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Abstract

Online mechanism design (OMD) addresses the problem of sequential
decision making in a stochastic environment with multiple self-interested
agents. The goal in OMD is to make value-maximizing decisions despite
this self-interest. In previous work we presented a Markov decision pro-
cess (MDP)-based approach to OMD in large-scale problem domains.
In practice the underlying MDP needed to solve OMD is too large and
hence the mechanism must consider approximations. This raises the pos-
sibility that agents may be able to exploit the approximation for selfish
gain. We adopt sparse-sampling-based MDP algorithms to implementε-
efficient policies, and retain truth-revelation as an approximate Bayesian-
Nash equilibrium. Our approach is empirically illustrated in the context
of the dynamic allocation of WiFi connectivity to users in a coffeehouse.

1 Introduction

Mechanism design (MD) is concerned with the problem of providing incentives to im-
plement desired system-wide outcomes in systems with multiple self-interested agents.
Agents are assumed to have private information, for example about their utility for differ-
ent outcomes and about their ability to implement different outcomes, and act to maximize
their own utility. The MD approach to achieving multiagent coordination supposes the ex-
istence of a center that can receive messages from agents and implement an outcome and
collect payments from agents. The goal of MD is to implement an outcome with desired
system-wide properties in a game-theoretic equilibrium.

Classic mechanism design considers static systems in which all agents are present and a
one-time decision is made about an outcome. Auctions, used in the context of resource-
allocation problems, are a standard example. Online mechanism design [1] departs from
this and allows agents to arrive and depart dynamically requiring decisions to be made with
uncertainty about the future. Thus, an online mechanism makes a sequence of decisions
without the benefit of hindsight about the valuations of the agents yet to arrive. Without the
issue of incentives, the online MD problem is a classic sequential decision problem.

In prior work [6], we showed that Markov decision processes (MDPs) can be used to define
an online Vickrey-Clarke-Groves (VCG) mechanism [2] that makes truth-revelation by the
agents (called incentive-compatibility) a Bayesian-Nash equilibrium [5] and implements a
policy that maximizes the expected summed value of all agents. This online VCG model



differs from the line of work inonline auctions, introduced by Lavi and Nisan [4] in that it
assumes that the center has a model and it handles a general decision space and any decision
horizon. Computing the payments and allocations in the online VCG mechanism involves
solving the MDP that defines the underlying centralized (ignoring self-interest) decision
making problem. For large systems, the MDPs that need to be solved exactly become large
and thus computationally infeasible.

In this paper we consider the case where the underlying centralized MDPs are indeed too
large and thus must be solved approximately, as will be the case in most real applications.
Of course, there are several choices of methods for solving MDPs approximately. We show
that the sparse-sampling algorithm due to Kearns et al. [3] is particularly well suited to
online MD because it produces the neededlocal approximations to the optimal value and
action efficiently. More challengingly, regardless of our choice the agents in the system can
exploit their knowledge of the mechanism’s approximation algorithm to try and “cheat” the
mechanism to further their own selfish interests. Our main contribution is to demonstrate
that our new approximate online VCG mechanism has truth-revelation by the agents as
anε-Bayesian-Nash equilibrium (BNE). This approximate equilibrium supposes that each
agent is indifferent to within an expected utility ofε, and will play a truthful strategy in best-
response to truthful strategies of other agents if no other strategy can improve its utility by
more thanε. For anyε, our online mechanism has a run-time that is independent of the
number of states in the underlying MDP, provides anε-BNE, and implements a policy with
expected value withinε of the optimal policy’s value.

in the context of the dynamic allocation of WiFi connectivity to users in a coffeehouse
demonstrates the speed-up introduced with sparse-sampling (compared with policy cal-
culation via value-iteration), as well as the economic value of adopting an MDP-based
approach to resource allocation over a simple fixed-price approach.

2 Preliminaries

Here we formalize the multiagent sequential decision problem that defines the online mech-
anism design (OMD) problem. The approach is centralized. Each agent is asked to report
its private information (for instance about its value and its capabilities) to a central planner
or mechanism upon arrival. The mechanism implements a policy based on its view of the
state of the world (as reported by agents). The policy defines actions in each state, and the
assumption is that all agents acquiesce to the decisions of the planner. The mechanism also
collects payments from agents, which can themselves depend on the reports of agents.

Online Mechanism Design We consider a finite-horizon problem with a setT of time
points and a sequence of decisionsk = {k1, . . . , kT }, wherekt ∈ Kt andKt is the set of
feasible decisions in periodt. Agenti ∈ I arrives at timeai ∈ T , departs at timeli ∈ T ,
and has valuevi(k) ≥ 0 for a sequence of decisionsk. By assumption, an agent has no
value for decisions outside of interval[ai, li]. Agents also face payments, which can be col-
lected after an agent’s departure. Collectively, informationθi = (ai, li, vi) defines thetype
of agenti with θi ∈ Θ. Agent types are sampled i.i.d. from a probability distributionf(θ),
assumed known to the agents and to the central mechanism. Multiple agents can arrive and
depart at the same time. Agenti, with typeθi, receives utilityui(k, p; θi) = vi(k; θi)− p,
for decisionsk and paymentp. Agents are modeled as expected-utility maximizers.

Definition 1 (Online Mechanism Design) The OMD problem is to implement the sequence
of decisions that maximizes the expected summed value across all agents in equilibrium,
given self-interested agents with private information about valuations.



In economic terms, anoptimal (value-maximizing) policy is the allocatively-efficient, or
simply theefficientpolicy. Note that nothing about the OMD models requires centralized
executionof the joint plan. Rather, the agents themselves can have capabilities to perform
actions and be asked to perform particular actions by the mechanism. The agents can also
have private information about the actions that they are able to perform.

Using MDPs to Solve Online Mechanism Design In the MDP-based approach to solv-
ing the OMD problem the sequential decision problem is formalized as an MDP with the
state at any time encapsulating both the current agent population and constraints on current
decisions as reflected by decisions made previously. The reward function in the MDP is
simply defined to correspond with the total reported value of all agents for all sequences of
decisions.

Given typesθi ∈ f(θ) we define an MDP,Mf , as follows. Define thestateof the MDP at
timet as the history-vectorht = (θ1, . . . , θt; k1, . . . , kt−1), to include the reported types up
to and including periodt and the decisions made up to and including periodt− 1.1 The set
of all possible states at timet is denotedHt. The set of all possible states across all time is
H =

⋃T+1
t=1 Ht. The set of decisions available in stateht is Kt(ht). Given a decisionkt ∈

Kt(ht) in stateht, there is some probability distributionProb(ht+1|ht, kt) over possible
next statesht+1. In the setting of OMD, this probability distribution is determined by the
uncertainty on new agent arrivals (as represented withinf(θ)), together with departures
and the impact of decisionkt on state.

The payoff function for the induced MDP is defined to reflect the goal of maximizing the
total expected reward across all agents. In particular, payoffRi(ht, kt) = vi(k≤t; θi) −
vi(k≤t−1; θi) becomes available from agenti upon taking actionkt in stateht. With this,
we have

∑τ
t=1 Ri(ht, kt) = vi(k≤τ ; θi), for all periodsτ to provide the required cor-

respondence with agent valuations. LetR(ht, kt) =
∑

i Ri(ht, kt), denote the payoff
obtained from all agents at timet. Given a (nonstationary) policyπ = {π1, π2, . . . , πT }
whereπt : Ht → Kt, an MDP defines an MDP-value functionV π as follows:V π(ht) is
the expected value of the summed payoff obtained from stateht onwards under policyπ,
i.e.,V π(ht) = Eπ{R(ht, π(ht))+R(ht+1, π(ht+1))+ · · ·+R(hT , π(hT ))}. An optimal
policy π∗ is one that maximizes the MDP-value of every state inH.

The optimal MDP-value functionV ∗ can be computed by value-iteration, and is defined
so thatV ∗(h) = maxk∈Kt(h)[R(h, k) +

∑
h′∈Ht+1

Prob(h′|h, k)V ∗(h′)] for t = T −
1, T − 2, . . . , 1 and allh ∈ Ht, with V ∗(h ∈ HT ) = maxk∈KT (h) R(h, k). Given the
optimal MDP-value function, the optimal policy is derived as follows: fort < T , policy
π∗(h ∈ Ht) chooses actionarg maxk∈Kt(h)[R(h, k) +

∑
h′∈Ht+1

Prob(h′|h, k)V ∗(h′)]

andπ∗(h ∈ HT ) = arg maxk∈KT (h) R(h, k). Let θ̂≤t′ denote reported types up to and

including periodt′. Let Ri
≤t′(θ̂≤t′ ;π) denote the total reported reward to agenti up to and

including periodt′. Thecommitment periodfor agenti is defined as the first period,mi,
for which∀t ≥ mi, Ri

≤mi
(θ̂≤mi ;π) = Ri

≤t(θ̂≤mi ∪ θ′>mi
;π), for any typesθ′>mi

still to
arrive. This is the earliest period in which agenti’s total value is known with certainty.

Let ht′(θ̂≤t′ ;π) denote the state in periodt′ given reportŝθ≤t′ . Let θ̂≤t′\i = θ̂≤t′ \ θ̂i.

Definition 2 (Online VCG mechanism) Given historyh ∈ H, mechanismMvcg =
(Θ;π, pvcg) implements policyπ and collects payment,

pvcg
i (θ̂≤mi

;π) = Ri
≤mi

(θ̂≤mi
;π)−

[
V π(hâi

(θ̂≤âi
;π))− V π(hâi

(θ̂≤âi\i;π))
]

(1)

1Using histories as state will make the state space very large. Often, there will be some function
g for whichg(h) is a sufficient statistic for all possible statesh. We ignore this possibility here.



from agenti in some periodt′ ≥ mi.

Agenti’s payment is equal to its reported value discounted by the expected marginal value
that it will contribute to the system as determined by the MDP-value function for the policy
in its arrival period. The incentive-compatibility of the Online VCG mechanism requires
that the MDP satisfiesstalling which requires that the expected value from the optimal
policy in every state in which an agent arrives is at least the expected value from following
the optimal action in that state as though the agent had never arrived and then returning to
the optimal policy. Clearly, propertyKt(ht) ⊇ Kt(ht \ θi) in any periodt in whichθi has
just arrived is sufficient for stalling. Stalling is satisfied whenever an agent’s arrival does
not forcea change in action on a policy.

Theorem 1 (Parkes & Singh [6]) An online VCG mechanism,Mvcg = (Θ; π∗, pvcg),
based on an optimal policyπ∗ for a correct MDP model that satisfies stalling is Bayesian-
Nash incentive compatible and implements the optimal MDP policy.

3 Solving Very Large MDPs Approximately

From Equation 1, it can be seen that making outcome and payment decisions at any point
in time in an online VCG mechanism does not require a global value function or a global
policy. Unlike most methods for approximately solving MDPs that compute global approx-
imations, the sparse-sampling methods of Kearns et al. [3] compute approximate values and
actions for a single state at a time. Furthermore, sparse-sampling methods provide approx-
imation guarantees that will be important to establish equilibrium properties — they can
compute anε-approximation to the optimal value and action in a given state in time inde-
pendent of the size of the state space (though polynomial in1

ε and exponential in the time
horizon). Thus, sparse-sampling methods are particularly suited to approximating online
VCG and we adopt them here.

The sparse-sampling algorithm uses the MDP modelMf as a generative model, i.e., as a
black box from which a sample of the next-state and reward distributions for any given
state-action pair can be obtained. Given a states and an approximation parameterε, it
computes anε-accurate estimate of the optimal value fors as follows. We make the param-
eterization onε explicit by writing sparse-sampling(ε). The algorithm builds out a depth-T
sampled tree in which each node is a state and each node’s children are obtained by sam-
pling each action in that statem times (wherem is chosen to guarantee anε approximation
to the optimal value ofs), and each edge is labeled with the sample reward for that transi-
tion. The algorithm computes estimates of the optimal value for nodes in the tree working
backwards from the leaves as follows. The leaf-nodes have zero value. The value of a node
is the maximum over the values for all actions in that node. The value of an action in a
node is the summed value of them rewards on them outgoing edges for that action plus
the summed value of them children of that node. The estimated optimal value of states is
the value of the root node of the tree. The estimated optimal action in states is the action
that leads to the largest value for the root node in the tree.

Lemma 1 (Adapted from Kearns, Mansour & Ng [3]) The sparse-sampling(ε) algorithm,
given access to a generative model for anyn-action MDPM , takes as input any state
s ∈ S and anyε > 0, outputs an action, and satisfies the following two conditions:

• (Running Time) The running time of the algorithm isO((nC)T ), whereC =
f ′(n, 1

ε , Rmax, T ) andf ′ is a polynomial function of the approximation parameter
1
ε , the number of actionsn, the largest expected reward in a stateRmax and the
horizonT . In particular, the running time has no dependence on the number of
states.



• (Near-Optimality) The value function of the stochastic policy implemented by the
sparse-sampling(ε) algorithm, denotedV ss, satisfies|V ∗(s) − V ss(s)| ≤ ε si-
multaneously for all statess ∈ S.

It is straightforward to derive the following corollary from the proof of Lemma 1 in [3].

Corollary 1 The value function computed by the sparse-sampling(ε) algorithm, denoted
V̂ ss, is near-optimal in expectation, i.e.,|V ∗(s)− E{V̂ ss(s)}| ≤ ε simultaneously for all
statess ∈ S and where the expectation is over the randomness introduced by the sparse-
sampling(ε) algorithm.

4 Approximately Efficient Online Mechanism Design

In this section, we define anapproximateonline VCG mechanism and consider the effect
on incentives of substituting the sparse-sampling(ε) algorithm into the online VCG mech-
anism. We model agents as indifferent between decisions that differ by at most a utility of
ε > 0, and consider an approximate Bayesian-Nash equilibrium. Letvi(θ;π) denote the
final value to agenti after reportsθ given policyπ.

Definition 3 (approximate BNE) MechanismMvcg = (Θ, π, pvcg) is ε-Bayesian-Nash in-
centive compatible if

Eθ|θ≤t′
{vi(θ;π)− pvcg

i (θ;π)}+ ε ≥ Eθ|θ≤t′
{vi(θ−i, θ̂i;π)− pvcg

i (θ−i, θ̂i;π)}(2)

where agenti with typeθi arrives in periodt′, and with the expectation taken over future
types given current reportsθ≤t′ .

In particular, when truth-telling is anε-BNE we say that the mechanism isε-BNE incentive
compatible and no agent can improve its expected utility by more thanε > 0, for any type,
as long as other agents are bidding truthfully. Equivalently, one can interpret anε-BNE as
anexactequilibrium for agents that face a computational cost of at leastε to compute the
exact BNE.

Definition 4 (approximate mechanism) A sparse-sampling(ε) based approximate online
VCG mechanism,Mvcg(ε) = (Θ; π̃, p̃vcg), uses the sparse-sampling(ε) algorithm to imple-
ment stochastic policỹπ and collects payment

p̃vcg
i (θ̂≤mi

; π̃) = Ri
≤mi

(θ̂≤mi
; π̃)−

[
V̂ ss(hâi

(θ̂≤âi
; π̃))− V̂ ss(hâi

(θ̂≤âi\i; π̃))
]

from agenti in some periodt′ ≥ mi, for commitment periodmi.

Our proof of incentive-compatibility first demonstrates that an approximatedelayed VCG
mechanism[1, 6] is ε-BNE. With this, we demonstrate that the expected value of the pay-
ments in the approximate online VCG mechanism is within3ε of the payments in the
approximate delayed VCG mechanism. The delayed VCG mechanism makes the same
decisions as the online VCG mechanism, except that payments are delayed until the final
period and computed as:

pDvcg
i (θ̂;π) = Ri

≤T (θ̂;π)−
[
R≤T (θ̂;π)−R≤T (θ̂−i;π)

]
(3)

where the discount is computed ex post, once the effect of an agent on the system value
is known. In anapproximatedelayed-VCG mechanism, the role of the sparse-sampling
algorithm is to implement an approximate policy, as well as counterfactual policies for the
worldsθ−i without each agenti in turn. The total reported reward to agents6= i over this
counterfactual series of states is used to define the payment to agenti.



Lemma 2 Truthful bidding is anε-Bayesian-Nash equilibrium in the sparse-sampling(ε)
based approximate delayed-VCG mechanism.

Proof: Let π̃ denote the approximate policy computed by the sparse-sampling algorithm.
Assume agents6= i are truthful. Now, if agenti bids truthfully its expected utility is

Eθ|θ≤ai
{vi(θ; π̃) +

∑
j 6=i

Rj
≤T (θ; π̃)−

∑
j 6=i

Rj
≤T (θ−i; π̃)} (4)

where the expectation is over both the types yet to be reported and the random-
ness introduced by the sparse-sampling(ε) algorithm. SubstitutingR<ai(θ<ai ; π̃) +
V ss(hai(θ≤ai ; π̃)) for the first two terms in Equation (4) andR<ai(θ<ai ; π̃) +
V ss(hai(θ≤ai\i; π̃)) for the third term, then its expected utility is at least

V ∗(hai(θ≤ai ; π̃))− V ss(hai(θ≤ai\i; π̃))− ε (5)

becauseV ss(hai
(θ≤ai

; π̃)) ≥ V ∗(hai
(θ≤ai

; π̃)) − ε by Lemma 1. Now, ignore term
R≤T (θ−i; π̃) in Equation (4), which is independent of agenti’s bid θ̂i, and consider the
maximal expected utility to agenti from some non-truthful bid. The effect of̂θi on the first
two terms is indirect, through a change in the policy for periods≥ ai. An agent can change
the policy only indirectly, by changing the center’s view of the state by misreporting its
type. By definition, the agent can do no better than selecting optimal policyπ∗, which is
defined to maximize the expected value of the first two terms. Putting this together, the
expected utility fromθ̂i is at mostV ∗(hai

(θ≤ai
; π̃)) − V ss(hai

(θ≤ai\i; π̃)) and at mostε
better than that from bidding truthfully.

Theorem 2 Truthful bidding is an 4ε-Bayesian-Nash equilibrium in the sparse-
sampling(ε) based approximate online VCG mechanism.

Proof: Assume agents6= i bid truthfully, and consider report̂θi. Clearly, the policy
implemented in the approximate online-VCG mechanism is the same as in the delayed-
VCG mechanism for all̂θi. Left to show is that the expected value of the payments are
within 3ε for all θ̂i. From this we conclude that the expected utility to agenti in the
approximate-VCG mechanism is always within3ε of that in the approximate delayed-VCG
mechanism, and therefore4ε-BNE by Lemma 2. The expected payment in the approximate
online VCG mechanism is

Eθ|θ≤ai
{Ri

≤T (θ̂; π̃)} −
[
E{V̂ ss(hâi

(θ̂≤âi
; π̃)} − E{V̂ ss(hâi

(θ̂≤âi\i; π̃)}
]

The value function computed by the sparse-sampling(ε) algorithm is a random variable to
agenti at the time of bidding, and the second and third expectations are over the random-
ness introduced by the sparse-sampling(ε) algorithm. The first term is the same as in the
payment in the approximate delayed-VCG mechanism. By Corollary 1, the value function
estimated in the sparse-sampling(ε) is near-optimal in expectation and the total of the sec-
ond two terms isat leastV ∗(hâi

(θ̂≤âi\i;π∗))−V ∗(hâi
(θ̂≤âi

;π∗))− 2ε. Ignoring the first

term in pDvcg
i , the expected payment in the approximate delayed-VCG mechanism isno

morethanV ∗(hâi
(θ̂≤âi\i;π∗))− (V ∗(hâi

(θ̂≤âi
;π∗))− ε) because of the near-optimality

of the value function of the stochastic policy (Lemma 1). Putting this together, we have a
maximum difference in expected payments of3ε. Similar analysis yields a maximum dif-
ference of3ε when an upper-bound is taken on the payment in the online VCG mechanism
and compared with a lower-bound on the payment in the delayed mechanism.

Theorem 3 For any parameterε > 0, the sparse-sampling(ε) based approximate online
VCG mechanism hasε-efficiency in an4ε-BNE.



5 Empirical Evaluation of Approximate Online VCG

The WiFi Problem The WiFi problem considers a fixed number of channelsC with
a random number of agents (maxA) that can arrive per period. The time horizon
T = 50. Agents demand a single channel and arrive with per-unit value, distributed
i.i.d. V = {v1, . . . , vk} and duration in the system, distributed i.i.d.D = {d1, . . . , dl}.
Any allocation to agenti must be for contiguous periods, and be provided during periods
[ai, ai + d] (for arrival ai and durationd) that the agent is present. The agent’s value for
such an allocation of durationx is vx wherev is its per-unit value. Letdmax denote the
maximal possible duration (and thus the maximal useful allocation). We define the follow-
ing MDP components:
state space:We use the following compact, sufficient, statistic of history: aresource sched-
ule is a (weakly non-decreasing) vector of lengthdmax that counts the number of channels
available in the current period and nextdmax−1 periods given previous actions (C channels
are available after this); anagent vectorof size(k× l) that provides a count of the number
of agents present but not allocated for each possible per-unit value and each possible dura-
tion (the duration is automatically decremented when an agent remains in the system for a
period without receiving an allocation); the time remaining until horizonT .
action space:The policy can postpone an agent allocation, or allocate an agent to a chan-
nel for the remaining duration of the agent’s time in the system if a channel is available.
payoff function: The reward at a time step is the summed value obtained from all agents
for which an allocation is made in this time step. This is the total value the agent will
receive before it departs.
transition probabilities: The change in resource schedule, and in the agent vector that
relates to agents currently present, is deterministic. The random new additions to the agent
vector at each step are unaffected by the actions and also independent of time.

Mechanisms In the exact online VCG mechanism we compute an optimal policy, and op-
timal MDP values, offline using finite-horizon value iteration [7]. In the sparse-sampling(ε)
approach, we define a sampling tree depthL (perhaps< T ) and sample each statem times.
The effect of this limited sampling tree depthL is to place a lower-bound on the best pos-
sible approximation accuracy from the sparse-sampling algorithm. We also employagent
pruning, with the agent vector in the state representation pruned to remove dominated
agents: consider agent type with durationd and valuev and remove all butC −N agents
whereN is the number of agents that either have remaining duration≤ d and value> v or
duration< d and value≥ v. In computing payments we usefactoring, and only determine
VCG payments once for each type of agent to arrive. We also compare performance with
a simple fixed-price allocation scheme that given a particular problem, computes off-line
a fixed number of periods and a fixed price (agents are queued and offered the price at
random as resources become available) that yields the maximum expected total value.

Results In the default model, we setC = 5, A = 5, define the set of valuesV = {1, 2, 3},
define the set of durationsD = {1, 2, 6}, with lookaheadL = 4 and sampling width
m = 6. All results are averaged over at least 10 instances, and experiments were performed
on a 3GHz P4, with 512 MB RAM. Value and revenue is normalized by the total value
demanded by all agents, i.e. the value with infinite capacity.2 Looking first at economic
properties, Figure 1(A) shows the effect of varying the number of agents from 2 to 12,
comparing the value and revenue between the approximate online VCG mechanism and the
fixed price mechanism. Notice that the MDP method dominates the price-based scheme for
value, with a notable performance improvement over fixed price when demand is neither
very low (no contention) nor very high (lots of competition). Revenue is also generally

2This explains why the value appears to drop as we scale up the number of agents— the total
available value is increasing but supply remains fixed.
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Figure 1: (A) Value and Revenue vs. Number of Agents. (B) Value and Revenue vs. Number of
Channels. (C) Effect of Sampling Width. (D) Pruning speed-up.

better from the MDP-based mechanism than in the fixed price scheme. Fig. 1(B) shows the
similar effect of varying the number of channels from 3 to 10.

Turning now to computational properties, Figure 1 (C) illustrates the effectiveness of
sparse-sampling, and also agent pruning, sampled over 100 instances. The model is very
small:A = 2, C = 2, D = {1, 2, 3}, V = {1, 2, 3} andL = 4, to allow a comparison with
the compute time for an optimal policy. The sparse-sampling method is already running in
less than 1% of the time for optimal value-iteration, with an accuracy as high as 96% of the
optimal. Pruning provides an incremental speed-up, while alsoimprovingaccuracy, pre-
sumably by making better use of each sample. Figure 1 (D) shows the value of pruning, in
comparison with sparse-sampling, for the default model parameters and varying the num-
ber of agents from 2 to 12. Pruning is effective, removing around 50% of agents (summed
across all states in the lookahead tree) at 5 agents.
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