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Abstract

This thesis explores the application of deep learning models as contextual embedding

functions for data enrichment in the Turing test, allowing an AI-based judge that auto-

mates the Turing test to more effectively differentiate between human and artificial in-

telligence inputs in tasks such as image captioning. Image captioning data was manually

collected from both humans and AI models such as BLIP and GIT. Static embedding func-

tions are first applied to the data before being propagated through pre-trained deep learn-

ing models of various architectures to obtain contextualized embeddings for classification.

Specifically, transformers and convolutional neural networks are used to generate contex-

tual embeddings for image and text data respectively. PCA dimensionality reduction is ap-

plied on the contextual embedding space to alleviate memory and resource constraints for

training the AI-based judge for human-machine classification. AI judges based on support

vector machines (SVM), Gaussian Naive Bayes and deep neural networks are trained and

evaluated on the contextual embeddings, and the resulting performance metrics for classi-

fication accuracy are discussed. Further insights about possible innate differences between

humans and AI in the domains of vision and language are analyzed.
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I believe that at the end of the century the use of words

and general educated opinion will have altered so much

that one will be able to speak of machines thinking

without expecting to be contradicted.

AlanM. Turing

0
Introduction

The emulation of human cognition and rationality through artificial intelli-

gence is an idea that has its roots in classical philosophy and mathematics, when the earliest

thinkers began developing systems of mathematical logic and formulating human reason-

ing as symbolic systems. The development of these frameworks led to the famous Church-

Turing thesis in the 1930’s, which theorizes that any conceivable process of logical reason-
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ing can be simulated by manipulating basic symbols such as ”0” and ”1”. Shortly thereafter,

what is generally considered the first form of artificial intelligence was introduced byMc-

Culloch and Pitts in 1943, who created a computation model of the neuron. However, it

was not until the Dartmouth Summer Research Project on Artificial Intelligence in 1956

that the term ”artificial intelligence” was officially coined by JohnMcCarthy. Since then,

an explosion of innovations have developed in the field of artificial intelligence, from Yann

LeCun’s convolutional neural network that emulates the animal visual cortex, to Google’s

transformer architecture that processes sequences of data through a self-attention mech-

anism that mimics how humans perceive, associate and memorize information. State-of-

the-art machine learning models such as DALL·E 2 and ChatGPT are able to generate

hyper-realistic images and complex, logical sentences, blurring the line between human

and machine capabilities. Amid these breakthroughs, a crucial question has become more

important than ever before: how does one distinguish between human and machine gen-

erated data? How will we verify the authenticity of information and news with the rise of

advanced generative capabilities from artificial intelligence? Knowing the differentiating

factors between human and machine intelligence will not only help prevent the spread of

misinformation from artificially generated data, but simultaneously make AI models more

“human-like” in situations that require it, engineering models with the aforementioned

differences in mind. Yet, differentiating between human and machine generated informa-

tion and behavior remains a relatively unexplored research topic by the machine learning

community. This thesis seeks to address the aforementioned issue by building automated

judges that classify human and machine inputs, trained on contextual embeddings that

represent those inputs. A contextual embedding function considers the relationships

between various sections of its input and the implications they have on its overall mean-
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ing when generating an embedding. In the case of text input, this would entail comparing

each word’s role with respect to other words in the given sentence. For image input, this

would mean relating different sections of the given image with each other. A static embed-

ding function for text data is a pre-trained, fixed representation of words in a vector space,

meaning that it does not consider the specific input sentence as a whole when generating

an embedding for each word in the sentence. As such, static embedding functions may fail

to capture the nuanced context for words in a sentence. The central premise of this thesis

is that contextual embeddings generated by deep learning architectures are distilled with

richer language and image understanding than that of static embeddings, which only rep-

resent the meaning of the underlying data as fixed, isolated vectors. Hence, for the task of

differentiating between human and machine inputs, contextual embeddings may increase

the efficacy of classifier training compared to static embeddings.
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As an AI language model, I do not pose any inherent

danger to people or society. One of the main concerns with

AI language models is the potential for misinformation

and manipulation. Because language models like Chat-

GPT can generate human-like responses, they may be

used to spread false information or propaganda. This

could have serious implications for democracy, public

discourse, and social cohesion.

ChatGPT

1
Background

An overview of the technical concepts used in this thesis is provided in this chap-

ter. We begin by delineating the experimental setup of the Turing test, followed by in-

depth explanations of various machine learning paradigms, embedding spaces and deep

learning architectures.
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1.1 RelatedWork

The Turing test was proposed by famous mathematician and computer scientist Alan Tur-

ing, functioning as an ”imitation game” where a machine or artificial intelligence tries to

seem human when conversing with a human judge, while the judge ultimately has to de-

cide if they are interacting with a human or machine13. Since the 70 years after Turing’s

famous paper, there has been ample debate about whether the Turing test serves as a valid

and relevant metric of intelligence. Creating an automated Turing test where the human

judge is replaced by an AI judge lies at the essence of this thesis, where the decision making

of the AI judge may reveal crucial insights on what cues and model designs make a machine

seem less human. Furthermore, the original Turing test only pertains to text conversations

(language) between a machine and human, but the imitation game concept can be applied

to any domain of expression. For instance, machines can also imitate humans in tasks such

as color estimation, image captioning, object detection, attention prediction, word asso-

ciations, and so on. Zhang, Mengmi, et al.17 collected a large amount of human and AI

data for the aforementioned tasks and conducted the Turing test using both a human and

AI judge for each task domain. The AI judge used in this paper was a support vector ma-

chine (SMV) model, meaning that no deep learning models were utilized in the training

process and a separate AI judge was trained for each task domain. Leveraging the power

of deep learning for differentiating human and AI behavior in diverse task domains is a

clear step for further exploration, as there may be similar patterns among different task

domains that can help discern between human and machine. The challenge lies in build-

ing a single multi-modal AI judge that can universally receive inputs from different task

domains such as vision and language so that only one trained model is needed to conduct
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the Turing test in all task domains. Until recently, transformer architectures were primar-

ily trained for tasks in natural language processing, with Ashish Vaswani et al, 201714 and

Devlin et al., 20194 introducing bidirectional encoder transformers (BERT) that led to

significant progress in classification problems solely limited to text. Reed, Scott, et al.12

propose ”Gato”, a generalist agent with a transformer architecture that can be trained in

domains such as reinforcement learning and computer vision, far beyond the normal realm

of natural language processing for the transformer architecture. The key technique that

allows for the multi-modality of Gato is that all input forms are serialized into a flattened

sequence of tokens such that the transformer architecture can readily receive them and be

trained much like in the traditional context of natural language processing. Wang, Peng,

et al.16 introduces a similar transformer-based generalist agent called ”One For All (OFA)”

that is a sequence to sequence model with similar multi-model capabilities as Gato. OFA

also makes use of an input serialization that flattens and tokenizes different data types into

a ”Unified Vocabulary”. Kiela, Douwe, et al.7 propose a multi-modal bitransformer model

for classifying images and text, where the input sequence is a concatenation of text and im-

age embedding sequences for tasks that involve both modalities of data. By applying the

self-attention mechanism over both modalities of data simultaneously, their model is able

to effectively process the mixed data in a fine-grained manner.

1.2 Turing Test

The Turing Test come from the ”Imitation Game” concept from Alan Turing’s ”Com-

puting Machinery and Intelligence” paper. The imitation game involves three participants.

ParticipantA is a human, participant B is a machine, and participantC is a judge or ”inter-

rogator” as referred to by the paper. A and B converse with each other in a separate room
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fromC, who reviews their conversation by reading it in text. C knows the two other par-

ticipants as labelsX and Y, and at the end of their conversation,C has to say ”X is A and

Y is B” or ”X is B and Y is A”, giving their judgement on which participant is the human

and which one is the machine. If the machine B can trick the judgeC into thinking that it

is the humanA, then machine B passes the Turing test because it has convinced the judge

C that is human. While the Turing test originally only refers to the domain of language, it

can be applied to any domain of expression that humans and machines are both capable of.

For instance, can one discern the difference between how a human would caption an image

compared to a machine? In this task,Cwould receive an image and caption from bothA

and B, and would have to decide which one was captioned by a human. A common crit-

icism for the Turing test is thatC knows there is exactly one human and one machine in

the imitation game, rather than being uncertain about whether both participants could be

humans or machines, which may drastically alter howCmakes their judgement. The origi-

nal definition of the imitation game makes it such thatC’s role is selecting which one of X

and Y ismore human, rather than only focusing on whether an certain pattern of behavior

seems human in isolation.

1.3 ClassicalMachine Learning

The field of machine learning fundamentally embodies the idea of a machine autonomously

learning from a set of data to improve performance on a given set of tasks, without any di-

rect human intervention. In this thesis, we will be primarily concerned with binary clas-

sification in the context of supervised learning, a major paradigm of machine learning.

Supervised learning pertains to problems where each data point (a set of features) in the

dataset has an associated label. Supervised learning algorithms aim to learn a function that
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accurately maps each set of input features xi to its corresponding label yi, where this learned

function should be generalizable in that it can predict labels for input features that it has

not observed during training. Taken together, (xi, yi) form a single data point di ∈ D,

whereD is the entire dataset. In binary classification, the labels for xi are yi ∈ {0, 1}where

the label is either 0 or 1. Supervised learning algorithms learn by optimizing with respect to

a loss function J, which represents the difference between the algorithm’s predictions and

the true labels. A model that minimizes this loss function thus yields a model that consis-

tently makes accurate predictions.

1.3.1 Linear Estimator

To understand the intuition behind machine learning, let us first describe how a simple

linear estimator model works. We are given a labelled datasetD composed of X and Y each

of size n, where each data point xi ∈ X has a corresponding label yi ∈ Y. A estimator has

a randomly initialized weight w and bias b; it receives input data X and maps these inputs

to a prediction Ŷ(w, b) = w · X + b. Notice that X is fixed and the only variables that

will change are w and b. The predictions Ŷ are compared to the true labels Y and both w

and b are adjusted accordingly to minimize the difference between Ŷ and Y, meaning that

the estimator’s predictions are as close to the real ”solution” as possible. The difference

between Ŷ and Y is represented by an objective function; in this case, the objective function

takes the form of a cost function. The mean square error cost function is

J(w) =
1
n
·

n∑
i=1

(yi − ŷi(w))2 (1.1)

Adjusting the weight wold to obtain a new weight wnew to minimize the difference between

8



Figure 1.1: Illustration of how the gradient descent algorithm updates the parameter values w to converge on the mini‐
mum point of the cost function.

Ŷ and Y is done by taking dJ
dwold

, the derivative of the cost function with respect to wold, mul-

tiplying it by a learning rate α, and subtracting it from wold:

wnew = wold − α · dJ
dwold

(1.2)

The intuition behind why this weight update rule minimizes the cost function is the fol-

lowing. If one assumes that the cost function J, which is a function of the weight w, is con-

vex, then there must be a value for w that minimizes J. If we examine the mean squared

error cost function, it takes the form of a parabola that opens upwards, meaning it is convex

and has a minimum at J(wmin). Suppose we have a value wold that is greater than wmin. Then
dJ

dwold
must be positive (this is the slope of the cost function at wold, so in order to move wold

towards wmin, we subtract the slope which moves wold towards the left. In the other case,

suppose we have a value wold that is smaller than wmin. Then dJ
dwold

must be negative (this is

the slope of the cost function at wold so in order to move wold towards wmin, we subtract the
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slope which moves wold towards the right. This is known as the gradient descent update

method, since it uses the gradient of the cost function to adjust the weight w to ”descend”

along the cost function and reach its lowest point, effectively minimizing the cost. A learn-

ing rate is included in this update rule to control the size of the weight adjustment at each

iteration of the update, and is often tuned to become smaller over iterations of updates.

This allows the gradient descent process to actually converge on the minimum point of the

cost function rather than endlessly jumping around because the update size is too large and

overshoots the minimal point. This method is used the exact same way for the bias b.

1.3.2 Support VectorMachines (SVM)

The original Support Vector Machine (SVM) model2 was developed at AT&T Bell Lab-

oratories by Vladimir Vapnik and Alexey Chervonenkis in 1964, consisting of a linear hy-

perplane classifier. A more powerful SVM classifier was introduced in 1992 by Bernhard

Boser, Isabelle Guyon and Vladimir Vapnik, leveraging the kernel trick to implement non-

linear hyperplane classifiers.

Linear SVM

Suppose we have a datasetD = {(xi, yi)} i = 1, . . . , n. Each data point di ∈ D is

composed of a set of input features and a corresponding target label (xi, yi), where xi is a

k-dimensional real vector and yi ∈ {−1, 1}. The linear SVM algorithm finds a classifier in

the form of a hyperplane that can best divide the two different classes of points. A hyper-

plane in k-dimensional space is defined as:

wTx− b = 0 (1.3)

10



where w is a k-dimensional vector normal to the hyperplane. The hyperplane should satisfy

themaximum-margin property, which maximizes the distance between the hyperplane

and nearest points from both groups. To do so, the linear SVM algorithm finds two parallel

hyperplanes that can also separate the two classes of data points, with the distance between

these two hyperplanes being maximized. The two parallel hyperplanes are:

wTx− b = 1

and

wTx− b = −1

Suppose point x1 is on hyperplane wTx − b = 1 and x2 is on hyperplane wTx − b = −1.

The distance between these two parallel hyperplanes is equivalent to the distance between

x1 and x2, given by ||x2 − x1|| = 2
||w|| . We can show this by considering the line L (in k-

dimensional space) that passes through x1 in the direction of the normal vector w. We have

L = x1 + wcwhere c ∈ R. The intersection of Lwith the second hyperplane at x2 can be

found by plugging L into the second hyperplane equation:

wT(x1 + wc)− b = −1 ⇐⇒ c =
−1+ b− wTx1

wTw
=
−2
||w||2

meaning that distance between the two parallel hyperplanes is given by:

L = x1 + wc = x2 ⇐⇒ ||x2 − x1|| = ||w||
| −2 |
||w||2

=
2
||w||

Minimizing ∥w∥maximizes ||x2 − x1||, which results in the maximum-margin since ∥w∥

is always positive. Fig 1.2 visualizes the maximum-margin property for a support vector

11



machine classifier on a set of linearly separable data.

Figure 1.2: Two parallel hyperplanes satisfying the maximum‐margin property for a linear support vector machine.

The constraints to be satisfied for every data point (xi, yi) are given by:

wTxi + b ≥ +1, yi = +1 (1.4)

wTxi + b ≤ −1, yi = −1 (1.5)

which is equivalent to

yi(wTxi + b)− 1 ≥ 0, ∀i (1.6)

However, datasets are usually not linearly separable and hence will not satisfy the constraint

above for all i. Thus, the hard-margin optimization approach (requiring linear separa-

12



bility) needs to be extended to not linearly separable datasets through the inclusion of the

hinge loss function for a soft-margin optimization (not requiring linear separability):

max
(
0, 1− yi(wTxi − b)

)
The hinge loss function is zero if the original constraint is satisfied—that is, if xi is on the

correct side of the margin with respect to its label. For each data point on the wrong side

of the margin (misclassified by the linear SVM hyperplane margin), the value of the hinge

loss function is directly proportional to the distance of the datapoint from the margin. The

reformulated optimization problem becomes

J(w, b) = λ∥w∥2 +

[
1
n

n∑
i=1

max
(
0, 1− yi(wTxi − b)

)]

Since J is a convex function ofw and b, sub-gradient descent can be used as solution method

where instead of taking a step in the direction of the gradient of J, a step is taken in the di-

rection of a vector selected from the sub-gradient of J. A sub-gradient is a generalization

of the concept of a gradient to functions that may not be differentiable everywhere. Given

a function f(x) that is not differentiable at a point x, the sub-gradient at x is a vector that

provides a lower bound on the slope of the function at that point. If f(x) = |x|where f(x)

is not differentiable at x = 0, the set of sub-gradients of f(x) at x = 0 is the interval [−1, 1].

The formal definition of the sub-gradient of a convex function f : I→ R at a point x0 in

the open interval I is a real number cwhere:

f(x)− f(x0) ≥ c(x− x0), ∀x ∈ I

13



The set of sub-gradients at x0 for a convex function f is a nonempty, closed interval [a, b],

where a and b are the one-sided limits:

a = lim
x→x−0

f(x)− f(x0)
x− x0

b = lim
x→x+0

f(x)− f(x0)
x− x0

The sub-gradient used on each iteration of sub-gradient descent is selected either randomly

or by evaluating several candidate sub-gradients by observing how the model performs

upon the application of each candidate, and selecting the one that yields the lowest loss.

Non-linear SVM: The Kernel Trick

When the dataset is not linearly separable, the kernel trick can be utilized to transform the

dataset into a higher-dimensional space where it is more likely to be linearly separable. In

the transformed feature space, the support vector machine can then find the hyperplane

that maximizes the margin between the two classes of data points as usual. In particular,

the kernel function used in this transformation is crucial in non-linear support vector ma-

chines, since it determines the similarity between pairs of data points in the feature space.

For all x and x′ in the input spaceX , certain functions k(x, x′) can be expressed as an inner

product in another space V . The function k : X × X → R is often referred to as a ker-

nel or a kernel function. The word ”kernel” is used in mathematics to denote a weighting

function for a weighted sum or integral. Certain problems in machine learning have more

structure than an arbitrary weighting function k. The computation is made much sim-

pler if the kernel can be written in the form of a ”feature map” ϕ : X → V which satisfies

14



k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V .The primary restriction is that ⟨·, ·⟩V must be a proper inner

product.

Figure 1.3: Transforming a 2‐dimensional not linearly separable dataset into a 3‐dimensional dimensional space where
the transformed dataset is linearly separable by a maximum margin hyperplane found by a support vector machine.

Figure 1.3 shows how a not linearly separable dataset can become transformed into a higher

dimensional space that is linearly separable by a hyperplane. Specifically, it has x = (a, b)

and defines ϕ((a, b)) = (a, b,
√
a2 + b2)which gives:

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V = (a1 · a2+ b1 · b2+
√

a21 + b21 ·
√

a22 + b22) = x · x′+ ∥x∥ · ∥x′∥

utilizing the kernel trick to implement a non-linear support vector machine. Common

kernels used for the kernel trick include polynomial kernels k(xi, xj) = (xi · xj)d and

Gaussian radial basis function kernels k(xi, xj) = exp
(
−γ

∥∥xi − xj
∥∥2
)
for γ > 0.

1.3.3 Naive Bayes Classifier

Suppose that the probability density function for a feature x in the dataset is given by

15



f(x) =
1

σ
√
2π

e−
1
2 (

x−μ
σ )2 =

1√
2π

e−
1
2 x

2 (1.7)

where the mean μ = 0 and the variance σ2 = 1 for the standard normal distribution

N(0, 1). The conditional probability for x given a class label ck for k ∈ (0, 1) is

f(x | ck) =
1

σck
√
2π

e−
1
2 (

x−μck
σck

)2 (1.8)

where the μck is the mean value of the feature under the class ck and σck is the standard devi-

ation for the feature under class ck. We want to find P(ck | x1, x2, x3, ..., xn), the probability

that a given input feature was generated by a human or machine, for k ∈ (0, 1)where

k = 0 is a machine and k = 1 is a human.

Let x= (x1, x2, x3, ..., xn) be the vector of features used for this classification problem. By

Baye’s rule, we have that:

P(ck | x) =
P(ck) · P(x | ck)

P(x)
(1.9)

Since the denominator is not dependent on ck and the values for all the features in x are

known, we can treat the denominator as a constant and only focus on the numerator P(ck) ·

P(x | ck). By ”naively” assuming that each feature in x is independent from other features,

we have that:

P(ck) · P(x | ck) = P(x1, x2, x3, ..., xn, ck) (1.10)

and can rewrite the joint probability P(x1, x2, x3, ..., xn, ck) as the following:
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P(x1, x2, x3, ..., xn, ck) = P(x1 | x2, x3, ..., xn, ck) · P(x2, x3, ..., xn, ck) (1.11)

and we can recursively repeat this process for the joint probability P(x2, x3, ..., xn, ck) =

P(x2 | x3, ..., xn, ck) · P(x3, ..., xn, ck), and so on. Since we ”naively” assume that each

feature is independent from each other, we have that:

P(ck | x) ∝ P(x1, x2, x3, ..., xn, ck) = P(ck) ·
n∏
i=1

P(xi | ck) (1.12)

where each P(xi | ck) can be found by the Gaussian probability density function condi-

tioned on class ck given by Equation (2). The naive Bayes classifier’s prediction ŷ of the class

of input features x is given by the following assignment rule:

ŷ = argmaxk∈(0,1) P(ck) ·
n∏
i=1

P(xi | ck) (1.13)

which assigns to xi the class ck that has the highest probability.

1.4 Deep Learning

Deep learning is a sub-field of machine learning, pertaining to the usage of artificial neu-

ral networks—which take inspiration from the biological neural networks that compose

animal and human brains —for learning representations that discover patterns in raw data

needed for prediction tasks.

1.4.1 Deep Neural Networks

A linear model can only model linear relationships, which limits its predictive power and

representational ability. There are three changes we can make to the current linear esti-

17



mator such that it becomes a ”deep learning” neural network model. The first is adding a

non-linear activation function φ in our computation of ŷ, like the following:

ŷ(w, b) = φ(w · x+ b) (1.14)

where it could be the Rectified Linear Unit (ReLU) function φ(v) = max(0, v). This

allows our estimator to model non-linear relationships, greatly expanding its expressive

capability. The second is that we can have multiple weights rather than just one, such that

w⃗ = w1,w2, ...,wn given an input datapoint x⃗ = x1, x2, ..., xn of size n. Hence, we would

take a dot product and have:

ŷ(w, b) = φ(w⃗⊤x⃗+ b) (1.15)

The third adjustment we can make is treating Eq. 1.4 as a node, where the input ”flows”

through this node and gets transformed into an output. This conception of a node or neu-

ron takes inspiration from the action potential of a biological neuron, depicted in Figure

1.4. We can then have many of these nodes together in a layer, with input flowing through

each node of the layer independently. If we have k nodes in a single layer and the input

flows through these nodes simultaneously, then the output from that layer will be a new,

transformed vector input z of size k as input for the nodes of the next layer. We can have

multiple layers (different layers can have different number of nodes) that come after one

another, where the output of one layer is the input for the next layer. By feeding this trans-

formed vector input z into the nodes of the next layer, we can repeatedly stack layers to-

gether such that the estimator now becomes ”deep” because it has multiple so called ”hid-

den” layers between the original input and final output prediction. Hence, each node of

18



Figure 1.4: Comparison of a biological neuron with an artificial neuron. Image credit to (Arbib, 2003a; Haykin, 2009b).

Figure 1.5: Diagram of a standard, fully connected deep neural network architecture from input to output.
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each hidden layer hi outputs zi+1 = φi(wi · zi + bi), which is collectively denoted as

Zi+1 = Ai(Wi · Zi + Bi) and used as input for the next hidden layer hi+1 and so on,

until a single output prediction ŷ is reached. This process of mapping inputs to outputs

in a deep neural network is known as forward propagation. Formally, forward propaga-

tion through a deep neural network with n hidden layers is described the following set of

equations, starting with a base case that begins with the input data X:

Z2 = A1(W1 · X+ B1) (1.16)

The recurrence relation that describes the input Zi to the ith layer is (A represents the acti-

vation function previously denoted by φ):

Zi+1 = Ai(Wi · Zi + Bi) (1.17)

The final output prediction from the neural network upon the completion of forward

propagation is therefore:

ŷ = An(Zn) (1.18)

with the loss function:

J(w) =
1
D
·

D∑
j=1

(yj − ŷj))2 (1.19)

The weights of a deep learning neural network are still updated by the gradient descent up-

date rule, but since there are multiple hidden layers and the impact of the weights in each

layer on the final output prediction is dependent on the weights of the layers that come

after it, we need to apply the chain rule in order to properly compute the appropriate gradi-
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ents. This process of updating weights in all previous layers is known as back-propagation.

For a deep neural network with n hidden layers, the gradient of the weight matrix in the kth

hidden layerWk is computed as the following:

dJ
dWk

=
dJ
dŷ
· dŷ
dZn
· dZn

dAn−1
· dAn−1

dZn−1
· dZn−1

dAn−2
· ... · dAk+1

dZk+1
· dZk+1

dAk
· dAk

dZk
· dZk

dWk
(1.20)

A modification on the traditional deep neural network is the residual network, where

outputs from a given layer can ”skip” over several proceeding layers and contribute to the

input several layers ahead. For instance, givenW k−1,k for weights that connect layer k− 1

to k, andW k−p,k for weights that connect layer k− p to k, forward propagation for a resid-

ual network is defined as:

ak := g(W k−1,k · ak−1 + bk +W k−p,k · ak−p)

whereW k−1,k · ak−1 + bk is the output from the previous adjacent layer k− 1 andW k−p,k ·

ak−p is the skipped output from p layers back. Back-propagation between layer k and layer

k− p for residual networks is computed as the following:

W k−p,k
new = W k−p,k

old − α
∂J

∂W k−p,k
old

simply adapting the original back-propagation update rule to the weight connection be-

tween layer k− p and k.

1.4.2 Regularization

Regularization is a method to prevent a neural network from over-fitting by penalizing

large weight values. When the weights of a neural network are unstable and have large mag-
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nitudes, the model may be overconfident in its solution and may not be generalizable. This

penalization is incorporated into the objective cost function as an additional term. Below

is the equation for L1 regularization with mean squared error loss, which includes the first

order term for the weights in the cost function:

J1(w) = MSE(Y− Ŷ) + λ
n∑
1

|wi| (1.21)

Below is the equation for L2 regularization with mean squared error loss, which includes

the second order term for the weights in the cost function:

J2(w) = MSE(Y− Ŷ) + λ
n∑
1

w2
i (1.22)

The difference between these two forms of regularization is that when one takes the deriva-

tive of the cost function with respect to the weights, λ
∑n

1 |wi| becomes a constant and

subtracting J1(w)
dw from the neural network weights during the gradient descent update rule

means subtracting a constant. On the contrary, λ
∑n

1 w2
i becomes proportionate to w and

subtracting J2(w)
dw from the neural network weights during the gradient descent update rule

means subtracting a value proportional to the weight itself. Hence, L2 regularization pe-

nalizes large weights more heavily than L1 regularization, but when the weights are smaller,

L2 does not zero the weights and keeps them small, while L1 may penalize weights to zero,

irrespective of how small the weights are already. Hence, L1 regularization shrinks many

weights to zero, while L2 regularization shrinks weights relatively evenly and does not zero

weights.
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1.4.3 Hyperparameters

While weights and biases are parameters that are updated by the neural network model

during training, hyperparameters are values that govern the architecture and training of the

model without actually being changed by the model itself. This includes the learning rate,

input batch size, number of training iterations, number of hidden layers and nodes, the

regularization constant and more.

1.4.4 Evaluation

Datasets are split into two components, the training set and the test set, where the neural

network trains on the training set and is evaluated on the test set, where it has never ob-

served the test data before. During evaluation, the neural network only runs inference (for-

ward propagation) on the test set and makes predictions while the weights are held fixed.

1.5 Embeddings

1.5.1 Static Text Embeddings

Transforming text (sequence of words) into a sequence of static vector embeddings is a

two stage process that involves tokenization and embedding. Tokenization refers to the

process of breaking down unstructured data into structured, discrete components. For

text data, sentences are tokenized into discrete word or subword tokens, as shown in Figure

1.6. These text tokens are then typically embedded with an embedding matrix that maps

each token to a vector in an embedding space, where vectors that are close together in the

embedding space tend to represent words that are similar to each other. The embedding

matrix is obtained by training a separate supervised learning neural network on the words
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Figure 1.6: Diagram of how the SentencePiece subword tokenization function processes a text sentence. Image credit
to Jacky Wong.

and obtaining a mapping between words and the vector embedding space.

1.5.2 Contextual Embeddings: Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial neural network that utilizes

the convolution operation instead of matrix multiplication, and are designed to process

pixel data. A convolution operation is the dot product between a kernelmatrix and a sec-

tion of an input matrix, where the kernel matrices in a given layer contain the weights of

that layer. For 2-dimensional input and kernel matrices, the convolution operation would

be the following:
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Convolutional neural networks work with 3-dimensional input pixel data and kernel ma-

trices (width, height, depth), where the kernel matrix always has the same depth size as the

input matrix that the convolution is being performed on. Abstractly, the kernel matrix

”slides” through the input matrix and performs a convolution at each stride, generating a

feature map which becomes part of the input matrix to the next layer of the convolutional

neural network. This process of convolving kernel and input matrices for forward propaga-

tion is described in more detail below.

Given input pixel data I n×n×d and a set of kernels F k×k×d
i , ∀i, the convolution opera-

tion involves sliding each kernel over the image, computing the dot product (typically the

Frobenius inner product) between the kernel and the portion of the I n×n×d it overlaps

with, and storing the result in a new output feature map to be passed as part of the input

to the next hidden layer. The three primary hyperparameters that govern the dimensions of

the output feature map are number of kernels, stride and padding. The number of ker-

nels is equal to the number of output feature maps, where convolving each kernel with the

input matrix generates a single output feature map; all the output feature maps are directly

stacked upon each other to form the input for the next layer. The stride parameter controls

the spacing between consecutive positions where the kernel is applied to the input matrix.
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Figure 1.7: Visualization of how the convolution operation with input and kernel matrix generates an output feature
map. The kernel matrix (orange) moves along in the input matrix (blue) with stride s = 1, performing a convolution at
each stride and generating the output feature map (green). Image credit to Prakhar Ganesh.
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Specifically, a stride of smeans that the kernel is applied to every sth position along the

width and height dimensions of the input. The padding parameter governs howmany ex-

tra pixels or zeros are added around the edges along the width and height dimensions of an

input matrix before performing a convolution operation. The primary purpose of padding

is to maintain the spatial dimensions of the output feature maps, which will otherwise be

reduced due to the size of the kernels used in the convolution operation. When a kernel

is applied to an input matrix, the size of the output feature map is smaller than the input

(with respect to the width and height dimensions), as the edges along the height and width

dimensions of the input matrix are only partially covered by the kernel. This can lead to a

loss of information that carries on through the convolutional layers in the rest of the net-

work. To avoid this issue, padding can be used to expand the size of the input image, such

that the output feature map has the same height and width dimensions as the input.

The lth output feature map generated from convolving kernel F k×k×d
l and I n×n×d is com-

puted as the following:

O [m, n, l] =
∑
w

∑
u

∑
υ

I n×n×d [m+ u, n+ υ,w] · F k×k×d
1 [u, υ,w]

Convolutional neural networks, as a type of artificial neural network, have an input

layer, multiple hidden layers and an output layer. When used as a function for generat-

ing contextual embedding on images, a regular fully connected deep neural network is ap-

pended to the traditional convolutional neural network output layer, as shown in Figure

1.8. The 3-dimensional output feature map from the last convolutional hidden layer is a

flattened into a 1-dimensional sequence, which is then fed into the fully connected deep

neural network such that the final contextual embedding is a h-dimensional vector where h
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Figure 1.8: Visualization of the convolutional neural network architecture merged with a fully connected deep neural
network for generating contextual embeddings.

is the number of nodes in the last layer. Convolutional neural networks produce contextual

embeddings rather than static embeddings because they account for the relationship be-

tween certain parts of an image or feature map with other parts through the sliding kernel

mechanism. The specific contextual embedding that will is used isResNet6, a modification

on the convolutional neural network where outputs from a layer can ”skip” over several

proceeding layers and contribute to the input several layers ahead.

1.5.3 Contextual Embeddings: Transformers

A transformer is a deep learning model that utilizes the mechanism of self-attention to as-

sign importance to different sections of the flat input sequence while relating those sections

together. Transformers were originally used for natural language processing tasks since sen-

tences are naturally encoded as a flat sequence of embedded words; furthermore, words are
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related to other words in the sentence despite being far apart from each other. Since trans-

formers can process any input that can serialized into a flat sequence of vector embeddings,

they have recently been applied to computer vision tasks where images are serialized into a

sequence of smaller embedded patches. Transformers process sequential input data all at

once in parallel, as opposed to other models such as recurrent neural networks which pro-

cess sequential inputs sequentially.

Input Sequence Transformation

The input type to a transformer model is a sequence of vector embeddings of the same

dimensionD. Both text and images can be transformed into the input formmentioned

above. This transformation is composed of a two stage process that involves tokenization

and vector embedding. Text is transformed into a sequence of tokens, then to a sequence of

vector embeddings through a static embedding function such as SentencePiece. Image tok-

enization involves dividing the image into a grid of smaller square, image patches, forming a

sequence of patch tokens that compose the original image as illustrated in Figure 1.9. Once

the original data has transformed into a sequence of tokens, an embedding function is ap-

plied on the tokens to yield a sequence of vector embeddings. For images, a convolutional

neural network is usually applied to each patch token—typically a single ResNet block6 —

generating a vector embedding as output. These resultant sequence of vector embeddings

can then be fed into the transformer for training, where operations such as dot products

and matrix multiplications can be performed.
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(a)Original unprocessed image. (b) Image divided into grid of smaller patches.

(c) Sequence of patch tokens.

Figure 1.9: Visual illustration of image patch tokenization. Image credit to Mehreen Saeed from AI Exchange.
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Positional Encoding

Positional encoding is used to indicate and preserve the order of the words in the input

sequence. The position of a token in a sequence is transformed into a learnable positional

embedding which is added to the original tokenized embedding.

Self Attention

The self-attention mechanism allows the transformer model to access all previous states

and sections of the input sequence and learn to weigh each section depending on their rele-

vance, describing contextual relationships between sections of the input sequence that may

be far apart and not adjacent to each other.

Figure 1.10: Visualization of how self attention is computed for a given word with respect to all other words in the input
sequence. Image credit to Huiqiang Xie, et al..

Fundamentally, the self attention layer of a transformer model has three main weight

components, the Query, Key and Value weight matrices. The input vector embeddings are

multiplied with these three types of weight matrices, producing a ”query” vector, ”key”

vector and ”value” vector for each input vector embedding. We will assume that the input

sequence of embeddings represents a sentence with tokenized words in the following ex-
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planation for clarity. Next, a score for each word with respect to every other word in the

input sequence needs to be computed, where this score represents where in the input se-

quence that the transformer model should focus on. Suppose we are computing the score

of the first word embedding with every other word embedding in the sequence, and the

first word embedding has corresponding query, key and value vectors q1, k1 and v1 respec-

tively. The score between the first and second word embedding in the sequence is the dot

product q1 · k2. The score between the third and fifth word embedding in the sequence is

the dot product q3 · k5. Once all the scores are computed, they are divided by the square

root of the dimension of the key vectors for stability in training, and passed through a soft-

max function which normalizes the scores and ensures that they add up to 1. The softmax

function is given by the following:

σ(si) =
esi∑K
j=1 esj

for i = 1, 2, . . . ,K (1.23)

These softmax scores for a word embedding at given position in the sequence show the ex-

tent that each word embedding in the sequence is expressed or related to that position. The

given word embedding and itself will always have a non-negligible score but often there

are word embeddings far away in the input sequence that also have a high score, indicat-

ing that the ”far away” word embedding is relevant to the word embedding at the current

position and is worth giving ”attention” to. The self attention mechanism is illustrated in

Figure 1.10. Finally, the self attention layer multiplies the value vector of each word embed-

ding with their softmax scores, and sums the resulting vectors together into a single output

that is the weighted sum of value vectors with respect to their softmax scores. Multiplying

the value vectors by their softmax scores has the effect of keeping the presence of relevant
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words and diminishing the impact of irrelevant word embeddings in the final self-attention

vector for the word embedding at the given position. In other words, the softmax score ac-

counts for the attention given to other word embeddings in the sequence with respect to

the current word embedding, while the value vector represents the intrinsic importance of

those word embeddings. This self-attention computation is carried out for each word in

the sequence, and all the self attention outputs are then fed into a fully connected neural

network. Together, the self attention layer and the fully connected neural network form an

Encoder block; transformers models stack many encoder blocks together where the output

of the previous block is the input to the next block.

Multi-Headed Attention

The self-attention layer can have more than a single ”head” of attention. That is, it can have

multiple attention heads, each with its own separate set of Query, Key and Value weight

matrices. This way, each attention head serves as a separate representation space for the

input data and can focus on more positions than a single attention head. Furthermore, all

attention heads can be run in parallel as the computations on the input embeddings are

independent.

Encoder Blocks

An encoder block in the transformer architecture is composed of a self-attention layer with

multi-headed attention whose outputs are merged and inputted into a fully connected neu-

ral network. Within the encoder, there are residual connections between the input and self

attention layer as well as the self attention layer and the fully connected network. Residual

connections incorporate the input of a layer into the construction of the output of that
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Figure 1.11: Diagram of encoder block in the transformer architecture. Image credit to Ashish Vaswani, et al., 2017.

same layer, separate from the main propagation path that maps input to output. This es-

sentially mitigates the vanishing gradient problem.

Transformer Architecture

The final encoder transformer architecture that will be used as a contextual embedding

function simply stacks multiple encoder blocks together, with each encoder functioning as

a hidden layer in a deep neural network.
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Figure 1.12: Diagram of the transformer architecture being composed of multiple, stacked encoder blocks. Image credit
to Deep Learning Bible.

1.5.4 Principle Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical method used to reduce the dimension-

ality of a dataset, typically when the dimensionality is too large to train models efficiently.

It does this by identifying the most important ”principal” features of the dataset and creat-

ing new variables, called principal components, that represent a combination of the original

features. The basic idea behind PCA is to find the directions in the data that have the most

variance. These directions, or principal components, are a linear combination of the orig-

inal features. The first principal component is the direction that has the highest variance,

the second principal component is the direction with the second highest variance, and so

on. Each principal component is orthogonal to the others, meaning that they are uncorre-

lated.

There are several steps that need to be taken in order to perform PCA. Firstly, the dataset

35

https://wikidocs.net/167225


(a)Original Dataset

(b) PCA Projected Dataset

Figure 1.13: PCA transformation with 2 principle components on a 2D dataset. Dimensionality reduction occurs when
the number of principle components used is less than the dimensionality of the original dataset.
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needs to be standardized such that each feature has a mean μ = 0 and a variance σ2 = 1.

Then, the covariance matrix of the standardized data needs to be computed. A covariance

matrix is a square matrix that contains the variances and covariances of a set of features, de-

scribing the relationships between multiple features in a dataset. Specifically, the diagonal

elements of a covariance matrix represent the variances of each individual feature, and the

off-diagonal elements represent the covariances between each pair of features. Covariance

is a measure of how two features change together, while variance is a measure of howmuch

a single feature varies. The covariance matrix KXX is the matrix whose (i, j) entry is the co-

variance between two features Xi and Xj:

cov(X,Y) = E[(X− E[X])(Y− E[Y])]

where Xi and Xj are random variables with mean μ = 0 and variance σ2 = 1 and E[Xi]

and E[Xj] are the expected values of Xi and Xj, respectively. Intuitively, when the covariance

between two variables is positive, it means that they tend to increase or decrease together.

If the covariance is negative, it means that they tend to move in opposite directions. If the

covariance is zero, it means that the variables are uncorrelated. The next step is to compute

the eigenvectors and eigenvalues of the covariance matrix. An eigenvector is a non-zero vec-

tor that, when multiplied by a given square matrix A, results in a scalar multiple of itself.

More formally, let A be an n× n square matrix and v be a non-zero vector in n-dimensional

space. If there exists a scalar λ such that the following equation holds,

A · v = λ ∗ v

then v is called an eigenvector of A corresponding to the eigenvalue λ. Eigenvalues, on the
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other hand, are the scalar values λ that satisfy the above equation. In other words, an eigen-

value of a matrix A is a scalar λ that, when multiplied by an eigenvector v, results in the

product Av being equal to λv. Intuitively, eigenvectors represent directions along which

a linear transformation (represented by the matrix A) stretches or compresses the vector

space, while eigenvalues indicate the magnitude of that stretching or compression. To com-

pute the eigenvectors and eigenvalues of a square matrix A, the characteristic polynomial

of A needs to be found, which is the polynomial obtained by taking the determinant of the

matrix Aminus the scalar λmultiplied by the identity matrix p(λ) = det(A − λI). The

eigenvalues of A can be found by solving for the characteristic equation p(λ) = 0. The

eigenvectors can be found by solving the system of equations (A − λI)x = 0. The non-

trivial solutions to this equation (i.e., the solutions that are not the zero vector) will give

us the eigenvectors. Once all the eigenvectors are computed, the next step is to sort them

in descending order by their corresponding eigenvalues and select the first p eigenvectors,

where p is the desired number of principle components. Finally, each input feature Xi is

projected onto the p eigenvectors to obtain the resultant principal components, comprising

a p-dimensional feature which has reduced dimensionality compared to Xi.
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As an AI language model, I do not pose any inherent

danger to people or society. One of the main concerns with

AI language models is the potential for misinformation

and manipulation. Because language models like Chat-

GPT can generate human-like responses, they may be

used to spread false information or propaganda. This

could have serious implications for democracy, public

discourse, and social cohesion.

ChatGPT

2
Model

The specific setup of the pre-trained machine learning models and image captioning

are detailed in this chapter. In particular, data collection details for the task of image cap-

tioning, as well as the hyperparameters of both the contextual embeddings and machine

learning classification models are addressed.
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2.1 Task Domain

Human and AI data for the image captioning task was collected, where the subject pro-

duces a single sentence text description for a given image. The images were obtained from

theMicrosoft COCO: Common Objects in Context dataset10 and the nocaps: novel

object captioning at scale dataset1. Each image in the dataset has 5 associated machine-

generated captions from GIT15, OFA16, BLIP9, ClipCap11, andMicrosoft’s Azure Cogni-

tive Services respectively, as well as 2 self-collected, human-generated captions. In total, the

dataset contains 1000 images, each with 7 associated captions. A single image-caption pair

is considered a single datapoint, so the entire dataset contains 7000 datapoints.

2.2 Contextual Embedding Combinations

Transformers and convolutional neural networks are both considered contextual embed-

ding functions because they both account for the contextual relationships between differ-

ent sections of the input. On the other hand, SentencePiece only considers sections of the

input in a standalone manner, mapping subword tokens to embeddings without any con-

sideration of their relationships with other subwords. The two main types of contextual

embedding functions will be used to generate the final dataset for classification. The first is

a disjoint encoder transformer and convolutional neural network function, where for each

image-caption pair, the static sequence of caption text embeddings are given as input to an

encoder transformer model and the image is fed as input to the residual convolutional neu-

ral network. The resultant embeddings from the encoder transformer and residual convo-

lutional neural network are then concatenated together (with a separator token in between

the concatenation) to form a single, contextual embedding. The second is a combined vi-
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sion transformer function, where for each image-caption pair, the image is transformed

into a sequence of patch embeddings and concatenated with the static sequence of caption

text embeddings, and the concatenated sequence is fed as input to the vision transformer. A

vision transformer is identical to the encoder transformer in terms of architecture; the only

difference is that it is trained on image patch rather than text data.

2.3 Disjoint Encoder Transformer and Residual Convolutional Neural Net-

work Contextual Embeddings

The architecture for the Bidirectional Encoder Representations from Transformers (BERT)

transformer applied on the text captions is the bert-base-uncased4 model fromHugging-

Face, shown in Figure. The bert-base-uncased model contains 110 million trainable param-

eters, with 12 encoder hidden layer blocks of hidden size 768, and 12 attention heads in

each layer. The architecture for the residual convolutional neural network applied on the

images isResNet-18, shown in Figure 2.1, where the output from earlier layers is added to

the input of layers further along the network.

Figure 2.1: Original ResNet‐18 Architecture.
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2.3.1 Input Transformations

Text embeddings through SentencePiece (Kudo &Richardson, 2018) with 32000 sub-

words into the range of integers [0, 32000). The tokens are then embedded by a lookup

table into a learned vector embedding space. A separator token is added between every sub-

word token of the sequence. Learnable positional embeddings indicating position within

the text sentence are added to all tokens. The final result is a sequence of embeddings where

each embedding represents a subword token or separator token. The resultant sequence of

text embeddings representing each caption is fed into a Bidirectional Encoder Representa-

tions from Transformers (BERT) model and a single output vector embedding is produced.

Separately, each image is directly fed into a Residual Network (pre-trained weights from

resnet18 are used) and a single output vector embedding is produced. The outputs of the

BERT and ResNet models are then concatenated together to form a single, contextual em-

bedding with dimensions (1, 154880) that represents both the image and its caption.

2.4 Combined Vision Transformer Contextual Embeddings

The architecture of the Vision Transformer is identical to the Bidirectional Encoder Rep-

resentations from Transformers (BERT) transformer, except it is trained on both text and

image patch embeddings, as shown in Figure 2.2.
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Figure 2.2: Diagram of the multimodal transformer architecture with concatenated sequence of subword and image
embeddings. Image credit to (Douwe et al., 2020).

2.4.1 Input Transformations

The images and text from the image captioning dataset need to be transformed into a single

sequence of embeddings that can be fed as input to the Vision Transformer contextual em-

bedding function. The sequence of text embeddings for each caption are obtained through

SentencePiece (Kudo &Richardson, 2018)8 with 32000 sub-words into the range of inte-

gers [0, 32000) just as before. An image is tokenized and converted into a sequence of non-

overlapping 16 × 16 patches in raster order (Dosovitskiy et al., 2020)5. Each pixel in the

resulting image patches is normalized between [1, 1] and divided by the square root of the

patch dimension. The token patches are then embedded using a single ResNet6 block to

obtain a vector per patch. A learnable within-image position encoding vector is then added

to the vector embedding obtained from the ResNet block, giving the final sequence of im-

age embeddings. Since the original image is composed as a two dimensional grid of patches,

each patch has a row and column position, which are normalized between [0, 1] and then

43



discretized using uniform binning. The discretized positions are then used to index into

learnable row and column positional embedding tables, giving positional embeddings that

are added to the respective patch token embedding. The final result is a sequence of embed-

dings where each embedding represents an image patch.

2.4.2 Multimodal Input Transformation

Image captioning has both image and text data; when the Vision Transformer is used as a

contextual embedding function, both modalities of data need to be fed as a single input

sequence of embeddings. Hence, the final sequences of text and image embeddings de-

scribed above, are concatenated together to form a single combined multimodal sequence

(Douwe Kiela, 2020)7 that is given to the Vision Transformer all at once as illustrated

in Figure 2.2. This concatenated sequence is compatible with the self attention mech-

anism in each encoder block, since attention scores for each embedding of the input se-

quence with every other embedding in the same sequence are computed. Hence, the entire

concatenated sequence is processed at once with the relationships (image patches ←→

subwords, image patches ←→ image patches, subwords ←→ subwords) being considered by

the contextual embedding. In other words, the Vision Transformer will be able to interpret

the input data at a granular level by relating specific subwords with specific image patches,

making it possibly suitable for the image captioning tasks.

2.5 ClassifierModels

Four different models are used for classification, including a linear support vector machine,

non-linear support vector machine (polynomial kernel of degree 3), gaussian naive bayes,

and a fully connected deep neural network.
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A computer would deserve to be called intelligent if it

could deceive a human into believing that it was human.

AlanM. Turing

3
Experiments and Results

The classification efficacy on contextual embeddings for image captioning

is described and analyzed in this chapter. Four different machine learning classifiers were

employed on static and contextual embeddings of various dimensionalities. The false posi-

tive rate denotes the percentage of humans incorrectly classified as machines, while the false

negative rate denotes the percentage of machines incorrectly classified as humans.
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3.1 Disjoint SentencePiece and Residual Convolutional Neural Network

Embeddings

The static caption embedding generated by SentencePiece has a dimension of (1, 200). The

contextual image embedding generated by ResNet-18 has a dimension of (1, 512). The

static caption embedding is concatenated with a separator with dimensions (1, 10) con-

taining the integer 1 and the contextual image embedding, forming a final static-contextual

embedding with a dimension of (1, 722).

Linear SVM Non-Linear SVM Naive Bayes DNN

Accuracy 40.40% 74.29% 28.17% 71.43%

False Positive 37.20% 79.20% 0.00% 100.00%

False Negative 68.56% 4.32% 99.76% 0.00%

Table 3.1: The classification accuracy, false positive rate and false negative rate for each model is listed in the table
above. The non‐linear SVM uses a polynomial kernel of degree 3. Each result is an average over 5 trials.

The non-linear SVM incorrectly classifies 79.20% of humans as machines compared to

37.20% for the linear SVM, a difference of 42% as shown in Table 3.1. However, the lin-

ear SVMincorrectly classifies 68.56% of machines as humans compared to 4.32% for the

non-linear support vector machine, a difference of 64.24%. In other words, neither type of

SVM performs well on classifying both humans and machines. The Gaussian Naive Bayes

model essentially predicts all datapoints as humans and is unable to grasp any meaning-

ful understanding of the dataset for more effective classification. Finally, the deep neural

network predicts all datapoints as machines and similarly unable to learn any meaningful

pattern within the dataset for effective classification.
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3.2 Disjoint Encoder Transformer and Residual Convolutional Neural

Network Contextual Embeddings

The contextual caption embedding generated by BERT has a dimension of (200, 768).

The contextual image embedding generated by ResNet-18 has a dimension of (1, 512).

The static caption embedding is concatenated with a separator with dimensions (1, 768)

containing the integer 1 and the contextual image embedding, forming a final contextual

embedding with a dimension of (1, 154880).

Linear SVM Non-Linear SVM Naive Bayes DNN

Original Accuracy 69.94% 69.54% 71.71% N/A

Original False Positive 48.00% 100.00% 63.20% N/A

Original False Negative 22.88% 2.64% 14.32% N/A

PCA 10 Accuracy 71.03% 73.03% 74.69% 69.94%

PCA 10 False Positive 92.80% 82.80% 67.20% 59.00%

PCA 10 False Negative 3.44% 4.64% 8.56% 18.48%

PCA 50 Accuracy 73.66% 74.00% 71.31% 72.97%

PCA 50 False Positive 79.80% 75.60% 65.60% 46.40%

PCA 50 False Negative 4.96% 6.16% 13.92% 19.28%

PCA 100 Accuracy 73.71% 74.46% 71.49% 74.63%

PCA 100 False Positive 79.20% 73.40% 66.60% 49.40%

PCA 100 False Negative 5.12% 6.40% 13.28% 15.76%

Table 3.2: The classification accuracy, false positive rate and false negative rate for each model is listed in the table
above. The non‐linear SVM uses a polynomial kernel of degree 3. Each result is an average over 5 trials. The DNN was
not trained on the original contextual embeddings due to memory constraints, so the results are left as N/A.
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The first column of Table 3.2 denotes the dimensionality of the contextual embedding,

where original embedding has dimensions (1, 154880) and then the PCA reduced embed-

dings have dimensions (1, 10), (1, 50) and (1, 100). One of the first observations that can

be made is that the original BERT and ResNet-18 contextual embedding seems to be much

more linearly separable than its SentencePiece and ResNet-18 static-contextual coun-

terpart. This is because the linear support vector machine has an accuracy of nearly 70%

compared to 40.40% from before, where the false positive rate is 10.2% higher but the false

negative rate is 45.68% lower. This seems to imply that contextual embeddings generated

by pre-trained deep learning models are distilled with richer information about the orig-

inal data than static embeddings, such that the differences between human and machine

generated data are made clearer and therefore more linearly separable. Applying PCA di-

mensionality reduction on the contextual embeddings seems to cause information loss,

removing the linear separability as the linear support vector machine ends up misclassi-

fying the majority of humans as machines. We see that as more principle components are

included, the linear support vector machine has a higher accuracy and a lower false positive

rate.

We must note that the dataset contains 5 machine and 2 human generated captions

for each image, so 71.43% of the dataset is comprised of machine labelled image-caption

pairs. Hence, two models that both have an accuracy of roughly 70%may have very

different classification efficacies, as one may only be predicting almost all datapoints as

machines (e.g. non-linear SVM on the original embeddings with 100% false positive rate)

while the other actually manages to correctly classify more than half the humans in addi-

tion to a large number of machines as well (e.g. linear SVM on original embeddings and

deep neural network on PCA 50 and 100). With this concept of imbalanced data in mind,
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the non-linear SVM performs much worse than the linear SVM on the original embed-

dings, overfitting and predicting nearly all datapoints as machines.

When training the fully connected deep neural network, applying PCA dimensionality

reduction on the contextual embeddings is required in order to satisfy computation and

memory constraints. The fully connected deep neural network is able to classify the PCA

reduced embeddings with even better accuracy than the linear support vector machine on

the original embeddings, obtaining an accuracy of 74.63%with 100 principle components

and a false positive rate of 49.40%. Overall, the deep neural network trained on the PCA

reduced data and the linear support vector machine trained on the original contextual em-

beddings have the best classification accuracy with the least lopsided false positive and false

negative rates, outperforming both the non-linear support vector machine and naive bayes

classifiers.

3.3 Combined Vision Transformer Contextual Embeddings

The final contextual embedding outputted by the Vision Transformer has a dimension

of (4299, 768), where there are 4299 token embeddings in the sequence and each token

embedding has 768 values. Flattening this contextual embedding results in a vector of di-

mension (1, 3301632)which introduces computational challenges for classifier training.

Hence, we perform PCA dimensionality reduction with 20 principle components to re-

duce the contextual embedding size from (4299, 768) to (4299, 20), and then flattening it

to (1, 85980). The classifiers are also trained on embeddings obtained from a second round

of PCA reduction, from (1, 85980) to (1, 100).
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Naive Bayes DNN

PCA (4299, 768)→ (4299, 20)→ (1, 85980) Accuracy 26.57% 71.4%

PCA (4299, 768)→ (4299, 20)→ (1, 85980) False Positive 85.60% 100.00%

PCA (4299, 768)→ (4299, 20)→ (1, 85980) False Negative 68.40% 0.00%

PCA (1, 85980)→ (1, 100) Accuracy 69.09% 70.06%

PCA (1, 85980)→ (1, 100) False Positive 99.80% 100.00%

PCA (1, 85980)→ (1, 100) False Negative 3.34% 1.92%

Table 3.3: The classification accuracy, false positive rate and false negative rate for each model is listed in the table
above. Each result is an average over 5 trials.

Both the Gaussian Naive Bayes and deep neural network classifier perform poorly on the

VisionTransformer generated contextual embeddings, overfitting and predicting almost all

datapoints as machines, simply demonstrating a lack of understanding of the underlying

data. Two main factors contribute to these results. Firstly, the pre-trained weights for the

VisionTransformer are only trained on image patch embeddings and do not contain any

understanding of text data. Secondly, reducing the original contextual embedding with

3301632 values to 85980 and 100 values through PCAmay have caused severe information

loss in the resultant embeddings.
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4
Conclusion

The application of deep learning models as contextual embedding functions for

producing enriched embeddings to allow an AI-based Turing Test judge to more effec-

tively differentiate between human and machine generated image captions was explored in

this thesis. In particular, the Bidirectional Encoder Representations Transformer (BERT)

model, residual convolutional neural network (ResNet-18), and Vision Transformer mod-

51



els were used to generate contextual embeddings image-caption pairs in the image cap-

tioning dataset. The classification results from four different machine learning models —

namely, linear support vector machines, non-linear support vector machines, Gaussian

Naive Bayes and fully connected deep neural networks—were then compared between

various static and contextual embeddings. The experimental results showed that the dis-

joint BERT and ResNet-18 contextual embeddings were much more linearly separable

than the disjoint SentencePiece and ResNet-18 static-contextual embeddings, indicating

that contextual embeddings generated by pre-trained deep learning models more enriched

with relevant information about the original data than static embeddings, such that the dif-

ferences between human and machine generated data are made clearer and therefore more

linearly separable. PCA dimensionality reduction is also applied on the contextual embed-

ding space to alleviate memory and resource constraints for training the AI-based judge

for human-machine classification. The experiments showed that the deep neural network

trained on the PCA reduced data and the linear support vector machine trained on the

original contextual embeddings had the best classification accuracy with the least lopsided

false positive and false negative rates, outperforming both the non-linear support vector

machine and gaussian naive bayes classifiers. Overall, classifiers perform better on the con-

textual embeddings than the static embeddings that are merely fixed representations for the

input data that do not account for the contextual nuances of each datapoint.

There are several avenues of further research that can be taken. Firstly, the classification

efficacy for the contextual embedding combination of disjoint BERT for captions and Vi-

sion Transformer for images can be evaluated and compared with the disjoint BERT for

captions and ResNet-18 for images combination that was investigated in this thesis. Sec-

ondly, a multimodal transformer model that was pre-trained on both text and image data
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should replace the Vision Transformer model that was pre-trained only on images to gen-

erate combined contextual embeddings. Finally, classification models such as decision trees

and random forests can be employed for potentially more interpretable results.

53



References

[1] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark John-
son, Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson. nocaps: novel ob-
ject captioning at scale. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE, oct 2019.

[2] Corinna Cortes and Vladimir Naumovich Vapnik. Support-vector networks. Ma-
chine Learning, 20:273–297, 1995.

[3] Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and Serge Belongie. Learning
to evaluate image captioning, 2018.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale, 2021.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[7] Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Ethan Perez, and Davide Testug-
gine. Supervised multimodal bitransformers for classifying images and text, 2020.

[8] Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing, 2018.

[9] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping
language-image pre-training for unified vision-language understanding and gener-
ation, 2022.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015.

54



[11] RonMokady, Amir Hertz, and Amit H. Bermano. Clipcap: Clip prefix for image
captioning, 2021.

[12] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas.
A generalist agent, 2022.

[13] A. M. TURING. I.—COMPUTINGMACHINERY AND INTELLIGENCE.
Mind, LIX(236):433–460, 10 1950.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[15] JianfengWang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan,
Zicheng Liu, Ce Liu, and LijuanWang. Git: A generative image-to-text transformer
for vision and language, 2022.

[16] PengWang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, JianxinMa,
Chang Zhou, Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks,
and modalities through a simple sequence-to-sequence learning framework, 2022.

[17] Mengmi Zhang, Giorgia Dellaferrera, Ankur Sikarwar, Marcelo Armendariz, Noga
Mudrik, Prachi Agrawal, SpandanMadan, Andrei Barbu, Haochen Yang, Tanishq
Kumar, Meghna Sadwani, Stella Dellaferrera, Michele Pizzochero, Hanspeter Pfis-
ter, and Gabriel Kreiman. Human or machine? turing tests for vision and language,
2022.

55


	Introduction
	Background
	Related Work
	Turing Test
	Classical Machine Learning
	Deep Learning
	Embeddings

	Model
	Task Domain
	Contextual Embedding Combinations
	Disjoint Encoder Transformer and Residual Convolutional Neural Network Contextual Embeddings
	Combined Vision Transformer Contextual Embeddings
	Classifier Models

	Experiments and Results
	Disjoint SentencePiece and Residual Convolutional Neural Network Embeddings
	Disjoint Encoder Transformer and Residual Convolutional Neural Network Contextual Embeddings
	Combined Vision Transformer Contextual Embeddings

	Conclusion
	References

