1− 1/d2, the following holds:

I3 ≤ max
(j,k)∈E

√
n
∣∣∣
Θ̂)

j

(
Σ̂Θ̆k − ek

)

Θ̂)
j Σ̂j

−Θ)
j

(
Σ̂Θk − ek

)∣∣∣

≤ max
(j,k)∈E

(
2
√
n|Θ̂)

j Σ̂j − 1| · |Θ)
j

(
Σ̂−Σ

)
Θk|

)
+ 2 max

(j,k)∈E
|Θ̂)

j

(
Σ̂Θ̆k − ek

)
−Θ)

j

(
Σ̂Θk − ek

)
|

≤ 2M
√
nmax

j∈[d]
|Θ̂)

j Σ̂j − 1| · ||Σ̂−Σ||max + 2 max
j,k∈[d]

(|I12|+ |I2|) ! M2 s log d√
n

,

(C.4.28)

where the second inequality uses |x/(1 + δ) − y| ≤ 2|yδ| + 2|x − y| for any |δ| < 1/2.

Therefore, combining (C.4.17), (C.4.18),(C.4.19) with (C.4.28) and the fact min
(j,k)∈E

√
ΘjjΘkk ≥

λmin(Θ) ≥ 1/r0 (asΘ ∈ U(M, s, r0)), we obtain the following:

P(|TE − T̆E | > ζ1) < ζ2, (C.4.29)

where ζ1 = s log d/
√
n and ζ2 = 1/d2; thus the condition (b) is verified. Also note that ζ1

√
log d+

ζ2 = s(log d)3/2/
√
n+ 1/d2 = o(1) holds under the stated scaling condition of Lemma 3.2.1.

Regarding the third condition (c), we bound the difference between TB
E and T̆B

E as

|TB
E−T̆B

E | ≤ max
(j,k)∈E

∣∣∣
1√
n

n∑

i=1

( Θ̂)
j√

Θ̂jjΘ̂kk

(
XiX

)
i Θ̂k−ek

)
−

Θ)
j√

ΘjjΘkk

(
XiX

)
i Θk−ek

))
ξi
∣∣∣

Conditioning on the data {Xi}ni=1, the right hand side of the above inequality is a suprema of a
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Gaussian process. Therefore, we need to bound the following conditional variance

max
(j,k)∈E

1

n

n∑

i=1

[ Θ̂)
j√

Θ̂jjΘ̂kk

(
XiX

)
i Θ̂k − ek

)
−

Θ)
j√

ΘjjΘkk

(
XiX

)
i Θk − ek

)]2

Note the summand (for each i) can be bounded by

2
III1III2

min
(j,k)∈E

ΘjjΘkk
+ 2

III3

min
(j,k)∈E

Θ̂jjΘ̂kk

where III1, III2 and III3 are defined and bounded as below:

III1 := max
(j,k)∈E

|Θ̂jjΘ̂kk −ΘjjΘkk|2 ≤
(
CM2

√
log d

n

)2

(C.4.30)

III2 := max
(j,k)∈E

[Θ)
j

(
XiX

)
i Θk − ek

)
]2 = max

(j,k)∈E
[Θ)

j

(
XiX

)
i −Σ

)
Θk]

2

≤
[
M2max

i
‖XiX

)
i −Σ‖max

]2
(C.4.31)

III3 = max
(j,k)∈E

∣∣∣Θ̂)
j

(
XiX

)
i Θ̂k − ek

)
−Θ)

j

(
XiX

)
i Θk − ek

)∣∣∣
2

!
[
2M‖Θ̂−Θ‖1max

i
‖XiX

)
i −Σ‖max

]2
. (C.4.32)

According to Lemma C.4.4, we have with probability 1− 1/d2,

max
i
‖XiX

)
i −Σ‖max ≤ C

√
log(dn). (C.4.33)

Therefore, the event

E =
{

max
(j,k)∈E

1

n

n∑

i=1

[ Θ̂)
j√

Θ̂jjΘ̂kk

(
XiX

)
i Θ̂k−ek

)
−

Θ)
j√

ΘjjΘkk

(
XiX

)
i Θk−ek

)]2
≤ CM2 (s log(dn))

2

n

}
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satisfies P(Ec) < 1/d2. Therefore, by the maximal inequality, under the event E , we have

E



 max
(j,k)∈E

1√
n

n∑

i=1

( Θ̂)
j√

Θ̂jjΘ̂kk

(
XiX

)
i Θ̂k − ek

)
−

Θ)
j√

ΘjjΘkk

(
XiX

)
i Θk − ek

))
ξi | {Xi}ni=1





! M2 (s log dn)
√
log d√

n
.

Applying Borell’s inequality, we have with probability 1− 1/d2,

P



 max
(j,k)∈E

1√
n

n∑

i=1



Θ̂)
j

(
XiX)

i Θ̂k − ek
)

√
Θ̂jjΘ̂kk

−
Θ)

j

(
XiX)

i Θk − ek
)

√
ΘjjΘkk



 ξi > C

√
s2 log4 dn

n
| {Xi}ni=1



 ≤ 1/d2.

This implies that

P
(
Pξ
(
|TB

E − T̆B
E | >

√
(s2 log4 dn)/n | {Xi}ni=1

)
> 1/d2

)
< 1/d2.

Nowwe can verify the condition (c) by showing

P(Pξ(|TB
E − T̆B

E | > ζ1 | {Xi}ni=1) > ζ2) < ζ2, (C.4.34)

where ζ1 = s(log d)2/
√
n, ζ2 = 1/d2 and the condition ζ1

√
log d + ζ2 = s(log d)3/2/

√
n +

1/d2 = o(1) holds under the stated scaling condition of Lemma 3.2.1. Therefore, by Corollary 3.1

of Chernozhukov et al. (2013), we have

lim
(n,d)→∞

|P(TE > ĉ(α, E))− α| = 0. (C.4.35)

And it holds for any edge setE, thus the proof is complete.
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Lemma C.4.5. Under the same conditions as Lemma 3.2.1, we have

P
(
max
j,k∈[d]

|Θ̂d
jk −Θjk| > C0

√
log d

n

)
<

2

d2
, (C.4.36)

for some constantC0 > 0.

Proof. By (C.4.20) and (C.4.28), we have with probability 1− 1/d2,

max
j,k∈[d]

|Θ̂d
jk −Θjk +Θ)

j

(
Σ̂Θk − ek

)
| ≤ C1

s log d

n
.

By Lemma C.4.4 and ‖Θ‖2 ≤ r0, we have ‖Θ)
j XX)Θk‖ψ1 ≤ C2r20 . Applying the maximal

inequality (Lemma 2.2.2 in Van Der Vaart &Wellner (1996)), we have for some constantC3 > 0

P
(
max
j,k∈[d]

|Θ)
j

(
Σ̂Θk − ek

)
| > C3r

2
0

√
log d

n

)

≤ P
(
max
j,k∈[d]

∣∣∣
1

n

n∑

i=1

(Θ)
j XiX

)
i Θk − E[Θ)

j XiX
)
i Θk)]

∣∣∣ > C3r
2
0

√
log d

n

)
≤ 1/d2.

WithC0 = C1+C3, (C.4.36) is proved. And it is not hard to show a similar result for the standard-

ized one-step estimator also holds, i.e.,

P
(
max
j,k∈[d]

|Θ̃d
jk −Θ!

jk| > C ′
0

√
log d

n

)
<

2

d2
(C.4.37)

for some constantC ′
0 > 0.
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hub random

scale−free knn

C.5 Tables and plots deferred from the main paper

C.5.1 Graph pattern demonstration

C.5.2 Tables of q d0
d

C.5.3 Supplementary FDP and Power plots
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$-0Ѵ; �ĺƐĹ q d0
d

d = 300 q = 0.1 q = 0.2
n 200 300 400 200 300 400

p = 20
hub 0.0930 0.0930 0.0930 0.1870 0.1870 0.1870

random 0.0620 0.0610 0.0600 0.1230 0.1220 0.1200
scale-free 0.0810 0.0810 0.0810 0.1620 0.1630 0.1620
knn 0.0680 0.0700 0.0690 0.1360 0.1390 0.1390

p = 30
hub 0.0900 0.0900 0.0900 0.1800 0.1800 0.1800

random 0.0810 0.0810 0.0810 0.1620 0.1620 0.1620
scale-free 0.0810 0.0810 0.0810 0.1620 0.1620 0.1610
knn 0.0730 0.0750 0.0740 0.1460 0.1510 0.1480
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