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ABSTRACT

In this dissertation, we investigate algebraic structures in finite-dimensional Hilbert spaces,

as concerns quantum computation and quantum information, as well as these structures’ appli-

cations to lattices.

On the quantum computation side, we develop an algebraic framework of axioms which

abstracts various high-level properties of multi-qudit representations of generalized Clifford

algebras. We further construct an explicit model and prove that it satisfies these axioms. Sub-

sequently, we develop a graphical calculus for multi-qudit computations with generalized

Clifford algebras, using the algebraic framework developed. We build our graphical calcu-

lus out of a fixed set of graphical primitives defined by algebraic expressions constructed out

of elements of a given generalized Clifford algebra, a graphical primitive corresponding to

the ground state, and also graphical primitives corresponding to projections onto the ground

state of each qudit. We establish many algebraic identities, including a novel algebraic proof of

a Yang-Baxter equation. We also derive a new identity for the braid elements, which is key

to our proofs. We then use the Yang-Baxter equation proof to resolve an open question of

Cobanera and Ortiz [4]. We demonstrate that in many cases, the verification of involved vec-

tor identities can be reduced to the combinatorial application of two basic vector identities. In

addition, we show how to explicitly compute various vector states in an efficient manner using

algebraic methods.
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On the quantum information side, we introduce a new decomposition of quantum channels

acting on group algebras, which we term Kraus-like operator decompositions (Kraus-like

decompositions for short). An important motivation for this new decomposition is a general

nonexistence result that we show for Kraus operator decompositions for quantum channels in

this setting. We show that the notion of convex Kraus-like operator decompositions (in which

the coefficients in the sum decomposition are nonnegative and satisfy a sum rule) that are in-

duced by the irreducible characters of a finite group is equivalent to the notion of a condition-

ally negative-definite length when the length is a class function. For a general finite group G,

we prove a stability condition which shows that if the semigroup associated with a length has

a convex Kraus-like operator decomposition for all t > 0 small enough, then it has a convex

Kraus-like operator decomposition for all time t > 0. Using the stability condition, we show

that for a general finite group, conditional negativity of the length function is equivalent to a

set of semidefinite linear constraints on the length function. By a result of [38], our result im-

plies that in the group algebra setting, a semigroup Pt induced by a length function which is a

class function is a quantum channel for all t ≥ 0 if and only if it possesses a convex Kraus-like

operator decomposition for all t > 0.

Finally, motivated by the importance of lattice problems in quantum cryptography, we ex-

tend the algebraic framework for multi-qudit representations of generalized Clifford algebras

to lattices in Zd
P. We show that under suitable number-theoretic conditions, the subalgebra in-

duced by a lattice has trivial center. Under the trivial center constraint, we construct for pairs

of lattice vectors satisfying an algebraic constraint a unitary operator based on the product of

generalized Clifford algebra generators associated to each lattice vector.
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1
Introduction

This dissertation gives an account of my original work at the intersection of mathematical

physics and quantum computation and quantum information. While the topics may seem to be

disparate, there are technical reasons for this selection of problems and their resolution by the

dissertation author. In each investigation undertaken,

1. The system is discrete, rather than continuous. Hence, no measure theory is required;

there are no derivatives either.

2. The system is finite. Thus, the physical realm of interest is quantum mechanics, rather
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than quantum field theory.

When one confines oneself to quantum mechanical systems of finite size, it is commonly un-

derstood that one is working with matrices. This is not true, although indeed most investiga-

tions into finite quantum-mechanical systems have dealt with this case. In Chapter 4, a deep

investigation into the nature of quantum channels on finite group algebras (which can be de-

scribed by direct sums of matrix representations) is presented.

In the field of quantum computation, many different graphical methods of representation

have been proposed for quantum states and quantum operations, with their own particular ad-

vantages (a popular one for qubit representations is the ZX-calculus by [5][6]). One particular

graphical representation for qudit representations (where the dimension of the single-particle

Hilbert space is d ≥ 2 instead of d = 2 for qubits) was introduced by Jaffe and Liu [15],

based on ideas in operator algebras, planar algebras (in particular, the Temperley-Lieb algebra

[41]), and reflection positivity. This graphical representation depicts vector states by linear su-

perpositions of several caps, and operators as superposition of charged strings. Reflecting the

structure of the underlying generalized Clifford algebra (GCA), the charges on each string can

be moved vertically, and when two charges on different strings are moved past each other, the

operator is the same provided one adds a phase factor.

In studying this graphical representation, the dissertation author realized that the advantages

of pictorial intuition accrued by this graphical representation would be greatly multiplied if

one could carry out the topological manipulations described in [15] on a computer algebra sys-

tem (such as Mathematica). However, from a mathematical perspective, the existing theory

was insufficient to accomplish this practical goal. Thus, Chapters 2 and 3 present the disserta-

tion author’s new algebraic axiomatization and graphical reformulation of multi-qudit repre-

sentations of generalized Clifford algebras. These two chapters solve in large part the difficul-

ties of transporting the topological manipulations into algebraic manipulations.
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From the perspective of quantum computation, as one generalizes Clifford algebras to gen-

eralized Clifford algebras (mod p instead of binary), one goes from multi-qubit systems to

multi-qudit systems. It is inevitable that richer and more exotic algebraic structures arise in

these multi-qudit systems. The approach pioneered in this dissertation is to build algebraic

structures from a distinguished ground state satisfying particular symmetry properties. The

success of my approach in the particular case of the algebraic reconstruction of the graphical

representation in [15] shows that one can encode particular structural properties at the level of

the ground state, and under the action of an appropriate algebra, develop a complete calculus

from the properties of the ground state alone.

Given this success, it becomes natural to consider whether for certain problems of interest

in the quantum information science community, the same approach can work to identify and

isolate the important structural features at an algebraic level. In Chapter 5, this approach is

applied to understand the lattices appearing in quantum cryptography. The motivation here

is to provide a new algebraic approach for tackling the problem of devising secure publicly-

verifiable quantum lattice money [21], which is an important open problem in the field of quan-

tum cryptography.
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2
A new algebraic framework for quantum

computation with generalized Clifford

algebras

IT IS OFTEN DESIRABLE to formulate a theory as simply as possible, but no simpler. There are

two constraints one would like to impose on a theory of graphical representation of the gen-
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eralized Clifford algebras, which arise in the study of multi-qudit vector spaces in quantum

computation. The first is the constraint of being physically reasonable, i.e. that the axioms of

the theory be well-motivated from a physics standpoint. The second is the constraint of be-

ing correct and rigorous. An elementary set of axioms is presented by the dissertation author,

which solves both these constraints, at one stroke.

In devising axioms for a theory, it is not sufficient from the perspective of mathematical

completeness to merely propose axioms. One should also construct an explicit example of a

mathematical object which satisfies these axioms. Thus, the bulk of the chapter is devoted to

constructing an explicit representation of the generators of the generalized Clifford algebra

that satisfies the axioms proposed, and proving that this representation indeed satisfies these

axioms.1

2.1 THE ALGEBRAIC FRAMEWORK

Fix N a positive integer greater than 1, n a positive integer at least 1, and consider the gen-

eralized Clifford algebra C(N)
2n generated by c1, c2, c3, . . . , c2n, under multiplication and ad-

dition, equipped with scalar multiplication by the complex numbers C. The generators ck are

subject to the relations cicj = qcjci if i < j, and cN
i = 1 for all i. Here, q = exp(2πi/N) is

a primitive Nth root of unity. When N = 2, one recovers the Clifford algebra with 2n genera-

tors.

Whereas previous authors [15] have considered fairly elaborate frameworks for working

with the generalized Clifford algebras in diagrammatic fashion, in this chapter, the following

axiomatization is presented, which gives rise to a very straightforward algebraic framework for

a graphical calculus for the generalized Clifford algebras.

Axiom 1: Let VNn
(C) be a complex vector space upon which the generalized Clifford alge-

1This chapter is an expanded version of the arXiv preprint [24] by the dissertation author.
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bra is realized as unitary Nn by Nn matrix operators. Assume that there exists a state (which we

call the ground state) which is a tensor of states |Ω〉, |Ω〉⊗n, that satisfies the following alge-

braic identity:

c2k−1 |Ω〉⊗n = ζ c2k |Ω〉⊗n (2.1.1)

for all k = 1, 2, . . . , n, where ζ is a square root of q such that ζN2
= 1.

In addition, for each qudit, the projector Ek onto the kth qudit’s ground state |Ω〉 is assumed

to satisfy

c2k−1Ek = ζ c2kEk. (2.1.2)

Axiom 2: Scalar product: The set {ca1
2 ca2

4 . . . can
2n |Ω〉⊗n : ai = 0, 1, . . . ,N − 1} is an or-

thonormal basis for VNn
(C).

The choice of these two axioms is motivated by the desire to solve at once the duality prob-

lem of representation, in which caps are transformed into cups via graphical manipulations,

as well as the motion of charges around a cup or cap, both of which were discovered in [15].

While the representation of generalized Clifford algebras has been well-known as being unique

up to equivalence, e.g., see [23], via bosonization of the GCA generators in terms of gener-

alized Pauli operators (also known as the Jordan-Wigner transformation), the imposition of

axiom 1 is state-dependent, and hence imposes a physical constraint, namely the existence of a

distinguished ground state and the requirement of unitarity of the generators. Thus, it is impor-

tant to show that this physical constraint is satisfied. Meanwhile, axiom 2 is a description of an

inner product structure, and so its imposition ensures that that axiom 1 is compatible with an

inner product structure.

We will show that these two axioms can be simultaneously satisfied by giving an explicit

construction and verifying that this construction verifies all the properties and assumptions

given in the axioms. In other words, the axiomatic framework is not a vacuous one. This is im-
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portant since it implies that all results derived from the axioms are true in at least one explicit

model.

The easiest way to construct a unitary representation of the generalized Clifford algebra

satisfying the above axioms is to work backward from the assumption that the axioms hold,

and to calculate the action of the generalized Clifford algebra on the basis states given by

{ca1
2 ca2

4 . . . can
2n |Ω〉⊗n : ai = 0, 1, . . . ,N − 1}. For convenience, we label these basis states by

the tuples |a1, a2, . . . , an〉. Then

c2k |a1, a2, . . . , an〉 = c2kca1
2 ca2

4 . . . can
2n |Ω〉⊗n

= q−
∑

i<k aica1
2 ca2

4 · · · cak+1
2k · · · can

2n |Ω〉⊗n

= q−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 .

Thus, we now define c2k as a matrix operator on the basis |a1, a2, . . . , an〉 via

c2k |a1, a2, . . . , an〉 := q−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 (2.1.3)

for ai = 0, 1, . . . ,N − 1.

Now, let’s calculate the action of c2k−1 on this same basis. We first need to find ζ such that

ζ2 = q and ζN2
= 1.

Lemma 2.1.1. Let q = exp(2πi/N). If N is odd, ζ = − exp(πi/N) is the only square root of q

satisfying ζN2
= 1. If N is even, setting ζ to be either square root of q will satisfy ζN2

= 1.

Proof. q = ei 2π
2N+1 , ζ = ±ei π

2N+1 for odd case yields ζ(2N+1)2
= ± exp(iπ(2N+ 1)) = (±1)(−1) =

∓1, so one chooses the − sign. For even case, N = 2M, q = ei 2π
2M = eiπ/M, then ζ = ±eiπ/2M →

ζ(2M)2
= ζ4M2

= (±eiπ/2M)4M2
= eiπ(2M) = 1.

Thus, we choose ζ according to the lemma 2.1.1. Now using the axioms and applying c2k−1

7



to the basis elements yields

c2k−1 |a1, a2, . . . , an〉 = c2k−1 ca1
2 ca2

4 . . . can
2n |Ω〉⊗n

= ζqak−
∑

i<k aica1
2 ca2

4 · · · cak+1
2k . . . can

2n |Ω〉⊗n ,

which then gives ζ qak−
∑

i<k ai |a1, a2, . . . , ak + 1 . . . , an〉. So we define

c2k−1 |a1, a2, . . . , an〉 := ζ qakq−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 . (2.1.4)

2.2 AN EXPLICIT REPRESENTATION SATISFYING THE AXIOMS

We are now in a position to state the following theorem.

Theorem 2.2.1. Consider an orthonormal basis of the complex vector space VNn
(C) labeled

by the tuples (a1, a2, . . . , an), for ai = 0, 1, . . . ,N − 1, i.e. the states are given by |a1, a2, . . . , an〉.

We can identify this complex vector space with a tensor of n N-dimensional complex vector

spaces such that |a1, a2, . . . , an〉 = |a1〉 ⊗ · · · ⊗ |an〉.

Define the matrix operators c2k−1, c2k by their action on the orthonormal

basis |a1, a2, . . . , an〉 via

c2k |a1, a2, . . . , an〉 := q−
∑

i<k ai |a1, a2, . . . , (ak + 1)(mod N), . . . , an〉 (2.2.1)

and

c2k−1 |a1, a2, . . . , an〉 := ζ qakq−
∑

i<k ai |a1, a2, . . . , (ak + 1)(mod N), . . . , an〉 (2.2.2)

for all k = 1, 2, . . . , n, where ζ is chosen according to the lemma 2.1.1.2

2For convenience, we will omit all the mod N qualifiers, and simply identify states with the same indices mod
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Define the matrix operators Ek, for k = 1, 2, . . . , n by the linear extension of their action on

the orthonormal basis via

Ek |a1, a2, . . . , ak, . . . , an〉 = δak,0 |a1, a2, . . . , 0, . . . , an〉 (2.2.3)

for all ai = 0, 1, · · · ,N − 1, i = 1, 2, · · · , n.

Define the ground state

|Ω〉 := |0〉 (2.2.4)

so that

|Ω〉⊗n := |0, 0, · · · , 0〉 (2.2.5)

Then the matrix operators c2k−1, c2k, Ek and the ground state |Ω〉 satisfy axioms 1 and 2.

Proof. First, we need to show that c2k−1, c2k are unitary, and that cN
2k−1 = 1, cN

2k = 1, as well as

cicj = qcjci for i < j.

Unitarity can be shown by showing that c†2k c2k = c2kc†2k = 1. Note that the dagger operation

is just the usual conjugate transpose operation in the orthonormal basis setting.

c2k =
∑

aj=0,1,...,N−1

q−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 〈a1, a2, . . . , an|

implies

c†2k =
∑

aj=0,1,...,N−1

q
∑

i<k ai |a1, a2, . . . , an〉 〈a1, a2, . . . , ak + 1, . . . , an|

so clearly the outcome is

c2kc†2k =
∑

aj=0,1,...,N−1

|a1, a2, . . . , ak + 1, . . . , an〉 〈a1, a2, . . . , ak + 1, . . . , an| = 1

N. This identification is justified since the coefficients of q to some power are invariant under shifts of the indices
mod N.

9



and that

c†2kc2k =
∑

aj=0,1,...,N−1

|a1, a2, . . . , ak, . . . , an〉 〈a1, a2, . . . , ak, . . . , an| = 1.

Similarly, for c2k−1, we have that

c2k−1 =
∑

aj=0,1,...,N−1

ζ qakq−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 〈a1, a2, . . . , an|

and

c†2k−1 =
∑

aj=0,1,...,N−1

ζ−1 q−akq
∑

i<k ai |a1, a2, . . . , an〉 〈a1, a2, . . . , ak + 1, . . . , an|

implying that

c2k−1 c†2k−1 =
∑

aj=0,1,...,N−1

|a1, a2, . . . , ak + 1, . . . , an〉 〈a1, a2, . . . , ak + 1, . . . , an| = 1.

And also that

c†2k−1c2k−1 =
∑

aj=0,1,...,N−1

|a1, a2, . . . , ak, . . . , an〉 〈a1, a2, . . . , ak, . . . , an| = 1

This concludes the check for unitarity.

For the relations satisfied by c2k, and c2k−1, we have that since

c2k |a1, a2, . . . , an〉 = q−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉

implies that

cN
2k |a1, a2, . . . , an〉 = q−N

∑
i<k ai |a1, a2, . . . , ak + N, . . . , an〉 = |a1, a2, . . . , ak, . . . , an〉 ,

10



it follows by unique linear extension that cN
2k = 1.

The statement for c2k−1 is a bit more involved to show. Starting from c2k−1 |a1, a2, . . . , an〉 =

ζ qakq−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉, we obtain that

c2
2k−1 |a1, a2, . . . , an〉 = ζ2 qak+(ak+1)q−2

∑
i<k ai |a1, a2, . . . , ak + 2, . . . , an〉 ,

so that c3
2k−1 |a1, a2, . . . , an〉 = ζ3 qak+(ak+1)+(ak+2)q−3

∑
i<k ai |a1, a2, . . . , ak + 3, . . . , an〉, and

inductively, one obtains that

cm
2k−1 |a1, a2, . . . , an〉 = ζm qm ak+(0+1+···+(m−1))q−m

∑
i<k ai |a1, a2, . . . , ak + m, . . . , an〉 .

Plugging in m = N, we get that

cN
2k−1 |a1, a2, . . . , an〉 := ζN qN ak+N(N−1)/2q−N

∑
i<k ai |a1, a2, . . . , ak, . . . , an〉

= ζN q(N2−N)/2 |a1, a2, . . . , ak, . . . , an〉 .

Now things get interesting. If N is even, ζ = ±q1/2 implies that ζN = qN/2, in which case

qN/2q(N2−N)/2 = qN2/2 = 1. If N is odd, ζ = −q1/2 implies that ζN = −qN/2, in which case

−qN/2q(N2−N)/2 = −qN2/2 = −e(2πi/N)·(N2/2) = −eNπi = −(−1)N = −(−1) = 1! So we have

shown that cN
2k−1 = 1.

To show cicj = qcjci for all i < j, observe that

c2k |a1, a2, . . . , an〉 = q−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉

yields

c2lc2k |a1, a2, . . . , an〉 = q−
∑

i<l aiq−
∑

i<k ai |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉
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if l < k. Meanwhile, c2l |a1, a2, . . . , an〉 = q−
∑

i<l ai |a1, a2, . . . , al + 1, . . . , an〉 yields

c2kc2l |a1, a2, . . . , an〉 = q−(
∑

i<k ai)−1q−
∑

i<l ai |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉 .

So c2kc2l = q−1c2lc2k, i.e.

c2lc2k = q c2kc2l

for l < k.

Repeating the procedure for c2k−1, c2l−1, we get that for l < k: c2k−1 |a1, a2, . . . , an〉 =

ζ qakq−
∑

i<k ai |a1, a2, . . . , ak + 1, . . . , an〉 implies

c2l−1c2k−1 |a1, a2, . . . , an〉 = ζ2 qakqalq−
∑

i<k aiq−
∑

i<l ai |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉

but swapping the order leads to

c2k−1c2l−1 |a1, a2, . . . , an〉 = ζ2 qakqalq−
∑

i<k aiq−
∑

i<l aiq−1 |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉

since the c2k−1 notices that the index on the l qudit has been increased by 1. Thus, c2k−1c2l−1 =

q−1c2l−1c2k−1, i.e.

c2l−1c2k−1 = qc2k−1c2l−1

for l < k.

Meanwhile, for c2k−1 and c2k, we have that

c2k−1c2k |a1, a2, . . . , an〉 = ζ qak+1q−2
∑

i<k ai |a1, a2, . . . , ak + 2, . . . , an〉

c2kc2k−1 |a1, a2, . . . , an〉 = ζqakq−2
∑

i<k ai |a1, a2, . . . , ak + 2, . . . , an〉

12



so

c2k−1c2k = qc2kc2k−1.

For c2l−1, c2k, with l < k, we have that

c2l−1c2k |a1, a2, . . . , an〉 = ζqalq−
∑

i<l aiq−
∑

i<k ai |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉

whereas

c2kc2l−1 |a1, a2, . . . , an〉 = ζqalq−
∑

i<l aiq−
∑

i<k aiq−1 |a1, a2, . . . , al + 1, . . . , ak + 1, . . . , an〉

since c2k notices the change in the index of the lth qudit. So

c2l−1c2k = q c2kc2l−1

for l < k.

Finally, for c2l, c2k−1 with l < k, we have that

c2lc2k−1 |a1, a2, . . . , an〉 = ζqakq−
∑

i<k aiq−
∑

i<l ai |a1, a2, . . . , al + 1, · · · , ak + 1, · · · , an〉

c2k−1c2l |a1, a2, . . . , an〉 = ζqakq−
∑

i<k aiq−
∑

i<l aiq−1 |a1, a2, . . . , al + 1, · · · , ak + 1, · · · , an〉

so

c2lc2k−1 = qc2k−1c2l

for l < k.

The above calculations showed that we have constructed a unitary representation of the gen-

eralized Clifford algebra. Now we have to show the other aspects of axiom 1 are true as well.
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For the algebraic identity for c2k−1, c2k, and the ground state, we have that

c2k−1 |0, 0, . . . , 0〉 = ζ |0, 0, . . . , 0, 1, 0, . . . , 0〉

and

c2k |0, 0, . . . , 0〉 = |0, 0, . . . , 0, 1, 0, . . . , 0〉

with the 1 appearing on the kth qudit. Thus,

c2k−1 |0, 0, . . . , 0〉 = ζc2k |0, 0, . . . , 0〉 .

For the algebraic identity involving c2k−1, c2k, Ek, we have

c2k−1Ek |a1, a2, . . . , ak−1, ak, ak+1, . . . , an〉 = ζq−
∑

i<k ai |a1, a2, . . . , ak−1, 1, ak+1, . . . , an〉

c2kEk |a1, a2, . . . , ak−1, ak, ak+1, . . . , an〉 = q−
∑

i<k ai |a1, a2, . . . , ak−1, 1, ak+1, . . . , an〉 .

Thus,

c2k−1Ek = ζc2kEk

for all k = 1, 2, 3, . . . , n.

This concludes the proof that axiom 1 is satisfied.

To show axiom 2 is satisfied, i.e. that the set {ca1
2 ca2

4 . . . can
2n |0〉

⊗n : ai = 0, 1, . . . ,N − 1} is an

orthonormal basis for VNn
(C), it suffices to note that each power of c2k raises the kth index by

1 and multiplies the state by a complex number of modulus 1. Thus, up to phase factors, the set

{ca1
2 ca2

4 . . . can
2n |0〉

⊗n : ai = 0, 1, . . . ,N− 1} is the same as {|a1, a2, . . . , an〉 : ai = 0, 1, . . . ,N− 1},

which by construction is an orthonormal basis for VNn
(C). Hence, the set {ca1

2 ca2
4 . . . can

2n |0〉
⊗n :

ai = 0, 1, . . . ,N − 1} is an orthonormal basis as well.
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2.3 CONCLUSION

This chapter gives an axiomatic framework for an entirely algebraic approach to doing com-

putation with multiple qudits using the generalized Clifford algebra. While the area of fault-

tolerant quantum computing with qudits has been relatively unexplored in the past (as com-

pared to quantum computation using qubits), there has been increased interest in the native

advantages which quantum computation in nonbinary bases may provide [37]. Given its sim-

plicity and physical intuitiveness, the algebraic framework provided in this chapter may be

useful for designing quantum computation schemes using qudits in a natural way using gen-

eralized Clifford algebras. Furthermore, it may open the way for the use of symbolic algebra

methods, such as using Mathematica, to simplify complicated multi-qudit computations using

GCA representations.

In this chapter, the major technical achievement is the abstraction of various concrete op-

erational properties into high-level statements that highlight the nontrivial algebraic relations

satisfied by the ground state and the projection operators under “local”3 actions of the gen-

eralized Clifford algebra. Furthermore, the axiomatization emphasizes the particularly rigid

structure imposed by the scalar product. Intuitively, this abstraction is a very appealing result,

which appears to be related to standard themes in quantum error correction, in particular the

stabilizer formalism of Gottesman [11]. One notable difference is that the operators involved in

Gottesman’s stabilizer formalism commute; in our case they do not.

In terms of physics, one may think of these algebraic identities as corresponding to the in-

troduction of internal structure, in the sense of the particle physics mantra that if particles are

not point particles (e.g., possessing spin or other quantum numbers), their internal dynamics
3Here, locality is to be understood in the sense of the index of the GCA generator i; the action of a GCA

generator is nonlocal in the sense of a single-qudit action.
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can be illuminated by scattering experiments (e.g., deep inelastic scattering experiments il-

luminated the quark structure of baryons). It seems reasonable to take such analogies more

seriously in light of the recent scattering experiments with anyons [2].

At a mathematical level, the familiar adage is that “more structure equals more ease of com-

putation”; at the same time, the more structure one has, the harder it becomes to verify that the

resulting theory is a consistent one. Although one can work abstractly, the abstract proofs of

consistency may not be accessible to physicists, at least not at a level at which he or she would

be comfortable verifying. Thus, it is desirable to present explicit constructions of models satis-

fying an axiomatic theory, such as the one presented in this chapter.
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3
A graphical calculus for multi-qudits using

generalized Clifford algebras

3.1 INTRODUCTION

The following physics questions motivate this chapter1: Can we learn new things about

quantum entanglement by studying a graphical calculus for the generalized Clifford algebras2?
1This chapter is adapted from the arXiv preprint [25] by the dissertation author.
2The earliest paper introducing generalized Clifford algebras appears to be [28] in 1952. Other early work

included [45] in 1964, [36] in 1966, and [29] in 1967.
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In this setting, braiding operators defined using the generalized Clifford algebra are unitary

operations that entangle neighboring qudits (multi-dimensional vector spaces). Thus, when

we apply a sequence of braiding operators to the ground (or vacuum) state, we expect differ-

ent kinds of entangled states to result, depending on the sequence and on the braidings in the

sequence. Is there an easy way to classify the resulting kinds of entanglement using the graphi-

cal calculus? How does the classification depend on the number of qudits involved?

To set the stage for a treatment of these questions in a systematic manner, a algebraic frame-

work was presented in the previous chapter, based on [24]. While the algebraic framework is

in it of itself sufficient for doing calculations and proving identities of various sorts, it turns

out to be convenient to consider diagrammatic representations in order to obtain intuition

about what kind of algebraic identities might be true. In contrast to the work of [15], the dis-

sertation author will develop the graphical calculus along completely algebraic lines. A new

result achieved in this chapter is an algebraic proof that a particular braid operator satisfies the

Yang-Baxter equation, valid over all N ≥ 2, which resolves an open question of Cobanera and

Ortiz [4] about unitary self-dual braid group solutions for N even.

To enable users of the graphical calculus presented in this chapter to proceed in an entirely

algebraic and rigorous way, the following flowchart is presented:

1. Write down an algebraic expression.

2. Convert it to one of the prescribed graphical forms.

3. Guess what graphical identities might be true for the graphical expression.

4. Write down conjectural algebraic identities corresponding to the conjectured graphical

identities.

5. Prove the conjectured identities algebraically using explicit calculation with the alge-

braic framework for the generalized Clifford algebras, or using already proven algebraic
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identities.

6. Repeat.

It is quite remarkable how far one can get with this approach, once the initial difficulties of

getting algebraic identities is overcome. In particular, we show that the algebraic framework,

coupled with some new technical innovations of ours, enables us to show algebraically for the

first time why one can treat the braiding operator as a braid in the conventional sense (namely,

it satisfies a Yang-Baxter equation3).

For logical consistency, the reader should consider the graphical calculus as simply a tran-

scription of the algebraic framework into a combination of a few basic building blocks, which

aids in intuition. While it may be tempting to imagine that the diagrams mean something, the

reader will do well to remember that all our proofs are purely algebraic, and the diagrams are

just (very helpful) visual aids.

In terms of the graphical representation, the diagrams allowed are a much smaller subset

than as those of [15], in order to ensure unambiguous identification of a graphical diagram (via

vertical decomposition) with an algebraic expression. In line with the requisite of unambiguity

of graphical-to-algebraic correspondence, no independent interpretation is made of the sub-

components of the diagrams. The latter constraint imposed by the dissertation author makes

its necessary to specify in advance all the possible configurations one may encounter in a full

diagram, and the corresponding algebraic expressions. This specification is accomplished us-

ing the tool of diagrammatic composition, from the theory of Temperley-Lieb algebras [41],
3One important conceptual and technical point is that the Yang-Baxter equation [8], or rather, a braiding in

the tensor categorical sense[31], appears to primarily refer to a morphism from A to A ⊗ A, where A is an algebra,
which embeds in A ⊗ A ⊗ A. The equation we will prove will have structural similarity to the Yang-Baxter equa-
tion, but to truly show that the equation is in fact a Yang-Baxter equation, it is necessary to show that the braid is
a 2-local operator. This fact will be proven in this chapter. The reason for this subtlety is that generalized Clifford
algebras have an additional time-ordering [15] when one wants to “tensor” elements together, and hence there is
no global tensor product for the algebra. This additional structure could be useful in its own right.
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applied to a particular (small) set of graphical primitives which are specified in their complete-

ness.

From a physical perspective, while it has been previously thought [17] that the graphical rep-

resentation of generalized Clifford algebras is akin to Feynman diagrams, in fact the particular

graphical representation considered in this chapter is more accurately a description of causal

diagrams, which arise in the old-fashioned perturbation theory approach to quantum field the-

ory. Thus, the diagrams are more in the spirit of Schwinger’s approach to quantum field theory

than Feynman’s, as causality was at the heart of Julian Schwinger’s approach to quantum elec-

trodynamics [39]. On a technical level, whereas the Feynman diagrams of Richard Feynman

emphasize propagators in momentum space, Schwinger’s approach emphasized Green’s func-

tions, which are correlation functions in position space.

This correspondence of the graphical representation with a causal description is ensured by

the faithful transcription of diagrams into algebraic expressions. In other words, the identifi-

cation of the time (vertical) axis with the order of operator composition from right to left has

been elevated to the role of a physical constraint on the graphical representation. In this sense,

the graphical identities that are proved in this chapter for vectors can be interpreted as showing

that certain different unitary processes, when acting on a particular initial state, yield the same

final state.

Overall, the results of this chapter may be summarized as the following: A graphical cal-

culus is presented for multi-qudit computations with generalized Clifford algebras, using the

algebraic framework developed in the previous chapter. A graphical calculus is built out of a

fixed set of graphical primitives defined by algebraic expressions constructed out of elements

of a given generalized Clifford algebra, a graphical primitive corresponding to the ground

state, and also graphical primitives corresponding to projections onto the ground state of each

qudit. Many graphical properties of the graphical calculus are proven using purely algebraic
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methods (as well as extended to algebraic identities which are not captured by the graphical

representation), including a novel algebraic proof of a Yang-Baxter equation. Furthermore,

we discover an important novel identity for bringing a charge over a braid, which are key to

the proofs. In terms of physics, this identity and related braid identities reflect the presence of

a conserved charge. Furthermore, it is shown that in many cases, the verification of involved

vector identities can be reduced to the combinatorial application of two basic vector identities.

Finally, it is shown how to explicitly compute various vector states in an efficient manner us-

ing algebraic methods.

3.2 THE GRAPHICAL CALCULUS

3.2.1 BUILDING BLOCKS

The philosophy followed in the graphical calculus presented is that the diagrams drawn are

indivisible. No a priori meaning is assigned to the subcomponents of the diagrams, i.e. a sin-

gle strand, or a single cap, or a single cup. The philosophy adopted is that the algebraic frame-

work of the previous chapter ought to be robust enough that one can derive a posteriori a large

number of algebraic relations, and therefore by proving more and more relations, the initially

content-free diagrams acquire new, emergent properties. On a technical level, this approach

leads to a more basic construction of a graphical calculus which is directly built out of the ele-

ments of the generalized Clifford algebra, which is justified by the axiomatic framework in the

previous chapter.

In devising the graphical representation, we need to consider at the outset what kind of dia-

grams should be allowed. This is a subtle point that this dissertation brings to the fore. From

the perspective of mathematical rigor, if one proceeds on entirely algebraic grounds, and it is

decided to base the manipulation of graphical diagrams on corresponding algebraic identities,

it becomes necessary that each graphical diagram have a unique algebraic expression. Note
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that the word “expression” is used, as opposed to “value.” Two expressions may evaluate to the

same algebraic element in the generalized Clifford algebra. Likewise, two graphical diagrams

may be different in the sense that they correspond to different algebraic expressions, but equal

in the sense that the expressions they correspond to can be shown to be algebraically equal (un-

der the relations of the generalized Clifford algebra and the two axioms).

To be mathematically precise, one has to specify in what sense one means “uniqueness.”

In this chapter, by uniqueness of the algebraic expression corresponding to a diagram, it is

meant that the formal algebraic expression (forgetting all properties of the generalized Clifford

algebra, except associativity, the property that a(bc) = (ab)c for any elements a, b, c of the

algebra) obtained from the diagram is invariant under vertical decomposition of the diagram,

up to associativity. Thus, the graphical primitives are carefully chosen to guarantee uniqueness

of an operator correspondence beyond diagrams and equations, a correspondence which is

compatible with the vertical decomposition of diagrams. Adhering to this dictum results in a

set of allowed diagrams that is much smaller than that of [15].

In the previous chapter, two axioms were presented as a way to abstract certain high-level

properties of the generalized Clifford algebras. It was shown that these 2 axioms are satisfied

by an explicit construction. These axioms will now be converted into graphical form. As be-

fore, let us fix N a positive integer greater than 1, n a positive integer at least 1, and consider the

generalized Clifford algebra C(N)
2n generated by c1, c2, c3, . . . , c2n subject to cicj = qcjci if

i < j, and cN
i = 1 for all i. Here, q = exp(2πi/N) is a primitive Nth root of unity. When N = 2,

one recovers the Clifford algebra with 2n generators.

Let us first define a series of graphical primitives. These graphical primitives are the only

allowed graphical elements in our graphical representation. Any diagram encoded using this

set of graphical primitives must be specified by a sequence of graphical primitives. One may

think of each diagram as a hieroglyph in an alphabet of hieroglyphs, and the sequence of hi-
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eroglyph as running from top to bottom. (This corresponds to the composition of operators, in

which, in terms of the corresponding algebraic objects, the corresponding algebraic expression

are given by a sequence of operations running from right to left.)

Fix δ =
√

N > 0. The following graphical primitives are defined in terms of the distin-

guished ground state (satisfying the two axioms) via:

Definition 3.2.1.

· · := δn/2 |Ω〉⊗n (3.2.1)

· · := δn/2 〈Ω|⊗n (3.2.2)

Definition 3.2.2.

· ·
a

· · := ca
2k−1 (3.2.3)

· ·
b

· · := cb
2k (3.2.4)

∀a, b ∈ Z. Here we mean for the label a to be placed immediately left of the 2k − 1-th strand,

and the label b to be placed immediately left of the 2k-th strand. There are 2n total strands in

each diagram.

We also define for completion that

· · · · := 1 (3.2.5)

Note that the identity primitive composed with itself “is” itself, graphically, which is consis-

tent with its definition as being equal to 1. Similarly, the identity primitive composed (in either

order) with the primitives for the powers of the generators ck again yields those same primi-

tives. In this sense, the diagrammatic definitions are well-behaved.
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Definition 3.2.3.

· · · · := δEk (3.2.6)

Here we mean for the “cup-cap” combination to be replacing the 2k − 1 and 2kth strands.4

There are 2n strands in total.

Definition 3.2.4. We also define a graphical primitive, which we call the positive braid on

strands l and l + 1, for l = 1, 2, . . . , 2n − 1:

· · := b12 (3.2.7)

· · := b23 (3.2.8)

· · · · := bk,k+1 (3.2.9)

· · · · := b2n−1,2n (3.2.10)

which defines 2n − 1 different braid operators.

We also define graphical primitives for the corresponding negative braids:

· · := b21 (3.2.11)

· · := b32 (3.2.12)

4In this respect, in our graphical calculus, we do not allow for the cup-cap combination which is prescribed
in [15], i.e. we don’t allow not-in-place placement, i.e. on the 2k and (2k + 1)th strands, which loosely speaking,
straddles different qudits.
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· · · · := bk+1,k (3.2.13)

· · · · := b2n,2n−1. (3.2.14)

The algebraic definition of these braid elements5 is given by

bkl :=
ω1/2
√

N

N−1∑
i=0

ci
kc−i

l (3.2.15)

and

blk :=
ω−1/2
√

N

N−1∑
i=0

ci
lc−i

k (3.2.16)

for k < l in {1, 2, . . . , 2n}. Here,

ω :=
1√
N

N−1∑
i=0

ζ i2 . (3.2.17)

Note that this is a general definition of the braid element, which goes beyond the diagrams

above, since we allow for |k − l| 6= 1, which includes the local (nearest-neighbor) braid op-

erators as a special case. We hasten to add that the terminology “braid element” at this point

is only suggestive. To justify this terminology one has to prove that the braid elements satisfy

braiding relations, in particular the Yang-Baxter equation, which is the subject of the section

titled Applications on the Golden Rule.

Remark 3.2.5. ω has modulus 1 (this fact is proven in Proposition 2.15 in [15]), implying that

b†
kl = blk (3.2.18)

5The special case in which k and l are adjacent was studied by Jaffe and Liu [15], which, to the best of the dis-
sertation author’s knowledge, is the first work to introduce this particular summation definition for the generalized
Clifford algebra. A related summation expression for constructing a braid element is given by the work of Jones
[19] in the case that N is a power of an odd prime.
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for k 6= l.

Thus, in terms of terminology, we will refer to the positive braids as just braids, and the

negative braids as adjoint braids.

3.2.2 GRAPHICAL REPRESENTATION OF THE AXIOMS

Let us recall the axioms of the previous chapter:

Axiom 1: Let VNn
(C) be a complex vector space upon which the generalized Clifford alge-

bra is realized as unitary Nn by Nn matrix operators. Assume that there exists a state (which we

call the ground state) which is a tensor of states |Ω〉, |Ω〉⊗n, that satisfies the following alge-

braic identity:

c2k−1 |Ω〉⊗n = ζ c2k |Ω〉⊗n

for all k = 1, 2, . . . , n, where ζ is a square root of q such that ζN2
= 1.

In addition, for each qudit, the projector Ek onto the kth qudit’s ground state |Ω〉 is assumed

to satisfy

c2k−1Ek = ζ c2kEk.

Axiom 2: Scalar product: The set {ca1
2 ca2

4 . . . can
2n |Ω〉⊗n : ai = 0, 1, . . . ,N − 1} is an or-

thonormal basis for VNn
(C).

These axioms are now shown to give rise to basic graphical identities. The algebraic identi-

ties

cicj = qcjci

for i < j,

cN
i = 1
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for all i = 1, 2, . . . , 2n, as well as

c2k−1Ek = ζc2kEk

tell us that

1 .

.

.

.

.

.

.

.
1

= q

1

.

.

.

.

.

.

.

.

1 (3.2.19)

i.e. when the primitive for cj precedes that for ci, swapping the order of primitives yields a

factor of q, for i < j, and also that

. .
N

. . = . .
N

. . = . . . . (3.2.20)

and

.

.

.

.

1
.

.

.

.

= ζ

.

.

.

.

1
.

.

.

.

. (3.2.21)

Furthermore, the vector identity

c2k−1 |Ω〉⊗n = ζc2k |Ω〉⊗n

yields the diagrammatic “identity”

.

.

.

.

1
.

.

.

.

= ζ .

.

.

.

1
.

.

.

.

. (3.2.22)

An additional identity which is useful [15] is the following:
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Lemma 3.2.6.

ca
i cb

j = qabcb
j ca

i (3.2.23)

for i < j, a, b integers.

Proof. By double induction on a and b.

Another identity, due to [15], is

Lemma 3.2.7.

ca
2i−1Ei = ζa2ca

2iE2i (3.2.24)

for i = 1, 2, . . . , n, a an integer.

Proof. By induction.

3.3 ALGEBRAIC IDENTITIES FROM ALGEBRAIC METHODS

Our aim in this section is to obtain a large swath of identities, which are related to the graph-

ical representation we have presented, but for which we provide purely algebraic proofs. At

the heart of the results of this section are a new “charge-braid” identity that answers an open

question due to Jaffe, namely, how to bring the charge “over” the braid when N 6= 2. This

seemingly innocuous result is used to great effect, by using the structural property that the

generalized Clifford algebra generated by c1, c2, . . . , c2n has trivial center. In particular, we pro-

vide an algebraic proof, using the proof strategy based on this structural characterization, that

the braid elements bkl satisfy many Yang-Baxter equations. Furthermore, we construct a gen-

eral solution to the braid group relations, which enables us to resolve an open question of [4]

for the case where N is even.

28



3.3.1 STRUCTURAL PROPERTIES OF THE GENERALIZED CLIFFORD ALGEBRAS

Proposition 3.3.1. The set {cr1
1 cr2

2 · · · cr2n
2n : r1, r2, . . . r2n = 0, 1, . . .N − 1} is a basis for the

generalized Clifford algebra C(N)
2n .

Proof. Any element of the generalized Clifford algebra is a finite sum of elements of the form

α cε1
k1

cε2
k2
· · · cεm

km
for α ∈ C, m a positive integer, ki in the index set I2n = {1, 2, · · · , 2n}, and

εi ∈ {1,−1} for i = 1, 2, . . . ,m. By repeatedly applying the relations c−1
ki

= cN−1
ki

and

cicj = qcjci for i < j to swap the order of multiplication, we can put each term in the sum

into normal form, by which we mean that the term is of the form βr1r2...r2n
cr1

1 cr2
2 · · · cr2n

2n , for

ri ∈ {0, 1, 2, . . . ,N − 1}. Thus, we obtain that every element x of the generalized Clifford

algebra is prescribed by a sum given by

x =
∑

r1,r2,...r2n=0,1,...N−1

xr1r2...r2nc
r1
1 cr2

2 · · · cr2n
2n .

Now we want to show that x = 0 in the algebra if and only if xr1r2···r2n = 0 for all indices,

i.e. the set {cr1
1 cr2

2 · · · cr2n
2n : r1, r2, . . . r2n = 0, 1, . . .N − 1} is a basis. The if direction is ob-

viously true. For the only if direction, suppose x = 0. Then multiplying x by any product

of generators ci also yields zero. It is clear that we can multiply x on the left by the product

c−r2n
2n c−r2n−1

2n−1 · · · c−r2
2 c−r1

1 so that the constant term of c−r2n
2n c−r2n−1

2n−1 · · · c−r2
2 c−r1

1 x is xr1r2···r2n . Thus,

without loss of generality, it suffices to show that if x = 0, then its constant term must vanish.

Then the rest of the coefficients all vanish by applying the same result to

c−r2n
2n c−r2n−1

2n−1 · · · c−r2
2 c−r1

1 x for each index tuple.

To show that the constant term must vanish, we use an operator method. Consider the set of

operators Lk(y) =
∑N−1

i=0 ci
kyc−i

k , and let L(l)
k := L(l−1)

k ◦ Lk and L(0)
k := 1 define L(l)

k iteratively.
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Then the operator Mk =
∑N−1

l=0 L(l)
k acting on a term cr1

1 cr2
2 · · · cr2n

2n yields

(
N−1∑
l=0

(q−
∑

i<k ri+
∑

i>k ri)l

)
cr1

1 cr2
2 · · · cr2n

2n = Nδ(
∑
i<k

ri,
∑
i>k

ri)cr1
1 cr2

2 · · · cr2n
2n , (3.3.1)

where δ(a, b) := 1 if a ≡ b mod N, and 0 otherwise. Acting on x by the commuting operators
1
NMk (which all have a diagonal action on cr1

1 cr2
2 · · · cr2n

2n ) thus projects x down to

(
2n∏

k=1

1
N

Mk)(x) =
∑

r1,r2,...r2n=0,1,...N−1

(
2n∏

k=1

δ(
∑
i<k

ri,
∑
i>k

ri)

)
xr1r2...r2nc

r1
1 cr2

2 · · · cr2n
2n . (3.3.2)

We first claim that the only terms that survive are those for which rk + rk+1 = 0 mod N for

k = 1, 2, . . . , 2n − 1. This can be seen since

∑
i<k

ri =
∑
i>k

ri ⇒ 2
∑
i<k

ri + rk =
2n∑
i=1

ri (3.3.3)

for all k = 1, 2, . . . , 2n implies that

2
∑
i<k

ri + rk = 2
∑
i<k+1

ri + rk+1 = 2
∑
i<k

ri + 2rk + rk+1 (3.3.4)

for all k = 1, 2, . . . , 2n − 1, and so

rk + rk+1 = 0 mod N, (3.3.5)

as desired.

As a result, we further obtain that

r2n = 0

30



since ∑
i<2n−1

ri = (r1 + r2) + (r3 + r4) + · · ·+ (r2n−3 + r2n−2) = 0 = r2n.

Finally, using rk + rk+1 = 0 for k = 1, 2, . . . , 2n− 1 we obtain that rk = 0 for all k = 1, 2, . . . , 2n.

Hence the constant term is the only term left, and must equal 0 since Mk(0) = 0.

Proposition 3.3.2 (Golden Rule). The generalized Clifford algebra C(N)
2n has trivial center, i.e.

the only elements that commute with all elements of the generalized Clifford algebra are C1.

Proof. Every element of the generalized Clifford algebra is prescribed by a sum given by

x =
∑

r1,r2,...r2n=0,1,...N−1

xr1r2...r2nc
r1
1 cr2

2 · · · cr2n
2n .

Using the basis property (Proposition 3.3.1), it becomes simple to show that the algebra has

trivial center. Note that the basis property implies uniqueness of the sum decomposition. Let x

lie in the center of the algebra, and x 6= 0. Then there is an index label r1, r2, · · · , r2n such that

xr1r2···r2n 6= 0. Note that xc1 = c1x implies that xr1r2···r2n = q−(r2+r3+···r2n)xr1r2···r2n by comparing the

coefficient of cr1+1
1 cr2

2 · · · cr2n
2n . Thus, r2 + r3 + · · · + r2n = 0. Similarly, xck = ckx implies that

q−
∑

i<k rixr1r2···r2nq
∑

i>k rixr1r2···r2n = 1 and so

2n∑
i=1

εikri = 0 (mod N), (3.3.6)

for k from 1 to 2n, where εik = 1 if i < k and −1 if i > k and 0 if i = k, yielding 2n equations in

2n unknowns. Equivalently, ∑
i<k

ri =
∑
i>k

ri (mod N) (3.3.7)

for all k = 1, 2, ·, 2n. Since in Proposition 3.3.1, it was shown that this set of equations is

uniquely solved by r1 = r2 = · · · = r2n = 0, it follows that x is a multiple of the identity
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1.

3.3.2 AN “INTERTWINING” APPROACH FOR NEW IDENTITIES FOR THE GENERALIZED CLIFFORD

ALGEBRA

A SYSTEMATIC PROCEDURE

The golden rule of Proposition 3.3.2 allows us to give a systematic procedure for proving

identities in the algebra. The basis of the procedure is the following proposition:

Proposition 3.3.3. Let x, y lie in the generalized Clifford algebra, and suppose y is invertible.

Further assume that the constant terms of x and y are nonzero. Then x = y if and only if y−1x

lies in the center of the generalized Clifford algebra, and the constant term in x agrees with the

constant term in y.

Proof. Clearly, the only if direction is true since x = y implies y−1x = 1. For the if direction, if

y−1x lies in the center, by the golden rule, y−1x ∈ C1, i.e. y = αx. In the proof of proposition

3.3.2, we showed that this implies that all terms of y and αx agree, in particular the constant

terms. By hypothesis, the constant terms of y and x agree and are nonzero, so α = 1.

We now provide a concrete way to show that an element lies in the center of the generalized

Clifford algebra.

Proposition 3.3.4. An element x lies in the center of the generalized Clifford algebra if and

only if it commutes with ci for each i = 1, 2, . . . , 2n.

Proof. The only if direction is clearly true.

For the if direction, any element y in the algebra has a unique decomposition as

y =
∑

r1,r2,...r2n=0,1,...N−1

yr1r2...r2nc
r1
1 cr2

2 · · · cr2n
2n .
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By iterative commutation, using the commutation property of x with ci, one can show that

x cr1
1 cr2

2 · · · cr2n
2n = cr1

1 cr2
2 · · · cr2n

2n x. Multiplying by the constant prefactor and summing over the

indices, one obtains that xy = yx, as desired, for arbitrary y in the algebra.

INTERTWINING IDENTITIES

By intertwining identities, we mean identities of the form bx = yb. In this section, we

present the following new intertwining identity for the braid bkl. We first give a direct proof,

and then give an alternate proof which involves some intermediate intertwining identities, the

particular concatenation of which may have more general applications. This identity signifi-

cantly generalizes a theorem of Jaffe and Liu [15] (Theorem 8.2), which is the special case for

a = 0.

Proposition 3.3.5.

bklca
kcb

l = qa2+abc2a+b
k c−a

l bkl (3.3.8)

for k < l.

Proof. Since bkl =
ω1/2
√

N

∑N−1
i=0 ci

kc
−i
l , it suffices to show that

(
N−1∑
i=0

ci
kc−i

l

)
ca

kcb
l = qa2+abc2a+b

k c−a
l

(
N−1∑
i=0

ci
kc−i

l

)
.

Applying lemma 3.2.6, the LHS becomes

N−1∑
i=0

qaica+i
k cb−i

l (3.3.9)

and the RHS becomes
N−1∑
i=0

qa2+abqaic2a+b+i
k c−a−i

l . (3.3.10)

33



By shifting the index of summation from i to i + a + b in the LHS, the LHS becomes

N−1∑
i=0

qa(i+a+b)c2a+b+i
k c−a−i

l (3.3.11)

which is just the RHS.

In terms of the graphical calculus, we economically write down the following diagrammatic

identity, which is specific to b12 and the generalized Clifford algebra with only 2 generators c1,

c2:
a

b

= qa2+ab

2a + b
−a

(3.3.12)

It is convenient to also write down the corresponding identity for the adjoint braid:

Corollary 3.3.6.

blkcr
kcs

l = qrs+s2c−s
k cr+2s

l blk. (3.3.13)

for k < l, and r,s integers.

Proof. The adjoint of the identity in 3.3.5 is c−b
l c−a

k blk = q−a2−abblkca
l c

−2a−b
k , which becomes

q−abc−a
k c−b

l blk = qa2blkc−2a−b
k ca

l upon commutation. Now we let r = −2a − b, s = a, so

blkcr
kcs

l = qrs+s2c−s
k cr+2s

l blk, (3.3.14)

which gives the desired result.

The corresponding diagrammatic identity for the adjoint braid b21 arising from Corollary

3.3.6 for the generalized Clifford algebra with two generators c1, c2 is

r
s

= qrs+s2

−s
r + 2s

(3.3.15)
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We now pursue an alternate route to proving Equation 3.3.5, which illuminates complemen-

tary aspects. We start with an intertwining identity which is a commutation relation:

Lemma 3.3.7.

(cb
kc−b

l )(ca
kc−a

l ) = (ca
kc−a

l )(cb
kc−b

l ) (3.3.16)

for k < l.

Proof. Applying lemma 3.2.6 to LHS yields qabca+b
k c−(a+b)

l ; applying lemma 3.2.6 to RHS

yields qabca+b
k c−(a+b)

l . Thus, LHS=RHS.

We also note that the following commutation relation holds as well:

Lemma 3.3.8.

(ca
kc−a

l )cp = cp(ca
kc−a

l ) (3.3.17)

for k < l and p satisfies p < k < l or p > l > k.

Proof. If k < l < p, commuting cp past (in front of) c−a
l in the LHS yields q−a; commuting it

past ca
k then yields an additional factor qa. So we obtain the RHS. A similar proof applies for

the case p < k < l.

Now comes the exciting part. Since the braid bkl is a sum of elements of the form ci
kc

−i
l , it

follows by linearity that

Lemma 3.3.9.

bkl ca
kc−a

l = ca
kc−a

l bkl (3.3.18)

for k < l.

Proof. By linear extension of Lemma 3.3.7.

Now we use a simple result due to Jaffe and Liu [15] (Theorem 8.2):
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Lemma 3.3.10.

bklcl = ckbkl (3.3.19)

for k < l.

Proof. It suffices to show that

(
N−1∑
i=0

ci
kc−i

l

)
cl = ck

(
N−1∑
i=0

ci
kc−i

l

)
. (3.3.20)

Collecting terms, it is equivalent to show that

N−1∑
i=0

ci
kc

−(i−1)
l =

N−1∑
i=0

ci+1
k c−i

l . (3.3.21)

It is clear that the two are equal since the RHS is just the LHS with i shifted to i − 1.

It remains but to combine lemmas 3.3.9 and 3.3.10, giving us an alternate proof of proposi-

tion 3.3.5:

Alternate Proof of Proposition 3.3.5. We want to show that

bklca
kcb

l = qa2+abc2a+b
k c−a

l bkl (3.3.22)

for k < l. To use lemmas 3.3.9 and 3.3.10, we rewrite bklca
kcb

l as bklca
kc

−a
l ca+b

l . This becomes

ca
kc

−a
l bklca+b

l after commuting past the braid, and then ca
kc

−a
l ca+b

k bkl after applying lemma 3.3.10

a + b times. Finally, applying lemma 3.2.6 to the middle two terms yields qa2+abc2a+b
k c−a

l bkl as

desired.
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THE NOTION OF CHARGE CONSERVATION

We now interpret the previous section’s intertwining identities in terms of physics. In partic-

ular, it is observed that the new charge-braid identity in Proposition 3.3.5 is a consequence of a

particular property of neutral pairings of ck and cl. The notion of charge and charge neutrality

was first introduced by [15]. First, we define a charge operator C:

Definition 3.3.11. Define C by linear extension of its action on the basis:

C(cr1
1 cr2

2 · · · cr2n
2n ) := qr1+r2+···+r2ncr1

1 cr2
2 · · · cr2n

2n (3.3.23)

for all integer indices ri. We call r1 + r2 + · · · + r2n the charge of the basis element, following

[15], which is well-defined modulo N. This terminology of an element’s charge is also applica-

ble for linear combinations of basis elements with the same charge.

Then, lemma 3.3.7 tells us that eigenstates of C of eigenvalue 1 which lie in the subalgebra

generated by ck, cl commute. We call eigenstates of C with eigenvalue 1 neutral.

Graphically, we can describe this commutation relation 3.3.7 for the algebra generated by c1

and c2 as

−a

−b
b

a

=
−b

−a
a

b

(3.3.24)

and there are analogous diagrams (with additional strands in between, and to the left and right)

for the generalized Clifford algebras with more generators.

We now observe that the lemma 3.3.9 can be reinterpreted in terms of respecting charge

conservation, i.e. bringing an element of definite charge across the braid will conserve the

charge, which is in this case just 0. Thus, we say that the relation 3.3.9 provides a physical

constraint on the action of the braid. In fact, this physical constraint provides a compelling
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explanation for why the master intertwining relation 3.3.5 holds; the latter is essentially forced

by the constraint and the additional relation bklcl = ckbkl.

3.3.3 APPLICATIONS OF THE GOLDEN RULE

Using the prior sections on the golden rule and various intertwining identities, we can now

prove some identities involving the braid in a relatively straightforward manner. The following

proof of unitarity is new, although the result is easily shown using explicit summation and is

known in [15]. The importance of this new proof is that it introduces a new approach, using

the trivial center property of the generalized Clifford algebra, which extends to proving identi-

ties for sums which are extremely difficult to calculate.

UNITARITY

Proposition 3.3.12 (Unitarity of Braid Elements). Suppose |k − l| = 1, then

bklblk = blkbkl = 1. (3.3.25)

(As was remarked in the definition of the braids, b†
kl = blk, so equivalently, bkl is unitary.)

Proof. Fix k < l, so we fix the braid elements. To prove this identity, we rely on propositions

3.3.3 and 3.3.4. Thus, we just need to show that a) bklblk and blkbkl lie in the center, and b) the

constant terms of bklblk and blkbkl are both 1. To show that they lie in the center, we need to

check that cp commutes with bklblk for all p. Note that if p < k < l or p > l > k, then cp com-

mutes with bkl since it commutes with ca
kc

−a
l by lemma 3.3.8. We now note that cpbkl = bklcp

implies the adjoint equation blkc−1
p = c−1

p blk, which further yields blkcp = cpblk by iterating

the commutation relation for c−1
p N − 1 times. Thus, cp commutes with both bkl and blk. Since

|k − l| = 1, the only other possibilities we need to check for cp are p = k or p = l.
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Recall that we have the master braid identity 3.3.5: bklca
kcb

l = qa2+abc2a+b
k c−a

l bkl. Applying

this identity allows us to bring ck past bklblk via

bklblkck = bklclblk (3.3.26)

= ckbklblk, (3.3.27)

and cl past bklblk via the slightly more involved

bklblkcl = q bklc−1
k c2

l blk (3.3.28)

= clbklblk. (3.3.29)

Thus, bklblk lies in the center. A similar argument using the adjoint braid identity, equation

3.3.6, yields the computation

blkbklcl = blkckbkl (3.3.30)

= clblkbkl, (3.3.31)

and

blkbklck = q blkc2
kc−1

l bkl (3.3.32)

= ckblkbkl, (3.3.33)

so blkbkl lies in the center as well.

We now need to compute the constant terms for bklblk and blkbkl. A direct computation

shows that bklblk has the constant term 1
N
∑N−1

i=0 (ci
kc

−i
l )(ci

lc
−i
k ) = 1. Similarly, blkbkl has the

constant term 1
N
∑N−1

i=0 (ci
lc

−i
k )(ci

kc
−i
l ) = 1. Thus, applying proposition 3.3.3 in the case x = bklblk
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and y = 1, we obtain that bklblk = 1. Similarly, again applying proposition 3.3.3 and setting

x = blkbkl and y = 1, we obtain that blkbkl = 1, concluding the proof.

The corresponding graphical identity for unitarity, for the special case n = 1 (only two gen-

erators), b21b12 = b12b21, is

= . (3.3.34)

Analogous graphical identities hold for bk,k+1 and for general n, where one puts more strands

to the left and right of the above diagram. Again, we emphasize the requirement of having a

diagram being represented by all strands. Hence, the above diagram does not represent the

unitarity condition for all bkl, but merely for b12.

In fact, we can now generalize the above unitarity condition extends to braid elements with

no graphical interpretation at all:

Corollary 3.3.13.

bklblk = blkbkl = 1 (3.3.35)

for all k 6= l in the set {1, 2, . . . , 2n}.

Proof. Suppose without loss of generality that k < l, and consider the isomorphism of subalge-

bras 〈c1, c2〉 and 〈ck, cl〉 given by the linear mapping φ satisfying φ(ca
1 cb

2) := ca
kcb

l , defining φ

by its action on a basis for the subalgebra 〈c1, c2〉. This is an isomorphism since

φ((ca
1 cb

2)(ci
1c

j
2)) = φ(q−bica+i

1 cb+j
2 ) = q−bica+i

k cb+j
l = ca

kcb
l ci

kc
j
l = φ(ca

1 cb
2)φ(ci

1c
j
2), and the map

is invertible. By double distributivity of multiplication in the two subalgebras, the mapping

extends to a homomorphism, and thus is an isomorphism. The isomorphism maps b12b21 to

bklblk and 1 to 1, so we obtain that bklblk = 1. Similarly, blkbkl = 1.

The above proof of proposition 3.3.12 may seem slightly over-kill, since we could have also
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expanded the product of bkl and blk, and performed the double sum. The strength (and ele-

gance) of the method becomes more apparent when one deals with more complicated products,

which is what we take up next.

YANG-BAXTER EQUATION AND BRAID GROUP REALIZATION

We now give one of the main results of this chapter, which is an explicit algebraic proof of

a Yang-Baxter equation, using the golden rule and a systematic application of the master braid

and adjoint braid identities. The Yang-Baxter equation [46] reads as ABA = BAB and is what

is known as a braid relation. More formally, we will establish the braid relations satisfied by

the braid group generated by the bk,k+1’s. The braid group, introduced by Artin[1], is defined to

be the object

BL = 〈σ 1, . . . ,σL−1|σkσk+1σk = σk+1σkσk+1,σkσ l = σ lσk if |k − l| ≥ 2〉. (3.3.36)

We need to show that, setting σk = bk,k+1 for k = 1, 2, · · · , 2n − 1, these σk’s satisfy the

relations for the braid group generators.

We first present a proof of a special case of the Yang-Baxter equation, specialized to a gen-

eralized Clifford algebra with three generators c1, c2, c3:

Proposition 3.3.14 (Special Case of the Yang-Baxter Equation).

b12b23b12 = b23b12b23 (3.3.37)

Proof. Since the braid elements are unitary, it suffices to prove the assertion that

b32b21b32b12b23b12 lies in the center and that the constant of proportionality between b12b23b12

and b23b12b23 is 1. By Proposition 3.3.4, to show that b32b21b32b12b23b12 lies in the center, we

just need to show that it commutes with ck for all k = 1, 2, · · · , 2n. Clearly, for k > 3,
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b32b21b32b12b23b12 commutes with ck, since each braid element commutes with ck. So we want

to do case analysis for k = 1, 2, 3. For k = 1,

b32b21b32b12b23b12c1 = qb32b21b32b12b23c2
1 c−1

2 b12 (3.3.38)

= q2b32b21b32b12c2
1 c−2

2 c3b23b12 (3.3.39)

= q2b32b21b32c2
1 c−2

2 c3b12b23b12 (3.3.40)

after applying the master braid identity, Proposition 3.3.5 thrice and using Lemma 3.3.8. Ap-

plying the adjoint braid identity thrice (equation 3.3.6) then yields

q2b32b21b32c2
1 c−2

2 c3b12b23b12 = qb32b21c2
1 c−1

2 b32b12b23b12 (3.3.41)

= b32c1b21b32b12b23b12 (3.3.42)

= c1b32b21b32b12b23b12, (3.3.43)

as desired. The cases k = 2, k = 3 are similarly shown to satisfy

b32b21b32b12b23b12ck = ckb32b21b32b12b23b12 (3.3.44)

in like manner. Thus, we conclude that b32b21b32b12b23b12 lies in the center.

It remains to show that the constant of proportionality between b12b23b12 and b23b12b23 is 1.

First focus on the constant terms. Since bkl =
ω1/2
√

N

∑N−1
i=0 ci

kc
−i
l , it suffices to compare the con-

stant terms of
∑N−1

i,j,k=0(ci
1c−i

2 )(cj
2c

−j
3 )(ck

1 c−k
2 ) and

∑N−1
i,j,k=0(ci

2c−i
3 )(cj

1c
−j
2 )(ck

2c−k
3 ). Note that in the

first sum, the constant term only includes terms with i + k = 0 and j = 0, so the constant is

given by
∑N−1

i=0 (ci
1c−i

2 )(c−i
1 ci

2) =
∑N−1

i=0 q−i2 . In the second sum, the constant term only includes

terms with j = 0 and i + k = 0, so the constant is given by
∑N−1

i=0 (ci
2c−i

3 )(c−i
2 ci

3) =
∑N−1

i=0 q−i2 .

Clearly the constant terms agree. However, this is not sufficient to conclude the constant of
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proportionality is 1, since the constant term may vanish. In fact, for N = 2(mod 4), it does

vanish, while it does not vanish for other N. This fact is due to the following formulas corre-

sponding to Gauss’ classical result for quadratic sums, which are tabulated in [14]:

n−1∑
k=0

sin
(

2πk2

n

)
=

√
n

2
(1 + cos(nπ/2)− sin(nπ/2)) (3.3.45)

n−1∑
k=0

cos
(

2πk2

n

)
=

√
n

2
(1 + cos(nπ/2) + sin(nπ/2)) (3.3.46)

Applying these formulas to
∑N−1

i=0 q−i2 =
∑N−1

k=0 exp−2πik2/N yields that the real part of the

sum vanishes if 1 + cos(Nπ/2) + sin(Nπ/2) vanishes, and the imaginary part vanishes if

1+cos(Nπ/2)−sin(Nπ/2) vanishes. Thus, we require that cos(Nπ/2) = −1 and sin(Nπ/2) =

0, so Nπ/2 = π + 2mπ and Nπ/2 = lπ, i.e. N = 2+ 4m and N = 2l, i.e. N = 2(mod 4). This

shows that the constant term does not vanish unless N = 2(mod 4).

Now focus on the term with c2c−1
3 . In the first sum, this term is

(∑N−1
i=0 qi−i2

)
c2c−1

3 . In the

second sum, this term is
∑N−1

i,k=0(ci
2c−i

3 )(c1−i
2 ci−1

3 ) =
(∑N−1

i=0 qi−i2
)

c2c−1
3 , so the two terms are

identical. The multiplicative factor
∑N−1

i=0 qi−i2 = q1/4∑N−1
k=0 q−(k−1/2)2 , which equals

q1/4∑N−1
k=0 e−2πi(2k−1)2/4N, vanishes only for N = 0 (mod 4).6

Thus, the constant term and the c2c−1
3 term agree and their sum can never vanish. Hence, we

conclude that the constant of proportionality must be 1, as desired.

The corresponding graphical identity for the Yang-Baxter equation b12b23b12 = b23b12b23 is
6I have not been able to find the corresponding Gauss sum identity in the literature, but have been able to ver-

ify this numerically using Mathematica, which shows that the half-integer-shifted quadratic Gauss sum multiplied
by 1/

√
Nq−1/4 is periodic in N mod 4.
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given economically for the algebra with 3 generators c1, c2, c3, as

= . (3.3.47)

For 2n generators, one needs to put 2n − 3 strands to the right of the diagram for completeness.

Similar to the case of the unitarity condition, a more general Yang-Baxter-like equation

holds for braid elements which do not admit a graphical interpretation:

Proposition 3.3.15 (General Case of the Yang-Baxter Equation). Suppose i < j < k, then

bijbjkbij = bjkbijbjk. (3.3.48)

Proof. We define an isomorphism, this time between the subalgebras 〈c1, c2, c3〉 and 〈ci, cj, ck〉.

Specifically, define φ by its action on a basis for the subalgebra 〈c1, c2, c3〉 via φ(cp
1 c

q
2cr

3) :=

cp
i c

q
j cr

k for all p, q, r ∈ {0, 1, . . . ,N − 1}. Clearly, φ(1) = 1. Furthermore, φ is a homomorphism

since

φ((cu
1 cv

2cw
3 )(c

p
1 c

q
2c

r
3)) = α φ(cu+p

1 cv+q
2 cw+r

3 ) (3.3.49)

= α cu+p
i cv+q

j cw+r
k (3.3.50)

= (cu
i cv

j cw
k )(c

p
i c

q
j cr

k), (3.3.51)

where α collects all the phase factors from commuting the c’s around. It is clear that φ is a

one-to-one mapping. Then applying φ to the product formula

b32b21b32b12b23b12 = 1 (3.3.52)
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yields

bkjbjibkjbijbjkbij = 1, (3.3.53)

which implies the desired result by taking the adjoint braids to the other side to become braids.

Now we claim that setting σk = bk,k+1 yields the desired braid group.

Proposition 3.3.16. Set σk = bk,k+1. These elements generate a unitary representation of the

braid group

B2n = 〈σ 1, . . . ,σ2n−1|σkσk+1σk = σk+1σkσk+1,σkσ l = σ lσk if |k − l| ≥ 2〉. (3.3.54)

Proof. The condition σkσk+1σk = σk+1σkσk+1 is true by Proposition 3.3.15 taking the three

generators to be ck, ck+1, ck+2. Meanwhile, the commutation relation σkσ l = σ lσk for |k − l| ≥

2 follows by applying the linear extension of Proposition 3.3.8.

VECTOR IDENTITIES FOR THE ALGEBRAIC FRAMEWORK

The fact that the Yang-Baxter equation holds for the elements bkl of the generalized Clif-

ford algebra suggests that perhaps some kind of identities should also hold for the vectors with

respect to the action of the generalized Clifford algebra. While one might speculate that the

vectors (caps and cups) automatically satisfy a kind of an isotopy invariance, taking this to be

a built-in axiom (in, e.g., [15]) would most certainly be incompatible with the algebraic ax-

iomatic approach we have taken. Any such property ought to be derived from the axioms we

have presented, not simply taken to be true. Of course, when working with our vectors, we

must stick to the representation we have chosen for the generalized Clifford algebra, so our

investigation will by necessity proceed from axiom 1 of our algebraic framework.
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To those who are familiar with some subfactor theory or category theory, it may be tempt-

ing to appeal to these theories as a kind of panacea for isotopy invariance with respect to braid-

ings. However, it must be pointed out that one cannot rely on the algebraic results of subfactor

theory7 or tensor category theory8 approaches for any N > 2 (we do not rule out the possi-

bility of an explanation of the N = 2 case), as these do not cover the case of parastatistics for

N > 2. In fact, our algebraic framework was devised precisely to enable one to circumvent

these theoretical difficulties.

As the methods of proof we developed within the algebra in the previous section cannot

logically extend to proofs for the vectors, we are forced to devise new methods to prove vector

identities. These methods are independent of the Yang-Baxter equation. It turns out that the

results we obtain using these methods include not only graphical identities, but also encom-

pass more general algebraic identities which supersede the graphical identities. In terms of our

results, we will show that in a combinatorial sense, two basic vector identities give rise to a

plethora of identifications between different vectors generated from the ground state by braid-

ings.

First, we begin by proving a general projection-braid identity and two basic vector identi-

ties which uniformly apply to a multi-qudit space of an arbitrary number of qudits. The sec-

ond vector identity, which we call the “slip” move, appears to be new. In their full generality,

our two vector identities go beyond a graphical representation. We then show by example that

these identities can be thought of as representing combinatorial moves that one can perform

on braided states without changing the state. We conclude with an example in which we show,

rigorously and without any computations, that two entangled vector states can be shown to be

equal using these combinatorial moves in combination.
7Popa’s results on the axiomatization of the standard invariant [35] are for subfactors; one would need a (con-

jectural) graded subfactor theory, as noted in [15].
8There is no tensor category here, since the tensor product is not defined between two nonneutral elements of

the generalized Clifford algebra. See, e.g., [31], for a nice exposition of tensor category theory.
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Thus, an important general result in this section is the introduction of a reduction procedure:

in many cases, one may reduce the problem of showing equivalence of two different sequences

of braidings applied to the ground state, to that of a tractable combinatorial problem, instead

of one of explicit algebraic computation. The essential starting point for these vector identities

is the identity lemma 3.2.7, and can be thought of as an important reason for using axiom 1 as

an axiomatic starting point for the entire theory9.

We start with the two main combinatorial moves we will need. In this section, as a matter

of form, we will draw the diagrams first, and then writing out the algebraic expressions, as the

diagrams in the vector representation take on increasing importance for intuition.

Proposition 3.3.17 (Projection-Braid Identity, or the “Twist” Move).

= ω−1/2 (3.3.55)

Equivalently (by scaling the graphical identity by δ),

b12E1 = ω−1/2E1. (3.3.56)

More generally,

b2k−1,2kEk = ω−1/2Ek (3.3.57)

for k = 1, 2, . . . , n.
9Given how the “rest” of the theory is following from the axiomatic framework, the reader perhaps is gain-

ing more appreciation of why it was so important to separate the algebraic framework into two parts: axioms
which allow one to do lots of derivations and algebraic proofs, and a proof of that these axioms are satisfied by an
explicit example, i.e. the existence of a consistent vector representation of the generalized Clifford algebra that
satisfied both axiom 1 and axiom 2. The division of labor is made clear, and thus each part can be independently
rigorously verified.

47



Proof. By definition,

b12E1 =
ω1/2
√

N

N−1∑
i=0

ci
1c−i

2 E1. (3.3.58)

Recall that the axioms for the projectors imply via lemma 3.2.7 that ca
1 E1 = ζa2ca

2E1. So the

above equality translates to

b12E1 =
ω1/2
√

N

(
N−1∑
i=0

ζ−i2
)

E1 (3.3.59)

= ω1/2ω∗E1 = ω−1/2E1. (3.3.60)

The general statement b2k−1,2kEk = ω−1/2Ek follows similarly since the same lemma gives

ca
2k−1Ek = ζa2ca

2kEk, which allows for a similar simplification from the sum over generators to a

single complex number.

Proposition 3.3.18 (“Slide” Move).

= (3.3.61)

More generally (i.e. for n (where 2n is the number of strands) not necessarily equal to 2),

b23b34b12b23 |Ω〉⊗n = |Ω〉⊗n . (3.3.62)

Proof. Graphically, it is wisest to expand the braids on the 2nd and 3rd strands, since we may
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use existing algebraic graphical identities to simplify the result. This yields

b23b34b12b23 |Ω〉⊗n =
ω
N

N−1∑
i,j=0

cj
2c

−j
3 b34b12ci

2c−i
3 |Ω〉⊗n . (3.3.63)

Note that b12, b34 commute by linear extension of lemma 3.3.8 so the order doesn’t matter.

In terms of a diagram, expanding the middle braids yields

ω
N

N−1∑
i,j=0

j

i

−j

−i

=
ω
N

N−1∑
i,j=0

ζ i2

j
i −j

−i
, (3.3.64)

where we have applied axiom 1 to bring the charge −i over to the 4th strand, yielding the

phase factor ζ i2 , and then commuted it over the braid back to the 3rd strand. Similarly, the

charge i can be brought over the braid. Note that no additional phase accumulates, since over-

all the relative vertical positions of the charges are unchanged. Now apply the twist move in

proposition 3.3.17 to get the diagram

1
N

N−1∑
i,j=0

ζ i2

j

i
−j

−i
. (3.3.65)

Following the logic of the diagram, we can perform the same operations to obtain that

b23b34b12b23 |Ω〉⊗n =
1
N

N−1∑
i,j=0

ζ i2cj
2c

−j
3 ci

1c−i
3 |Ω〉⊗n . (3.3.66)

By unitarity of the braids, it suffices to show that 〈Ω|⊗n b23b34b12b23 |Ω〉⊗n = 1.

Note that the projection onto the ground state yields 1
N
∑N−1

i,j=0 ζ i2 〈Ω|⊗n cj
2c

−j
3 ci

1c−i
3 |Ω〉⊗n =

1
N
∑N−1

i,j=0 ζ i2 〈Ω|⊗n ci
1c

j
2c

−i−j
3 |Ω〉⊗n by commuting ci

1 past the neutral cj
2c

−j
3 . By orthonormality
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of ca
2cb

4 |Ω〉⊗n states, and equivalently, the orthonormality of ca
1 cb

3 |Ω〉⊗n states, only the terms

with −i − j = 0 survive. Thus, the sum reduces to 1
N
∑N−1

i=0 ζ i2 〈Ω|⊗n ci
1c−i

2 |Ω〉⊗n, and this is

simply equal to 1 by lemma 3.2.7.

Thus, it follows by unitarity of the braids that

b23b34b12b23 |Ω〉⊗n = |Ω〉⊗n . (3.3.67)

In terms of the diagram, for n = 2, we have

= . (3.3.68)

In terms of combinatorial moves, this identity gives us a way to “slide” one cap over the

other.

Corollary 3.3.19.

b12b23 |Ω〉⊗n = b43b32 |Ω〉⊗n . (3.3.69)

Proof. By taking b34 and b23 to the right hand side in Proposition 3.3.18.

The above “slide” move generalizes to the general result:

Proposition 3.3.20 (General “Slide” Move).

b2k,2l−1b2l−1,2lb2k−1,2kb2k,2l−1 |Ω〉⊗n = |Ω〉⊗n (3.3.70)

for k < l in {1, 2, . . . , n}.
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Note that this result does not generally have a graphical interpretation unless l = k + 1.

Proof. Again, by expansion,

b2k,2l−1b2l−1,2lb2k−1,2kb2k,2l−1 |Ω〉⊗n =
ω
N

N−1∑
i,j=0

cj
2kc

−j
2l−1b2l−1,2lb2k−1,2kci

2kc−i
2l−1 |Ω〉⊗n . (3.3.71)

The same proof as before works in this general case since we can apply the braid intertwin-

ing identities and also the twist moves (for braids b2l−1,2l and b2k−1,2k), and then apply the ax-

ioms to simplify the vacuum expectation value. So we conclude that

b2k,2l−1b2l−1,2lb2k−1,2kb2k,2l−1 |Ω〉⊗n = |Ω〉⊗n . (3.3.72)

We would also like to be able to “slip” one cap in and out of another cap.

Proposition 3.3.21 (“Slip” Move).

= (3.3.73)

More generally, for n a positive integer not necessarily 1,

b23b34b21b32 |Ω〉⊗n = |Ω〉⊗n .

Proof. As demonstrated in the proof of the “slide” move, this kind of proof doesn’t depend on

n, so long as n ≥ 2, so let’s specialize to n = 2 for convenience. The previous proposition
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gave a clear handle on how to manipulate the algebraic computations, so we’ll stick with the

algebra.

b23b34b21b32 |Ω〉⊗n =
1
N

N−1∑
i,j=0

cj
2c

−j
3 b34b21ci

3c−i
2 |Ω〉⊗n . (3.3.74)

In terms of a diagram, multiplying the state by δ (every cap contributes an extra factor of
√

δ) yields

LHS =
1
N

N−1∑
i,j=0

j

−i

−j

i
=

1
N

N−1∑
i,j=0

j

−i
−j

i
, (3.3.75)

since the factors of ζ i2 and ζ−i2 cancel.

Undoing the twists yields factors of ω1/2 and ω−1/2, respectively, which cancel, so we are

left with

LHS =
1
N

N−1∑
i,j=0

−i

j

i
−j

. (3.3.76)

Converting back to the algebraic form, one has

b23b34b21b32 |Ω〉⊗n =
1
N

N−1∑
i,j=0

cj
2c

−j
3 ci

3c−i
2 |Ω〉⊗n . (3.3.77)

Note that the |00〉 component has norm 1, since setting i = j yields the |00〉 component.

Thus, by unitarity of the braid elements, the other basis state projections vanish, so

b23b34b21b32 |Ω〉⊗n = |Ω〉⊗n (3.3.78)

as desired.
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As with the “slide” move, there is again an algebraic generalization to braid elements with

no graphical interpretation:

Proposition 3.3.22 (General “Slip” Move).

b2k,2l−1b2l−1,2lb2k,2k−1b2l−1,2k |Ω〉⊗n = |Ω〉⊗n (3.3.79)

for k < l in {1, 2, . . . , n}.

Proof. By expansion,

b2k,2l−1b2l−1,2lb2k,2k−1b2l−1,2k |Ω〉⊗n =
1
N

N−1∑
i,j=0

cj
2kc

−j
2l−1b2l−1,2lb2k,2k−1ci

2l−1c−i
2k |Ω〉⊗n , (3.3.80)

and the same proof follows through as before.

Corollary 3.3.23.

b21b32 |Ω〉⊗n = b43b32 |Ω〉⊗n (3.3.81)

Proof. By taking b23 and b34 to the right hand side in proposition 3.3.21.

Proposition 3.3.24.

= (3.3.82)

i.e.

b34b23 |Ω〉⊗n = b43b32 |Ω〉⊗n (3.3.83)

Proof. It suffices to show that b23b34b34b23 |Ω〉⊗n = |Ω〉⊗n, using the fact that bjkbkj = 1.

Note that this relation does not follow immediately from the Yang-Baxter-like equation,

since the Yang-Baxter-like equation does not know about the vector structure, or even about

the behavior of the ground state.
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First recall that proposition 3.3.18 says that the ground state |Ω〉⊗n is invariant under a

“slide” move via

|Ω〉⊗n = b23b34b12b23 |Ω〉⊗n (3.3.84)

and so we have that

b32b43b21b32 |Ω〉⊗n = |Ω〉⊗n . (3.3.85)

Thus,

b23b34b34b23 |Ω〉⊗n = b23b34b34b23b32b43b21b32 |Ω〉⊗n (3.3.86)

= b23b34b21b32 |Ω〉⊗n (3.3.87)

which equals |Ω〉⊗n by proposition 3.3.21, as desired.

Now we prove something quite nontrivial using the above braiding relations in combination.

Proposition 3.3.25.

= (3.3.88)

i.e.

b56b45b34b23 |Ω〉⊗n = b65b54b43b32 |Ω〉⊗n . (3.3.89)

Proof. Equivalently, we will show that

b23b34b45b56b56b45b34b23 |Ω〉⊗n = |Ω〉⊗n . (3.3.90)
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We first substitute b32b43b21b32 |Ω〉⊗n for |Ω〉⊗n following Proposition 3.3.18. This kills off

the b34 and b23 braids and we are left with

b23b34b45b56b56b45b21b32 |Ω〉⊗n . (3.3.91)

Now we commute the braids which do not overlap so we get

b23b34b21b32b45b56b56b45 |Ω〉⊗n . (3.3.92)

We now substitute b54b65b43b54 |Ω〉⊗n for |Ω〉⊗n to get

b23b34b21b32b45b56b43b54 |Ω〉⊗n (3.3.93)

upon braid and adjoint braid cancellation. Now we apply the slip move in reverse to get

b23b34b21b32 |Ω〉⊗n (3.3.94)

and then apply the slip move in reverse again to get |Ω〉⊗n, as desired.

3.3.4 SIGNIFICANCE OF THE YANG-BAXTER EQUATION PROOF

At this point, we wish to elaborate on the significance of our algebraic proof of the Yang-

Baxter equation. This subsection is divided into two parts, the first being the particular local

representation for the bk,k+1’s built out of ci’s satisfying the two axioms, and the second be-

ing the local representation for an alternate local representation bk,k+1’s built out of ci’s not

conforming to the explicit representation we constructed to satisfy our two axioms, but still

satisfying the relations of a generalized Clifford algebra. By local, we mean that the unitary

braid elements are 2-qudit entangling gates or single-qudit gates, in the terminology of quan-
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tum circuits; and furthermore, only adjacent qudits are entangled. Via a suitable realization of

the generalized Clifford algebras, the latter section provides a solution to an open question in

the work of Cobanera and Ortiz [4], regarding the construction of unitary solutions realizing

the braid group B2n when the underlying qudit dimension N of the n-qudit system is even, of

the “self-dual” form:

ρsd(σ2i−1) =
1√
N

N−1∑
m=0

αmU−m
i , i = 1, . . . , n (3.3.95)

ρsd(σ2i) =
1√
N

N−1∑
m=0

βmVm
i V−m

i+1 , i = 1, . . . , n − 1. (3.3.96)

Here, the operators Vk and Uk, termed Weyl generators, are defined by

Vk |a1, a2, . . . , an〉 = |a1, a2, . . . , (ak − 1)(mod N), . . . , an〉 (3.3.97)

and

Uk |a1, a2, . . . , an〉 = qak |a1, a2, . . . , ak, . . . , an〉 . (3.3.98)

Vk and Uk satisfy the commutation relation VkUk = qUkVk and Weyl generators with different

k’s commute. The operators Vk, Uk correspond to the generalized Pauli operators X−1 (X is bit

increment) and Z (Z is phase increment).

LOCAL REPRESENTATION OF THE bk,k+1’S

We first recall from Ch. 2 the particular realization of the generalized Clifford algebras that

we constructed in order to satisfy our two axioms:

c2k |a1, a2, . . . , an〉 = q−
∑

i<k ai |a1, a2, . . . , (ak + 1)(mod N), . . . , an〉 (3.3.99)
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and

c2k−1 |a1, a2, . . . , an〉 = ζ qakq−
∑

i<k ai |a1, a2, . . . , (ak + 1)(mod N), . . . , an〉 . (3.3.100)

As a brief recap, the main goal of Ch. 2 was to lay down an algebraic framework for deriving

general algebraic identities for vectors, thus enabling computations with multiple qudits. The

axiomatization of the requisite properties for a general algebraic framework was the new di-

rection introduced by the work of Ch. 2. To connect to [4], we need to rewrite c2k and c2k−1 in

terms of the single-qudit generalized Pauli operators, also called Heisenberg-Weyl operators.

Such rewriting in terms of single-qudit operators is known as a Jordan-Wigner transformation

[15]; the particular Jordan-Wigner transformation depends on some conventions about phases

and the single-qudit operators chosen and needs to be computed explicitly. Thus, there was

some nontriviality in verifying the axioms we presented, since we insisted on particular phases

associated with the corresponding c2k and c2k−1’s in axiom 1, which depend in some way on the

parity of N.

In our case, we compute the Jordan-Wigner transformation using the single-qudit operators

of [4], Uk and Vk above. Thus,

c2k = U−1
1 U−1

2 · · ·U−1
k−1V

−1
k (3.3.101)

and

c2k−1 = ζU−1
1 U−1

2 · · ·U−1
k−1V

−1
k Uk. (3.3.102)

First, we show that c2k−1c−1
2k is 1-local:

Proposition 3.3.26. c2k−1c−1
2k is 1-local, i.e. it only acts on the kth qudit and leaves the rest

fixed. In particular, c2k−1c−1
2k = ζ−1Uk.
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Proof.

c2k−1c−1
2k =

(
ζU−1

1 U−1
2 · · ·U−1

k−1V
−1
k Uk

)
(U1U2 · · ·Uk−1Vk) (3.3.103)

= ζV−1
k UkVk (3.3.104)

= ζq−1V−1
k VkUk (3.3.105)

= ζ−1Uk. (3.3.106)

It will be convenient also to have c2k+1 and c−1
2k+1 at our disposal:

c2k+1 = ζU−1
1 U−1

2 · · ·U−1
k−1U

−1
k V−1

k+1Uk+1 (3.3.107)

c−1
2k+1 = ζ−1U1U2 · · ·Uk−1UkU−1

k+1Vk+1. (3.3.108)

Thus, the following combination is 2-local:

Proposition 3.3.27. c2kc−1
2k+1 is 2-local, i.e. it only acts on the kth and (k + 1)th qudits and

leaves the rest of them fixed. In particular,

c2kc−1
2k+1 = ζ−1V−1

k UkU−1
k+1Vk+1. (3.3.109)

Proof. Using equations 3.3.101 and 3.3.108,

c2kc−1
2k+1 =

(
U−1

1 U−1
2 · · ·U−1

k−1V
−1
k
) (

ζ−1U1U2 · · ·Uk−1UkU−1
k+1Vk+1

)
(3.3.110)

= ζ−1V−1
k UkU−1

k+1Vk+1. (3.3.111)

Since Uk, Vk act only on the kth qudit, it follows that c2kc−1
2k+1 only acts on the kth and (k + 1)th

qudits.
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As a consequence, we obtain the important relation that the braid elements b2k,2k+1 are 2-

local:

Proposition 3.3.28. b2k,2k+1 is 2-local. In particular,

b2k,2k+1 =
ω1/2
√

N

N−1∑
i=0

ζ−i2Wi
kW−i

k+1, (3.3.112)

where Wk = V−1
k Uk for each k ∈ {1, 2, . . . , n}.

Proof. Recall that

bkl :=
ω1/2
√

N

N−1∑
i=0

ci
kc−i

l (3.3.113)

defines the braid elements. We will compute b2k,2k+1 in terms of Uk, Vk, Uk+1 and Vk+1.

Lemma 3.3.29. Suppose ckcl = Qclck, then (ckc−1
l )n = Qn(n−1)/2cn

kc
−n
l .

Proof. Suppose ckcl = Qclck, then

ckc−1
l = ckcN−1

l = QN−1cN−1
l ck = Q−1c−1

l ck (3.3.114)

. Thus, cn
kc

−n
l in terms of (ckc−1

l )n is given by

(ckc−1
l )n = ckc−1

l ckc−1
l · · · ckc−1

l (3.3.115)

= Qc2
kc−2

l ckc−1
l · · · ckc−1

l (3.3.116)

= Q1+2+···+(n−1)cn
kc−n

l (3.3.117)

= Qn(n−1)/2cn
kc−n

l . (3.3.118)
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In particular, c2kc2k+1 = qc2k+1c2k, so

cn
2kc−n

2k+1 = q−n(n−1)/2(c2kc−1
2k+1)

n. (3.3.119)

Thus, applying Proposition 3.3.27

b2k,2k+1 =
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2(c2kc−1
2k+1)

i (3.3.120)

=
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2(ζ−1V−1
k UkU−1

k+1Vk+1)
i (3.3.121)

=
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2ζ−i(V−1
k Uk)

i(U−1
k+1Vk+1)

i (3.3.122)

For convenience, set Wk = V−1
k Uk for each k, and rewrite q = ζ2, yielding

b2k,2k+1 =
ω1/2
√

N

N−1∑
i=0

ζ−i(i−1)ζ−iWi
kW−i

k+1 (3.3.123)

=
ω1/2
√

N

N−1∑
i=0

ζ−i2Wi
kW−i

k+1. (3.3.124)

As a consistency check, let us show that this form of the sum for b2k,2k+1 is invariant under

shifting the index by N. The proof is nontrivial in this generalized Pauli basis, as it requires

a cancellation of covariant factors. From a physics perspective, we remark that the cancella-

tion of covariant factors is reminiscent of the construction of scalars in the theory of general

relativity.

Proposition 3.3.30 (Cancellation of Covariant Factors). Each term in the sum b2k,2k+1 =

ω1/2
√

N

∑N−1
i=0 ζ−i2Wi

kW
−i
k+1 is invariant under shifting the sum index by N. Thus, the sum is invari-

ant under shifting the indexing by arbitrary integers.
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Proof. Note that WN
k = −1 if N is even, since VN

k = UN
k = 1, VkUk = qUkVk and we can apply

Lemma 3.3.29 for Wk = V−1
k Uk to obtain that WN

k = QN(N−1)/2. As V−1
K Uk = q−1UkV−1

k , it

follows that Q = q−1, so WN
k = q−N(N−1)/2. Since q is a primitive Nth root of unity, q−N/2 = −1,

so WN
k = (−1)(N−1) = −1 if N is even. This is not a problem for the invariance of the sum of

the braid, under shifting the index, since there are two W’s, a Wk and a Wk+1, so under shifting

by N, one acquires two factors of −1, which cancel each other out.

If N is odd, the W factors are invariant under shifting by N since

WN
k = QN(N−1)/2 = (QN)(N−1)/2 = 1 (3.3.125)

since (N − 1)/2 is an integer. Recall that in both cases, ζ is a square root of q such that ζN2
= 1

so ζ−i2 is invariant under translations by N. So each term in the sum is invariant under shifting

the sum index by N.

Finally, it follows that shifting the indexing (e.g., from 0 to N − 1, to 1 to N) by arbitrary inte-

gers preserves the entire sum, since we can simply maps the terms back into ZN by subtracting

from or adding to the index of the relevant terms appropriate multiples of N.

It remains to compute the form of b2k−1,2k, which is accomplished with the aid of Lemma

3.3.29 and Proposition 3.3.26:

Proposition 3.3.31. b2k−1,2k is 1-local. In particular,

b2k−1,2k =
ω1/2
√

N

N−1∑
i=0

ζ−i2Ui
k (3.3.126)
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Proof. Applying Lemma 3.3.29 and Proposition 3.3.26:

b2k−1,2k = =
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2(c2k−1c−1
2k )

i (3.3.127)

=
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2 (ζ−1Uk
)i (3.3.128)

=
ω1/2
√

N

N−1∑
i=0

q−i(i−1)/2 (ζ−1Uk
)i (3.3.129)

=
ω1/2
√

N

N−1∑
i=0

ζ−i(i−1)ζ−iUi
k (3.3.130)

=
ω1/2
√

N

N−1∑
i=0

ζ−i2Ui
k. (3.3.131)

Note that the form of the braid group generators bk,k+1 is not in the requisite form of [4] (one

may neglect the unimodular phase factor ω in this comparison). It is, however, sufficiently

similar, if one replaces V’s by W’s, that one expects that some adaptation of our approach

should work to get solutions in the form desired by [4].

A GENERAL SOLUTION TO THE OPEN QUESTION OF COBANERA AND ORTIZ

We now solve for braid elements of “self-dual” form given in [4]:

ρsd(σ2i−1) =
1√
N

N−1∑
m=0

αmU−m
i , i = 1, . . . , n (3.3.132)

ρsd(σ2i) =
1√
N

N−1∑
m=0

βmVm
i V−m

i+1 , i = 1, . . . , n − 1. (3.3.133)

Our construction of a realization of the braid group B2n out of solutions of the self-dual form

will depend on constructing a generalized Clifford algebra out of a particular combination of
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Uk’s and Vk’s. We will need to verify that the resulting particular Jordan-Wigner transforma-

tion from Uk’s and Vk’s indeed satisfies the relations of a generalized Clifford algebra. This

verification step is a nontrivial point. In fact, in the original work of [4], the Jordan-Wigner

transformation presented, expressing their generators Γi and Δi (similar to our c2k−1 and c2k’s)

in terms of the Ui’s and Vi’s, is incorrect. In odd qudit dimension, they were able to use results

of Goldschmidt and Jones (see [10] [19], namely equation 7-6) on braid group representations

when N is a power of an odd prime, to find a solution of the self-dual form. The flaw is that

for even qudit dimension, their Δi generators do not satisfy ΔN
i = 1! The solution, informed

by our development of our algebraic framework, is to incorporate the factor of ζ (appearing in

our axiom 1) to modify their Jordan-Wigner transformation. Thus, our construction illustrates

once more the importance of the axiomatic approach we have pioneered in the first chapter, in

which we both isolated the necessary algebraic structure in the two axioms, which depended

on the choice of ζ , and justified the validity of the two axioms by an explicit construction10.

Note that since for N even, ζ can have two possible values, our construction gives rise to two

distinct classes of solutions of the self-dual form.

Our starting point is Proposition 3.3.16, which asserts that the bk,k+1’s constructed out of the

generators ci, for i = 1, 2, . . . , 2n, generate the braid group B2n. Since this proof only depends

on the properties of the generalized Clifford algebra, rather than on a particular representation

of the algebra, the proof extends to any construction of generators c1, c2, . . . , c2n−1, c2n out of

the Weyl generators Uj and Vj, which satisfies the relations of the generalized Clifford algebra,

namely:

cacb = qcbca if a < b (3.3.134)

cN
a = 1 for any a = 1, 2, . . . , 2n. (3.3.135)

10As a reminder, ζ is a square root of q such that ζN2
= 1, which guarantees that ζ−i2 is invariant under shifting

i by N.
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In the following proposition, we construct an automorphism of the generalized Clifford alge-

bra which gives the mapping into the “self-dual” form specified by [4]. We claim that using

u2k−1 = c−1
2k (3.3.136)

u2k = ζc−1
2k Uk (3.3.137)

yields an automorphism. Since Uk = ζc2k−1c−1
2k , and phases that are powers of q do not affect

the GCA relations, we can alternately use the mapping

u2k−1 = c−1
2k (3.3.138)

u2k = c2k−1c−2
2k (3.3.139)

Proposition 3.3.32. Define ua for a = 1, 2, . . . , 2n by

u2k−1 = c−1
2k (3.3.140)

u2k = c2k−1c−2
2k (3.3.141)

Then ua satisfies the relations of a generalized Clifford algebra, namely:

uaub = qubua if a < b (3.3.142)

uN
a = 1 for any a = 1, 2, . . . , 2n. (3.3.143)

Proof. By Lemma 3.2.6, two elements x, y of charge −1, where x is located on generators

(graphically, strands) which are left of all the generators (strands) on which y is located, com-

mute past each other with xy = qyx, hence uaub = qubua for a ∈ {2k − 1, 2k} and b ∈
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{2l − 1, 2l}, k < l. So we simply need to check the commutation of u2k−1 and u2k.

u2k−1u2k = c−1
2k c2k−1c−2

2k = qc2k−1c−1
2k c−2

2k (3.3.144)

= qu2ku2k−1. (3.3.145)

Furthermore,

uN
2k−1 = c−N

2k = 1 (3.3.146)

uN
2k =

(
c2k−1c−2

2k
)N

= QN(N−1)/2cN
2k−1c−2N

2k (3.3.147)

by Lemma 3.3.29, where c2k−1c−2
2k = Qc−2

2k c2k−1. It is clear that Q = q−2, hence QN(N−1)/2 =

q−N(N−1) = 1. Thus,

uN
2k = 1. (3.3.148)

Hence we have obtained an automorphism of the generalized Clifford algebra.

Remark: Note that since one can construct c2k−1 and c2k out of products of u2k−1 and u2k and

their powers and inverses, the size of the basis of the algebra is the same. This is a useful

check to see whether the automorphism is actually an automorphism, independently of the

relations. Later, in Ch. 5, we will treat the problem of constructing subalgebras of the gener-

alized Clifford algebra, and the question of what conditions can guarantee that the subalgebra

has trivial center. There are some similarities between the subalgebra construction problem

and the automorphism problem considered here, in that both require one to have a trivial cen-

ter, in order to prove unitarity and the Yang-Baxter equation.
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Proposition 3.3.33. Define βk,l by

βk,l =
1√
N

N−1∑
i=0

ui
ku−i

l , (3.3.149)

where ua are as above. Then setting σk = βk,k+1 for k = 1, 2, . . . , 2n − 1 yields a unitary

representation of the braid group B2n.

Proof. This follows from the fact that the proof for Proposition 3.3.16, relying on the proof of

the Yang-Baxter equation, and the commutation of elements of neutral charge, only depends

on the properties of the generalized Clifford algebra as an algebra. Thus, we pass from ca to ua

and Proposition 3.3.16 still holds. Finally, since there is freedom in the definition of the braid

element by a complex phase factor, we may change ω to 1 without affecting unitarity.

It remains to express the βk,k+1’s in terms of the Weyl generators Vi,Ui.

Proposition 3.3.34. β2k−1,2k is 1-local and β2k,2k+1 is 2-local. They are given by

β2k−1,2k =
ζ√
N

N−1∑
i=0

ζ−(i−1)2U−i
k for k = 1, 2, . . . , n (3.3.150)

β2k,2k+1 =
ζ√
N

N−1∑
i=0

ζ−(i+1)2Vi
kV−i

k+1 for k = 1, 2, . . . , n − 1 (3.3.151)
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Proof. Applying Lemma 3.3.29:

β2k−1,2k =
1√
N

N−1∑
i=0

q−i(i−1)/2(u2k−1u−1
2k )

i (3.3.152)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c−1
2k (c2k−1c−2

2k )
−1)i (3.3.153)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c−1
2k c2

2kc−1
2k−1)

i (3.3.154)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c2kc−1
2k−1)

i (3.3.155)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c2k−1c−1
2k )

−i (3.3.156)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(ζ−1Uk)
−i (3.3.157)

=
1√
N

N−1∑
i=0

ζ−i(i−1)ζ iU−i
k (3.3.158)

=
ζ√
N

N−1∑
i=0

ζ−(i−1)2U−i
k (3.3.159)

where we applied Proposition 3.3.26 to simplify c2k−1c−1
2k .
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Applying Lemma 3.3.29 again:

β2k,2k+1 =
1√
N

N−1∑
i=0

q−i(i−1)/2(u2ku−1
2k+1)

i (3.3.160)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c2k−1c−2
2k (c

−1
2k+2)

−1)i (3.3.161)

=
1√
N

N−1∑
i=0

q−i(i−1)/2(c2k−1c−2
2k c2k+2)

i (3.3.162)

=
1√
N

N−1∑
i=0

q−i(i−1)/2((ζU−1
1 U−1

2 · · ·U−1
k−1V

−1
k Uk) · (U−1

1 U−1
2 · · ·U−1

k−1V
−1
k )−2 (3.3.163)

· (U−1
1 U−1

2 · · ·U−1
k−1U

−1
k V−1

k+1))
i (3.3.164)

=
1√
N

N−1∑
i=0

q−i(i−1)/2ζ i (V−1
k UkV2

kU−1
k V−1

k+1
)i (3.3.165)

=
1√
N

N−1∑
i=0

q−i(i−1)/2ζ i (q−2VkV−1
k+1
)i (3.3.166)

=
1√
N

N−1∑
i=0

q−i(i−1)/2ζ iq−2iVi
kV−i

k+1 (3.3.167)

=
1√
N

N−1∑
i=0

ζ−i(i−1)ζ iζ−4iVi
kV−i

k+1 (3.3.168)

=
ζ√
N

N−1∑
i=0

ζ−(i+1)2Vi
kV−i

k+1. (3.3.169)

In the braid elements, the indexing of the coefficients ζ−(i−1)2 and ζ−(i+1)2 is quite curious.

Partially inspired by the suggestion of Cobanera and Ortiz [4] that there may be many classes

of braid group solutions of the self-dual form, we may try to extrapolate the coefficient to have

different indexing. In particular, we may use the fact that the relations of the generators form-

ing the generalized Clifford algebra are preserved under the scaling of generators ca and cb
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by factors of q to generate different coefficients in the self-dual solutions. This appears to be

related to a choice of gauge on each generator. Let us define wa(r1, r2, . . . , r2n) by

wa = qraua, (3.3.170)

where ra ∈ ZN. Then the wa’s again form a generalized Clifford algebra. Then the new braid

elements γk,k+1 are given by the following proposition:

Proposition 3.3.35.

γ2k−1,2k+1 =
ζ(r2k−r2k−1−1)2

√
N

N−1∑
i=0

ζ−(i+(r2k−r2k−1−1))2U−i
k for k = 1, 2, . . . , n (3.3.171)

γ2k,2k+1 =
ζ(1+r2k+1−r2k)

2

√
N

N−1∑
i=0

ζ−(i+(1+r2k+1−r2k))
2Vi

kV−i
k+1 for k = 1, 2, . . . , n − 1. (3.3.172)

Proof. We simply need to add in the rescaling factors induced in by the rescaling of the gener-

ators by phase factors:

γ2k−1,2k =
ζ√
N

N−1∑
i=0

(qr2k−1q−r2k)iζ−(i−1)2U−i
k (3.3.173)

=
1√
N

N−1∑
i=0

ζ2(r2k−1−r2k)iζ−i2+2iU−i
k (3.3.174)

=
1√
N

N−1∑
i=0

ζ−(i2+2(r2k−r2k−1−1)i)U−i
k (3.3.175)

=
ζ(r2k−r2k−1−1)2

√
N

N−1∑
i=0

ζ−(i+(r2k−r2k−1−1))2U−i
k . (3.3.176)
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γ2k,2k+1 =
ζ√
N

N−1∑
i=0

(qr2kq−r2k+1)iζ−(i+1)2Vi
kV−i

k+1 (3.3.177)

=
1√
N

N−1∑
i=0

ζ2(r2k−r2k+1)iζ−i2−2iVi
kV−i

k+1 (3.3.178)

=
1√
N

N−1∑
i=0

ζ−(i2+2(1+r2k+1−r2k)i)Vi
kV−i

k+1 (3.3.179)

=
ζ(1+r2k+1−r2k)

2

√
N

N−1∑
i=0

ζ−(i+(1+r2k+1−r2k))
2Vi

kV−i
k+1. (3.3.180)

Since the phase of each braid element does not affect the braid group relations, it follows

that up to phase, the set of self-dual braid group solutions that we have obtained is indexed

by a 2n-dimensional vector (r1, r2, . . . , r2n) in Z2n
N . Thus, using a particular automorphism of

the generalized Clifford algebra and the gauge symmetry for each generator of the generalized

Clifford algebra, we have obtained, from our proof of the Yang-Baxter equation and the related

braid group construction, a general set of solutions to the braid group satisfying the “self-dual”

form of Cobanera and Ortiz [4], which works for both odd and even N (N ≥ 2).

From a quantum computation standpoint, the braid elements are 2-local, and hence it is fea-

sible that one might try to implement these gates. In fact, from the commutation relations 3.3.5

between the braid elements and the elements ca, and the representation of ca’s in terms of the

generalized Pauli operators Vk and Uk from equations 3.3.101 and 3.3.102, it is further evident

that they almost normalize the generalized Pauli group on n qudits, the almost being due to the

extra factor of ζ . To see this, simply examine the equation b12c1 = qc2
1 c−1

2 b12; c1 has a prefac-

tor ζ , but c2
1 has a prefactor of q, so the ζ factor remains. Further, observe that we may recover

Vk in terms of ζ’s and the generalized Clifford algebra by using the expression for c2k in terms

of Ui’s and the expression for Ui in terms of ca’s. Thus, we can access the entire generalized

Pauli group, which is generated by Vk and Uk’s, by appropriate products of generators of the
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generalized Clifford algebra, combined with appropriate factors of ζ (q is contained in the

generalized Pauli group, so it would be redundant to keep track of factors of q). Since these

products of ca’s can be commuted past the braid elements to yield again products of ca’s time

powers of q, it follows from the representation of any generalized Pauli operator as a product

of generators of the algebra up to powers of ζ that these braid elements are almost Clifford

gates, where the Clifford group [12] refers to the normalizer of the generalized Pauli group

within the special unitary group over n qudits of dimension N.

3.4 EXPLICIT COMPUTATION OF SOME ENTANGLED VECTOR STATES

This section is devoted to explicit algebraic computations of some entangled vector states,

to demonstrate some of the variety of entangled states that can arise by braid element actions.

Whereas the previous section was devoted to proof methods for showing that two vector states

are equal, it did not resolve the question of what those states were, which is clearly a more

complicated matter, from the computational standpoint. In proving vector identities, we were

able to cleverly chain together two basic moves, the “slide” and “slip” moves, which enable

one to maneuver neighboring caps over and under, as well as in and out of each other. Clearly,

different methods are needed for explicit computation of the states.

In this section, we develop computational techniques which enable one to reduce vector

state computation in various cases to the evaluation of a single explicit inner product, i.e. a sin-

gle vacuum expectation value. Thus, the novelty here, compared with [17], for example, which

also studies state computations, is that we show that state computation of entangled states us-

ing the generalized Clifford algebra is quite doable using purely algebraic methods. In fact, as

we demonstrate in the final example, the braiding structures can inform one as to the strategy

one should employ to reduce the state computation to the evaluation of a single explicit vac-

uum expectation value.
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The braid elements preserve the charge of states of definite charge under the charge operator

C, so there is an extra symmetry. So some algebraic structure may be expected to emerge from

the application of braid elements to the ground state, which is neutral.

For example, we have the following identity:

Proposition 3.4.1.

b34b23 |Ω〉⊗n =
1√
N

N−1∑
i=0

ζ i2ci
2c−i

3 |Ω〉⊗n =
1√
N

N−1∑
i=0

qi2ci
2c−i

4 |Ω〉⊗n (3.4.1)

Proof. By direct expansion, b34b23 |Ω〉⊗n = ω
N
∑N−1

i,j=0 cj
3c

−j
4 ci

2c−i
3 |Ω〉⊗n. As a prelude to putting

the sum in normal order, we put each term into “pairwise” normal order, so b34b23 |Ω〉⊗n =

ω
N
∑N−1

i,j=0 ci
2(c

j
3c

−j
4 c−i

3 ) |Ω〉⊗n. Now the action of the c3 and c4 elements on the ground state can

be combined to yield q−j2ζ(j−i)2c−i
4 |Ω〉⊗n. This is by first shifting c3’s to the right of c4 and

then combining the powers of c3, convert the c3’s to c4’s via their action on the ground state.

At this point, the sum over j can be explicitly evaluated since

N−1∑
j=0

q−j2ζ(j−i)2
=

N−1∑
j=0

ζ−(i+j)2qi2 . (3.4.2)

Summing over j yields
√

Nω−1qi2 (since the sum is shift invariant due to the axiom ζ(i+N)2
=

ζ i2). So we are left with 1√
N

∑N−1
i=0 qi2ci

2c−i
4 |Ω〉⊗n, which equals

∑N−1
i=0 ζ i2ci

2c−i
3 |Ω〉⊗n as desired.

Remark 3.4.2. Note that if we restrict to the case of the 2-qudit ground state, then up to phase

redefinition of the basis, the resulting state is of the form 1√
N

∑N−1
i=0 |i,−i〉 (as noted in [16]).

More generally, we have (up to phase redefinitions) 1√
N

∑N−1
i=0 |i,−i, 0, 0, . . . , 0〉.

There is actually an easier way to get this state algebraically, using b42, one of the nonlocal

braids we defined:
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Proposition 3.4.3.

b42 |Ω〉⊗n = ω−1/2b34b23 |Ω〉⊗n (3.4.3)

Proof. Since b42 = ω−1/2
√

N

∑N−1
i=0 c−i

4 ci
2 = ω−1/2

√
N

∑N−1
i=0 qi2ci

2c−i
4 , if we apply it to |Ω〉⊗n we get

ω−1/2
√

N

∑N−1
i=0 qi2ζ−i2ci

2c−i
3 |Ω〉⊗n by bringing the charge i from the fourth strand over to the third

strand using the property of the ground state. Thus,

b42 |Ω〉⊗n = ω−1/2b34b23 |Ω〉⊗n (3.4.4)

We can also get rid of the extra constant factor by the following corollary:

Corollary 3.4.4.

b42 |Ω〉⊗n = b34b23b34 |Ω〉⊗n (3.4.5)

Proof. It follows from b34 |Ω〉⊗n = ω−1/2 |Ω〉⊗n by proposition 3.3.17.

We now compute the state given by b56b45b34b23 |Ω〉⊗n:

Proposition 3.4.5.

b56b45b34b23 |Ω〉⊗n =
1
N

N−1∑
j,l=0

q−jlql2+j2cl
2c

j−l
4 c−j

6 |Ω〉⊗n (3.4.6)

Proof. We give a direct computation analogous to that of proposition 3.4.1. Expanding all of

the braids yields ω2

N2

∑N−1
i,j,k,l=0 ci

5c
−i
6 cj

4c
−j
5 ck

3c−k
4 cl

2c−l
3 |Ω〉⊗n. Our strategy is to put all the terms in

“pairwise” normal order, so we get ω2

N2

∑N−1
j,l=0

∑N−1
i,k=0 q−jlcl

2(c
j
4ck

3c−k
4 c−l

3 )(ci
5c

−i
6 c−j

5 ) |Ω〉⊗n. Using

the property of the ground state under action of the c2k−1’s, we can reduce (ci
5c

−i
6 c−j

5 ) |Ω〉⊗n to

q−i2ζ(i−j)2c−j
6 |Ω〉⊗n, and then reduce (cj

4ck
3c−k

4 c−l
3 ) |Ω〉⊗n to q−k2ζ(k−l)2cj−l

4 |Ω〉⊗n. So we are left
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to evaluate

ω2

N2

∑
j,l

q−jlcl
2

(∑
k

q−k2ζ(k−l)2

)
cj−l

4

(∑
i

q−i2ζ(i−j)2

)
c−j

6 |Ω〉⊗n (3.4.7)

which yields
ω2

N2

∑
j,l

q−jlcl
2

(√
Nω−1ql2

)
cj−l

4

(√
Nω−1qj2

)
c−j

6 |Ω〉⊗n (3.4.8)

which is just
1
N

N−1∑
j,l=0

q−jlql2+j2cl
2c

j−l
4 c−j

6 |Ω〉⊗n (3.4.9)

as desired.

As a simple example, suppose we take N = 3, so there are nine terms on the right-hand-side,

yielding

b56b45b34b23 |Ω〉⊗n =
1
3

2∑
j=0

(
qj2cj

4c
−j
6 + q−jq1+j2c2cj−1

4 c−j
6 + q−2jq4+j2c2

2c
j−2
4 c−j

6

)
|Ω〉⊗n .

(3.4.10)

Interestingly, we can write the coefficient term as ζa2
1 +a2

2+a2
3 , which allows us to rewrite the

sum as
1
N

∑
a1+a2+a3=0 mod N

ζa2
1 +a2

2+a2
3 ca1

2 ca2
4 ca3

6 |Ω〉⊗n . (3.4.11)

Following this pattern, we may conjecture that the general case is given by

b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n =
1

N(k−1)/2

∑
∑k

i=1 ai=0

ζ
∑k

i=1 a2
i ca1

2 ca2
4 · · · cak

2k |Ω〉⊗n . (3.4.12)

Clearly, the case k = 2 and k = 3 hold. It turns out that this is indeed the case in general:
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Proposition 3.4.6. Suppose k ≤ n. Then

b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n =
1

N(k−1)/2

∑
∑k

i=1 ai=0

ζ
∑k

i=1 a2
i ca1

2 ca2
4 · · · cak

2k |Ω〉⊗n . (3.4.13)

Equivalently,

b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n =
1

N(k−1)/2

∑
∑k

i=1 ai=0

ca1
1 ca2

3 · · · cak
2k−1 |Ω〉⊗n . (3.4.14)

Proof. By unitarity of the braid element, it suffices to show that

〈Ω|⊗n cak
2k−1c

ak−1
2k−3 · · · c

a2
3 ca1

1 b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n =
1

N(k−1)/2 (3.4.15)

whenever
∑k

i=1 ai = 0. The norm of the sum over these states is already 1, so this would imply

that there cannot be components in addition to these neutral states.

First, observe11 that we can change the ca1
1 to ζ−a2

1 ca1
2 by commuting past the other ci’s to act

on the bra vector and then commuting back to its original position. Then we can commute ca1
2

past the braids until we get ca1
2 b23 |Ω〉⊗n, which is just b23ca1

3 |Ω〉⊗n = b23ζa2
1 ca1

4 |Ω〉⊗n. This

phase factor cancels the previous ζ−a2
1 so we are left with the b34b23ca1

4 |Ω〉⊗n, acted on by a

product of ci’s and braids. We can then move ca1
4 past b23 and then apply b34ca1

4 = ca1
3 b34. After

commuting this c3 past the other braids we finally get

〈Ω|⊗n cak
2k−1c

ak−1
2k−3 · · · c

a2+a1
3 b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n . (3.4.16)

11This series of manipulations is motivated by drawing the diagram for this vacuum expectation value, and
trying to transfer the charge on the first strand over to the third strand.
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Applying this same procedure iteratively, the end result is

〈Ω|⊗n cak+ak−1+···+a1
2k−1 b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n . (3.4.17)

By assumption ak + ak−1 + · · ·+ a1 = 0, so we just need to compute

〈Ω|⊗n b2k−1,2kb2k−2,2k−1 · · · b34b23 |Ω〉⊗n . (3.4.18)

Since bl,l+1 = ω1/2
√

N

∑N−1
m=0 cm

l c−m
l+1 , the only terms that contribute to the projection onto the

ground state are12 from the constant component of b23, and similarly, the constant component

of b45, b67, etc. So we are left to evaluate

ω(k−1)/2

N(k−1)/2 〈Ω|⊗n b2k−1,2kb2k−3,2k−2b2k−5,2k−4 · · · b34 |Ω〉⊗n . (3.4.19)

Applying the twist move k − 1 times to get rid of the braids yields ω−(k−1)/2, so this expression

evaluates to 1
N(k−1)/2 , as desired.

Remark 3.4.7. As seen in numerous computations for vector states, the key is to latch onto

a symmetry (which may be more readily deduced from the diagram) of the vector state under

the action of a neutral product of generators c2k−1 (which act on the vacuum state to form a

basis; it is important that we project onto a basis). For a complete set of such symmetries (i.e.

enough so that the square norm of the sum of projections onto the corresponding states is 1),

the computation of a normalized vector state reduces to the computation of the projection onto

a single vector state. Thus, in the end, only one explicit computation (expanding braid ele-

ments) must be performed.
12This fact is justified by the axiom that the ca1

2 ca2
4 · · · can

2n |Ω〉⊗n form a basis. Drawing the diagram for the
expanded braid sums makes the deduction apparent.

76



3.5 CONCLUSION

In this chapter, we showed that the algebraic framework we developed in [24] allows us to

construct a purely definitional graphical calculus for multi-qudit computations with the gener-

alized Clifford algebra. Using purely algebraic methods, we established many graphical and

beyond graphical identities of the representation of generalized Clifford algebras considered in

the previous chapter, including a novel algebraic proof of a Yang-Baxter equation and a con-

struction of a corresponding braid group representation. Our algebraic proof also enabled a

resolution of an open problem in [4] on the construction of self-dual braid group representa-

tions for N even. We also derived several new identities for the braid elements, which are key

to our proofs. In terms of physics, we connected these braid identities to physics by showing

the presence of a conserved charge. Furthermore, we demonstrated that in many cases, the ver-

ification of involved vector identities can be reduced to the combinatorial application of two

basic vector identities. Finally, we showed how to explicitly compute various vector states in

an efficient manner using algebraic methods.

From a practical standpoint, a coherent and self-contained algebraic framework for working

with GCAs, as presented in the previous chapter, is the first step toward using symbolic algebra

methods, such as Mathematica, to simplify complicated multi-qudit computations using GCA

representations. In this chapter, we have provided many new algebraic tools at an operator and

vector level, which provide the next crucial step in this endeavor.
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4
Quantum channels on group algebras

In this chapter1, we introduce a new decomposition of quantum channels acting on group

algebras, which we term Kraus-like operator decompositions (Kraus-like decompositions for

short). An important motivation for this new decomposition is a general nonexistence result

that we show for Kraus operator decompositions for quantum channels in this setting. We

show that the notion of convex Kraus-like operator decompositions (in which the coefficients

in the sum decomposition are nonnegative and satisfy a sum rule) that are induced by the ir-
1This chapter is adapted from the joint work [27] by the dissertation author and Jonathan Boretsky, a graduate

student in the mathematics department at Harvard University.

78



reducible characters of a finite group is equivalent to the notion of a conditionally negative-

definite length when the length is a class function. For a general finite group G, we prove a

stability condition which shows that if the semigroup associated with a length has a convex

Kraus-like operator decomposition for all t > 0 small enough, then it has a convex Kraus-

like operator decomposition for all time t > 0. Using the stability condition, we show that

for a general finite group, conditional negativity of the length function is equivalent to a set

of semidefinite linear constraints on the length function. By Schoenberg’s theorem [38], our

result implies that in the group algebra setting, a semigroup Pt induced by a length function

which is a class function is a quantum channel for all t ≥ 0 if and only if it possesses a convex

Kraus-like operator decomposition for all t > 0.

4.1 INTRODUCTION

The notion of a completely positive, trace-preserving map (CPTP map), also called a quan-

tum channel, is important in a variety of areas, including quantum information theory and the

study of various inequalities for operator algebras. Quantum channels are often studied in par-

ticular mathematical settings, such as full matrix algebras or other particular kinds of C∗ alge-

bras. The setting of full matrix algebras is of particular importance in quantum information

theory via the study of finite-dimensional density matrices and their properties (with respect

to norms, entropies, etc.). In such a situation, quantum channels are characterized by the well-

known Kraus operator decomposition theorem [40][3][34].

In this article, we specialize to the particular case of group algebras where the underlying

group is finite2. Quantum channels in the group algebra setting possess similar desirable prop-

erties as those in the full matrix algebra setting, and thus are of independent interest. For ex-

ample, the interpolation theory of Uhlmann [42] extends the monotonicity of the relative en-
2The group algebra setting has previously been studied in quantum computation in Kitaev’s quantum double

model for finite groups [22] (see [7] for recent results in this direction).
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tropy under identity-preserving completely positive maps from the usual matrix algebra setting

to arbitrary ∗-algebras, which contains group algebras as a special case. We prove a nonex-

istence result for a Kraus operator decomposition of the quantum channel in terms of Kraus

operators lying within the group algebra. This motivates us to introduce operators which allow

one to decompose certain quantum channels acting on the group algebra. The decomposition

we introduce involves a sum over operators which come with real-valued coefficients. Much

as the work of Choi [3] shows that the existence of a Kraus operator decomposition in the ma-

trix algebra case implies that the corresponding linear mapping is a quantum channel, we will

obtain a result in the group algebra case showing that, for particular naturally arising opera-

tor semigroups Pt, if a decomposition of Pt in terms of the operators we introduced satisfies a

positivity condition on the coefficients, then the elements of the semigroup are quantum chan-

nels for all t ≥ 0. Hence, we term these operators Kraus-like operators and the corresponding

decompositions Kraus-like operator decompositions. We further define convex Kraus-like

operator decompositions to be those in which the coefficients in the sum decomposition are

nonnegative and satisfy a particular sum rule, which we will discuss explicitly later.

Based on Schoenberg’s theorem[38], one may observe that the imposition of a conditionally

negative-definite length on the finite group underlying the group algebra results in the induced

semigroup Pt (specifically, take the semigroup of operators Pt defined by Ptλ(g) = e−tl(g)λ(g)

where λ(g) is a multiplier and l is a scalar-valued function on the group, and extend by linear-

ity to all of LG) being a quantum channel for all t ≥ 0. This fact is not so easily used in gen-

eral, as one must prove the conditional negative-definite property for a length function. Histor-

ically, Haagerup famously proved the conditional negative-definiteness of a particular length

function on a free group with finitely many generators [13] (see Lemma 1.2 of the paper). By

restricting to length functions which are class functions, and passing to the Kraus-like opera-

tor decomposition, we show that the condition of conditional negative-definiteness on finite
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groups can be efficiently verified by checking a number of semidefinite linear constraints on

the length function. We show that the latter is a necessary and sufficient condition for condi-

tional negative-definiteness, and thus for the semigroup to be a quantum channel for all t ≥ 0.

The choice of multipliers in our framework is canonical, as we induce the multipliers by

the characters of the finite group upon which the group algebra is built. This enables us to use

representation theory of finite groups to achieve our results.

In terms of our proof method, for a general finite group G, in order to obtain our

semi-definite linear constraints, we prove a stability condition which shows that if the semi-

group associated with a length has a convex Kraus-like operator decomposition for all t > 0

small enough, then it has a convex Kraus-like operator decomposition for all time t > 0. Thus,

to obtain global positivity of the coefficients, it suffices to check positivity near t = 0+, which

reduces to a bound on the derivatives. This derivative bound is what yields the semi-definite

linear constraints.

4.2 DEFINITIONS

The main objects we are working with in this chapter are the left regular representation of a

finite group G, and a semigroup acting on the elements in the left regular representation. Later

in this section, we will find it useful to restrict to semigroups which are induced by condition-

ally negative-definite length functions on G, in a way to be precisely defined.

Definition 4.2.1 (Left Regular Representation). Given a group G, let FG be the vector space

of complex-valued functions on G. We denote by λ the left regular representation of G, which

acts on FG by: (λ(g)f)(h) = f(hg−1) for g ∈ G and f ∈ FG. Denote the C−linear span of

{λ(g)}g∈G by LG.

As it is a property we will use repeatedly, we emphasize that by definition of a representation,

for each g, h in G, we have the equality λ(g)λ(h) = λ(gh) of operators on FG.
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Recall the standard inner product on FG, given by 〈f, h〉FG =
∑

g∈G f(g)h(g) for f, h ∈ FG.

The space LG also comes with a natural inner product. Let δe be the function on G defined by

δe(g) = δg=e. Then, we define 〈x, y〉LG = 〈δe, x∗y δe〉FG, where the ∗ operation is defined on

LG antilinearly with
∑

i αiλ(gi) 7→
∑

i ᾱiλ(g−1
i ). It is straightforward to verify that this is in

fact an inner product and thus, (LG, 〈·, ·〉LG) is a Hilbert space.

To define a semigroup on LG, one needs the notion of a length function on G. Following

[20], we restrict ourselves to conditionally negative-definite lengths.

Definition 4.2.2. A length function l : G → R on a group G with identity e is a function

which satisfies l(e) = 0, l(g) = l(g−1) and l(g) ≥ 0 for all g in G.

If l(g) > 0 for all g 6= e, then we will call l a strict length function.

Definition 4.2.3 ([43]). A length function l : G → R is said to be conditionally negative-

definite if for any α1, · · ·αn ∈ C satisfying
∑n

i=1 αi = 0 and any g1, · · · , gn ∈ G, one has

n∑
i,j=1

αiαjl(g−1
i gj) ≤ 0. (4.2.1)

An important additional assumption we adopt in this work is the assumption that all length

functions are class functions, meaning they are constant on conjugacy classes. Symbolically,

this means l(g) = l(h−1gh) for any g, h in G. This assumption will be greatly exploited in our

results and we will derive new characterizations of these conditionally negative-definite class

function lengths.

We consider the semigroup Pt of operators on LG induced by a length function l(·) which is

given on generators of LG by the action

Ptλ(g) = e−t l(g)λ(g), (4.2.2)

and extended linearly. Observe that indeed, P0 acts by the identity and Pt1Pt2 = Pt1+t2 .
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Our goal is to characterize Pt from various perspectives. Our new perspectives on Pt will

shed light on a known characterization of Pt [20] presented in the continuation of this section.

Definition 4.2.4. A Hermitian function K : G × G → C is said to be a positive definite kernel

if for any α1, · · · ,αn ∈ C and any g1, · · · , gn ∈ G, we have

n∑
i,j=1

αiαjK(gi, gj) ≥ 0. (4.2.3)

Schoenberg’s theorem provides a characterization of positive definite kernels in terms of

conditionally negative-definite lengths:

Theorem 4.2.5 (Schoenberg’s Theorem [43]). Let G be a group. A function l : G → R satis-

fying l(g) = l(g−1) for all g ∈ G is conditionally negative definite if and only if the following

conditions hold:

1. l(e) = 0, for e the identity of G, and

2. The function G × G → C defined by (g, h) 7→ e−t l(gh−1) is positive definite.

In Proposition 4.2.7, we recall an equivalent characterization of conditionally negative-

definite lengths in terms of the notion of complete positivity, which is important in quantum

physics and quantum information theory. Recall that a linear map is positive if it maps posi-

tive elements to positive elements. Following [33],

Definition 4.2.6. Let A and B be C∗ algebras, and θ : A → B be a linear map. The map θ is

called completely positive if

θ ⊗ id : A⊗ Matn(C) → B ⊗ Matn(C) (4.2.4)

is positive for any n ∈ N.
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A consequence of Schoenberg’s theorem is that the semigroup Pt is completely positive if

and only if l(·) is conditionally negative-definite (stated, but not proved, in [20]). To be com-

plete, we provide a proof:

Proposition 4.2.7. Pt is completely positive if and only if l is conditionally negative-definite.

Proof. (⇐) By Schoenberg’s theorem, if l is conditionally negative-definite, then(
e−t l(g−1h)

)
g,h∈G

is a positive semi-definite matrix. From appendix A of [33], Pt : LG → LG is

completely positive if and only if

n∑
i,j=1

b∗
i Pt(a∗

i aj)bj ≥ 0 (4.2.5)

for any n ∈ N, a1, . . . , an, b1, . . . , bn ∈ LG. We show that the latter holds.

Fix n. Take ai =
∑

g∈G ai(g)λ(g). Then

Pt(a∗
i aj) =

∑
g,h∈G

ai(g)∗aj(h)e−t l(g−1h)λ(g−1h). (4.2.6)

So we want to show that

S :=
n∑

i,j=1

∑
g,h∈G

b∗
i ai(g)∗aj(h)e−t l(g−1h)λ(g−1h)bj (4.2.7)

is non-negative. We note that this can be rearranged by setting vg =
∑n

i=1 ai(g)λ(g)bi. So the

sum becomes ∑
g,h∈G

v∗ge−t l(g−1h)vh. (4.2.8)

Note that since
(

e−t l(g−1h)
)

g,h∈G
is positive semi-definite, we have that

e−tl(g−1h) =
∑
x∈G

rx(t) (wx(t)∗wx(t))g,h (4.2.9)
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for some matrices {wx(t)|x ∈ G}, and nonnegative numbers {rx(t)|x ∈ G}.

Thus,

S =
∑
g,h∈G

v∗g
∑
x∈G

rx(t) (wx(t)∗wx(t))g,h vh (4.2.10)

=
∑
x∈G

rx(t)
∑
g,h∈G

v∗g (wx(t)∗wx(t))g,h vh (4.2.11)

=
∑
x∈G

rx(t)
∑
g,h∈G

v∗g
∑
m∈G

(wx(t)∗)g,m (wx(t))m,h vh (4.2.12)

Set

qx,m(t) =
∑
g∈G

(wx(t))m,g vg (4.2.13)

then

S =
∑

x

rx(t)
∑
m∈G

q∗
x,m(t)qx,m(t). (4.2.14)

Thus, S is positive semi-definite, as desired.

(⇒) Conversely, suppose Pt is completely positive. Then, with notation as above, for all

n ∈ N and a1, · · · , an, b1, · · · , bn ∈ LG,

S :=
n∑

i,j=1

b∗
i Pt(a∗

i aj)bj =
∑
g,h∈G

v∗ge−tℓ(g−1h)vh ≥ 0, (4.2.15)

where vg :=
∑n

i=1 ai(g)λ(g)bi. Since this holds for any choice of n, ai and bi, we can fix n =

|G|. Order the elements of G so that G = {g1, · · · , gn}. Choose bi = λ(g−1
i ) and choose ai

such that ai(gj) = cjδ ij for some cj ∈ C. Then, for each j = 1, · · · n, vgj = cjλ(e). This reduces

eq. (4.2.15) to

(
n∑

i,j=1

cie−tℓ(g−1
i gj)cj

)
λ(e) ≥ 0, (4.2.16)
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for any choice of c1, · · · cn ∈ C. Now we claim that if Aλ(e) ≥ 0 with A ∈ C, then A ≥ 0.

This follows since λ(e) acts as the identity, and so its spectrum is just 1, and so the spectrum of

Aλ(e) is just A. Thus, for any choice of c ∈ Cn, we have

n∑
i,j=1

cie−tℓ(g−1
i gj)cj ≥ 0. (4.2.17)

By definition, this means that the matrix {e−tℓ(g−1
i gj)}n

i,j=1 is positive semi-definite and so, by

Schoenberg’s theorem, ℓ is a conditionally negative-definite length.

Corollary 4.2.8. Pt is a quantum channel.

Proof. Since Pt is also trace-preserving, it follows by definition that Pt is a quantum channel

[34].

4.3 KRAUS-LIKE OPERATOR DECOMPOSITIONS

In quantum information theory, Kraus operators are used in sum representations of quan-

tum channels which describe the dynamics of the density matrix of a system [34]. In fact, in

the matrix case, quantum channels can be characterized by the existence of a Kraus operator

decomposition. Equivalently, one may describe a quantum channel as the result of tracing out

a subsystem from a unitary operator acting on a composite system. Conversely, one may al-

ways “lift” a quantum channel on a density matrix to a corresponding unitary operator on a

larger system, a process known as Stinespring dilation [40].

One of the main questions which drives this work is whether the usual intuition for quantum

channels on density matrices extends to those on group algebras. Namely, does one get Kraus

operators? And what do they look like?

What we find is that the Kraus operators, if they exist, are certainly not generally elements

of the group algebra. This is in direct contrast to the case of quantum channels acting on den-
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sity matrices, where the Kraus operators are themselves matrices.

This nonexistence result motivates us to look for alternate decompositions of the quantum

channel, in the spirit of the Kraus operator decomposition. The main idea is to relax the action

of Kraus operators as E · E† to some linear operator σ·, where σ acts on LG. We call our new

σ’s Kraus-like operators.

For a suitable choice of σ’s, we can obtain an explicit condition on the decomposition of a

semigroup Pt induced by a length function l which is also a class function, which determines

whether or not Pt is a quantum channel.

4.3.1 AN ALGEBRAIC OBSTRUCTION RESULT ON KRAUS OPERATOR DECOMPOSITIONS

Consider the semigroup Pt, induced by a length l, which acts on the Hilbert space H = LG.

We recall that this is given as the linear extension of:

Ptλ(g) = e−tl(g)λ(g). (4.3.1)

A Kraus decomposition of Pt is a decomposition of Pt given by

Pt(x) =
∑

i

EixE†
i , (4.3.2)

where the elements Ei satisfy
∑

i E
†
i Ei ≤ I [34]. The Ei are called Kraus operators. For sim-

plicity, we focus only on the case where
∑

i E
†
i Ei = I, corresponding to the case where one

can dilate Pt to a unitary in the matrix case [34]. In the usual matrix algebra setting for Kraus

operator decompositions, quantum information theory, x would be a finite-dimensional density

matrix and Pt would be a completely positive map from density matrices to density matrices.

The elements Ei would be matrices. For the group algebra setting, it is not a priori obvious

where the Ei’s would live, so we will make some natural assumptions.
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Since we are working with group algebras, to employ Kraus operator decompositions, some

choices must be made as to the proper identification of terms. The natural mapping, extending

the setting of matrix algebras to direct sum of matrix algebras, is to take Pt to map LG into

LG. While one could also embed LG into a matrix algebra by the regular representation, this

is fairly unnatural from the point of respecting the symmetry of the group, as different irre-

ducible representations ought not to interact from a physical perspective.

For a Kraus operator decomposition, since we work in G, it is further natural, or at least

convenient, to assume that the Ei’s all lie in LG. Note that this is not the most general setting,

since if we interpret LG as a vector space of dimension |G|, the dimension of B(LG) is |G|2,

whereas the embedding of LG inside B(LG) only has dimension |G|. So we are deliberately

choosing to focus on a smaller space of possible Kraus operators. However, we show that with

this simple, and perhaps most natural, choice, we run into issues.

The following proposition shows that a Kraus operator decomposition as described in the

previous paragraph is not the right tool for the job at the hand, in the sense that Kraus operator

decompositions will not be readily available in many semigroups of interest.

Proposition 4.3.1. Any finite group G whose group algebra LG has a non-zero element of the

form
∑

e̸=g∈G agλ(g) in its center will not admit a Kraus operator decomposition for the op-

erator Pt induced by a strict length function l via equation 4.2.2, in terms of Kraus operators

lying in LG.

In particular, the hypothesis of this proposition holds for the expression
∑

e ̸=g∈G λ(g) ∈ LG

when G is any nontrivial finite group.

Proof. Let h be an element satisfying the conditions of the proposition. Suppose Pt admits a

Kraus decomposition of the form Pt(x) =
∑

i EixE†
i , where Ei ∈ LG. Since λ(e) is the identity,
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it follows that

λ(e) = exp(−l(e)t)λ(e) = Ptλ(e) =
∑

i

EiE†
i . (4.3.3)

Now, consider Pt(h). Since h is in the center, we have

Pt(h) =
∑

i

EihE†
i =

∑
i

EiE†
i h = λ(e)h = h. (4.3.4)

However, by assumption, h =
∑

g̸=e agλ(g), so

Pt(h) =
∑
g̸=e

e−l(g)tagλ(g) = h =
∑
g̸=e

agλ(g). (4.3.5)

By the basis property, this implies that (e−l(g)t − 1)ag = 0 for all g 6= e and for all t ≥ 0. Since

for a length function l, l(g) > 0 for all g 6= e, this implies that ag = 0 for all g 6= e. Thus,

h = 0.

DISCUSSION OF DILATION THEOREMS

Some remarks must be made with respect to the Stinespring dilation theorem [40], and the

associated Choi isomorphism theorem [3]. Firstly, the Stinespring dilation theorem still ap-

plies in this context of group algebras, but the construction of a dilation is so general as not to

yield anything resembling a Kraus operator decomposition. The much sharper construction

of Choi applies in the case of a finite-dimensional Hilbert space. When we look at the group

algebras, the theorem of Choi is hard to apply directly, for the following reason: Embedding

the group algebra LG into a matrix algebra via the left regular representation is a sparse iso-

metric embedding3, since the former has a basis set of size |G| whereas the latter has a basis
3To see that the embedding is isometric, we can first note that in the case of ZN, one easily sees that all

the elements in the left-regular representation (except the identity) have no fixed points, so 〈ρ(g), ρ(h)〉 :=
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set of size |G|2. Thus, our definition of Pt as a completely positive, trace-preserving map on

the group algebra LG does not mean that Pt is a completely positive, trace-preserving map on

the corresponding matrix algebra, because the action of Pt is not even specified for matrices

outside of the left regular representation. What one would be looking for instead is some ana-

logue of Choi’s isomorphism theorem, which applies to a map which is completely-positive

and trace-preserving on a subalgebra of a matrix algebra. Such a kind of restriction theorem4

would be interesting in its own right. Of course, one would be working with objects which

are not really quantum channels, but only behave like quantum channels when applied to a

subalgebra of the matrix algebra (as justified by Corollary 4.2.8). The corresponding exten-

sion problem has been considered recently by [44] on an extension result for quantum Markov

semigroups (completely positive maps which form a semigroup) defined on a subalgebra to a

quantum Markov semigroup over the full matrix algebra.

4.3.2 KRAUS-LIKE OPERATOR DECOMPOSITIONS

WHAT IS A KRAUS-LIKE OPERATOR DECOMPOSITION?

The above nonexistence result motivates us to look for a more general decomposition of a

semigroup, which will exist even when a Kraus operator decomposition in terms of group alge-

bra elements is not available. We introduce the notion of a Kraus-like operator decomposition,

which replaces the Kraus form by a multiplier on the group algebra. Under several equivalent

hypotheses on the length function, we will be able to show that the coefficients of the decom-

position satisfy a sum rule and are positive, hence admitting a possible probabilistic interpre-

tation. In this respect, our motivation is to establish something analogous to the mixed-unitary

tr(ρ(g)ρ(h)† = tr(ρ(gh−1) = 0 unless g = h. For the general finite group case, an element ρ(g) has an element
on the diagonal only if gh = h for some h. But this implies that g = e since all elements are invertible in a
group. So no non-identity elements of the left-regular representation have elements on the diagonal. Thus, the
embedding is isometric in general.

4We are inspired by Stein’s restriction conjecture in analysis to use this suggestive vocabulary.
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quantum channel for our Kraus-like operator decomposition.

We now present a prototype for what we consider to be a Kraus-like operator decomposition.

Consider a decomposition of the operator semigroup Pt into a sum of isometries, rather than

taking a sum of EixE†
i operators. Let us show that, at least in a particularly simple example,

such a decomposition does in fact exist.

Example 4.3.2. Let G be an arbitrary group with the length l(g) = 1 − δg=e for g ∈ G. Let

p = 1−e−t

2 . Define the isometry

σ(λ(g)) =


−λ(g), g 6= e

λ(e), g = e
(4.3.6)

Then for any g ∈ G, one can easily verify that Pt(λ(g)) = (1 − p)λ(g) + pσ(λ(g)). The λ(g)

span LG so this proves that Pt = (1 − p)I+ pσ as operators on LG.

Let us make a few observations about this decomposition. The coefficients of the two isome-

tries in the decomposition are (1 − p) and p. We note that by the definition of p, these are both

non-negative numbers for t ≥ 0. Moreover, they evidently sum to 1.

This is a basic example, but we already see that there is hope that our decomposition might

have a probabilistic interpretation. Motivated by this example, we introduce the following no-

tion as an analog to Kraus operator decompositions:

Definition 4.3.3. For a group G and operator semigroup Pt : LG → LG, a Kraus-like

operator decomposition of P is a decomposition

Pt =
∑

i

pi(t)σ i (4.3.7)

where each operator σ i : LG → LG is diagonal in the basis of left-multipliers λ(g), and

pi(t)’s are complex-valued functions.
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If the pi(t)’s are all nonnegative, and satisfy a sum rule
∑

i αipi(t) = 1, for some positive

αi’s independent of t, then we say that we have a convex Kraus-like operator decomposition.

The natural next question is if this sort of decomposition can be generalized to the semi-

groups generated by other lengths. We will show that, indeed, it can. In fact, for a specific

class of naturally arising σ i operators, we will even be able to describe a condition which clas-

sifies precisely which lengths on a given group will yield semigroups with convex Kraus-like

operator decompositions.

4.4 CHARACTER-INDUCED KRAUS-LIKE OPERATOR DECOMPOSITIONS

4.4.1 KRAUS-LIKE OPERATOR DECOMPOSITIONS FOR FINITE ABELIAN GROUPS

Our next goal is to consider a general abelian group G and think more broadly about when

we have a convex Kraus-like operator decomposition.

Fix a finite abelian group G of size n. It is natural to consider maps which are induced by

the characters of G. Explicitly, if the characters of G are denoted by {χ i}n
i=1, then we consider

the maps which act on generators by σ i : λ(g) 7→ χ i(g)λ(g) and extend by linearity. Note

that since G is abelian, all characters are simply one-dimensional representations. These are,

in fact, isometries and the multiplicative structure they inherit from the fact that they are repre-

sentations will prove useful later.

Let l be any length on G. Note that the characters of a group span the class functions on

that group and, in the case of an abelian group where each element is its own conjugacy class,

this means that the characters span the complex-valued functions on the group. Thus, we can

write Pt as a sum Pt =
∑n

k=1 pkσk for appropriate pk. By applying both sides of the previous
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equation to λ(g) for each g ∈ G and comparing coefficients, one finds that the pk must satisfy:

n∑
l=1

χ l(g)pl = exp(−tl(g)). (4.4.1)

Recall that part of our goal in all this is to understand if there is an interpretation of the pk as

probabilities. As we now show, this is equivalent to demanding that f(g) = exp(−tl(g)), as a

function of g ∈ G, be of positive type. In other words, we must have that f(gh−1) is a positive-

definite kernel, when considered as a function of both g and h.

Proposition 4.4.1 (Bochner-like Theorem). Let G be a finite abelian group of size n with char-

acters {χ l}n
l=1, and suppose f : G → C, and p ∈ Cn are related by f(g) =

∑n
l=1 plχ l(g) for all

g ∈ G.

Then p is a probability measure on G, that is, pi ≥ 0 for all i and
∑

i pi = 1, if and only if

f(gh−1), considered as a function of g, h ∈ G, is a positive definite kernel, and f(e) = 1.

Proof. Note that the positive definiteness of f is equivalent to the non-negativity of the follow-

ing expression, for any choice of ϕ : G → C:

∑
g∈G

∑
h∈G

f(gh−1)ϕ(g)ϕ(h)∗ =
n∑

l=1

pl
∑
g∈G

∑
h∈G

χ l(gh−1)ϕ(g)ϕ(h)∗

=
n∑

l=1

pl

(∑
g∈G

χ l(g)ϕ(g)

)(∑
h∈G

χ l(h)ϕ(h)

)∗

=
n∑

l=1

pl

∣∣∣∣∣∑
g∈G

χ l(g)ϕ(g)

∣∣∣∣∣
2

,

where the second equality follows from the general fact that χ(g−1) = χ(g)∗ and also the fact

that any representation of an abelian group is 1 dimensional, so the characters of such a group

are multiplicative. Note that if each pk ≥ 0, then this expression is surely non-negative for any

choice of ϕ. On the other hand, if some pk is not greater than or equal to 0, then set ϕ(g) =

χk(g). By the orthogonality of characters, this will result in the entire expression failing to be
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greater than or equal to zero. Thus, we conclude that f is positive definite if and only if each of

the pl ≥ 0 for all 1 ≤ l ≤ n. Additionally, the condition that
∑N−1

l=0 p(l) = 1 is equivalent to the

condition that f(e) = 1, completing our proof.

Our goal was to characterize the lengths l on a finite abelian group G for which we obtain a

probability measure p in the convex Kraus-like operator decomposition of the operator semi-

group Pt induced by l. Using Schoenberg’s theorem, we can easily obtain such a condition.

Proposition 4.4.2. Let l be any length on a finite abelian group G and let {χ l}n
l=1 be the char-

acters of G. Suppose the semigroup Pt is defined by Pt : λ(g) 7→ e−t|g|λ(g), which extends

linearly to all of LG. Let Pt satisfy Pt =
∑n

k=1 pkσk, where σk(λ(g)) = χk(g)λ(g) for all g ∈ G.

Then p is a probability measure on G if and only if l is a conditionally negative-definite length.

Proof. This follows by combining the previous proposition with Schoenberg’s theorem, which

says that l is conditionally negative-definite if and only if f(gh−1) = exp(−tl(gh−1)) is a

positive-definite kernel in g, h ∈ G which satisfies f(e) = 1.

Thus, we have established a nice coherent story for finite abelian groups. We have character-

ized a large class of lengths on these groups which admit a convex Kraus-like operator decom-

position. However, this is hardly satisfying. For one thing, it is not clear whether the relation-

ship between a conditionally negative-definite length and a convex Kraus-like decomposition

is an accident or has some more fundamental significance. Moreover, it would be valuable

to move this analysis beyond abelian groups. Thus, we explore next the notion of Kraus-like

operator decompositions for general finite groups.

4.4.2 KRAUS-LIKE DECOMPOSITIONS FOR GENERAL FINITE GROUPS

In the more general setting of finite groups, there are two basic questions we need to answer.
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1. What is the appropriate generalization of the Kraus-like operator decomposition to a

general finite group G, based on the model we considered for ZN?

2. What is the corresponding condition for the coefficients pi arising in the decomposition

to be non-negative, or more specifically, for the pi’s to be a probability distribution (at

least up to rescaling)?

The answer to the question (1) is that we can simply define multipliers induced by characters

in the following way: Since we suppose that l is a class function, Pt acts as a constant multiple

of the identity on the left-multipliers λ(g) for g ∈ Ci, for each conjugacy class Ci. Accordingly,

Pt = ⊕i
(
e−t l(Ci) ⊗ 1#Ci

)
, (4.4.2)

where l(Ci) is the unique value of the length function on the conjugacy class Ci.

We may also use the irreducible characters χ of the group G, which are themselves class

functions, to induce maps with similar direct sum decompositions,

σχ := ⊕i (χ(Ci)⊗ 1#Ci) . (4.4.3)

From the similar forms of these operators, it seems reasonable to study relationships of the

form

Pt =
∑

χ

pχσχ , (4.4.4)

for complex numbers pχ . We call this expression a character-induced Kraus-like operator de-

composition of the semigroup Pt.

Let {χ 1, · · · , χm} be the irreducible characters of G. We can quickly determine the coeffi-

cients pj. By applying the map Pt =
∑

j pjσχ j
to λ(g) for g ∈ Ci and setting the two sides equal
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to each other, one obtains, for each i, the equation:

∑
j

pjχ ji = e−t l(Ci) (4.4.5)

where χ ji = χ j(Ci). We can consider these as entries of a matrix χ := (χ ij). Note that χ is

simply the character table of the group. With this, we can see eq. (4.4.5) as a matrix equation.

As a preliminary step, we obtain a sum rule for the pi’s:

Lemma 4.4.3 (Sum Rule for pi’s). ∑
i

piχ i(e) = 1. (4.4.6)

Proof. This follows from equation 4.4.5 applied to the conjugacy class {e}.

We can solve for the pi’s by inverting the matrix equation 4.4.5. There is a trick to do this

which is well known in the representation theory of groups: If one normalizes the χ ji’s, then

one gets a unitary matrix. Namely,

χ̂ ji = χ ji ·
√
#Ci√
#G

(4.4.7)

defines a unitary matrix. Using unitarity, we can solve for the p′
is by applying the adjoint of χ̂

to the matrix equation, and use well known properties of the character, to get that

pi(t) =
∑

j

√
#Cj√
#G

e−t l(Cj)(χ̂†)ji =
∑

j

#Cj

#G
e−t l(Cj)χ∗

ij. (4.4.8)

To answer question (2), we need to study the convexity of the Kraus-like decomposition.

Since we already have a sum rule, we now need to find conditions which ensure that pi ≥ 0 for

1 ≤ i ≤ n.

Our following theorem gives the answer for question (2):
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Theorem 4.4.4. The character-induced Kraus-like decomposition of Pt under the class func-

tion length l is convex if and only if

p′
i(t = 0) = −

∑
j

#Cj

#G
l(Cj)χ∗

ij ≥ 0 (4.4.9)

for all i ≥ 2.

We split the proof of Theorem 4.4.4 into two parts, necessity and sufficiency.

Proposition 4.4.5 (Necessity). If the character-induced Kraus-like decomposition of Pt is

convex, then

p′
i(t = 0) = −

∑
j

#Cj

#G
l(Cj)χ∗

ij ≥ 0 (4.4.10)

for all i ≥ 2.

Proof. First observe that since χ 1 is the character for the identity representation, χ 1(Ci) = 1 =

χ 1i for all i, and so by the well known orthogonality of characters,

pi(t = 0) = 〈χ i, χ 1〉 = δ i1 (4.4.11)

where 〈f, g〉 :=
∑

j
#Cj
#G f(Cj)

∗g(Cj) for f, g class functions on G.

Thus, if pi(t) is always positive, it is necessary that p′
i(t = 0) ≥ 0 for all i ≥ 2.

We will next show that this condition is actually sufficient for any finite group, and has a

group-theoretical explanation. Before demonstrating the sufficiency of this condition in gen-

eral, we show how one might go about it in a few specific cases. For the sake of our proofs, we

state explicitly the nonnegative bounds for the length, even though it is explicit in the defini-

tion. We hope these examples highlight how quickly it becomes difficult to study the inequali-

ties pi ≥ 0 due to the interdependency of the pi.
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SUFFICIENCY OF p′
i(0) ≥ 0 FOR S3

The character table for S3 is given by:

χ =


1 1 1

2 0 −1

1 −1 1

 (4.4.12)

with #C1 = 1, #C2 = 3, #C3 = 2. This yields

χ̂ =
1√
6


1

√
3

√
2

2 0 −
√

2

1 −
√

3
√

2

 (4.4.13)

For convenience, denote l(Ci) by li, and take l1 = 0 so that the identity is of length 0. This

yields the following equations for the pi:

p1(t) =
1
6
(
1 + 3e−tl2 + 2e−tl3

)
(4.4.14)

p2(t) =
1
6
(
2 − 2e−tl3

)
(4.4.15)

p3(t) =
1
6
(
1 − 3e−tl2 + 2e−tl3

)
. (4.4.16)

Note that p1, p2 are clearly non-negative for all t ≥ 0. It is also automatic that p′
1(0) ≥ 0 and

p′
2(0) ≥ 0.

It is certainly necessary that 6p′
3(0) = 3l2 − 2l3 ≥ 0. This will in fact turn out to be a

sufficient condition.

Proposition 4.4.6. In the set up for S3 described above, all the pi are non-negative for all t ≥

0 if and only if l2 ≥ 2
3 l3 ≥ 0.

Proof. The only if direction is clear.
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For the if direction, as already noted, for any t ≥ 0, the non-negativity of p1 and p2 is inde-

pendent of the choice of li.

If l2 ≥ 2
3 l3 we consider 2 cases

1. Suppose 2
3 l3 ≤ l2 ≤ l3. Then

6p′
3(t) = 3l2e−tl2 − 2l3e−tl3 ≥ (3l2 − 2l3)e−tl3 ≥ 0.

Thus, p3(0) = 0 and p3(t) is increasing, so p3(t) ≥ 0 for all t ≥ 0.

2. Suppose l2 ≥ l3. Then 6p3(t) ≥ 1 − 3−tl2 + 2e−tl2 = 1 − e−tl2 ≥ 0 for all t ≥ 0.

As an example of what we have just shown, we will evaluate two natural notions of length

on the group S3. Let | · | = n − # of cycles. Then l1 = 3 − 3 = 0, l2 = 3 − 2 = 1 and

l3 = 3 − 1 = 2. Clearly, (l1, l2, l3) = (0, 1, 2) violates the conditions of the above theorem and

so it does not yield a probabilistic interpretation of the pi.

On the other hand, if | · | =
√

n − # of cycles, then (l1, l2, l3) = (0, 1,
√

2) and we do indeed

obtain such a probabilistic interpretation.

SUFFICIENCY OF p′
i(0) ≥ 0 FOR Q8

The character table for Q8 is

χ =



1 1 1 1 1

1 1 1 −1 −1

1 1 −1 1 −1

1 1 −1 −1 1

2 −2 0 0 0


(4.4.17)
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where the conjugacy classes associated to the columns, in order, have sizes 1, 1, 2, 2 and 2.

This means that

χ̂ =
1

2
√

2



1 1
√

2
√

2
√

2

1 1
√

2 −
√

2 −
√

2

1 1 −
√

2
√

2 −
√

2

1 1 −
√

2 −
√

2
√

2

2 −2 0 0 0.


(4.4.18)

Let li = l(Ci), where we always take l1 = 0 (i.e the identity element has length 0). This

yields the following expressions for the pi:

p1 =
1
8
(
1 + e−tl2 + 2e−tl3 + 2e−tl4 + 2e−tl5

)
(4.4.19)

p2 =
1
8
(
1 + e−tl2 + 2e−tl3 − 2e−tl4 − 2e−tl5

)
(4.4.20)

p3 =
1
8
(
1 + e−tl2 − 2e−tl3 + 2e−tl4 − 2e−tl5

)
(4.4.21)

p4 =
1
8
(
1 + e−tl2 − 2e−tl3 − 2e−tl4 + 2e−tl5

)
(4.4.22)

p5 =
1
8
(
2 − 2e−tl2

)
(4.4.23)

It is clear that p1 and p5 are positive for all t ≥ 0 and also that both p′
1(0) and p′

5(0) are non-

negative. Note that when t = 0, we have p2 = p3 = p4 = 0. Let us focus momentarily on p2.

To make p′
2(0) ≥ 0, we must have −l2 − 2l3 + 2l4 + 2l5 ≥ 0. The analogous computations for

p3 and p4 show that p′
2(0), p′

3(0) and p′
4(0) are non-negative if and only if l2 ≤ min{2l4 + 2l5 −

2l3, 2l3 + 2l5 − 2l4, 2l3 + 2l4 − 2l5}. In fact, this condition turns out to be essentially sufficient.

Proposition 4.4.7. In the set up for S3 described above, all the pi are non-negative for all t ≥

0 if and only if 0 ≤ l2 ≤ min{2l4 +2l5 −2l3, 2l3 +2l5 −2l4, 2l3 +2l4 −2l5} and all the lengths

are non-negative.

Proof. The only if direction is clear. For the if direction, as explained above, the
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non-negativity of p1 and p5 for t ≥ 0 is independent of the choice of the li.

Note that l2, l3 and l4 are symmetric in the equations for the pi in the sense that by relabeling

the conjugacy classes, we can always assume WLOG that l3 ≤ l4 ≤ l5. In this case, p4 ≤ p3

and p4 ≤ p2, so it suffices to show that for any t ≥ 0,

8p4(t) = 1 + e−tl2 + 2(e−tl5 − e−tl3 − e−tl4) ≥ 0.

To this end, let a = e−tl3 , b = e−tl4 , c = e−tl5 . By assumption, e−tl2 ≥
( ab

c

)2. Thus it suffices

to show that 1 +
( ab

c

)2
+ 2(c − a − b) ≥ 0 if 0 ≤ c ≤ b ≤ a ≤ 1.

First, we make a change of variable, setting x = c
b ≤ 1. The desired inequality now reads

2(a + b(1 − x)) ≤ 1 + a2

x2 for 0 ≤ b ≤ a ≤ 1. Clearly, it suffices to check b = a, since the

left-hand-side is monotonically increasing in b. So we only need to show that

2a(2 − x) ≤ 1 +
a2

x2 .

It is easy to see that the right-hand-side is at least 2a
x by the inequality of arithmetic and geo-

metric means (AM-GM). Thus, our desired inequality is reduced to 4 − 2x ≤ 2
x . This is true

since 1
x + x ≥ 2, by AM-GM once more.

Extensions of these methods allow one to compute that for S4, it is sufficient to have p′
j(0) ≥

0 for all j ≥ 2 in order to guarantee the non-negativity of all the pi’s. The computations for

S4 introduce new tools in addition to those used in the cases already presented, which may be

useful for similar computations in larger groups. That being said, the proof for S4 is signifi-

cantly longer than the proof for the other groups, due to there being essentially three indepen-

dent variables as opposed to two. The main additional technique involved in the proof for S4

is a method to reduce the number of variables by Fourier-Motzkin elimination [9], which is an

iterative approach. Due to the length of this computation, we relegate it to Appendix A.
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Since the number of cases one needs to consider grows rapidly with the number of variable

lengths involved, even with the algorithmic reduction method used for S4, it is unlikely that

the method is useful for any but low-dimensional groups. This leaves us looking for a more

powerful, more general approach, which we take up next.

SUFFICIENCY OF p′
i(0) ≥ 0 FOR GENERAL FINITE GROUPS

Following the character-based method introduced in [26], we now prove that the condition

p′
i(t = 0) = −

∑
j

#Cj

#G
l(Cj)χ∗

ij ≥ 0 (4.4.24)

for all i ≥ 2 is actually sufficient to guarantee that pj(t) ≥ 0 for all 1 ≤ j ≤ m and for all t ≥

0, where m is the number of conjugacy classes of G, and equivalently the number of distinct

irreducible representations of G.

Let {χr}m
r=1 be the irreducible characters of G, and for each r, define σrλ(g) = χr(g)λ(g).

Further assume that l is a class function. Then, since characters span the class functions, Pt

admits a decomposition as Pt =
∑

r pr(t)σr.

Theorem 4.4.8. If there exists ε > 0 such that for all 1 ≤ r ≤ m, pr(t) ≥ 0 for all 0 ≤ t ≤ ε,

then for any 1 ≤ s ≤ m, ps(t) ≥ 0 for all t ≥ 0.

Proof. For any t > 0, take n large such that t/n < ε. Then, Pt = Pn( t
n)

=
(

P t
n

)n
=

(
∑m

i=1 pi(t/n)σ i)
n since Pt is a semigroup. For 1 ≤ r ≤ m, let ρr denote the irreducible repre-

sentation with character χr. The tensor product of irreducible representations of a finite group

can be completely reduced, and the multiplicity of the irreducible representation ρc in ρa ⊗ ρb,

nc
ab, is always non-negative. By extension, we can write σa1σa2 · · ·σan =

∑m
i=1 ni

a1a2...anσ i,

where ni
a1a2...an is the multiplicity of the irreducible representation ρi in ρa1

⊗ ρa2
⊗ · · · ⊗ ρan

.
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Thus,

Pt =
∑

a1,··· ,an

∑
b

pa1(t/n)pa2(t/n) · · · pan(t/n)nb
a1a2...anσb. (4.4.25)

Note that the coefficients in the above expression are all non-negative. Thus, for any 1 ≤ b ≤

m, we find that pb(t), the coefficient of σb, is nonnegative for all t ≥ 0.

Corollary 4.4.9. If there exists ε > 0 such that for all 1 < r ≤ m, pr(t) ≥ 0 for all t ≤ ε, then

for any 1 ≤ s ≤ m, ps(t) ≥ 0 for all t ≥ 0.

Proof. Since pi(t = 0) = δ i1 and the pi are continuous, there is certainly a neighborhood of

0+ where p1(t) > 0. The conclusion then follows since all the hypotheses of Thm 4.4.8 are

satisfied.

Corollary 4.4.10. If the p′
i(t = 0)’s are positive for all i ≥ 2, then for any 1 ≤ s ≤ m,

ps(t) ≥ 0 for all t ≥ 0.

Proof. The continuity of the pi’s, combined with the positivity of the derivative, guarantees

that there is a neighborhood of 0+ in which pi(t) > 0 for all i ≥ 2. So Corollary 4.4.9 can be

applied.

Now we wish to strengthen Corollary 4.4.10 so that it suffices that all p′
i(t = 0)’s are non-

negative for all i ≥ 2. To do so, it suffices to show that the set of lengths satisfying pi(t) ≥ 0

for all t ≥ 0 is a closed set. This simply follows from the fact that the arbitrary intersection of

closed sets is closed, applied to the set of lengths which satisfies {pi(t0) ≥ 0} for t0 ∈ [0,∞),

in the Euclidean topology. We offer a different argument in the next section, which uses struc-

tural features from the condition of conditional negativity. This corollary, together with Propo-

sition 4.4.5, completes the proof of Theorem 4.4.4.
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4.5 CONDITIONAL NEGATIVITY REVISITED

In the previous section, it was shown that for the abelian finite groups, the notion of condi-

tional negativity of a length function was equivalent with positing the existence of a convex

Kraus-like decomposition. At the end of section 3.1, in particular, we used the need to under-

stand this relationship on a more fundamental level to motivate our study of Kraus-like de-

compositions for general finite groups. In this section, we now give the characterization of the

relationship between conditional negativity and the existence of a character-induced convex

Kraus-like decomposition in the full finite group case.

In the context of character-induced Kraus-like decompositions, the object of study is the

decomposition of G-circulant matrices [30] A = (Aij) with entries given by

Aij = f(gig−1
j ) =

∑
r an irrep

prχr(gig−1
j ) (4.5.1)

where f is a class function on G. Such a decomposition exists since the irreducible characters

form a basis of the set of class functions on G.

We wish to show the following theorem:

Theorem 4.5.1 (Decomposition Theorem). A G-circulant matrix is positive semidefinite if and

only if the pr’s arising in the decomposition are all nonnegative.

By Schoenberg’s theorem, if we can show this, then we obtain the following theorem:

Theorem 4.5.2. Suppose l is a class function on G satisfying l(e) = 0. Then the correspond-

ing character-induced Kraus-like decomposition is convex (i.e. the pr’s are all nonnegative

and satisfy a sum rule) if and only if l is a conditionally negative-definite length.

Proof of Theorem 4.5.1. Define A to be the matrix with entries f(gig−1
j ). We first prove the if
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direction. Observe that if the pr’s are all non-negative, then A is self-adjoint since

Aij =
∑

r an irrep

prχr(gig−1
j ) (4.5.2)

and

A∗
ji =

∑
r an irrep

prχr(gjg−1
i )∗ =

∑
r an irrep

prχr(gjg−1
i )∗ (4.5.3)

and we can write

χr(gjg−1
i )∗ = (

∑
n,m

r(gj)n,mr(gi)
−1
m,n)

∗ (4.5.4)

= (
∑
n,m

r(gj)
∗
n,mr(gi)

−1
m,n

∗
) (4.5.5)

=
∑
m,n

r(gj)
†
m,n(r(gi)

−1)†n,m (4.5.6)

=
∑
m,n

r(g−1
j )m,nr(gi)n,m (4.5.7)

= χr(gig−1
j ) (4.5.8)

where we have used the fact that the irreducible representations of finite groups are unitary.

Since A is self-adjoint, it has a full spectrum. We want to show that the spectrum is nonneg-

ative. It suffices to show that the matrices (χr(gig−1
j ))i,j, which by the above are self-adjoint,

are in fact (up to normalization) orthogonal projections, in particular, that they satisfy

|G|∑
j=1

χr(gig−1
j )χs(gjg−1

k ) = δr,s
|G|

χr(e)
χr(gig−1

k ). (4.5.9)

This would imply that the eigenvalues of A are simply given by pr’s up to positive rescaling

(with additional multiplicities to account for the size of the subspace with the same eigen-
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value).

We prove this result using the idempotent method. Namely, it is known (see e.g., [18]) that

within the group algebra of a finite group, one has the idempotents

er =
χr(e)
|G|

∑
g∈G

χr(g
−1)λ(g) (4.5.10)

where λ(g) is the left-regular representation of the finite group G. These idempotents satisfy

eres = δr,ser. (4.5.11)

Comparing coefficients of λ(g) in erer and er, one obtains that

χr(e)
|G|

∑
h∈G

χr(hg−1)χr(h
−1) = χr(g

−1) (4.5.12)

for all g ∈ G. Setting g−1 = gig−1
k , and rewriting the dummy element h as h = gjg−1

i and

summing over gj, equation 4.5.12 becomes

χr(e)
|G|

∑
gj∈G

χr(gjg−1
k )χr(gig−1

j ) = χr(gig−1
k ) (4.5.13)

and so we have shown that equation 4.5.9 is true for r = s. When r 6= s, one has that eres = 0,

so the coefficient of each λ(g) must vanish, yielding

χr(e)
|G|

∑
gj∈G

χr(gjg−1
k )χs(gig−1

j ) = 0. (4.5.14)

This completes the proof of equation 4.5.9.

For the only if direction, assume A is positive semi-definite. Applying A to an eigenvector v

of (χr(gig−1
j ))i,j yields prv up to a positive rescaling factor (since (χr(gig−1

j ))i,j is a projection
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up to positive rescaling; we will fix the overall constant in the next section). So pr must be

nonnegative. Since this must be true for any irrep r, the pr’s must all be nonnegative.

Bearing in mind that positive constant multiples of conditionally negative-definite lengths

are conditionally negative-definite, we may summarize the theorems of this section as follows:

Theorem 4.5.3. Fix a group G = {g1 = e, · · · , gn} and let M be a G-circulant matrix such

that M1,1 = 1. Since the χr form a basis for class functions, there exists a decomposition Mij =∑
irreps prχr(gig−1

j ). The following are equivalent:

• M is positive semi-definite.

• Each pr is non-negative.

• The length defined by l(gi) = − ln(Mi1) is conditionally negative-definite.

Thus, if we take pr to be the pr(t) induced by the conditionally negative-definite length l via

our Kraus-like decomposition, then pr(t) ≥ 0 for all t ≥ 0. Conversely, if pr(t) ≥ 0, then one

obtains canonically a conditionally negative-definite length defined by l(gi) = − 1
t ln(Mi1(t)).

Hence, the set of class function lengths such that Pt has a convex character-induced Kraus-like

decomposition is precisely the set of conditionally negative-definite class function lengths.

Based on this equivalence, we offer a different proof that the set of definite linear constraints

we obtained to show the nonnegativity of all pi(t)’s for all t ≥ 0 in Corollary 4.4.10 can be

improved to semidefinite linear constraints.

The idea is to interpret that the length function l as a point in a finite-dimensional space.

Following Corollary 4.4.10, one knows that the pre-image of the positive orthant O under the

map

Φ(l) = (Φ2(l),Φ3(l), · · · ,Φk(l)), (4.5.15)
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where Φi(l) := −
∑

j
#Cj
#G l(Cj)χ∗

ij from (l(C2), · · · , , l(Ck)) to Rk−1, where k is the number

of conjugacy classes (recall that l(C1) = 0), is contained in the set of conditionally negative-

definite lengths. Note that Φ is a map to k−1 dimensional space and does not have a coordinate

Φ1(l), even though Φ1(l) is defined.

We now prove two technical lemmas to support our proof that the definite constraints can be

replaced by semi-definite constraints:

Lemma 4.5.4. Let G be a group with |G| = n and let A ⊂ Cn be the set of conditionally

negative-definite lengths on G, where we identify a function f : G → C with the vector

(f(g1), · · · , f(gn)) ∈ Cn. Then A is closed.

Proof. We show that AC is open. Let f ∈ AC. Then there exists some {αi}n
i=1 such that

n∑
i=1

αi = 0 (4.5.16)

and
n∑

i,j=1

αiαjf(g−1
i gj) > 0. (4.5.17)

This is an open condition, and so if we obtain a new length fε by changing f by an ε amount in

each coordinate, for ε sufficiently small, it will continue to hold with the same {αi}n
i=1. Thus,

fε ∈ AC as well. This proves that AC is open and so also proves that A is closed.

Lemma 4.5.5. The map Φ is invertible.

Proof. Note that in our proof, the condition eq. (4.4.6), which says
∑k

i=1 piχ i(e) = 1, trans-

lates to a linear condition on the Φi(l) which involves all the Φi(l) and in particular Φ1(l). Thus,

given Φ(l) = (Φ2(l), . . . ,Φk(l)), we can determine Φ1(l).

Observe that eq. (4.4.24) gives an explicit expression for {Φi(l)}k
i=1. Note that it is imme-

diately clear from character theory that χ∗
ij is invertible. It then follows that the map from l to
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(Φ1(l),Φ2(l), . . . ,Φk(l)) is invertible as well. Due to the addition of Φ1, note that this is not the

map Φ.

Putting this all together, it follows that given x = (Φ2(l), . . . ,Φk(l)), we can determine Φ1(l)

and then uniquely recover l = Φ−1(x).

Proposition 4.5.6. Fix l(C1) = 0, and take l(Ci) to be variable for i = 2, . . . , k. If the p′
i(t =

0)’s are nonnegative for all i ≥ 2, then for any 1 ≤ s ≤ k, ps(t) ≥ 0 for all t ≥ 0.

Proof. Since Φ is invertible and linear, Φ−1 is continuous. Thus, Φ−1(O) ⊂ Φ−1(O), where

O is the set of points with coordinates xi > 0 for all i = 1, 2, . . . , k − 1. The latter is a sub-

set of the set of conditionally negative-definite lengths (since this set is closed). Hence, any

length whose image lies in Ō is conditionally negative-definite. Thus, we have strengthened

the constraints from definite linear constraints (defined by O) to semidefinite linear constraints

(defined by Ō).

4.5.1 VALUES AND MULTIPLICITIES OF EIGENVALUES

We further show that the rank of (χr(gig−1
j ))i,j is given by χr(e)2. To prove this, first note

that χr(gig−1
j ) = χr(gjg−1

i )∗, so (χr(gig−1
j ))gi,gj is Hermitian, and is fully diagonalizable. Fur-

thermore, by rescaling equation 4.5.9, we get that

|G|∑
j=1

(
χr(e)
|G|

χr(gig−1
j )

)(
χr(e)
|G|

χs(gjg−1
k )

)
= δr,s

χr(e)
|G|

χr(gig−1
k ), (4.5.18)

and so the χr(e)
|G| (χr(gig−1

j ))gi,gj is are orthogonal projection matrices, with eigenvalues 0 or 1.

Thus, to compute its rank, we just need its trace, which is |G| · χr(e)
|G| (χr(e)) = (χr(e))2. It

follows that the multiplicity of the eigenvalue 1 in the projection matrix corresponding to irrep

r is (χr(e))2.
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Rewriting the decomposition of A given by eq. (4.5.1) in terms of the projections, one has

that

f(gig−1
j ) =

∑
r an irrep

(
|G|

χr(e)
pr

)(
χr(e)
|G|

χr(gig−1
j )

)
(4.5.19)

and so the eigenvalues are given by
(

|G|
χr(e)

pr

)
. Since these are orthogonal projections, we thus

have shown that the multiplicity of each eigenvalue |G|
χr(e)

pr in the matrix given by eq. (4.5.1) is

given by (χr(e))2.

4.6 CONCLUSION

In this chapter, we have presented a new way to approach semigroups acting on group alge-

bras, namely, Kraus-like decompositions. By modifying the action of possible operators which

can be used in the sum decomposition of a semigroup, our approach allows us to introduce op-

erator decompositions in problems where they were not readily available before. In particular,

we are able to explore quantum channels induced by length functions in the context of group

algebras. For length functions that are additionally class functions, we obtain several equiv-

alent necessary and sufficient conditions on the length function for the semigroup Pt to be a

quantum channel for all time t ≥ 0.

Specifically, for character-induced Kraus-like decompositions, we have proven that a set

of semidefinite linear constraints is necessary and sufficient to guarantee the positivity of the

coefficients appearing in the decomposition for all t ≥ 0. We also proved that this same set

of semidefinite linear constraints suffices to characterize the conditionally negative-definite

lengths, a class of length functions that are of independent interest. Using Schoenberg’s theo-

rem, we further relate this to conditions on the complete positivity of semigroups Pt induced

by lengths which are class functions. These constraints follow from the fact that for a semi-

group Pt, the property of admitting a Kraus-like decomposition can be checked globally using
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a more local condition. Specifically, if one can show that Pt admits a Kraus-like decomposi-

tion for t > 0 sufficiently small, then the same can be concluded for all t > 0.

The coefficients of our pi’s are defined canonically. Moreover, they are nonnegative and

satisfy a sum rule. Thus, the coefficients may have physical meaning (under appropriate rescal-

ing) as probabilities. These possible interpretations await further investigation.

4.7 APPENDIX: PROOF OF STABILITY CONDITION FOR S4

We have a direct proof that the a priori necessary conditions on the pi are sufficient to en-

sure the existence of a convex Kraus-like decomposition in the context of S4 as well. We use

methods that are similar to those presented above but more computationally involved due to

the parameter space being of a larger dimension.

The character table for S4 is

χ =



1 1 1 1 1

3 1 0 −1 −1

2 0 −1 2 0

3 −1 0 −1 1

1 −1 1 1 −1


(4.7.1)

and the sizes of the conjugacy classes are (Ci)i=1,...,5 = (1, 6, 8, 3, 6).
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Accordingly,

p1 =
1

24
(
1 + 6e−tl2 + 8e−tl3 + 3e−tl4 + 6e−tl5

)
(4.7.2)

p2 =
1
8
(
1 + 2e−tl2 − e−tl4 − 2e−tl5

)
(4.7.3)

p3 =
1
12
(
1 − 4e−tl3 + 3e−tl4

)
(4.7.4)

p4 =
1
8
(
1 − 2e−tl2 − e−tl4 + 2e−tl5

)
(4.7.5)

p5 =
1

24
(
1 − 6e−tl2 + 8e−tl3 + 3e−tl4 − 6e−tl5

)
. (4.7.6)

Thus, at t = 0, p1 = 1 and all the others are equal to 0.

The constraint that the probabilities be nonnegative at time ε > 0 for ε arbitrarily small tells

us that p′
i(t = 0) ≥ 0 for 2 ≤ i ≤ 5, In particular,

24p′
2(0) = −6l2 + 3l4 + 6l5 ≥ 0 (4.7.7)

24p′
3(0) = 8l3 − 6l4 ≥ 0 (4.7.8)

24p′
4(0) = 6l2 + 3l4 − 6l5 ≥ 0 (4.7.9)

24p′
5(0) = 6l2 − 8l3 − 3l4 + 6l5 ≥ 0. (4.7.10)

We can clean this up a little bit by setting a = e−tl2 , b = e−tl3 , c = e−tl4 , d = e−tl5 .

Theorem 4.7.1. In the set up for S4 described above, all the pi are non-negative for all t ≥ 0

if and only if the lengths are all non-negative and the above necessary conditions hold. Ex-

pressed in terms of a, b, c and d, the necessary and sufficient conditions are equivalent to the

following system of inequalities:
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0 ≤ a, b, c, d ≤ 1. (4.7.11)

a2c−1d−2 ≥ 1 (4.7.12)

b−4c3 ≥ 1 (4.7.13)

a−2c−1d2 ≥ 1 (4.7.14)

a−6b8c3d−6 ≥ 1. (4.7.15)

.

Proof. We first express our goal, the non-negativity of the pi, in terms of a, b, c and d as fol-

lows:

1 + 2a − c − 2d ≥ 0 (4.7.16)

1 − 4b + 3c ≥ 0 (4.7.17)

1 − 2a − c + 2d ≥ 0 (4.7.18)

1 − 6a + 8b + 3c − 6d ≥ 0 (4.7.19)

To prove these inequalities, we must consider a number of cases.

The a = d case

We want to show that

b−4c3 ≥ 1 (4.7.20)

a−12b8c3 ≥ 1 (4.7.21)
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implies

1 − 4b + 3c ≥ 0 (4.7.22)

1 − 12a + 8b + 3c ≥ 0, (4.7.23)

since the other inequalities become trivial in this case. The inequality 1 − 4b + 3c ≥ 0 holds

true since 1 − 4b + 3c ≥ 1 − 4b + 3b4/3, which is nonnegative on [0, 1] since its derivative is

nonpositive and it evaluates to 0 at b = 1.

Note that a ≤ b2/3c1/4, so 1− 12a+ 8b+ 3c ≥ 1− 12b2/3c1/4 + 8b+ 3c. We want to minimize

this subject to b4 ≤ c3, and show that the minimum is at least 0. If b4 = c3, we obtain that the

lower bound is given by 1− 12b2/3b1/3 + 8b+ 3b4/3 = 1− 4b+ 3b4/3. This is the same situation

as in the previous case and as such, is non-negative for b ∈ [0, 1]. Taking a partial derivative

with respect to b, we get −8b−1/3c1/4 + 8 ≤ −8b−1/3b1/3 + 8 = 0, so 1 − 12b2/3c1/4 + 8b + 3c

is non-negative at points (b, c) where b ∈ [0, c3/4]. This is precisely the range of values of b

allowed by the first inequality, so we are done.

Relaxing the condition a = d: We now treat the full set of inequalities. We rewrite our

assumptions in terms of c:

c ≤ min(a2d−2, a−2d2) (4.7.24)

and

c ≥ max(b4/3, a2d2b−8/3). (4.7.25)

In particular, we have that

max(b4/3, a2d2b−8/3) ≤ min(a2d−2, a−2d2), (4.7.26)
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and so

b2/3a ≤ d ≤ b2/3 (4.7.27)

b2/3d ≤ a ≤ b2/3 (4.7.28)

are necessary conditions.

We first prove that 1 + 2a − c − 2d ≥ 0. Note that everything is symmetric in a and in d, so

without loss of generality, suppose a ≥ d, then

1 + 2a − c − 2d ≥ 1 + 2a − d2/a2 − 2d = 2(a − d) + 1 − d2/a2 ≥ 0. (4.7.29)

Next, we show 1 + 2d − c − 2a ≥ 0. Continuing to assume that a ≥ d, we note that

1 + 2d − c − 2a ≥ 1 + 2d − d2/a2 − 2a. (4.7.30)

We want to minimize 1+ 2d− d2/a2 − 2a over the region of permitted values of a and d, so we

start by fixing b and a, and requiring d to lie between b2/3a and b2/3. (Note that we will be a

bit lackadaisical with the constraint on a. This is justified since we just need a lower bound on

the constraint region, which is guaranteed if we work with a region containing the constraint

region.)

Taking a partial derivative with respect to d yields 2 − 2d/a2 which changes sign at d =

a2, from positive to negative, so this is a maximum. We must evaluate this expression at the

boundary of the allowed d values as well. These are d = b2/3a and d = a (since, by assump-

tion, d ≤ a). Evaluating at d = b2/3a, we obtain 1− 2(1− b2/3)a− b4/3 ≥ 1− 2(1− b2/3)b2/3 −

b4/3 = 1 − 2b2/3 + b4/3 = (1 − b2/3)2 ≥ 0, where in the first inequality, we used a ≤ b2/3. For

d = a, we get 1 + 2a − 1 − 2a = 0.
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Next, we want to show that

1 − 4b + 3c ≥ 0. (4.7.31)

Since c ≥ b4/3, we obtain 1 − 4b + 3c ≥ 1 − 4b + 3b4/3 ≥ 0, as we showed earlier.

Finally, we want to show

1 − 6(a + d) + 8b + 3c ≥ 0. (4.7.32)

It is natural to split into two cases.

Case 1: b2 ≤ ad: In this case, we have c ≥ (ad)2b−8/3 as the stronger lower bound. Using

this bound yields

1 − 6(a + d) + 8b + 3c ≥ 1 − 6(a + d) + 8b + 3(ad)2b−8/3. (4.7.33)

We will minimize the sum 1 − 6(a + d) + 8b + 3(ad)2b−8/3 for fixed b. We can still assume

without loss of generality that a ≥ d. Recall that b2/3a ≤ d. So we want to minimize 1 − 6(a +

d) + 8b + 3(ad)2b−8/3 as a function of a and d subject to the two constraints

b2/3a ≤ d ≤ a ≤ b2/3 (4.7.34)

and

ad ≥ b2. (4.7.35)

The shape of this domain is a three-sided region dependent on the value of b. In the plane

with a as its y-axis and d as its x-axis, we have a region upper bounded by the line a = b2/3,

right-bounded by the line d = a, and southwest-bounded by the curve ad = b2. The corners of

the region are (d = b4/3, a = b2/3), (d = b2/3, a = b2/3), and (d = b, a = b).

For fixed a, we can differentiate with respect to d, obtaining −6 + 6a2db−8/3. Note that

a ≥ b and d ≥ b4/3 on this region, so we have an upper bound on this derivative of −6 +
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6b2b4/3b−8/3 = −6 + 6b2/3 ≤ 0. Thus, the derivative is non-positive, and the function is

non-increasing in d. As such, it will suffice to take d lying on the boundary to the right, where

d = a. We are thus left with considering d = a yielding the expression 1 − 12a + 8b +

3a4b−8/3.5 Taking a derivative with respect to a, we obtain −12 + 12a3b−8/3, which equals 0

when a3b−8/3 = 1, which is to say, when a = b8/9. Note that −12 + 12a3b−8/3 < 0 for a < b8/9

and −12 + 12a3b−8/3 > 0 for a > b8/9, so we obtain a minimum at a = b8/9 and it suffices

to use this value going forward. Thus, we want to minimize 1 − 12b8/9 + 8b + 3b32/9b−8/3 =

1 − 9b8/9 + 8b. This has derivative 8 − 8b−1/9 ≤ 0, so it suffices to verify 1 − 9b8/9 + 8b ≥ 0 at

b = 1, which certainly holds.

Case 2: b2 ≥ ad: Then c ≥ b4/3 is the meaningful lower bound on c. So we wish to mini-

mize

1 − 6(a + d) + 8b + 3b4/3 (4.7.36)

on the domain

b2/3a ≤ d ≤ a ≤ b3/2 (4.7.37)

and

ad ≤ b2. (4.7.38)

This domain is also a three-sided region dependent on the value of b. It is bounded on the left

by the line d = b2/3a, on the right by the line a = d, on the northeast by the curve ad = b2.

The corners of the region are (0, 0), (d = b4/3, a = b2/3), and (b, b).

The partial derivative of 1 − 6(a + d) + 8b + 3b4/3 with respect to d is −6, so due to the

geometry of the domain boundary, this expression is minimized on the d = a boundary if

a ≤ b and on the ad = b2 boundary if a ≥ b.

For a ≤ b and d = a, we have 1−6(a+d)+8b+3b4/3 = 1−12a+8b+3b4/3 ≥ 1−4b+3b4/3.
5Note that we had not considered this case yet. When we had d = a earlier, we were directly considering the

inequalities we wanted to prove, not the strengthened one we are working with here.
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This is non-negative, as we showed earlier.

For a ≥ b and ad = b2, we obtain 1 − 6(a + d) + 8b + 3b4/3 = 1 − 6(a + b2/a) + 8b + 3b4/3.

Taking a derivative with respect to a, one −6(1 − b2/a2). Thus, 1 − 6(a + b2/a) + 8b + 3b4/3

has a maximum at a = b, and achieves its minimums at a boundary value of a. The boundary

values of a in the region we are considering are a = b2/3 and a = b. If a = b2/3, we get

1 + 8b − 3b4/3 − 6b2/3, which has derivative −4(−1+b1/3)2

b1/3 ≤ 0. Thus, 1 + 8b − 3b4/3 − 6b2/3 is

minimized when b = 1, yielding 0. If a = b, we get 1 − 4b + 3b4/3, which is non-negative, as

shown earlier.

118



5
Building lattice structures using generalized

Clifford algebras

5.1 INTRODUCTION

Lattice-based cryptography is a promising candidate for post-quantum cryptography [32],

i.e. cryptography in the era of quantum computers. We would like to study lattices from the

perspective of generalized Clifford algebras, using the kinds of methods we established in ear-

lier chapters, and their extension to the lattice case. One motivation may be said to be the prob-
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lem of devising a publicly secure quantum money protocol using lattices [21]. Our results in

this chapter shed light on the structure of the Hilbert space associated to lattices, by construct-

ing new kinds of unitary operators one can work with, and thus contribute to an understanding

of the quantum operations that may be performed on a lattice.

The lattice used in [21] is generated by a code C, which is a matrix whose rows are vectors

in ZP, adjoined with the vectors at the corners of the d-dimensional cube of length P, which

has one corner at the origin. The code is embedded into Rd. The dual lattice of this lattice is

defined with respect to the inner product x · y = 1
P
∑d

i=1 xiyi. Under this inner product, the

lattice is generically not integral, i.e. it is not generally true that x · y ∈ Z for all x, y in the

lattice. This has important ramifications since many nice mathematical theorems cannot be

applied; in particular, as a result, the lattice is not contained in its dual. Instead, a different

characterization arises.

Consider the extension of C to a lattice L ⊂ Rd. Suppose that the lattice has a basis ei,

i = 1, 2, . . . , d. The dual lattice is defined to be the set of all vectors v in Rd such that

x · v ∈ Z if x ∈ L. Alternately, the dual lattice is generated, upon identification with vectors

in Rd via Riesz representation, by vectors e′i satisfying e′i · ej = δ ij. Note that, using the first

characterization of the dual lattice, (P, 0, 0, · · · , 0) belongs in the dual lattice since x1 is an

integer for x ∈ L. Similarly, it follows that all the corners of the d-dimensional cube of length

P with one corner at the origin and edges parallel to the axes belong to the dual lattice. To

complete the basic description of the dual lattice, we show the following:

1. The dual lattice contains only vectors with integer entries.

2. The dual lattice is equal to the extension of C⊥ in Rd by the aforementioned cube corner

vectors.

The first follows by considering that the lattice contains (P, 0, · · · , 0), and so if v is in the dual

lattice, then (P, 0, · · · , 0) · v = v1 ∈ Z. Similarly, for the other corner vectors, we have that
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vi ∈ Z for each i = 1, 2, · · · , d. Hence, the dual lattice is an integer lattice.

Thus, the relation x · v = 1
P
∑d

i=1 xivi ∈ Z can literally be taken as the number-theoretic

relation
∑d

i=1 xivi = 0 (mod P). Hence, C⊥ is in the dual lattice. Furthermore, quotienting

the dual lattice by the edge vectors (P, 0, · · · , 0), (0,P, · · · , 0), . . ., (0, 0, · · · , · · · ,P), maps

the equality into a relation over ZP, which says that
∑d

i=1 x̄iv̄i = 0. So v̄ is contained in C⊥.

Lifting this homomorphism by the kernel (which is spanned by the above edge vectors), tells

us that the dual lattice is equal to the extension of C⊥ in Rd by the aforementioned cube corner

vectors. QED

In [21], another restriction is that the determinant of the lattice (not the code) be ±P. Since

the covolume of the lattice is the volume of a unit cell, and to each lattice point in the code C

(which the lattice on the corresponding d-torus), one can attach a non-overlapping unit cell. It

follows that the volume of d-torus, which is Pd, is given by P · n = Pd, where n is the number

of lattice points. So n = Pd−1, and the code is rank d − 1. Thus, the dual code is rank 1. More

properly, the restriction in [21] is to consider the class CP of such lattices that have exactly one

lattice vector in each hyper-row, i.e. if one considers a (d − 1)-dimensional face of the cube

{(x1, x2, · · · , xi, · · · , xd : xi = 0, xj̸=i ∈ ZP}, one can parameterize the set of all lattice points

functionally over the face coordinates by xi = f(x1, x2, · · · , x̂i, · · · , xd), where x̂i denotes the

exclusion of the corresponding coordinate. Since it is clear that the number of lattice points is

given by Pd−1, it again follows from the preceding argument that the determinant of the lattice

is ±P.

A converse lemma regarding the structure of the lattice which allows one to obtain a code C

is given in [21] as the following:

Lemma 5.1.1 ([21]). Let P be prime. If an integer lattice in d dimensions which is not periodic

with period 1 along any coordinate has determinant ±P and rank d, then it is periodic in every

dimension with period P.

121



Proof. We present a more algebraic-flavored proof than [21] which has the same starting point.

Since the lattice is rank d, there must be a lattice point (T, 0, 0, · · · , 0) on the x1-axis, other-

wise the lattice basis may be augmented by the vector (1, 0, 0, · · · , 0) and still remain a basis

(as the basis property is preserved if there is no solution to b(1, 0, 0, · · · , 0) ∈ L for b 6= 0),

contradicting the fact that the lattice has rank d. Then the determinant of the lattice may be

computed to be T times the determinant of the cofactor A11 where A is the generator matrix,

and equal to ±P. So TK = P, where K is an integer and T 6= ±1. Since P is prime, it follows

that T = ±P. The argument applies for every axis, hence the lattice is periodic in every dimen-

sion with period P.

With the above preliminaries complete, we now treat lattices from the perspective of gener-

alized Clifford algebras.

5.2 USING GENERALIZED CLIFFORD ALGEBRAS FOR LATTICES

5.2.1 GENERALIZING THE ALGEBRAIC FRAMEWORK FOR GENERALIZED CLIFFORD ALGEBRAS

TO LATTICES IN Zd
P

Let us again use the axioms as given in Chapter 2. Now suppose one has a code C in Zd
P.

Then one has 2d generators, c1, c2, . . . , c2d−1, c2d, which satisfy cacb = qcbca if a < b, and

cP
a = 1. Furthermore, q is a primitive Pth root of unity, with qP = 1 and qa 6= 1 for any positive

integer a < P. Let us start with a basis v1, v2, . . . , vr of the code. The dual code has a basis

w1,w2, . . . ,wd−r. The code and dual code are both P-ary codes. Define the product cv in the

algebra by

cv := cv1

2 cv2

4 · · · cvd

2d, (5.2.1)

where v = (v1, v2, · · · , vd). This definition is well-defined over Zd
P because the generators each

satisfy cP
a = 1.

122



Up to phase factors, one can associate each codeword v =
∑r

i=1 αivi with the ordered prod-

uct cα1
v1

cα2
v2

· · · cαr
vr |Ω〉⊗d, where αi = 0, 1, · · · ,P − 1. In Chapter 2, we already defined the

generalized Clifford algebra generators ci in a matrix representation in terms of a fixed basis

(see equations 2.2.1 and 2.2.2). From these equations, it is clear that

Proposition 5.2.1. Let v1, v2, . . . , vr ∈ Zd
P be a set of linearly independent vectors, where

P is positive integer at least two. The set cα1
v1

cα2
v2

· · · cαr
vr |Ω〉⊗d is an orthonormal basis for the

subspace spanned by the codewords |
∑r

i=1 αivi〉, with αi = 0, 1, 2, . . . ,P − 1.

Proof. This result follows simply from the fact that |
∑r

i=1 αivi〉 is equal to cα1
v1

cα2
v2

· · · cαr
vr |Ω〉⊗d

up to an overall phase factor eiφ (φ is real) by equation 2.2.1.

Furthermore, this subspace is invariant under the action of the algebra generated by the cvi’s.

Proposition 5.2.2. The subspace spanned by the codewords |
∑r

i=1 αivi〉, with αi = 0, 1, 2, . . . ,

P − 1 is invariant under the action of the subalgebra (over C) generated by cv1 , cv2 , . . . , cvr .

Proof. By the closure properties of a vector space under addition and multiplication by a

complex scalar, it suffices to check that the subspace is invariant under multiplication by a

single cvi . Without loss of generality, let us consider multiplication cv1 . From equation 2.2.1,

cv1 |
∑r

i=1 αivi〉 = eiφ |
∑r

i=1 αivi + v1〉, where φ is real. Hence the vector subspace is fixed

under multiplication by a single cvi , and so it is invariant under the action of the entire subalge-

bra.

Before we proceed, we state an important relation which allows us to work with the new cv

operators:

Proposition 5.2.3.

cvcwc−1
v c−1

w = q
∑d

i,j=1 εijviwj
, (5.2.2)

where εij = 0 if i = j, 1 if i < j, and −1 if i > j.
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From this identity, one may deduce the commutant of the subalgebra generated by a cv oper-

ator.

Corollary 5.2.4. cw commutes with cv if and only if
∑d

i,j=1 εijviwj = 0 (mod P).

Note that the condition
∑d

i,j=1 εijviwj = 0 (mod P) defines a single equation linear in w.

Written slightly differently, Proposition 5.2.4 becomes cvcw = q
∑d

i,j=1 εijviwjcwcv. This can be

generalized to the following identity, by iterated commutation:

Proposition 5.2.5.

ca
vcb

w = qab
∑d

i,j=1 εijviwjcb
wca

v. (5.2.3)

Proof. Bringing a single copy of cw in front of ca
v yields a factors of q

∑d
i,j=1 εijviwj . So bringing b

copies of cw in front of ca
v gives the phase factor qab

∑d
i,j=1 εijviwj .

We define new braid-like operators Bkl given by

Bkl :=
1√
P

P−1∑
i=0

ci
vk

c−i
vl
. (5.2.4)

In order for this sum to be well-defined mod P, we need the auxiliary result that cP
vk

= 1. This

turns out to be true only if P is odd. This requirement is an extremely important regularity

condition.

Proposition 5.2.6 (Regularity Condition). Suppose xP = yP = 1 and xyx−1y−1 = Q, where Q is

a Pth root of unity. If P is odd, then (xy)P = 1.

Proof. By repeated commutation and collecting powers of Q, one obtains that

(xy)P = Q−P(P−1)/2xPyP = Q−P(P−1)/2. This equals 1 if P is odd.

Corollary 5.2.7. cP
vk
= 1 if P is odd.
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Proof. The proof follows by inducting over the length of the product cvk and repeatedly apply-

ing Proposition 5.2.6. More plainly, cvk is a product of elements whose Pth powers are 1, and

whose pairwise commutator xyx−1y−1 is a Pth root of unity, hence its Pth power is also 1.

In what follows, we will assume that P is odd, so that the braid-like operators are invariant

under shifting of indices. By the form of the sum, the Bkl operators satisfy the following propo-

sition.

Proposition 5.2.8. Suppose P is odd.

cvkBkl = Bklc−1
vl
. (5.2.5)

Proof. By shifting indices by 1 and applying Proposition 5.2.6.

Corollary 5.2.9. Suppose P is odd.

c−a
vk

Bkl = Bklca
vl

(5.2.6)

for any a ∈ ZP.

Proof. By multiple applications of Proposition 5.2.8 and the regularity condition of Proposi-

tion 5.2.6.

Corollary 5.2.10. Suppose P is odd.

c−a
vl

B†
kl = B†

klc
a
vk

(5.2.7)

for any a ∈ ZP.

Proof. It follows by taking the adjoint of equation 5.2.6.
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We now prove a commutation relation which is not dependent on the regularity condition.

Proposition 5.2.11. Let P be any positive integer at least two. Then Bkl and B†
kl commute with

cvkc−1
vl

.

Proof. Since Bkl can be rewritten as a sum of terms of the form zkl(cvkc−1
vl
)a, where zkl is a con-

stant depending on k, l and a, it follows that it commutes with cvkc−1
vl

. The same argument ap-

plies to B†
kl.

Corollary 5.2.12. Let P be any positive integer at least two. Then Bkl and B†
kl commute.

Proof. Each term in Bkl can be written as a power of cvkcvl times a complex coefficient. Apply-

ing Proposition 5.2.11 for B†
kl, and linearity, it follows that BklB†

kl = B†
klBkl.

We can use a direct approach to compute B†
klBkl. The following proposition shows that under

a nondegeneracy condition for the basis vectors vk of a code C, it follows the braid-like oper-

ators Bkl, B†
kl are unitary. The nondegeneracy condition is that Qkl be a primitive Pth root of

unity. In the special case that P is prime, this means that Qkl 6= 1. Furthermore, if Qkl = 1,

the Bkl’s are proportional to projection operators; in the prime case, this provides a converse

statement, which is that Bkl is unitary only if Qkl 6= 1.

Proposition 5.2.13. Assume P is odd. Let v1, v2 ∈ Zd
P be linearly independent vectors. Set

Qkl = q
∑d

i,j=1 εijvi
kv

j
l (5.2.8)

where vi
k and vj

l denote the ith and jth coordinates of vk and vl, respectively.

If Qkl is a primitive Pth root of unity, then Bkl, B†
kl are unitary. In the special case that P is

prime, Qkl is a primitive Pth root of unity if and only if Qkl 6= 1. On the other hand, if Qkl = 1,

i.e. cvk and cvl commute, then Bkl is proportional to a projection, specifically, Bkl is self-adjoint

(Bkl = B†
kl), and B2

kl =
√

PBkl.
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Proof. Set Qkl = q
∑d

i,j=1 εijvi
kv

j
l , where vi

k and vj
l denote the ith and jth coordinates of vk and vl,

respectively. Then using the fact that B†
kl and Bkl commute (by Corollary 5.2.12),

B†
klBkl = BklB†

kl =
1
P

P−1∑
i,j=0

ci
vk

c−i
vl

cj
vl
c−j

vk
(5.2.9)

=
1
P

P−1∑
i,j=0

ci
vk

cj−i
vl

c−j
vk

(5.2.10)

=
1
P

P−1∑
i,j=0

Q(j−i)j
kl ci−j

vk
cj−i

vl
(5.2.11)

=
1
P

P−1∑
a,j=0

Qaj
klc

−a
vk

ca
vl

(5.2.12)

by Proposition 5.2.5 and re-indexing using Proposition 5.2.6. We can first perform the sum

over j. Taking first the special case that P is prime, there are two cases, Qkl = 1 and Qkl 6= 1,

corresponding to
∑d

i,j=1 εijvi
kv

j
l being 0 mod P or nonzero mod P. If Qkl 6= 1, Qkl is a primitive

P-root of unity if P is prime. In the first case, Qkl = 1, the resulting sum yields that Bkl is actu-

ally self-adjoint, since cvk commutes with cvl , and so Bkl = B†
kl. Hence, summing over j yields a

factor of P, and one obtains that

B2
kl =

P−1∑
a=0

c−a
vk

ca
vl
=

√
PBkl. (5.2.13)

if Qkl = 1. If Qkl 6= 1, then the sum over j is P if a = 0, and otherwise equal to 0, since∑P−1
j=0 Qaj

kl =
QaP

kl −1
Qa

kl−1 = 0. Note that P being prime guarantees that Qa
kl 6= 1 for a 6= 0.

In the case that P is not prime, suppose Qkl is a primitive Pth root of unity. Then Qaj
kl = 1 if

and only if aj = 0 (mod P). Then
∑P−1

j=0 Qaj
kl =

QaP
kl −1

Qa
kl−1 = 0 if a 6= 0 and equals P if a = 0. Thus,

only the constant term in the sum survives, which is 1. This again shows that B†
klBkl = BklB†

kl =

1.
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If, on the other hand, for general P, we have that Qkl = 1, then B2
kl =

√
PBkl, by the same

computation as in equation 5.2.13.

Another proof of unitarity can be given using Proposition 5.2.8, combined with Corollary

5.2.4. This strategy requires a suitable generalization of Proposition 3.3.2, which stated that

the generalized Clifford algebra generated by c1, c2, . . . , c2n−1, c2n has trivial center. This propo-

sition was so crucial for obtaining results in Chapter 3 that we described it as a “golden” rule.

So now we need a more generalized golden rule. The appropriate generalization of Proposi-

tion 3.3.2 is to replace the GCA generators c1, c2, . . . , c2d with cv1 , cv2 , . . . , cvr , and impose a

suitable nondegeneracy condition that depends on the full-rank property of an antisymmetric

matrix (mod P) formed out of the vector basis vi.

Proposition 5.2.14 (Generalized Golden Rule). Let v1, v2, . . . , vr ∈ Zd
P be a set of linearly

independent vectors, where P is a positive integer at least two. Define the matrix F with the

matrix elements1

Fkl =
d∑

a,b=1

εabva
kvb

l . (5.2.14)

Then the algebra generated by cv1 , cv2 , . . . , cvr has trivial center if and only if F (mod P) is full

rank in Zd
P × Zd

P.

Proof. Any element x of the algebra may be represented in a canonical form by the expression

x =
∑P−1

i1,i2,...,ir=0 ai1,i2,...,irci1
v1

ci2
v2
· · · cir

vr . Furthermore, by Proposition 3.3.2, x = y if and only

if the coefficients in the normal form agree with each other. Suppose x lies in the center of

the algebra generated by cv1 , cv2 , . . . , cvr . We assume x 6= 0 (otherwise, it commutes trivially

with the whole algebra), so there is a tuple (i1, i2, · · · , ir) such that ai1,i2,...,ir 6= 0. Then setting

xcv1 = cv1x and comparing coefficients yields that ai1,i2,...,irQ
i1
21Q

i2
31 · · ·Q

ir
r1 = ai1,i2,...,ir . Since

ai1,i2,...,ir 6= 0, it follows that Qi1
21Q

i2
31 · · ·Q

ir
r1 = 1. Thus, using equation 5.2.8, we obtain that

1Again, we are using the upper index to denote the coordinate of the corresponding vector vk.
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∑
l ̸=1 il

∑d
a,b=1 εabva

1 vb
l = 0 (mod P). Noting that Fkk = 0 by the asymmetry of εab, we can

write this equation as
∑r

l=1 F1,lil = 0 (mod P). More generally, setting xcvk = cvkx, one obtains

that
r∑

l=1

Fklil = 0 (mod P) (5.2.15)

for k = 1, 2, . . . , r. The statement that the only solution mod P is given by (i1, i2, . . . , ir) =

(0, 0, . . . , 0) is equivalent to the statement that F (mod P) is full-rank in Zd
P × Zd

P.

It is interesting to observe that the full-rank condition for Proposition 5.2.14, in terms of

the full-rank of a matrix depending on the code basis, is the appropriate generalization of the

condition for Proposition 5.2.13. The following corollary demonstrates this fact.

Corollary 5.2.15. Let v1, v2 ∈ Zd
P be linearly independent vectors, where P is a positive integer

at least two. Taking the special case r = 2, the full-rank property of F(mod P) reduces to the

condition that cv1 and cv2 do not commute with each other. Thus, the algebra generated by cv1

and cv2 has trivial center if and only if Q12 6= 1, i.e. F12 6= 0 (mod P).

Proof. Taking r = 2, if F12 = 0 (mod P), then F21 = −F12 = 0 (mod P), and F (mod P)

is certainly not full-rank. Conversely, if F (mod P) is not full-rank, then the only possibility is

that F12 = 0 (mod P).

Using the above framework, one can now adapt the approach presented by the dissertation

author in Chapter 3 to show the unitarity of bkl, to now show the unitarity of Bkl. Namely, we

simply need to show that B†
klBkl (alternately, the equal expression BklB†

kl) lies in the center of

the algebra generated by cvk and cvl , and that the constant term is 1.

Proposition 5.2.16. Suppose P is odd. Let v1, v2 ∈ Zd
P be linearly independent vectors, and

suppose Qkl 6= 1, where Qkl is as defined above. Then B†
klBkl (alternately, the equal expression
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BklB†
kl) lies in the center of the generalized Clifford algebra generated by cvk and cvl and its

constant term is 1.

Proof. To prove that B†
klBkl lies in the center of the generalized Clifford algebra generated by

cvk and cvl , we simply need to show that B†
klBkl commutes with all elements of the form ca

vk
cb

vl
,

and then use linearity to extend this to the statement that B†
klBkl commutes with any element of

the form
∑r

a,b=1 αabca
vk

cb
vl
, which is in fact the whole algebra generated by cvk and cvl .

To show this fact, we first use the fact that any ca
vk

cb
vl

can be written as z(cvkc−1
vl
)aca+b

vl
where

z is a constant. By Proposition 5.2.11, it follows that (cvkc−1
vl
)a commutes with both Bkl and B†

kl,

and hence with their product. Thus, we only need to show that cvl commutes with B†
klBkl. Ap-

plying Corollary 5.2.9 and 5.2.10 of Proposition 5.2.8, it follows that B†
klBklcvl = B†

klc−1
vk

Bkl =

cvlB
†
klBkl, which shows that cvl commutes with B†

klBkl.

To show that the constant term is 1, observe that B†
klBkl = BklB†

kl = 1
P
∑P−1

i,j=0 ci
vk

c−i
vl

cj
vl
c−j

vk

yields that the constant term is 1 by plugging in i − j = 0. Note that no other terms contribute

to the constant term since vk and vl are assumed to be linearly independent in Zd
P.

Corollary 5.2.17. Suppose P is odd. Let v1, v2 ∈ Zd
P be linearly independent vectors, and

suppose Qkl 6= 1, where Qkl is as defined above. Then Bkl is unitary.

Proof. This follows by application of the generalized golden rule, Proposition 5.2.14, to Propo-

sition 5.2.16.

5.3 CONCLUSION

Thus, we have shown that one can generalize the approach used in Ch. 3 for the full gener-

alized Clifford algebra to subalgebras of the generalized Clifford algebra induced by lattices

subject to a particular full-rank condition. We built new unitary operators Bkl, which we called

braid-like due to their similar sum construction to the bona fide braid group elements from Ch.

130



3. We envision these unitary operators as the first step to designing building blocks of unitary

operations that are intrinsic to the lattice structure.
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