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ABSTRACT
We study a limited-supply online auction problem, in which an auc-
tioneer has k goods to sell and bidders arrive and depart dynami-
cally. We suppose that agent valuations are drawn independently
from some unknown distribution and construct an adaptive auction
that is nevertheless value- and time-strategyproof. For the k = 1
problem we have a strategyproof variant on the classic secretary
problem. We present a 4-competitive (e-competitive) strategyproof
online algorithm with respect to offline Vickrey for revenue (effi-
ciency). We also show (in a model that slightly generalizes the as-
sumption of independent valuations) that no mechanism can be bet-
ter than 3/2-competitive (2-competitive) for revenue (efficiency).
Our general approach considers a learning phase followed by an
accepting phase, and is careful to handle incentive issues for agents
that span the two phases. We extend to the k > 1 case, by deriving
strategyproof mechanisms which are constant-competitive for rev-
enue and efficiency. Finally, we present some strategyproof com-
petitive algorithms for the case in which adversary uses a distribu-
tion known to the mechanism.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics

General Terms
Algorithms, Economics

1. INTRODUCTION
Online auctions consider a setting in which agents arrive dynam-

ically and require that an allocation and payment decision is made
before they depart. As a motivating example, suppose that you are
auctioning off last-minute theater tickets for Proof at 8pm. A tra-
ditional auction might set an auction deadline of 6pm and require
that all bids received before that time are firm commitments and
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then determine the winners at 6pm. This can be suboptimal when
bidders have different time constraints and decision horizons. In
an online auction, a bidder could arrive at 12.10pm and state “I
want one seat to Proof, and I will pay $75.” The same bidder could
subsequently announce at 12.20pm that she needs to depart. The
auctioneer is required to make dynamic allocation and payment de-
cisions at or before the bidder’s announced departure time, without
the luxury of hindsight on bids yet to arrive.

The particular setting that we consider in this paper is a limited-
supply online auction in which an auctioneer has k identical goods
to sell. We assume that the number of agents is fixed, and known
to the auctioneer. Each agent demands a single unit, and values
are drawn independently from a fixed distribution which is station-
ary but unknown, i.e. the values are distributed i.i.d. Each agent
also has an arrival and departure time, which may be arbitrary. The
agent’s departure time need not be known to the agent (or to the
mechanism) until the moment of departure. We construct auctions
that are both value- and time-strategyproof. In other words, an
agent’s dominant strategy is truthful reporting of its value for the
good (value-SP), and an agent cannot benefit by misstating its ar-
rival or departure time (time-SP). (This solution concept will be
called simply strategyproofhenceforth.) By the Revelation Princi-
ple [5], any outcome achievable in dominant-strategy equilibrium
by any mechanism may be achieved by a strategyproof direct rev-
elation mechanism, so we do not lose generality in restricting our
attention to such mechanisms.

Our auctions compute an allocation whose efficiency is constant-
competitive with the optimal allocation as determined by an om-
niscient auctioneer that knows the complete sequence of bids as
it makes its decision. We also achieve constant-competitive rev-
enue with such an omniscient auctioneer, according to definitions
of revenue-competitiveness adopted by other authors in analogous
works on auctions for identical goods [9, 11]. We note that with-
out i.i.d., Lavi and Nisan [11] show that no constant-competitive
auction is possible.

In the k = 1 case, our model generalizes offline auctions (the
special case where everyone arrives at the beginning of time and
departs at the end of time) and secretary problems (the special
case where agents’ arrival-departure intervals are disjoint). In both
special cases, it is trivial to design a time-SP mechanism which
is constant-competitive on efficiency. Vickrey’s [14] second-price
sealed-bid auction solves the offline case. The secretary algorithm
[4] solves the disjoint interval online case. Our mechanism is const-
ant-competitive and strategyproof in the general-case and actually
reduces to the Vickrey and secretary algorithm in the special cases.
Achieving time-strategyproofness in the secretary algorithm is non-
trivial; the algorithm as ordinarily stated is manifestly not time-SP,
because candidates with early arrival times always have an incen-
tive to delay their participation.

We have an auction that achieves a competitive ratio of e +
o(1) for efficiency — thus matching the efficiency guarantee of



the original, non-strategyproof secretary algorithm — and is (e2 +
o(1))-competitive for revenue. A modified version of this mech-
anism is (4 + o(1))-competitive for both efficiency and revenue.
All of the aforementioned competitive ratios are in relation to the
second-price sealed-bid auction, i.e. the offline Vickrey auction for
a single item. These competitive ratio upper bounds are applicable
in a somewhat stronger adversarial model than the independent-
sampling hypothesis specified above (namely, an adversarial set of
bids arriving in random order), and they are accompanied by lower
bounds on the competitive ratios of any strategyproof mechanism
in this stronger model. The lower bounds are 2 for efficiency and
3/2 for revenue; it is an open problem to close the gaps between
these lower bounds and the upper bounds of e and 4. As an inter-
esting counterpoint to these lower bounds, we provide a mechanism
which is 1.724-competitive with respect to efficiency, in an alterna-
tive model where the bids are sampled from a distribution which is
knownto the seller. The mechanism is an adaptation of a secretary
algorithm due to Gilbert and Mosteller [7].

There is a nice generalization of our method to the case of selling
k > 1 items. We provide a strategyproof online auction whose effi-
ciency is constant-competitive with respect to the offline efficiency-
max-imizing allocation, and whose revenue is constant-competitive
with F(2,k), i.e. the best revenue one could achieve in an offline
auction with a fixed price and selling at least two items and at most
k items.

We believe this is the first discussion of adaptive online auctions
that make no assumptions about the distribution from which agent
valuations are drawn but provides both constant-competitiveness
and time-SP. Our approach constructs two-phase online auctions,
with a learning phase followed by a selling phase. We achieve
strategyproofness even for agents with arrival-departure intervals
that span both phases, by allowing allocations to those agents at the
transition point with a decision criterion that is preferable to that
available in the selling phase. We are also careful to make truth-
ful reporting a strongly dominant strategy, even for early arrivals,
through ensuring a small probability that the transition will occur
at any time.

The outline of the paper is as follows. Section 2 formulates the
problem we are discussing and enumerates the relevant variants. In
Section 3, we discuss the relation of our problem to the secretary
problem. Section 4 presents a general theorem to establish strate-
gyproofness. Section 5 considers the single-item auction and Sec-
tion 6 the k > 1 auction. Finally, we end with some open problems
in Section 7.

1.1 Prior work
Lavi and Nisan [11] construct a value- and time-SP online auc-

tion for a multi-unit setting in which bidders can demand more than
one copy of the good but have marginal-decreasing valuations. The
bidder valuations are known to lie in an interval [p, q] and the seller
derives value p for each unit of good unsold. The auction is re-
stricted to make an immediate decision for each arriving bid, and
faces an adversary that can choose agents’ values as well as their
arrival order. Lavi and Nisan give an exact formula for the best-
possible competitive ratio (versus Vickrey); asymptotically, their
ratio grows like θ(log(q/p)).

Awerbuch et al. [2] retain the adversarial model of Lavi and
Nisan and provide a method to convert any competitive online al-
gorithm A into a value-SP online auction with a competitive ratio
of O(ρ+logµ) of the optimum offline profit obtained by an omni-
scient algorithm (that knows the true valuations of the users). Here
ρ is the competitive ratio of A and µ is the ratio of the maximum
to minimum valuation for a request. The auctions are time-SP for
technical conditions on the optimization algorithm that provide in-
creasing prices.

Prior work on learning in online auctions has not retained robust-
ness against temporal manipulation. Blum et al. [3] adopt learning

theory techniques to construct an online auction that is (1 + ε)-
competitive mechanism, for arbitrarily small positive ε, under a
mild hypothesis. Their model is an unlimited supply, unit-demand
setting, with bidders’ valuations constrained to the interval [1, h]
and modeled adversarially. Kleinberg and Leighton [10] sharpen
the Blum et al. results by determining the additive regret: it is
O(n2/3 log(n)1/3), with a lower bound of Ω(n2/3), given n bid-
ders. A revised lower bound of Ω(n1/2) is stated for a model in
which bids are distributed according to some fixed but unknown
distribution, along with an upper bound of O((n log n)1/2) with
an additional technical hypothesis about the profit curve.

Friedman and Parkes [5] consider a more general model in which
a mechanism makes a sequence of decisions over time. Agents
dynamically arrive and depart, with types drawn from a distribu-
tion known to the mechanism. VCG-based online mechanisms
are proved value- and time-SP if the problem allows a perfectly-
competitive online decision policy. Parkes and Singh [12] extend
this model and implement optimal MDP-policies within a VCG-
based mechanism that supports immediate and truthful bidding in a
Bayesian-Nash equilibrium. Gallien [6] considers a limited-supply
model with a known distribution over agent values and arrivals and
unit-demand, and constructs value- and time-SP mechanisms that
maximize the expected time-discounted revenue.

Goldberg et al. [9] consider competitive auctionsin offline set-
tings (thus without any timing) which are truthful and yield profits
that are within a constant factor of the profit of optimal fixed pric-
ing. In addition, they show why optimal fixed pricing is a good
measure for evaluating competitive auctions. They also present
several randomized auctions and justify the use of randomness in-
stead of determinism for competitive auctions. We adopt their DSOT
auction to provide the basis for our analysis of the multi-item ex-
tension of our online auction problem.

2. MODEL AND PROBLEM FORMULATION
We are considering on-line auctions for k identical goods, in

which each bidder wants at most one copy of the good, and the
seller derives no utility from retaining copies of the good. The
only information available to the mechanism is the total number
of agents n and the time-horizon [0, T ]. Agents have an arrival
time, a departure time and a value for the good. We assume that
agents have no value for receiving an item outside of their arrival-
departure interval. This information is all private to an agent, and
constitutes its type, θi = (vi, ai, di), which consists of:

• vi, a positive real number representing the agent’s value for
one item.

• ai, a real number in [0, T ] representing the agent’s arrival
time.

• di, a real number in [ai, T ] representing the agent’s departure
time.

and Θ denotes the set of agent types. We consider that the agent
learns about the auction, or its value, at time ai and needs a decision
by time di.

We consider a setting in which the agents values vi are sam-
pled i.i.d. from some stationary distribution that is not necessar-
ily known to the seller, and consider an adversary that chooses
arrival-departure intervals arbitrarily. We are interested in mech-
anisms which learn this distributional information (either implic-
itly or explicitly) over the course of interacting with the bidders.
Although motivated by this i.i.d. world, we find it convenient to
work in the following adversarial model. Formally, we assume
the agents’ types are generated as follows: an adversary specifies
a (potentially random) set {v1, . . . , vn} of valuations, and a set
{[a1, d1], [a2, d2], . . . , [an, dn]} of arrival-departure intervals, and



the valuations are matched to the arrival-departure intervals using a
random permutation. We call this the random orderinghypothesis.
We note that we have such a random ordering in the case that all
valuations are distributed i.i.d., and our constant-competitive upper
bounds therefore hold for the i.i.d. setting. However, we acknowl-
edge that it may be possible to strengthen our upper-bounds with
a full i.i.d. analysis. We will generally assume that the valuations
are all different, an assumption that is generic in the case that the
distribution has a density function. In fact, most of our mechanisms
work without this assumption, however we make this assumption
mainly for the ease of presentation.

In the online auction setting we consider agents that are game-
theoretic and seek to place bids to maximize their individual utility
in equilibrium. Although our auctions do not require an agent to de-
clare its departure time until the moment of its departure, we find
it convenient to analyze our auctions as direct-revelation mecha-
nisms (DRMs). The strategyspace in an online DRM allows an
agent to declare some possibly untruthful type, θ̂i = (v̂i, âi, d̂i),
subject to âi � ai and d̂i � âi. Note that we assume that an
agent cannotannounce an earlier arrival time than its true arrival.
Given the reported types θ̂ = (θ̂1, . . . , θ̂n), the mechanism com-
putes an allocation qi(t, θ̂) and payment pi(θ̂), for i = 1, 2, . . . , n,
and 0 � t � T . We interpret qi(t, θ̂) as the number of items allo-
cated to agent i at time t (hence qi(t, θ̂) is always either 0 or 1), and
pi(θ̂) as the total payment by agent i at its departure d̂i. We place
the following natural condidtions on the allocation and payments:

1. Allocations cannot be revoked, so qi(t, θ̂) is a non-decreasing
function of t.

2. The allocation and payment to agent i must be determined
before it departs.

3. The allocation and payments must be online computable, in
that they can only depend on information available at time t.

We make the standard assumption that agent i has a quasilinear
utility function ui = vi − p for an item allocated between ai �
t � di at price p, and that agents seek to maximize their expected
utility. We consider mechanisms that satisfy:

participation pi(θ̂) = 0 if qi(T, θ̂) = 0, and pi(θ̂) � v̂i.

no-deficit pi(θ̂) � 0

We are interested in mechanisms with dominant-strategyequilib-
rium, such that every agent i has a single optimal strategy what-
ever the strategies and types of other agents. This is a particularly
robust solution concept. In particular, and without loss of gener-
ality given our goal of dominant-strategy equilibrium [5], we con-
sider strategyproof mechanisms. A mechanism is value- and time-
strategyproof (or simply strategyproof) if an agent’s dominant strat-
egy is to report its true value (value-SP) and true arrival-departure
interval (time-SP).

DEFINITION 1 (STRATEGYPROOF). MechanismM = (Θ; q, p)
is strategyproof if for any agentiwith typeθi = (vi, ai, di), and for
any vectorθ−i of types for the remaining agents, the utility of agent
i when playing strategyθi againstθ−i is at least as great as the
expected utility when playing any other strategyθ̂i = (v̂i, âi, d̂i)

satisfyingai � âi � d̂i. (If M is randomized, the utility is de-
fined as the expected utility with respect to the mechanism’s random
choices.)

We define the allocative-efficiency of an outcome of an online
auction as

Eff (θ) =

 X
i

qi(T, θ)vi

!,
Eff v

and the revenue as

Rev(θ) =
X

i

pi(θ).

The benchmark offline mechanisms that we adopt for the purpose
of competitive analysis are:

Vickrey efficiency Eff v =
P

i�k v
(i), where v(m) is the m-th

highest value. This is the total value achieved in an offline
Vickrey auction, allocating to the k highest bidders and break-
ing ties arbitrarily.

F(2,k) revenue is defined, following Goldberg et al. [9], as

F(2,k) = max
2�l�k

l · v(l)

where again v(m) is the m-th highest bid. This is the maxi-
mal revenue achievable by a fixed-price mechanism in which
the number of items sold is between 2 and k.

In the special-case of single-item auctions, where k = 1 and
F(2,k) is consequently undefined, we adopt the Vickrey revenue
(i.e. v(2) in the notation above) as our benchmark. For both ef-
ficiency and revenue competitive ratios, we consider the expected
value, averaged over both the mechanism’s random choices (if any)
and the probability distribution on agent types (i.e. the random val-
uations, and the random matching between these valuations and the
arrival-departure intervals).

3. RELATION TO SECRETARY PROBLEM
The auction mechanisms considered in this paper are closely re-

lated to the classical secretary problemfrom the theory of optimal
stopping. In the secretary problem, an interviewer interacts with a
pool of n job applicants in random order. The applicants are ranked
in terms of quality, but the interviewer only knows the relative or-
dering of the applicants whom she has already interviewed. After
meeting each applicant, the interviewer has a choice between hiring
the current applicant or sending him away; either decision, once
made, is irrevocable. The problem is to design a strategy which
maximizes the probability of hiring the most qualified candidate.
It is well-known [4] that the optimal policy is to interview the first
t− 1 applicants, then hire the next one whose quality exceeds that
of the first t− 1 applicants, where t is defined by

nX
j=t+1

1

j − 1
≤ 1 <

nX
j=t

1

j − 1
,

As n → ∞, the probability of hiring the best applicant approaches
1/e, as does the ratio t/n.

The secretary problem and its solution suggest the following
mechanism for an online single-item auction: do nothing until at
least t = n/e� agents have arrived and announced their bids; then,
set a reservation price p equal to the highest bid seen so far, and sell
to the first agent whose bid is greater than or equal to p. Although
this mechanism is not time-SP in general — the earliest-arriving
agents have an incentive to delay announcing their arrival — it is
clear that the mechanism is both value- and time-strategyproof in
the special case where the arrival-departure intervals are disjoint,
because each agent faces a price which is determined before that
agent’s arrival and does not vary during the time when the agent is
in the market. The analysis of the secretary problem indicates that
the mechanism’s competitive ratio (with respect to efficiency) ap-
proaches e as n → ∞. Although our model provides the seller with
a richer information set than the secretary problem — the agents
reveal the numerical values of their bids, not just their relative or-
dering — it seems plausible that there is no way to capitalize on
this numerical information, since we are making no assumptions at



all about the distribution of bids. Thus we suspect that the compet-
itive ratio of e+ o(1) is best-possible, though the best lower bound
we have been able to prove is 2.

Several natural questions now present themselves:

1. If the arrival-departure intervals are allowed to overlap, can
we maintain strategyproofness while preserving the same com-
petitive ratio?

2. What can be said about the competitive ratio with respect to
revenue, rather than efficiency?

3. What can be said if the supply is finite but greater than 1?

The following sections will answer all three questions. Address-
ing the first and second questions, we will show that the mecha-
nism specified above may be modified so that it becomes strate-
gyproof in the case of overlapping arrival-departure intervals, and
that a similar mechanism is 4-competitive in terms of revenue. The
third question appears to invite an examination of so-called “multi-
ple secretary problems,” in which the interviewer is allowed to hire
k > 1 applicants. Although many such problems have been pro-
posed and analyzed in the optimal stopping literature [1, 8, 13, 15],
we found that none of these results is directly relevant to the prob-
lem of designing a constant-competitive online mechanism for sell-
ing k identical items. Instead, we present a constant-competitive
strategyproof mechanism based on the DSOT auction of [9]. The
analysis of this mechanism’s competitive ratio closely follows that
of [9]; our contribution lies in specifying an online implementation
of this mechanism which maintains temporal strategyproofness.

4. ESTABLISHING STRATEGYPROOFNESS
The following provides a useful constructive approach to val-

idate the incentive properties of an online auction, both for the
single-item and multiple item auction problem.

LEMMA 2. An online auction is value- and time-strategyproof
if the allocation and payment rules satisfy the following properties:

a) The auction constructs a price schedulepi(t) to agenti in
periodt that is independent of the agent’s reported typeθ̂i.

b) Let pmin,i = minâi�t�d̂i
pi(t), andmi denote the period

in which this price first occurs. The auction should allocate an
item to agenti whenpmin,i < v̂i, at pricepmin,i, and in a period
mi � t � d̂i.

c) The auction never allocates an item to agenti whenpmin,i >
v̂i.

PROOF. First, consider a simpler auction with an agent-indepedent
price schedule in which the rules are to sell the agent the good in
any period in which the minimal price occurs whenever pmin,i < v̂i

and not otherwise. An agent’s bid determines the purchasing deci-
sion, but not the price, and the agent’s dominant strategy would be
to report its true type. We relax this rule, and allow the item to
be sold in any period between mi and d̂i (but still at price pmin,i).
This delay is critical, because otherwise the online auction would
need to correctly anticipate whether or not prices were going to
fall again in the future. The delayed purchasing decision is utility-
maximizing with respect to a perturbedprice schedule p̃i(t), de-
fined with price equal to pi(t) for t < mi but defaulting to pmin,i

for all t � mi. Notice that agent i is indifferent across all allo-
cations in periods mi � t � d̂i, and so all that is left to prove
is that the new dependence between p̃i(t) and the agent’s reported
type has no incentive effect. The perturbed price schedule has the
following two important properties: a) an agent reporting its true
type is indifferent between p̃i(t) and pi(t); b) the perturbed sched-
ule is independent of v̂i, and an agent cannot improve the price in
p̃i(t) between its true ai and di by misstating âi or d̂i. To see this

robustness to âi and d̂i, first observe that price pmin,i is (weakly)
increasing for later arrivals âi and earlier departures d̂i. Our model
rules out earlier âi. Finally, although a later announced departure
can reduce pmin,i, the effect is to leave prices before the previous
mi unchanged and (weakly) increase the price in periods between
mi and di because this can only occur when the new minimal price
occurs in some period t > di.

The characterization allows for randomized price schedules, as
long as the randomness is independent of an agent’s reported type.
Furthermore, the price schedules for different agents can be depen-
dent on correlated random variables. This is helpful when simu-
lating an auction in which two bids arrive at the exact same time
and with the same bid price and the auction needs to break a tie.
We will use this technique to handle ties when establishing strate-
gyproofness in this paper.

The current axioms are sufficient for weaktruthfulness, but not
strongtruthfulness. We have not ruled out the possibility that there
are some types of agents that cannot receive positive utility from the
mechanism. We care about this because we are interested in learn-
ing information about the distribution on agent types from agent
reports and without strong truthfulness we cannot be sure that all
types will report information.

REMARK 3. We achieve strong truthfulness with one additional
axiom:

d) for any typeθi, there are some types of other agents, such
that there is some non-zero probability that agenti’s price schedule
provides pricepmin,i < vi.

This additional property is sufficient to provide strong truthful-
ness, whatever the type of an agent (and assuming that an agent
cannot observe the types of other agents), because it retains the
possibility that an agent might receive (strictly) positive utility from
truthful participation.

5. SINGLE-ITEM AUCTION
In this section, we present simple strategyproof online mecha-

nisms for the k = 1 special case which are constant-competitive
for revenue and efficiency with respect to the offline Vickrey auc-
tion.

5.1 No-information case
In the no-information case we consider our adversarial model, in

which an adversary specifies a set of valuations that are randomly
matched with arrival-departure intervals. Our competitive ratios
also hold in the relaxed model in which an adversary specifies a
distribution on valuations.

Let M(j) denote the following mechanism, which depends on a
parameter j taking integer values between 1 and n. In the special
case when all bidders arrive at once then this auction reduces to the
standard Vickrey auction. Let b�m denote the firstm bids to arrive,
and b�m\i denote the first m bids without the bid from agent i (if

it occured during the first m bids). Let b(s)�m denote the s-th highest
bid during the first m.

1. First Phase: Let τ be the arrival time of the j-th bidder, and
let j′ be the number of bidders seen up to and including time
τ . (In case of simultaneous arrivals it is possible j′ > j.)
Let p1 = b

(1)
�j′ and p2 = b

(2)
�j′ . If any agent bidding � p1 is

still present then sell to that agent (breaking ties arbitrarily)
at price p2.

2. Second Phase: Otherwise, set a reserve price of p1, and sell
to the first agent who submits a bid � p1, at price p1, break-
ing ties between agents that arrive at the same time at ran-
dom.



LEMMA 4. The online mechanismM(j) is strategyproof.

PROOF. First, assume that there are no ties, either at the end of
the first phase or during the second phase. In this case, construct the
following price schedule for agent i. We refer to a bid from an agent
�= i as an “outside bid.” The price schedule changes whenever a
new bid arrives, as follows:

pi(t) =

8>>>>><
>>>>>:

∞ , for < j − 1 outside bids
b
(1)
�j−1\i , for j − 1 outside bids

b
(1)

�j\i
, for � j outside bids, until some bid β

with v̂β � b
(1)
�j\i is present

∞ , otherwise.

Bid β represents a bid from an agent �= i that arrives as, or after,
the j-th bidder and bids at least ask price p1. This bid will win,
unless agent i bids above its scheduled price before this event.

Let pmin,i = minâi�t�d̂i
pi(t), and mi denote the period in

which this price first occurs. Consider three cases.

Case 1. Agent i is present after j − 1 outside bids and b(1)�j−1\i
=

pmin,i < v̂i. So, agent i is present at the end of the first
phase and the highest bidder and receives the item at price
p2 = b

(1)
�j−1\i.

Case 2. Agent i is present after j − 1 outside bids but b(1)�j−1\i
>

v̂i. We have pmin,i > v̂i, and v̂i < p1 and the agent receives
no allocation.

Case 3. Agent i arrives after j outside bids and before another
agent j′ �= i with v̂j′ � b

(1)
�j\i arrives. Agent i bids v̂i >

b
(1)

�j\i
. So, agent i is the first to bid � p1 in the second phase

and receives the item at price p1 = b
(1)
�j\i = pmin,i.

In all other cases it is clear that agent i’s bid value v̂i < pmin,i, and
that the agent receives no allocation in the auction.

Ties at the end of phase one present no problem, because p2 =
p1 = v̂i = pmin,i for all tied agents and agents are indiffer-
ent between winning or losing. We construct a randomized price
schedule to handle ties in the second phase. Assume that each
agent has a priority πi ∈ {1, . . . , n}, with priorities randomly per-
muted in each period. Assume that tie-breaking in M(j) respects
π = (π1, . . . , πn), such that the winning bidder is the one with the
greatest priority in that period.

We can construct a corresponding price schedule for agent i as
follows. In period t′ in which one or more outside bids arrive with
value � p1, then if πi is greater than all priorities of these outside
bids then pi(t

′) remains at price p1 and ticks up to ∞ at time t′+ ε
for some small ε > 0 (smaller than the minimal interarrival time
between agents). Otherwise, if an outside bid with value � p1 has
higher priority, agent i’s price is immediately set to ∞. The effect
is that (a) if only one bid arrives (no ties) with value � p1 then its
price remains at p1 in its arrival period and it gets the good; (b) if
multiple bids arrive with value � p1 then the price stays low for the
agent with the highest priority, and this agent gets the good.

Theorem 5 shows the competitiveness of the mechanism. We
assume for now that all arrivals are unique and can ignore ties. This
case is handled after the main proof.

THEOREM 5. The mechanismM(n/2�) is a4+o(1)-competitive
strategyproof online algorithm with respect to offline Vickrey for
both revenue and efficiency.

PROOF. We consider two cases as follows.

The item sells at time τ : In this case, the highest-bidding agent
among the first n/2� is still in the market at time τ . (Be-
cause the mechanism is defined so that it only sells the item
at time τ if the highest-bidding agent among the first n/2 is
still present.) With probability 1/2 − O(1/n), this agent is
the highest-bidding among the entire population. (In fact, the
probability is exactly 1/2 unless n is an odd number.) Con-
ditional on this event, the probability that the second-highest
bidder is also among the first half is 1/2 − O(1/n). (Here
we have term O(1/n), since there are only n/2�−1 agents
remaining in the first half, and �n/2� in the second half.) So
the probability of selling to the highest bidder at the second-
highest price is at least 1/4 −O(1/n).

The item does not sell at time τ : In this case, the probability that
the highest-bidding agent is among the second half of the
population is at least 1/2 − O(1/n) (again the probability
is exactly 1/2 unless n is an odd number.) Conditional on
this event, the probability that the second-highest bid was
received at or before time τ is at least 1/2 − O(1/n). If
both these events occur (as happens with probability at least
1/4−O(1/n)) the item will be sold to the highest bidder at
the second-highest price.

We note that in both cases we use the fact that the event the item
sells at timeτ is independent of the pair of events the highest bid-
der arrives at or beforeτ and the second highest bidder arrives at
or beforeτ . This is because the first event is entirely determined
by the relative ordering of the bidders in the first half of the pop-
ulation, while the other two events do not depend on this ordering
but only on how the population is partitioned into the first half and
second half. Therefore in expectation, our revenue (efficiency) is at
least 1/4 − O(1/n) fraction of that of the offline Vickrey mecha-
nism.

We need our assumption of unique valuations, generic for value
distributions with a density, for efficiency-competitiveness. With-
out this assumption, there are examples (e.g. one highest bid and
n− 1 second-highest bids) in which the item, if sold in the second
phase, is very likely to be sold to a second-highest bidder rather
than to the highest bidder.

REMARK 6. Introducing ties in arrival times, the analysis in
the second phase remains valid because the case in which both the
event that the second-highest bid is in the first phase and the highest
bid is in the second phase already precludes the ability for joint ar-
rivals with bids� p1. A simple argument shows that the efficiency
and revenue for the case of multiple simultaneous arrivals at the
end of phase one is at least that ofM(n/2�) for unique arrivals
and any arbitrary ordering of the arrivals. If the auction sells to the
highest bid in these simultaneous arrivals then given any arbitrary
ordering the same bid or some earlier bid wins, and for a price
that is dominated by the second-price in the simultaneous case. A
similar argument shows that if no sale is made at the end of phase
one with simultaneous arrivals, then no sale is made at the end of
phase one or to any of these bids for any arbitary reordering.

It is worth mentioning that the current mechanism M(n/2�) is
not strongly truthful, e.g., the people who leave before time τ are
guaranteed not to win the auction, and thus being truthful or not has
the same outcome. We can make the mechanism strongly truthful
as follows.

COROLLARY 7. There is a mechanism which is a4 + o(1)-
competitive strongly strategyproof online algorithm with respect to
offline Vickrey for both revenue and efficiency.

PROOF. Consider the following mechanism M′ in which with
probability 1 − 1/n we run the mechanism M(n/2�) and with



uniform probability 1/n2 we run mechanism M(j), 1 � j � n.
We note that since with positive probability every agent is present
at time τ (and thus participates in the Vickrey auction at that time),
which confirms the additional axiom specified in Remark 3 and
establishes that the mechanism is strongly truthful.

In fact, we can improve the competitive ratio for efficiency by
increasing the competitive ratio for revenue.

THEOREM 8. The mechanismM(n/e�) is a strategyproof on-
line algorithm which ise + o(1)-competitive for efficiency and
e2 + o(1)-competitive for revenue with respect to offline Vickrey.

PROOF. The proof is the same as the proof of Theorem 5. For
the competitiveness again we consider two cases. If the item sells at
time τ , then with probability n/e�/n = 1/e− o(1) the agent that
buys the item is the highest-bidding among the entire population. If
the item does not sell at time τ , according to the secretary problem,
with probability 1/e − o(1), we sell in the second phase to the
highest-bidding agent. Hence, our expected efficiency is at least
1/e − O(1/n) of the efficiency of the offline Vickrey mechanism.
For revenue, with probability (1/e)2 −O(1/n), we sell the item to
the highest bidder at the second-highest price in the first case. We
probability (1/e)(1−1/e)−O(1/n), we sell the item to the highest
bidder at the second-highest price in the second case. Hence our
expected revenue is at least (1/e)2−O(1/n) of the offline Vickrey
revenue.

The mechanism specified in Theorem 8 is not strongly truthful,
but we can make it strongly truthful using the same idea as above
in Corollary 7.

5.2 Lower bounds in the random-ordering model
In the secretary problem, it is well-known that no stopping rule

achieves asymptotic success probability greater than 1/e. How-
ever, this does not immediately translate into a lower bound of e
for the competitive ratio of online single-item auction mechanisms,
because:

1. The mechanism has richer feedback — it sees the numerical
values of the bids, not just their relative ordering.

2. Allocations in which the item is awarded to a bidder who
is not the highest, but still has a positive valuation for the
item, contribute positively to the expected efficiency of the
mechanism.

It turns out that the second problem is easy to fix — one considers
a bid set in which the highest bid exceeds the others by such a
large factor that the expected efficiency ratio of the allocation is
determined, to first order, by the probability of awarding the item
to the highest bidder. However, addressing the first issue appears
technically challenging, and the best lower bound we know of is:

THEOREM 9. For any constantε > 0, there is no online single-
item auction mechanism which is(2−ε)-competitive for efficiency,
in the random-ordering model.

The foregoing discussion implies nothing about lower bounds on
competitive ratios for revenue. (The trouble is that revenue compet-
itive ratio is determined by comparing with the second-highest bid
rather than the highest.) We can modify the proof of Theorem 9 to
obtain:

THEOREM 10. For any constantε > 0, there is no strate-
gyproof online single-item auction mechanism which is(3/2− ε)-
competitive for revenue, in the random-ordering model.

It is interesting to note that the hypothesis of strategyproofness
is required in the lower bound for revenue (Theorem 10) but not for
efficiency (Theorem 9).

Our proof of Theorem 9 hinges on constructing a probability dis-
tribution on bid sets, such that no online stopping rule has proba-
bility better than 1/2 − ε of stopping on the highest bid. (The
stopping rule is allowed to base its decisions on the numerical val-
ues of the bids it has seen, not just on their relative ranking.) Given
an arbitrary positive integer n and a real number ε > 0, put N =
�(10/ε)n�, and let D denote the uniform distribution on sets of
n + 1 consecutive integers in {0, 1, . . . , N}. In other words, a
random sample S from D is generated by picking an element u
of the set {n, n + 1, . . . , N} uniformly at random, and putting
S = {u− n, u− n+ 1, . . . , u}.

PROPOSITION 11. LetR be any online stopping rule. If a bid
setS is sampled according toD and the elements ofS are pre-
sented toR in random order, then

Pr(R stops onmax(S)) <
1

2
+

ε

10
.

PROOF. Let S = {u − n, u − n + 1, . . . , u}. At any point in
time as the bids in S are being presented to R, define the stateof
the system to be the triple (x∗, x∗, β), where x∗ is the lowest bid
presented so far, x∗ is the highest bid presented so far, and β = 1
if x∗ was presented more recently than x∗, 0 otherwise. The pair
(x∗, x∗) captures all the information influencing the distribution of
S; in other words, if x1, . . . , xj are the first j bids and (x∗, x∗, β)
is the state at the end of step j, then for any y ∈ {n, n+1, . . . , N},

Pr(u = y | x1, . . . , xj) = Pr(u = y | x∗, x
∗). (1)

We can think of the states (x∗, x∗, β) as states of a Markov
chain. States in which x∗ − x∗ = n are absorbing states, i.e. there
are no state transitions out of such a state. An absorbing state in
which β = 1 is called a winning state, and an absorbing state in
which β = 0 is called a losing state.

LEMMA 12. If x∗ > 0, x∗ < N, and x∗ − x∗ < n, then
Pr(u = x∗ | x∗, x∗) ≤ 1/2.

PROOF. If x∗ < n then Pr(u = x∗ | x∗, x∗) = 0. If n ≤ x∗ <
N , then the events u = x∗ and u = x∗ + 1 are both possible, and
are therefore equiprobable. Thus Pr(u = x∗ | x∗, x∗) ≤ 1/2.

LEMMA 13. If x∗ > n, x∗ < N − n, andx∗ − x∗ < n, then

Pr(next state is a winning state| x∗, x∗) =
Pr(next state is a losing state| x∗, x∗).

PROOF. The next state is a winning state if and only if u =
x∗ + n and the next sample outside [x∗, x∗] is u. The next state
is a losing state if and only if u = x∗ and the next sample out-
side [x∗, x∗] is u− n. The hypotheses of the lemma guarantee that
both events are possible; by symmetry, they have the same proba-
bility.

LEMMA 14. If x∗ > n, x∗ < N − n, andx∗ − x∗ < n, then
Pr(R stops onu | x∗, x∗) ≤ 1/2.

PROOF. The proof is by downward induction on x∗ − x∗. If
x∗ − x∗ = n then the statement is vacuously true. Otherwise,
if R stops in the current state, then Lemma 12 ensures that the
probability of stopping on u is at most 1/2. If R does not stop in the
current state but stops before the next state change, then it is assured
of not stopping on u. (Because u ≥ x∗, and all the bids seen before
the next state change are < x∗.) So assume that there is at least one
more state change after (x∗, x∗, β). If it is an absorbing state, then
the probability that it is a winning state is only 1/2. (Lemma 13.)
If it is not an absorbing state, then it is another state (x̂∗, x̂∗, β̂)
satisfying the criteria of Lemma 14, but with x̂∗ − x̂∗ > x∗ − x∗.
By the induction hypothesis, Pr(R stops on u | x∗, x∗) ≤ 1/2 in
this case.



The proof of Proposition 11 is now easy. Let x1 denote the first
bid. Then

Pr(n < x1 < N − n) > 1− 2n/N ≥ 1− ε/5,

and conditional on n < x1 < N−n, Lemma 14 tells us that R has
at best a 1/2 chance of stopping on max(S). Even if R is assured
of stopping on max(S) in the other cases, its overall probability of
success is at best 1/2(1 − ε/5) + ε/5 = 1/2 + ε/10.

PROOF OF THEOREM 9. Let S = {x1, . . . , xn} be sampled
according to the distribution D specified in Proposition 11. Trans-
form this into a bid set b = (v1, . . . , vn) by putting

vi = (10/ε)xi .

Assume, as usual, that v1 > v2 . . . > vn; in this particular case,
it implies that all bids besides v1 are ≤ (ε/10)v1. Pick disjoint
arrival-departure intervals for the agents, so that each time the mech-
anism encounters a new agent, it must decide whether or not to al-
locate the item to this agent without the benefit of seeing any future
bids. In other words, the mechanism must determine the allocation
according to an online stopping rule.

Let Y be the random variable which measures the mechanism’s
efficiency divided by v1; note that 0 ≤ Y ≤ 1. No online mech-
anism has better than 1/2 + ε/10 chance of allocating the item to
the highest bidder. (Otherwise such a mechanism could easily be
transformed into a stopping rule R which violates the conclusion
of Proposition 11.) If the item is allocated to any other bidder, then
Y ≤ ε/10. Therefore the expectation of Y , over the random choice
of bid set S as well as the random ordering of that set, is at most

(1/2 + ε/10) · 1 + (1/2− ε/10) · (ε/10) < 1/2 + ε/5.

There must be some particular bid set S such that E[Y | S] <
1/2 + ε/5. On this bid set, the competitive ratio of the mechanism
is at least (1/2 + ε/5)−1 > 2− ε.

5.3 Full-information case
We find it interesting to take a brief detour and consider the full-

informationcase, in which an adversary picks a distribution on val-
uations that is knownto the mechanism. In this case there is a strat-
egyproof online mechanism that approaches 1.724-competitive for
efficiency as n → ∞, in contrast to the e-competitive mechanism
in the no-information case. This raises an interesting question, that
we leave unanswered in this paper, as to whether it is possible to
design an adaptive mechanism in the no-information case that can
perform better than the M(j) family of mechanisms against an ad-
versary that chooses a distribution on valuations.

We adapt the methods presented by Gilbert and Mosteller [7] for
the full-information secretaryproblem. Our innovation is to intro-
duce a method to make their schemes value- and time-SP,1 without
diminishing the probability of allocating the good to the highest
bidder. (It is proved in [7] that no online stopping rule can achieve
a higher success probability than their scheme.)

We can assume that the distribution on values vi is uniform on
[0, 1]. This assumption is without loss of generality for distribu-
tions having a continuous cumulative distribution function F (x),
because the largest element in a sample remains the largest under
all monotonic transformations, and the mapping x �→ F (x) trans-
forms the given distribution into the uniform distribution on [0, 1].

Let M(r1, . . . , rn) denote the following mechanism, which is
parameterized with a fixed price schedule, (r1, . . . , rn), with 0 �
ri � 1:
1In fact, Gilbert and Mosteller also present a 1+ε-competitive
scheme in the limit as n → ∞ for the variant of the full-
information secretary’s problem in which the goal is to maximize
the expected value of the choice and not the probability of selecting
the winner. We omit this scheme because it is unclear to us whether
this result holds against an adversary able to select arbitrary distri-
butions.

1. Allocation Phase: In each period in which one or more new
bidders arrive, let p(t) = max(rj , b

(2)
�j), where j bids have

arrived in total. Continue until an agent, j∗, bidding > p is
present. (Note, we allow multiple agents to arrive at the same
time, but can ignore ties in value given uniform [0,1] values.)
Agent j∗ will be the winner. Initialize the price to this agent,
p∗ = p(t).

2. Pricing Phase. Keep the auction open until j∗ departs. In
each period in which one or more new bidders arrive, adjust
price p∗ down to max(rj′ , b

(2)
�j′) (if this new price is smaller

than the current price), where j′ bids have arrived in total.

The auction closes when bidder j∗ leaves, at which point this
agent is allocated the good for the adjusted price p∗.

The analysis of Gilbert and Mosteller [7] provides a method to
set the price schedule r1, . . . , rn to maximize the expected proba-
bility of selecting the winner. Optimal schedules have decreasing
prices, since the idea is to accept the current draw with value vj if
the probability of winning with this draw is more likely than the
probability that a draw with a larger value will occur in the future
and be chosen. This latter probability decreases with the number of
remaining draws. Intuitively, in the final round we should take any
bid that is the highest bid seen, while in the penultimate round we
should take a bid if it is the highest seen so far and � 0.5 because
that is the probability that the highest bid will be seen in the final
round. For instance, given n = 5, the sequence of optimal prices r∗

is, r∗1 = 0.825, r∗2 = 0.776, r∗3 = 0.690, r∗4 = 0.500, r∗5 = 0. It is
these decreasing prices that make time-SP an interesting question.

LEMMA 15. The mechanism familyM(r1, . . . , rn) is strate-
gyproof.

PROOF. Let b�j(t) denote any of the first j bids to arrive that
are still presentat time t, and b(1)�j (t) include any bid that is maxi-
mal across the bids seen in the first j bids and still present at time
t. We’ll construct the price schedule for agent i, and refer to bids
from �= i as “outside” bids. Let bid β denote the first outside bid
(if any) for which:

v̂β > max(rj\i, b
(2)
�j\i)

where j bids have arrived in total in a period while bid β is present.
Call this the “trigger” bid. The price schedule to agent i is con-
structed as:

pi(t) =

8>><
>>:

r1 , before any bid �= i

max(r(j\i)+1, b
(1)
�j\i) , after j outside bids but no trigger

v̂β , at trigger, until period âβ + ε
∞ , otherwise

where r(j\i)+1 is the j-th price from schedule r when i is in the
first j-th arrivals, and the (j + 1)-st price otherwise. Let pmin,i =
minâi�t�d̂i

pi(t).
First, we show that if pmin,i < v̂i that agent i is the winner.

Consider three cases: Case (i). Schedule price, r1 < v̂i, and agent
i is the first to arrive. This is also the price the agent faces in the
auction, and the agent is allocated the item upon arrival. Case (ii).
Suppose m bids have been received, but there was no trigger bid.
If max(rm, b

(1)

�m\i) < v̂i while agent i is present then pmin,i <

v̂i. Together with the lack of a trigger, this condition implies that
auction price pi(t) = max(rm, b

(2)
m ) < v̂i, and agent i is allocated

the item. Case (iii). Suppose m bids have been received in total,
including a trigger bid and agent i is present on arrival of the trigger
β, and that v̂β < v̂i. Again, pmin,i < v̂i and we have pi(t) =

max(rm, b
(2)
m ) < v̂i in this period since the trigger implies v̂i >

v̂β > rm.



Second, we show that if pmin,i > v̂i then the item is not allo-
cated. Assume initially that agent i is not the first to bid and that
the trigger occurs (if at all) after agent i departs. Then, pmin,i > v̂i

requires v̂i < max(rj , b
(1)
�j\i) in all periods âi � t � d̂i, where j

denotes the number of bids that have arrived. By contradiction, if
agent i is a winner then v̂i � max(rj , b

(2)
�j) in one of these periods,

but this implies v̂i � max(rj , b
(1)

�j\i
). By a similar argument, we

need r1 > v̂i if agent i is the first to bid and v̂β > v̂i if the trigger
occurs while agent i is present, from which agent i is not a winner
in the auction.

Third, we show that if agent i is allocated the item then its pay-
ment is pmin,i. Price pi(t) is equal to the price schedule before the
trigger, and p∗ is initially set to the minimal price between its ar-
rival âi and the end of the allocation phase. Then, p∗ in the auction
tracks the minimal price in schedule pi(t) because it follows the
price agent i would have faced if it had delayed its arrival but still
submitted a bid early enough to beat a potentially winning bid from
an outside bidder.

We show the competitiveness of the mechanism by demonstrat-
ing its performance relative to the scheme MGM(r∗1 , . . . , r

∗
n) de-

scribed by Gilbert and Mosteller, which assumes disjoint arrival-
departure intervals, defines an optimal price schedule r∗, and works
as follows:

1. At the arrival time of the j-th bidder, let p = max(r∗j , b
(2)
�j).

Continue until a bid > p is received, and make this agent the
winner.

THEOREM 16. [7] Algorithm MGM(r∗) selects the item with
the highest value with an asymptotic probability 0.5802..., for large
numbers of itemsn and an appropriately chosen price schedule.

COROLLARY 17. MechanismM(r∗1 , . . . , r
∗
n) is a 1.724- com-

petitive strategyproof online algorithm with respect to offline-Vickrey
for efficiency.

PROOF. The proof is by comparison with mechanism MGM(r∗),
which is 1.724-competitive but not strategyproof. Equivalently, we
show that the probability of M(r∗) selecting the highest bid is at
least as good as that of MGM(r∗). Note first that M(r∗) will never
accept a later bid than MGM(r∗), because any time a bid is suc-
cessful in MGM(r∗), it is the highest bid so far and satisfies the
price schedule test in M(r∗). Next, in any period t in which both
mechanisms take the same decision, the probability of success is
the same. Finally, consider the case in which M(r∗) selects a bid
when MGM(r∗) passes. We claim that this bid is more likely to be
the highest bid than the probability of subsequently selecting the
highest bid by following the MGM(r∗) strategy. To see this, let
j denote the period in which this occurs, and r∗j denote the GM
threshold. Let xj > r∗j denote the value of the bid that is ac-
cepted by M(r∗). The threshold value, r∗j , is set so that if there are
(n − j) additional draws to make i.i.d. from U [0, 1] and the GM
mechanism is holding a sample xj of value exactly r∗j and xj is the
maximal value seen so far, then the probablity that xj will be max-
imal across all n samples is equal to the probability that MGM(r∗)
will select the maximal bid in the future. Thus, if xj > r∗j then
monotonicity argues that the probability that xj will be the high-
est bid is greater than the probability that MGM(r∗) will select
the highest bid in the future. Notice that it does not matter how
we come to hold the current best sample (i.e. it does not matter
whether we have been able to hold onto this sample for a number
of periods).

Finally, we note that the optimal price schedule as defined by
Gilbert and Mosteller is set assuming the adversarial setting of dis-
joint arrival-departure intervals and leaves open the possibility of
stronger upper-bounds for a more nuanced analysis of the degree
of overlap between agents’ intervals.

6. MULTI-ITEM AUCTION (K > 1)

In this section, we consider the case in which the auctioneer has k
identical items. We will assume without loss of generality that k �
n, since it is impossible to sell more than n items when each agent
demands only one. Note that it is trivial to obtain a competitive
ratio of ek for efficiency or 4k for revenue: simply throw away
k − 1 of the items, and sell the remaining one using one of the
single-item mechanisms described in Section 5.

On the other hand, it is not obvious how to obtain a competitive
ratio which is constant (independent of k) as k → ∞. Mecha-
nisms which achieve this goal of constant competitive ratio are pre-
sented below. Although these mechanisms generalize the single-
item mechanisms presented above, the analysis will be quite differ-
ent. While our analysis of the single-item mechanisms was based
on the secretary problem, the basis for our analysis of multi-item
mechanisms will be the DSOT auction of [9].

First, we present a mechanism which is C-competitive (for a
constant C < 6338) with respect to F(2,k) for revenue. It is worth
mentioning that we consider F(2,k) instead of F(2) (the optimal
revenue for a fixed-price unlimited-supplymechanism which sells
at least two items), since otherwise the competitive ratio is at least
n/k, e.g., when all valuations are identical. The reason that we
use F(2,k) (instead of F(1,k), the optimal revenue for a fixed-price
mechanism) is the same as the reason mentioned in [9] and hence
omitted.

The description of the mechanism requires the following nota-
tion. Suppose b is any set of real-valued bids. Let v1 ≥ v2 ≥
. . . ≥ vn be the bids in b, arranged in descending order. For any
price p, let np(b) denote the number of bids in b which are greater
than or equal to p. For a positive integer s, define Fs

p (b) to be the
revenue obtained by selling at most s items at price p, i.e.

F s
p (b) = p ·min{s, np(b)}.

Define

opts(b) = argmax
p

(F s
p (b)),

i.e. opts(b) is the price which maximizes revenue subject to the
constraint that at most s items are sold.

Let Mk(j) denote the following mechanism, generalizing the
one mentioned in the previous section.

1. Let s = �k/2�. Let τ be the arrival time of the j-th bidder,
and let j′ be the number of bidders seen up to and including
time τ . (In case of simultaneous arrivals, it is possible that
j′ > j.) Of the bidders who arrived at time τ , pick a random
subset of j′ − j of them, and mark these bidders as inactive.
Define every other bidder as either activeif they arrived at or
before τ and have not yet departed, or departedotherwise;
there are exactly j agents who are active or departed. Set p
equal to the (s+1)st price over the bids from these j agents.
(Or p = 0 if j � s.) Sell at price p to any bidder still present.
If fewer than s items are sold at time τ , discard items until
the remaining supply is k/2�.

2. Let b′ denote the set of j active bids or departed bids that we
have seen so far. Set a reserve price p′ = opts(b′). For bid-
ders arriving after the j-th (breaking ties due to simultaneous
arrivals at random), sell at price p′ if their bid is � p′, until
the mechanism runs out of items or bidders.

Let RMk be Mk(j) where j is number of heads in n tosses of a
fair coin, i.e., j is drawn from the binomial distribution B(n, 1/2).

THEOREM 18. RMk is a strategyproof online mechanism which
isC-competitive withF(2,k) for revenue, for a constantC < 6338.

PROOF. To show that mechanism Mk(j) is strategyproof for
any j we’ll again construct an agent-independent price schedule



and show utility-maximization with respect to the schedule. To
keep things simple we’ll assume that no two agents arrive at the
same time and provide a short proof sketch. Construct the price
schedule to agent i as:

pi(t) =

8>>>>><
>>>>>:

∞ , for < j − 1 outside bids
b
(s)
�j−1\i , for j − 1 outside bids
opts(b�j\i) , after j outside bids,

before k/2� additional outside bids
with value � opts(b�j\i) arrive

∞ , otherwise.

Again, let pmin,i = minâi�t�d̂i
pi(t), withmi denoting the period

in which this minimal price occurs. Consider the following cases.

Case 1. Agent i is present after j − 1 outside bids, and its bid
price v̂i > b

(s)
�j−1\i. The price at the end of phase one is

also equal to b
(s)

�j−1\i in this case, and the agent wins an

item. Moreover, this is the minimal price over [âi, d̂i] be-
cause opts(b�j\i) � b

(s)
�j\i � b

(s)
�j−1\i, since opts(b) � b(s)

for any set of bids because price b(s) sells every item, and a
lower price than b(s) can only reduce the revenue received
for every item sold, but without increasing the quantity sold.

Case 2. Agent i is present after j − 1 outside bids but its bid price
v̂i < b

(s)
�j−1\i. In this case the agent neither wins at the end

of the first phase or during the second phase.

Case 3. Agent i’s bid arrives after j outside bids and before an
additional k/2� outside bids with value � opts(b�j\i), and
with bid value v̂i � opts(b�j\i). In this case, the price in
the auction matches the price in the schedule and the agent
wins an item. Moreover, this price is the minimal price it will
face because it arrived after j outside bids (the price can only
increase to ∞ in future periods).

It is straightforward to show that the agent does not win an item in
the auction in the other cases, for which its bid price is less than the
price schedule.

The proof of competitiveness closely parallels the proof of com-
petitiveness of DSOT in [9]. Let b′′ denote the set of all bids which
do not appear in b′. The multiset b′ (multiset b′′) is a random sam-
ple from the uniform distribution on all 2n sub-multisets of b; this
follows from the random ordering hypothesis together with the fact
that j is distributed according to the binomial distribution, which
is the distribution of the cardinality of a random sub-multiset of
b. Thus b′, b′′ have the same distribution as a uniformly-sampled
random partition of b into two sub-multisets. We also recall a defi-
nition and a lemma from [9].

DEFINITION 19. For any 1 � j � n, defineBj to be a sub-
multiset ofb containing the topj bids, i.e.Bj = {v1, . . . , vj}, and
definen′(Bj) to be the number of bids inBj that are inb′. Given
c ∈ (0, 1), we say thatj is c-good if �cj� � n′(Bj) � j − �cj�.

LEMMA 20 ([9]).

Pr[j is notc-good for somej > t] �
2 exp

`−(1− 2c)2t/4
´

1− exp (−(1− 2c)2/4)
.

COROLLARY 21.

Pr[j is not1/24-good for somej > 24] < 0.06823.

Suppose that opts(b) is the m-th largest bid, so that F(2,s) =
mvm. Let G denote the event that v1 ∈ b′′, v2 ∈ b′. Clearly,
Pr(G) = 1/4. Let H denote that event that all j > 1 are 1/24-
good and that event G occurs. If event G occurs, all j ∈ {2, 3, . . . ,

24} are 1/24-good. Moreover, by the corollary above, the (un-
conditional) probability that some j > 24 is not 1/24-good is <
0.06823. Therefore, Pr(H) > 1−Pr(¬G)−0.06823 = 0.18177.
Let p′ = opts(b′); note that this is the price which RMk charges
to bidders in b′′. Conditional on event H , p′np′(b′) � vmnvm(b′),
since m � s. Thus, conditional on H ,

Rev(RMk) � p′np′(b′′) �
„
np′(b′′)
np′(b′)

«
vmnvm (b′).

Because all j > 1 are 1/24-good, we have

np′(b′′)
np′(b′)

>
1

24
,

nvm(b′)
m

� 1

24

Hence Exp[Rev(RMk) |H ] > 1
24

· 1
24

· mvm = 1
576

F(2,s). To
relate this to F(2,k), we make the following simple observation.
Suppose that optk(b) is the 3-th largest bid, so that F(2,k) = 3v�.
Then F(2,s) � F s

v�
(b) = v� ·min{s, 3} � v� · �

2
= 1

2
F(2,k), so

Exp[Rev(RMk)] > 0.18177 · Exp[Rev(RMk) |H ]

> 0.18177 · 1

576
· 1
2
F(2,k).

To obtain a mechanism which is constant-competitive for effi-
ciency in the k > 1 case, we introduce the following mechanism
M ′

k(j):

1. Let s = �k/3�. At the arrival time of the j-th bidder, let p be
the (s + 1)-th highest bid seen so far. Sell at most s items,
at price p, to any bidder in the market at this time whose
valuation is greater than or equal to the s-th highest bid. Ties
are broken in favor of earlier arrivals, and arbitrarily in the
case of simultaneous arrivals.

2. Sell an item to each subsequent bidder whose valuation is
greater than or equal to p (break ties due to simultaneous
arrivals at random), until the mechanism runs out of items or
bidders.

THEOREM 22. LetRM ′
k be the mechanism which selects a ran-

domj ∈ {1, . . . , n} according to the binomial distribution
B(n, 1/2), and then runs the mechanismM′

k(j). ThenRM ′
k is

a strategyproof online algorithm which isC-competitive with re-
spect to the Vickrey auction for both efficiency and revenue, for a
constantC < 48.

PROOF. The proof of strategyproofness is the same as that of
Theorem 18 and hence omitted. The proof of competitiveness pro-
ceeds as follows. Number the agents 1, 2, . . . , n in order of de-
creasing valuation. As before, the transition point divides the set
of agents into two subsets b′, b′′, and this partition has the same
distribution as a random partition sampled by placing each agent
independently and equiprobably in b′ or b′′. Let E denote the event

E :
each of the sets b′, b′′ contains at least �k/3� of the
top k agents.

One proves using Chernoff bounds, as in [9], that the probability
of E is at least 1− 2e−k/36, which tends to 1 as k → ∞. In fact,
for k > 1, Pr(E) attains its minimum value of 3/8 at k = 4.

Conditional on E, we claim that the expected efficiency of RM′
k

is at least 1/18 of the expected efficiency of the optimal allocation,
i.e. the allocation which assigns the k items to agents 1, 2, . . . , k.
We will prove this by showing that for 1 ≤ i ≤ �k/3�, agent i has
probability at least 1/6 of winning an item. Let Ci,Di denote the
events

Ci : i ∈ b′′

Di :
Of the agents in b′′ with the k highest bids,
i is among the �k/3� with the earliest arrival times.



Event Ci is independent of E, and has probability 1/2. Conditional
on Ci and E, the relative ordering of the agents in b′′ is random, so
Di holds with probability at least 1/3. This verifies that Pr(Ci ∧
Di|E) ≥ 1/6. Finally, it is easy to see, from the definition of
RM ′

k, that agent i wins an item if Ci and Di hold.
This gives an upper bound of 48 = [(3/8) · (1/18)]−1 on the

competitive ratio for efficiency. The competitive ratio for revenue
is bounded above by 8, using a similar proof. Conditional on the
event E defined above, RM′

k sells at least k/3 items at a price
which is greater than or equal to the (k + 1)-st price, which is the
price set by the k-item Vickrey auction. Thus, the expected revenue
of RM ′

k conditional on E is at least 1/3 of the Vickrey revenue.
Recalling that Pr(E) � 3/8, we obtain that RM ′

k is 8-competitive
with Vickrey for revenue.

By combining mechanisms RMk and RM ′
k we can obtain the

following corollary.

COROLLARY 23. There is a strategyproof online mechanism
M ′′

k which is simultaneously constant-competitive withF(2,k) for
revenue and constant-competitive with Vickrey for efficiency.

PROOF. We can obtain mechanism M ′′
k by combining RMk

and RM ′
k as follows. At the outset of the auction, toss a fair coin. If

it comes up heads, use the revenue-competitive mechanism RMk;
if tails, use the efficiency-competitive mechanism RM′

k. The proof
of strategyproofness and competitiveness follows immediately.

7. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we considered online auctions with a limited sup-

ply. We presented value- and time-strategyproof mechanisms with
constant efficiency- and revenue-competitiveness when values of
the bidders are drawn independently from some unknown distribu-
tion. In all of these mechanism, we had a learning phase in which
we set a fixed price for the rest of the auction. Following are some
open problems.

The main open problem is closing the gaps between the current
upper bounds and lower bounds for both efficiency and revenue.
More precisely, we believe that our lower bounds 2 for efficiency
and 1.5 for revenue in the k = 1 case are not tight, and can be
improved using different distributions than those considered in the
proofs of lower bounds. Solving this problem for the multi-item
case seems even more challenging.

The next open question is: what are the lower bounds for ef-
ficiency and revenue when the valuations are independent random
samples from an unknown probability distribution? (Recall that our
lower bounds were for the random-orderingmodel only, not for the
independent-sampling model in which it is tougher to prove such
lower bounds.)

It would be interesting to know whether for the multi-item case
there is an online allocation rule whose efficiency-competitive ra-
tio approaches 1 as k goes to infinity. (If so, is there a time–
strategyproof online mechanism implementing this allocation rule?)

Considering the random ordering hypothesis in the multi-unit de-
mand model of Lavi and Nisan [11], in which we have an auction
of k identical indivisible goods to a set of bidders where the bidders
can demand more than one unit, is an interesting open problem. By
treating the k items as a single bundle and running a single-item
auction for this bundle, we can obtain strategyproof mechanisms
with competitive ratios of ek for efficiency or 4k for revenue with
respect to the offline Vickrey mechanism. Can we obtain constant
competitive ratios for this case? Is the Vickrey mechanism the ap-
propriate benchmark for revenue in this case, or is there an appro-
priate analogue of F(2,k) for multi-unit auctions?

Finally, it is very interesting to consider online auctions when
we have re-usable goods e.g. in pricing WiFi. Even for the single-
item case, it appears very challenging to obtain competitive online
mechanisms in this setting.
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