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Abstract: In this paper, we develop an evolutionary variational inequality model of the

Internet with multiple classes of traffic and demonstrate its utility through the formulation

and solution of a time-dependent Braess paradox. The model can handle time-dependent

changes in demand as a consequence of developing news stories, following, for example,

natural disasters or catastrophes or major media events. The model can also capture the
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time-varying demand for Internet resources during a regular weekday with its more regular

rhythm of work and breaks. In addition, the model includes time-varying capacities on the

route flows due to, for example, government interventions or network-type failures.
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1. Introduction

The Internet has revolutionized the way in which we work, interact, and conduct our daily

activities. It has affected the young and the old as they gather information and communicate

and has transformed business processes, financial investing and decision-making, and global

supply chains. The Internet has evolved into a network that underpins our developed societies

and economies.

In this paper, we develop a dynamic network model of the Internet that is based on

evolutionary variational inequality theory. The motivation for this research comes from

several directions:

1. The need to develop a dynamic, that is, time-dependent, model of the Internet, as argued,

for example, by computer scientists (see Roughgarden (2005)). For example, the demand for

Internet resources itself is dynamic and, hence, an underpinning modeling framework must

be able to handle time-dependent constraints. Indeed, as noted on page 10 of Roughgarden

(2005), “A network like the Internet is volatile. Its traffic patterns can change quickly and

dramatically ... The assumption of a static model is therefore particularly suspect in such

networks.”

2. Analogues have been identified between transportation networks and telecommunication

networks and, in particular, the Internet, in terms of decentralized decision-making, flows and

costs, and even the Braess paradox, which allows us to take advantage of such a connection

(cf. Beckmann, McGuire, and Winsten (1956), Beckmann (1967), Braess (1968), Dafermos

and Sparrow (1969), Dafermos (1972), Cantor and Gerla (1974), Gallager (1977), Bertsekas

and Tsitsiklis (1989), Bertsekas and Gallager (1992), Korilis, Lazar, and Orda (1999), and

Boyce, Mahmassani, and Nagurney (2005)).

3. The development of a fundamental dynamic model of the Internet will allow for the

exploration and development of different incentive mechanisms, including dynamic tolls and

pricing mechanisms in order to reduce congestion and also aid in the design of a better

Internet, a dynamic network, par excellence.

It has been shown (cf. Roughgarden (2005) and the references therein) that distributed
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routing, which is common in computer networks and, in particular, the Internet, and “selfish”

(or “source” routing in computer networks) routing, as occurs in the case of user-optimized

transportation networks, in which travelers select the minimum cost route between an origin

and destination, are one and the same if the cost functions associated with the links that

make up the paths/routes coincide with the lengths used to define the shortest paths. In

this paper, we assume that the costs on the links are congestion-dependent, that is, they

depend on the volume of the flow on the link. Note that the cost on a link may represent

travel delay but we utilize “cost” functions since these are more general conceptually than

delay functions and they can include, for example, tolls associated with pricing, etc. Of

course, it is important to also emphasize that, in the case of transportation networks, it

is travelers that make the decisions as to the route selection between origin/destination

(O/D) pairs of nodes, whereas in the case of the Internet, it is algorithms, implemented in

software, that determine the shortest paths. Here we assume that these routing algorithms

are informed about the cost functions associated with the routes and the volumes of flow

on the routes/links in the network and select routes so as to minimize cost. For additional

background on telecommunication networks, see Resende and Pardalos (2006).

The methodology that we will utilize for the formulation and analysis of the Internet is

that of evolutionary variational inequalities. We believe that such a methodology is quite

natural for several reasons. First, historically, finite-dimensional variational inequality theory

(cf. Dafermos (1980), Nagurney (1993), and the references therein) has been used to general-

ize static transportation network equilibrium models dating to the classic work of Beckmann,

McGuire, and Winsten (1956), which also forms the foundation for selfish routing and de-

centralized decision-making on the Internet (see, e.g., Roughgarden (2005)). Secondly, there

has been much research activity devoted to the development of models for dynamic trans-

portation problems and it makes sense to exploit the connections between transportation

networks and the Internet (see also Nagurney and Dong (2002)). In addition, evolutionary

variational inequalities (EVIs), which are infinite-dimensional, have been used to model a

variety of time-dependent applications, including time-dependent spatial price problems, fi-

nancial network problems, dynamic supply chains, and electric power networks (cf. Daniele,

Maugeri, and Oettli (1999), Daniele (2003, 2004), Daniele (2006), Nagurney et al. (2006),

and Nagurney (2006)).
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In particular, evolutionary variational inequalities (EVIs) were introduced in the 1960s

by Brezis (1967) and Lions and Stampacchia (1967), and have been used in the study of

partial differential equations and boundary value problems. They are part of the general

theory of variational inequalities, which has developed today into a wide-spanning area of

research with important applications in control theory, optimization, game theory, operations

research, economics, and engineering, notably, in transportation science as well as in logistics

(see, for example, Smith (1979), Dafermos (1980), Florian and Los (1982), Dafermos and

Nagurney (1984), Nagurney (1989), Zhao and Dafermos (1991), Ran and Boyce (1996),

Nagurney and Siokos (1997), and Nagurney (2006), and the references therein). The form

of EVI problem that we consider in this paper in a generalization of the one introduced

by Daniele, Maugeri, and Oettli (1999) to the case of multiple classes of traffic. We can

expect that a variety of time-dependent demand structures will occur on the Internet as

individuals seek information and news online in response to major events or simply go about

their daily activities whether at work or at home. Hence, the development of a dynamic

network model of the Internet is timely. The model that we propose can handle not only

time-varying multiclass demands but also time-varying capacities on the multiclass route

flows. The latter we can expect to be useful in the case of decreases in capabilities due

to network failures or imposed bounds on the Internet traffic on certain routes, due, for

example, to policy interventions by governments.

The structure of the paper is as follows. In Section 2 we present the evolutionary varia-

tional inequality formulation of the Internet with a focus on the multiclass flows, multiclass

costs, and equilibria. In particular, we consider that there are different classes or “jobs” on

the Internet and that the equilibrium conditions are associated with each class. We also pro-

vide a numerical multiclass dynamic network examples in which the equilibrium trajectories

are computed. In Section 3 we illustrate the novelty of this framework in the context of a

time-dependent Braess (1968) paradox in which the corresponding evolutionary variational

inequalities are explicitly solved.
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2. Evolutionary Variational Inequalities and the Internet

We model the Internet as a network G = [N, L], consisting of the set of nodes N and the set

of directed links L. The set of links L consists of nL elements. The set of origin/destination

(O/D) pairs of nodes is denoted by W and consists of nW elements. We denote the set of

routes (with a route consisting of links) joining the origin/destination (O/D) pair w by Pw.

We assume that the routes are acyclic. We let P with nP elements denote the set of all

routes connecting all the O/D pairs in the Internet. Links are denoted by a, b, etc; routes by

r, q, etc., and O/D pairs by w1, w2, etc. We assume that the Internet is traversed by “jobs”

or “classes” of traffic and that there are K “jobs” with a typical job denoted by k.

Let dk
w(t) denote the demand, that is, the traffic generated, between O/D pair w at time t

by job class k. The flow on route r at time t of class k, which is assumed to be nonnegative,

is denoted by xk
r(t) and the flow on link a of class k at time t by fk

a (t).

Since the demands over time are assumed known, the following conservation of flow

equations must be satisfied at each t:

dk
w(t) =

∑

r∈Pw

xk
r(t), ∀w ∈ W, ∀k, (1)

that is, the demand associated with an O/D pair and class must be equal to the sum of the

flows of that class on the routes that connect that O/D pair. We assume that the traffic

associated with each O/D pair is divisible and can be routed among multiple routes/paths.

Also, we must have that

0 ≤ xk
r(t) ≤ µk

r(t), ∀r ∈ P, ∀k, (2)

where µk
r(t) denotes the capacity on route r of class k at time t.

We group the demands at time t of classes for all the O/D pairs into the KnW -dimensional

vector d(t). Similarly, we group all the class route flows at time t into the KnP -dimensional

vector x(t). The upper bounds/capacities on the routes at time t are grouped into the

KnP -dimensional vector µ(t).

The link flows are related to the route flows, in turn, through the following conservation
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of flow equations:

fk
a (t) =

∑

r∈P

xk
r(t)δar, ∀a ∈ L, ∀k, (3)

where δar = 1 if link a is contained in route r, and δar = 0, otherwise. Hence, the flow of a

class on a link is equal to the sum of the flows of the class on routes that contain that link.

All the link flows at time t are grouped into the vector f(t), which is of dimension KnL.

The cost on route r at time t of class k is denoted by Ck
r (t) and the cost on a link a of

class k at time t by ck
a(t).

For the sake of generality, we allow the cost on a link to depend upon the entire vector

of link flows at time t, so that

ck
a(t) = ck

a(f(t)), ∀a ∈ L, ∀k. (4)

In view of (3), we may write the link costs as a function of route flows, that is,

ck
a(x(t)) ≡ ck

a(f(t)), ∀a ∈ L, ∀k. (5)

Of course, one special case of (4) would include separable link cost functions in which the

cost on a link of a class depends only upon the flow on that link of that class.

The costs on routes are related to costs on links through the following equations:

Ck
r (x(t)) =

∑

a∈L

ck
a(x(t))δar, ∀r ∈ P, ∀k, (6)

that is, the cost on a route of class k at a time t is equal to the sum of costs on links of

that class that make up the route at time t. We group the route costs at time t into the

vector C(t), which is of dimension KnP . Note that the form of (6) also allows such cases as

separable route cost functions in which the cost on a route of a class depends only upon the

flow of traffic of that class on that route. Furthermore, (6) captures the case in which the

cost on a route of a class depends on the total volume of traffic on a route expressed as the

sum of the flows of all classes on that route (as well as the sums of flows of the classes on

other route(s)).
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We now define the feasible set K. We consider the Hilbert space L = L2([0, T ] , RKnP )

(where [0, T ] denotes the time interval under consideration) given by

K =

{
x ∈ L2([0, T ] , RKnP ) : 0 ≤ x(t) ≤ µ(t) a.e. in [0, T ];

∑

p∈Pw

xk
p(t) = dk

w(t), ∀w, ∀k a.e. in [0, T ]

}
. (7)

We assume that the capacities µk
r(t), for all r and k, are in L, and that the demands,

dk
w ≥ 0, for all w and k, are also in L. Further, we assume that

0 ≤ d(t) ≤ Φµ(t), a.e. on [0, T ], (8)

where Φ is the KnW × KnP -dimensional O/D pair-route incidence matrix, with element

(kw, kr) equal to 1 if route r is contained in Pw, and 0, otherwise. Here we assume that all

classes can use all the routes. (If there are restrictions then the matrix Φ can be adapted

accordingly.) Due to (8), the feasible set K is nonempty. It is easily seen that K is also convex,

closed, and bounded. Note that we are not restricted as to the form that the time-varying

demands for the O/D pairs take since convexity of K is guaranteed even if the demands have

a step-wise structure, or are piecewise continuous.

The dual space of L will be denoted by L∗. On L × L∗ we define the canonical bilinear

form by

〈〈G, x〉〉 :=
∫ T

0
〈G(t), x(t)〉dt, G ∈ L∗, x ∈ L. (9)

Furthermore, the cost mapping C : K → L∗, assigns to each flow trajectory x(·) ∈ K the

cost trajectory C(x(·)) ∈ L∗.

We are now ready to state the dynamic multiclass network equilibrium conditions govern-

ing the Internet, assuming shortest path routing. In particular, we assume that the traffic

associated with each O/D pair and class is selfishly routed to minimize the cost incurred

for each class, given the other flows in the network, and subject to the capacity constraints.

These conditions are a generalization of the Wardropian (1952) first principle of traffic be-

havior (see also, e.g., Beckmann, McGuire, and Winsten (1956), Dafermos and Sparrow
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(1969), Dafermos (1972, 1982), and Nagurney (1993)) to include multiple classes, the time

dimension, and capacities on the route flows. Of course, if the capacities are very large

and exceed the demand for a class at each t, then the upper bounds are never attained by

the route flows and the conditions below will collapse, in the case of fixed time t, to the

well-known multiclass static network equilibrium conditions (see Dafermos (1972, 1982) and

the references therein).

Definition 1: Dynamic Multiclass Network Equilibrium

A multiclass route flow pattern x∗ ∈ K is said to be a dynamic network equilibrium (according

to the generalization of Wardrop’s first principle) if, at each time t, only the minimum cost

routes for each class not at their capacities are used (that is, have positive flow) for each

O/D pair unless the flow of that class on a route is at its upper bound (in which case those

class routes’ costs can be lower than those on the routes not at their capacities). The state

can be expressed by the following equilibrium conditions which must hold for every O/D pair

w ∈ W , every route r ∈ Pw, every class k; k = 1, . . . , K, and a.e. on [0, T ]:

Ck
r (x∗(t)) − λk∗

w (t)





≤ 0, if xk∗
r (t) = µk

r(t),
= 0, if 0 < xk∗

r (t) < µk
r(t),

≥ 0, if xk∗
r (t) = 0.

(10)

Hence, conditions (10) state that all utilized routes not at their capacities connecting

an O/D pair have equal and minimal costs at each time t in [0, T ], where that minimal

cost is denoted by λk∗
w (t). If a route flow of a class is at its capacity then its cost can

be lower than the minimal cost for that O/D pair and class. Of course, if we have that

µk
r = ∞, for all routes r ∈ P and classes k; k = 1, . . . , K, then the dynamic equilibrium

conditions state that all used routes connecting an O/D pair of nodes for a given class have

equal and minimal route costs at each time t. For fixed t, the latter conditions coincide

with a multiclass version of Wardrop’s first principle (see Dafermos (1972, 1982)) governing

static transportation network equilibrium problems. Note that this concept, but in the case

of a single class, has also been applied to static models of the Internet (cf. Roughgarden

(2005) and the references therein). We note that El Azouzi (2002) proposed a multiclass

network equilibrium model for telecommunications (including the Internet) but the model is
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subsumed by the model of Dafermos (1982). In addition, that model was static. Here, (10)

includes the time dimension.

The standard form of the EVI that we work with is:

determine x∗ ∈ K such that 〈〈F (x∗), x − x∗〉〉 ≥ 0, ∀x ∈ K. (11)

We now establish the following theorem.

Theorem 1

x∗ ∈ K is an equilibrium flow according to Definition 1 if and only if it satisfies the evolu-

tionary variational inequality:

∫ T

0
〈C(x∗(t)), x(t) − x∗(t)〉dt ≥ 0, ∀x ∈ K. (12)

Proof: We first prove that equilibrium conditions (10) imply the evolutionary variational

inequality (12).

Assume that (10) holds. Then

K∑

k=1

∑

w∈W

∑

r∈Pw

Ck
r (x∗(t))(xk

r(t) − xk∗
r (t))

=
K∑

k=1

∑

w∈W




∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

Ck
r (x∗(t))xk

r(t) +
∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

Ck
r (x∗(t))(xk

r(t) − xk∗
r (t))

+
∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

Ck
r (x∗(t))(xk

r(t) − µk
r(t))




≥
K∑

k=1

∑

w∈W




∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

λk∗
w (t)(xk

r(t) − xk∗
r (t)) + λk∗

w (t)
∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

(xk
r(t) − xk∗

r (t))
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+
∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

Ck
r (x∗(t))(xk

r(t) − µk
r(t))




≥
K∑

k=1

∑

w∈W


λk∗

w (t)
∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

(xk
r(t) − xk∗

r (t)) + λk∗
w (t)

∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

(xk
r(t) − xk∗

r (t))

+ λk∗
w (t)

∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

(xk
r(t) − xk∗

r (t))




=
K∑

k=1

∑

w∈W

λk∗
w (t)

∑

r∈Pw

(xk
r(t) − xk∗

r (t)) = 0 a.e in [0, T ]. (13)

Hence, (12) is verified.

We now establish that (12) implies (10). The proof is by contradiction.

First of all let us remark that conditions (10) imply:

∀k, ∀w ∈ W, ∀q, s ∈ Pw if Ck
q (x∗(t)) < Ck

s (x∗(t))

then xk∗
q (t) = µk

q(t) or xk∗
s (t) = 0.

In fact:

1. if Ck
q (x∗(t)) ≥ λk∗

w (t), then Ck
s (x∗(t)) > λk∗

w (t) and xk∗
s (t) = 0;

2. if Ck
q (x∗(t)) < λk∗

w (t) ≤ Ck
s (x∗(t)), then xk∗

q (t) = µk
q(t);

3. if Ck
q (x∗(t)) < Ck

s (x∗(t)) < λk∗
w (t), then xk∗

q (t) = µq(t).

Assume now that equilibrium conditions (10) do not hold. Then, there exists a k, a

w ∈ W , and routes q, s ∈ Pw together with a set E ⊆ [0, T ] having positive measure such

that

Ck
q (x∗(t)) < Ck

s (x∗(t)), xk∗
q (t) < µk

q(t), xk∗
s (t) > 0, a.e. on E. (14)
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For t ∈ E, let δ(t) = min{µk
q(t) − xk∗

q (t), xk∗
s (t)}. Then, δ(t) > 0 a.e. on E, and

we can construct x ∈ K, such that xk(t) = xk∗(t) outside E and xk
q(t) = xk∗

q (t) + δ(t),

xk
s(t) = xk∗

s (t) − δ(t), with xk
r(t) = xk

r(t), for r 6= q, s. Substitution of this feasible flow into

〈〈C(x∗), x − x∗〉〉 yields:

〈〈C(x∗), x − x∗〉〉 =
∫

E
δ(t)(Ck

q (x∗(t)) − Ck
s (x∗(t)))dt < 0, (15)

but this is a contradiction to EVI (12) being satisfied. 2

Remark 1

It is important to note that in the proof of Theorem 1 we have, in effect, a dynamic version

of the Nash equilibrium concept in that we show that a positive reallocation of δ(t) of flow

from one route to another of a given class will result in a worsened route cost. For a survey of

networking games in telecommunications but in a static framework, see Altman et al. (2005).

Daniele, Maugeri, and Oettli (1999) presented dynamic network equilibrium conditions for

transportation networks but considered only a single class of traffic. Here, we state the

dynamic equilibrium conditions in a manner that is more transparent (cf. (10)), noting that

the lower bounds on the route flows on the Internet will be zero. In addition, we generalize

the results of Daniele, Maugeri, and Oettli (1999) to the case of multiple classes. Finally,

the equivalence proof for the EVI formulation is slightly different from that contained in the

previous reference, since here we use the equilibrium conditions (10) directly, and also we

now have multiple classes of traffic.

We now, for completeness, provide some qualitative properties.

Theorem 2 (cf. Daniele, Maugeri, and Oettli (1999) and Daniele (2006))

If C in (12) satisfies any of the following conditions:

1. C is hemicontinuous with respect to the strong topology on K, and there exist A ⊆ K
nonempty, compact, and B ⊆ K compact such that, for every y ∈ K \ A, there exists

x ∈ B with 〈〈C(x), y − x〉〉 < 0;

2. C is hemicontinuous with respect to the weak topology on K;
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3. C is pseudomonotone and hemicontinuous along line segments,

then the EVI problem (12) admits a solution over the constraint set K.

Recall that C :→ L∗, where K is convex, is said to be

pseudomonotone if and only if, for all x, y ∈ K

〈〈C(x), y − x〉〉 ⇒ 〈〈C(y), x − y〉〉 ≤ 0;

hemicontinuous if and only if, for all y ∈ K, the function ξ 7→ 〈〈C(ξ), y − ξ〉 is upper

semicontinuous on K;

hemicontinuous along line segments if and only if, for all x, y ∈ K, the function ξ 7→
〈〈C(ξ), y − x〉〉 is upper semicontinuous on the line segment [x, y].

Moreover, if C is strictly monotone, then the solution of (12) is unique (see, e.g., Kinder-

lehrer and Stampacchia (1980)).

2.1 A Multiclass Numerical Example

We now present a small multiclass dynamic network equilibrium numerical example.

Consider a network (small subnetwork of the Internet) consisting of two nodes and two

links as in Figure 1. There is a single O/D pair w = (1, 2). Since the routes connecting the

O/D pair consist of single links we work with the routes r1 and r2 directly as in Figure 1.

There are assumed to be two classes/jobs and the route costs are:

for Class 1:

C1
r1

(x(t)) = 2x1
r1

(t) + x2
r1

(t) + 5, C1
r2

(x(t)) = 2x2
r2

(t) + 2x1
r2

(t) + 10,

for Class 2:

C2
r1

(x(t)) = x2
r1

(t) + x1
r1

(t) + 5, C2
r2

(x(t)) = x1
r2

(t) + 2x2
r2

(t) + 5.
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Figure 1: Network Structure of the Multiclass Numerical Example

The time horizon is [0, 10]. The demands for the O/D pair are:

d1
w(t) = 10 − t, d2

w(t) = t.

The upper bounds are: µ1
r1

= µ1
r2

= µ1
r1

= µ2
r2

= ∞.

To solve the associated evolutionary variational inequality, we utilize the approach set

forth in Cojocaru, Daniele, and Nagurney (2005 a, b), in which the time horizon T is dis-

cretized and the corresponding variational inequality (or, equivalently, projected dynamical

system) at each discrete point in time is then solved. Due to the simplicity of the network

structure, we can easily obtain such solutions by solving the equilibrium conditions (10)

explicitly at the discrete time points.

Obviously, this procedure is correct if the continuity of the solution is guaranteed. Conti-

nuity results for solutions to evolutionary variational inequalities, in the case where F (x(t)) =

A(t)x(t)+B(t) is a linear operator, A(t) is a continuous and positive definite matrix in [0, T ],

and B(t) is a continuous vector can be found in Barbagallo (2005). Of course, the examples

could also be computed via the computational procedure given in Daniele, Maugeri, and

Oettli (1999) but here we utilize a time-discretization approach which also has intuitive ap-

peal. In Table 1 we provide the equilibrium solutions for the multiclass network equilibrium

example at discrete points in time.

In Figure 2, we provide a graph of the equilibrium route trajectories, where we display

also the interpolations between the discrete solutions given in Table 1. Since the route cost

functions are strictly monotone over the time horizon [0, 10] we know that the equilibrium

trajectories are unique. Moreover, as the theory predicts, the trajectories are also continuous

14



Table 1: Equilibrium Route Flows for the Multiclass Numerical Example

Equilibrium Multiclass Route Flows at time t
Flow t = 0 t = 2.5 t = 5 t = 7.5 t = 10
x1∗

r1
(t) 6.25 6.25 5.00 2.50 0.00

x1∗
r2

(t) 3.75 1.25 0.00 0.00 0.00
x2∗

r1
(t) 0.00 0.00 1.6̄6 4.16̄6 6.6̄6

x2∗
r2

(t) 0.00 2.50 3.3̄3 3.3̄3 3.3̄3

for this example. It is interesting to see that after time t = 5 route r2 is never used by class

1, whereas route r1 is not utilized for class 2 traffic until after t = 2.

For completeness, we also provide the following class O/D pair minimum costs at times

t = 0, 2.5, 5, 7.5 and 10:

λ1∗
w (0) = 17.50, λ1∗

w (2.5) = 17.50, λ1∗
w (5) = 16.6̄6, λ1∗

w (7.5) = 14.16̄6, λ1∗
w (10) = 11.6̄6

and

λ2∗
w (0) = 8.75, λ2∗

w (2.5) = 11.25, λ2∗
w (5) = 11.6̄6, λ2∗

w (7.5) = 11.6̄6, λ2∗
w (10) = 11.6̄6.

Remark 2

It is easy to verify that if the first cost term in Cr1 is changed from “2” to “1” then there

are multiple equilibria.
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Figure 2: Equilibrium Trajectories for the Multiclass Numerical Example

3. Evolutionary Variational Inequalities and the Braess Paradox

We further reinforce the elegance and power of the evolutionary variational inequality

model for the Internet as we revisit the Braess (1968) paradox (see also, Boyce, Mahmassani,

and Nagurney (2005) and Braess, Nagurney, and Wakolbinger (2005)). Examples of the

Braess paradox, originally formulated for transportation networks, have occurred in cities

such as New York as well as Stuttgart. In addition, the Braess paradox has been noted to

occur not only in transportation networks but also in telecommunication networks, including

the Internet.

Recall that in the Braess paradox, which is an example of a fixed demand network equi-

librium problem, the addition of a new link, which yields a new route, makes all the “users”

in the network worse off. As emphasized in Korilis, Lazar, and Orda (1999), this is also rel-

evant to the Internet. We present an evolutionary variational inequality formulation which

deepens the understanding of the Braess paradox and also illustrates dramatically the im-

portance of time-varying demands and the associated equilibrium flows and costs in what

16



k

k

k k

1

4

2 3
A
A
A
A
A
AU

�
�

�
�

�
��

�
�

�
�

�
��

A
A
A
A
A
AU

c

a

d

b

k

k

k k

1

4

2 3
A
A
A
A
A
AU

�
�

�
�

�
��

�
�

�
�

�
��

A
A
A
A
A
AU-

c

a

d

b

e
-

Figure 3: The Time-Dependent Braess Network Example with Relevance to the Internet

are increasingly becoming known as noncooperative networks. We assume, hence, that there

is a single class k and we supress the superscript k in the notation below.

The Time-Dependent Braess Paradox

Assume a network as the first network depicted in Figure 3 in which there are four nodes:

1, 2, 3, 4; four links: a, b, c, d; and a single O/D pair w = (1, 4). There are, hence, two routes

available between this O/D pair: r1 = (a, c) and r2 = (b, d).

The networks given in Figure 3 are due to Braess (1968). We now construct time-

dependent link costs, route costs, and demand for t ∈ [0, T ]. It is important to emphasize

that the case where time t is discrete, that is, t = 0, 1, 2, . . . , T , is trivially included in

the equilibrium conditions (10) and also captured in the evolutionary variational inequality

formulation (12).

We consider, to start, the first network in Figure 3, consisting of links: a, b, c, d. We

assume that the capacities µr1(t) = µr2(t) = ∞ for all t ∈ [0, T ]. The link cost functions are

assumed to be given and as follows for time t ∈ [0, T ]:

ca(fa(t)) = 10fa(t), cb(fb(t)) = fb(t) + 50,

cc(fc(t)) = fc(t) + 50, cd(fd(t)) = 10fd(t).

17



We assume a time-varying demand dw(t) = t for t ∈ [0, T ].

Observe that at time t = 6, dw(6) = 6, and it is easy to verify that the equilibrium route

flows at time t = 6 are:

x∗
r1

(6) = 3, x∗
r2

(6) = 3,

the equilibrium link flows are:

f ∗
a (6) = 3, f ∗

b (6) = 3, f ∗
c (6) = 3, f ∗

d (6) = 3,

with associated equilibrium route costs:

Cr1(6) = ca(6) + cc(6) = 83, Cr2 = cb(6) + cd(6) = 83,

and, hence, equilibrium condition (10) is satisfied for time t = 6. This is the solution to the

classical (static) Braess (1968) network without the route addition.

We now construct and solve EVI (12) for the dynamic network equilibrium problem over

t ∈ [0, T ]. We first express the route costs in terms of route flows for Network 1 in Figure 3,

where we have that, because of the conservation of flow equations (3), fa(t) = fc(t) = xr1(t)

and fb(t) = fd(t) = xr2(t). That is, we must have that

Cr1(t) = 11xr1(t) + 50, Cr2(t) = 11xr2(t) + 50,

with the route conservation of flow equations (1) yielding:

dw(t) = t = xr1(t) + xr2(t),

and, hence, we may write

xr2(t) = t − xr1(t).

Similarly, we must have, because of the feasible set K (cf. (7)), the simplicity of the

network topology, and the cost structure, that

x∗
r1

(t) = x∗
r2

(t). (16)

Hence, we may write EVI (12) for this problem as: determine x∗ ∈ K satisfying

∫ T

0
(11x∗

r1
(t)+50)×(xr1(t)−x∗

r1
(t))+(11x∗

r2
(t)+50)×(xr2(t)−x∗

r2
(t))dt ≥ 0, ∀x ∈ K, (17)

18



which, in view of (16), can be expressed as:

∫ T

0
(11x∗

r1
(t)+50)×(xr1(t)−x∗

r1
(t))+(11(t−x∗

r1
(t))×(xr1(t)−x∗

r1
(t))dt ≥ 0, ∀x ∈ K, (18)

which, after algebraic simplification, is

∫ T

0
(22x∗

r1
(t) − 11t) × (xr1(t) − x∗

r1
(t))dt ≥ 0, ∀x ∈ K. (19)

But, (19) implies that:

22x∗
r1

(t) = 11t; for t ∈ [0, T ]

or

x∗
r1

(t) =
t

2
.

Hence, we also have that x∗
r2

(t) = t
2
.

Moreover, the equilibrium route costs for t ∈ [0, T ] are given by:

Cr1(x
∗
r1

(t)) = 5
1

2
t + 50 = Cr2(x

∗
r2

(t)) = 5
1

2
t + 50,

and, clearly, equilibrium conditions (10) hold for ∈ [0, T ] a.e.

Assume now that, as depicted in Figure 3, a new link “e”, joining node 2 to node 3 is

added to the original network, with cost ce(fe(t)) = fe(t) + 10 for t ∈ [0, T ]. The addition of

this link creates a new route r3 = (a, e, d) that is available for the Internet traffic. Assume

that the time-varying demand is still given by dw(t) = t. Note, that for t = 6, for example,

the original equilibrium flow distribution pattern xr1(6) = 3 and xr2(6) = 3 is no longer an

equilibrium pattern, since at this level of flow the cost on route r3, Cr3(6) = 70. Hence, the

traffic from routes r1 and r2 would be switched to route r3.

The equilibrium flow pattern at time t = 6 on the new network (which would correspond

to the classic Braess paradox in a static network equilibrium setting) is:

x∗
r1

(6) = 2, x∗
r2

(6) = 2, x∗
r3

(6) = 2,

with equilibrium link flows:

f ∗
a (6) = 4, f ∗

b (6) = 2, f ∗
c (6) = 2, f ∗

e (6) = 2, f ∗
d (6) = 4,
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and with associated equilibrium route costs:

Cr1(6) = 92, Cr2(6) = 92, Cr3(6) = 92.

Indeed, one can verify that any reallocation of the route flows would yield a higher cost on

a route.

Note that, with the route addition, the cost at time t = 6 increased for every “user” of the

network from 83 to 92 without a change in the demand or traffic rate! This is the classical

Braess paradox.

We now solve the evolutionary variational inequality problem (12) for the second network

in Figure 3 over the time interval [0, T ] to create the time-dependent Braess paradox.

We may write the route costs for the second network (after the route addition) in Figure

3 as a function of the time-dependent route flows, that is,

Cr1(x(t)) = 11xr1(t) + 10xr3(t) + 50, Cr2(x(t)) = 11xr2(t) + 10xr3(t) + 50,

and

Cr3(x(t)) = 10xr1(t) + 21xr3(t) + 10xr2(t) + 10.

EVI (12) now takes the form: determine x∗ ∈ K (where K is now expanded to include

route r3; see (7)), so that

∫ T

0
(11x∗

r1
(t)+ 10x∗

r3
(t)+ 50)× (xr1(t)−x∗

r1
(t))+ (11x∗

r2
(t)+ 10x∗

r3
(t)+ 50)× (xr2(t)−x∗

r2
(t))

+(10x∗
r1

(t) + 21x∗
r3

(t) + 10x∗
r2

(t) + 10) × (xr3 − x∗
r3

(t))dt ≥ 0, ∀x ∈ K. (20)

Because of the feasible set K, we must have that

xr3(t) = t − xr1(t) − xr2(t) and x∗
r3

(t) = t − x∗
r1

(t) − x∗
r2

(t). (21)

Substitution of (21) into (20), after algebraic simplification, yields

∫ T

0
(x∗

r1
(t) − 11(t − x∗

r1
(t) − x∗

r2
(t)) − 10x∗

r2
(t) + 40) × (xr1(t) − x∗

r1
(t))
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+(x∗
r2

(t)− 11(t− x∗
r1

(t) − x∗
r2

(t))− 10x∗
r2

(t) + 40)× (xr2(t) − x∗
r2

(t))dt ≥ 0, ∀x ∈ K. (22)

Now, since it is clear (because of the network topology and cost structure) that x∗
r1

(t) =

x∗
r2

(t) we can simplify EVI (22) further to:

∫ T

0
(13x∗

r1
(t) − 11t + 40) × ((xr1(t) + xr2(t)) − 2x∗

r1
(t))dt ≥ 0, ∀x ∈ K. (23)

We now analyze (23). In particular, we consider the term:

(13x∗
r1

(t) − 11t + 40) × (xr1(t) + xr2(t) − 2x∗
r1

(t)) (24)

for a fixed t and analyze when its value is greater than or equal to zero. We note that

if x∗
r1

(t) = 0, then for this term to be greater than or equal to zero, we must have that

−11t + 40 ≥ 0, or t ∈
[
0, 3

7

11

]
. We, hence, obtain that:

x∗
r1

(t) = x∗
r2

(t) = 0, x∗
r3

(t) = t, for t ∈
[
0, 3

7

11

]
. (25)

On the other hand, if x∗
r1

(t) > 0, we must consider the situation that either x∗
r3

(t) is also

greater than zero or it is equal to zero. We first consider the case that x∗
r3

(t) = 0. Then,

we know that x∗
r1

(t) = x∗
r2

(t) =
t

2
. Substitution of this expression for x∗

r1
(t) into (24), states

that this value is valid for t ∈
(
8
1

9
,∞

)
.

In the range for t ∈
(
3

7

11
, 8

8

9

]
we obtain that:

x∗
r1

(t) = x∗
r2

(t) =
11

13
t − 40

13
, x∗

r3
(t) = − 9

16
t +

43

8
. (26)

Remark 3

For both networks in Figure 3, with the associated link and route cost functions, it is easy to

verify that the corresponding vector of route costs C(x) is strictly monotone in route flows

x, that is,

〈〈C(x1) − C(x2), x1 − x2〉〉 > 0, ∀x1, x2 ∈ K, x1 6= x2,
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since the Jacobian of the route costs is strictly diagonally dominant at each t and, thus,

positive definite. Hence, the corresponding equilibrium route flow solutions x∗(t) will be

unique.

In summary, we have identified three regimes, denoted by I, II, and III, respectively, and

depicted in Figure 4, where: for dw(t) = t ∈
[
0, t1 = 3

7

11

]
(Regime I):

x∗
r1

(t) = x∗
r2

(t) = 0, x∗
r3

(t) = dw(t) = t;

for dw(t) = t ∈
(
t1 = 3

7

11
, 8

8

9

]
(Regime II), we have that:

x∗
r1

(t) = x∗
r2

(t) =
11

13
t − 40

13
, x∗

r3
(t) = − 9

16
t +

43

8
.

Finally, for dw(t) = t ∈
(
t2 = 8

8

9
, T < ∞

]
(Regime III), we have that:

x∗
r1

(t) = x∗
r2

(t) =
dr1(t)

2
=

t

2
, x∗

r3
(t) = 0.

The curves of equilibria are depicted in Figure 4.

Clearly, one can see from Figure 4, that in the range
(
0, t1 = 3

7

11

]
, that is, in Regime I

(once the demand is positive), only the new route r3 would be used. Hence, at a relatively

low level of demand, up to a value of 3
7

11
, only the new route is used. In the range of

demands:
(
3

7

11
, 8

8

9

]
, that is, Regime II, all three routes are used, and in this range the

Braess paradox occurs. Finally, once the demand (recall that dw(t) = t here) exceeds 8
8

9
and we are in Regime III, then the new route is never used! Thus, the use of an evolutionary

variational inequality formulation reveals that over time the Braess paradox is even more

profound and the addition of a new route may result in the route never being used. Finally,

if the demand lies within a particular range, then the addition of a new route may result

in everyone being worse off, since it results in higher costs than before the route/link was

added to the network.

In particular, the “classical” Braess paradox, in which the addition of the route makes the

“travel” cost higher for everyone, always occurs in Regime II. In order to find the minimal
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Figure 4: Equilibrium Trajectories of the Braess Network with Time-Dependent Demands

demand at which the Braess paradox occurs, we note that in the first network in Figure 3, the

demand will always equally distribute itself. Hence, on the original network, the equilibrium

flow pattern on each route would be given by
dw(t)

2
=

t

2
for t ∈ [0, T ] with a minimal route

cost over the horizon being, thus, equal to: 11
(

t

2

)
+ 50. Consider now, the second network

in Figure 3. We know that in Regime I, only the new route would be used, assuming shortest

path routing, with the minimal route cost, hence, being given by the expression in this range

of demands as 21t + 10. Setting now, 11
(

t

2

)
+ 50 = 21t + 10, and solving for t, which, is

also in this problem equal to the demand, dw(t), yields t = 2
18

31
= 2.58. For demand in the

range 2.58 < dw(t) = t < 8
8

9
= 8.89, the addition of the new route will result in everyone

being worse off. See Figure 5.

Pas and Principio (1997) obtained precisely this result but using a static formulation

and in the context of transportation networks. The evolutionary variational inequality for-

mulation provides a compact form for uncovering the time-dependent paradoxical results.

Moreover, since the vector of route costs is strictly monotone, as argued above, we know

that the solution to the evolutionary variational inequality (12) is unique and so the curve of
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equilibria is unique, as depicted in Figure 4. Furthermore, we can see, as the theory predicts,

that the equilibrium trajectories (cf. Figure 4) are continuous.

Nagurney (2006) also presented this time-dependent Braess paradox but in the context

of dynamic transportation network equilibrium problems. Here, we provide the complete,

explicit, solution of the EVI formulations for Network 1 and for Network 2. Arnott, De

Palma, and Lindsey (1993), motivated by the Braess paradox, presented a paradox in the

context of a dynamic transportation network equilibrium problem in which the routes are

fixed but users decide when to travel, and, hence, the demand is also dynamic. Their focus

was, however, on queues and expanding capacity in a particular network and did not make

use of evolutionary variational inequality theory.
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