
Rationality and Self-Interest in Peer to Peer
Networks

Citation
Shneidman, Jeffrey and David C. Parkes. 2003. Rationality and self-interest in peer to peer
networks. In Peer-to-peer systems II second international workshop, IPTPS 2003, Berkeley, CA,
USA, February 21-22, 2003 : revised papers, ed. Frans Kaashoek and Ion Stoica, 21-22. Lecture
notes in computer science, 2735. Berlin: Springer.

Published Version
http://dx.doi.org/10.1007/b11823

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4064046

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4064046
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Rationality%20and%20Self-Interest%20in%20Peer%20to%20Peer%20Networks&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f27bd4c8041ec6ae031b735bad6beda0&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Rationality and Self-Interest in Peer to Peer Networks

Jeffrey Shneidman and David C. Parkes
Harvard University

Division of Engineering and Applied Sciences
�jeffsh, parkes�@eecs.harvard.edu

Abstract

Much of the existing work in peer to peer net-
working assumes that users will follow prescribed
protocols without deviation. This assumption ig-
nores the user’s ability to modify the behavior of
an algorithm for self-interested reasons.

We advocate a different model in which peer
to peer users are expected to be rational and self-
interested. This model is found in the emergent
fields of Algorithmic Mechanism Design (AMD)
and Distributed Algorithmic Mechanism Design
(DAMD), both of which introduce game-theoretic
ideas into a computational system. We, as design-
ers, must create systems (peer to peer search, rout-
ing, distributed auctions, resource allocation, etc.)
that allow nodes to behave rationally while still
achieving good overall system outcomes.

This paper has three goals. The first is to con-
vince the reader that rationality is a real issue in
peer to peer networks. The second is to introduce
mechanism design as a tool that can be used when
designing networks with rational nodes. The third
is to describe three open problems that are relevant
in the peer to peer setting but are unsolved in exist-
ing AMD/DAMD work. In particular, we consider
problems that arise when a networking infrastruc-
ture containsrational agents.

1 Introduction

Imagine running an auction over a large peer to
peer network. You are the auctioneer and have three
directly connected neighbors. You send out an an-
nouncement advertising the auction and ask that it
be globally propagated. You then sit back, expect-
ing many bids, and are surprised when you only re-
ceive three bids – one from each neighbor. What
happened? Your three neighbors understood that it
was in their best interest not to forward the initial
announcement. Assuming each of your neighbors
wanted to win the auction, it made sense for them to
limit the possible competition.

This trivial example (which shall be used for the
remainder of the paper) captures the problem of ra-
tionality in peer to peer networks. Perhaps the key
defining characteristic of a peer to peer network is
that one cannot distinguish between strategic nodes
and the network infrastructure. Nodes, representing
rational users, sometimes will deviate from a sug-
gested protocol in order to better their own outcome.
This paper considers notions of rationality and self-
interest in the context of peer to peer networks. Sec-
tion 2 explores evidence for the existence of ratio-
nality in peer to peer networks and discusses com-
mon approaches for dealing with this strategic node
behavior. Section 3 reviews some of the requisite
mechanism design tools and terminology. Section 4
introduces different node types (the strategic agents)
to motivate why mechanism design is applicable to
the peer to peer setting. Section 5 describes open
problems in DAMD that are particularly relevant to
peer to peer settings. Section 6 reviews related work
and finally in Section 7, we conclude with our future
work in this area.

2 Rationality in Peer to Peer Systems

In the auction example given above, we can spec-
ulate that all three bidders had positive utility for
winning the auction.Utility is a numeric value that
agents assign to a particular outcome based on their
preference for that outcome. The game-theoretic
approach of mechanism design assumes that ara-
tional node plays astrategy to maximize its own
expected utility. A node’s equilibrium strategy de-
pends on the information that it has about the pref-
erences and behavior of other nodes, and in some
cases may require some effort to calculate.

It is not hard to find evidence of rational behavior
in existing peer to peer networks. There is interest-
ing work documenting the “free rider” problem [1]
and the “tragedy of the commons” [9] in a data cen-
tric peer to peer setting. In this situation, rational
users free ride and consume a resource but do not
produce at the same level of their consumption.

An additional example can be found in the con-
text of peer to peer search: consider the rational
users in simple file sharing networks who refuse to
relay other node queries to conserve their own band-
width. The Kazaa peer to peer file sharing network
client supports a similar behavior, allowing power-
ful nodes to opt-out of network support roles that
consume CPU and bandwidth [15]. Our auction ex-
ample is another case where self-interested message
passing and computation presents a challenge.

Although it has not been labeled as such, ratio-
nal behavior has occurred in computational peer to
peer settings as well. One perverse example oc-
curred when users of Seti@Home (a peer to peer
computation project) modified their client software
to make it appear as if they were doing more work
than was actually occurring. These users placed a
high utility on their ranking in a leader board that
recorded the “computation units contributed” for the
Seti@Home project. The scoring system did not
prevent these rational players from increasing their
utility by modifying the behavior of their software
[11].

What should be the response to the problems cre-
ated by user rationality in peer to peer systems?
One common approach has been to ignore rational-
ity problems and hope for the best. Rational users
can free ride on systems, create software designed
to subvert mechanisms, and generally place them-
selves into selfishly advantageous situations. This
sounds bad, and this paper argues that it is bad, but
one should not ignore the fact that this is how many
peer to peer systems work. One reason why these
systems may work is that there can be enough obe-
dient users following a given protocol, even when
it might be rational not to do so. For instance,
they might download an obedient client program
instead of writing or acquiring a more expressive
client. Alternatively, existing systems may work be-
cause there are enough “rational” users that maxi-
mize their expected utility by the enjoyment of pro-
viding a common good. This altruistic behavior is
outside of typical game-theoretic models.

Another approach is to limit the effect that a ra-
tional user can have on the execution of a system.
In peer to peer networks, a node can be required to
run some part of a distributed mechanism. If one
assumes that users cannot modify the execution of
the mechanism (but can only strategize about their
inputs), then the rationality problem is much eas-
ier. With this assumption, for instance, one would
not need to worry about nodes refusing to pass mes-
sages in this paper’s initial auction example. This is

what Perrig et al. [19] can achieve with the help of
specially trusted auction hardware.

Another approach comes from failure handling
in distributed algorithms, where running nodes are
classified into two basic types: correct and faulty.
One goal of a distributed algorithm is to identify
and ignore faulty behavior. In this model, a ratio-
nal node that deviates from a protocol is considered
faulty. However, ignoring rational nodes is not prac-
tical in systems like Gnutella, where in one study
70% of nodes seemed to free ride, thereby acting
rationally [1]. It seems suboptimal to use traditional
distributed systems techniques that detect and ig-
nore faulty nodes. Doing so creates other problems
as well such as network vulnerability, an idea ex-
plored in Adar & Huberman [1].

None of these approaches seems optimal, and this
leads one naturally to consider designing networks
with self-interest in mind. Mechanism design can
help here by incentivizing rational nodes to perform
as a network designer might intend.

3 A Brief Introduction to Mechanism De-
sign

This section gives a brief introduction to eco-
nomic mechanism design. Classical mechanism de-
sign concepts are covered in more detail in intro-
ductory and more advanced game theory textbooks
[5, 8].

The idea in mechanism design (MD) is to de-
fine the strategic situation, or “rules of the game”,
so that the system as a whole exhibits good behav-
ior in equilibrium when self-interested nodes pur-
sue self-interested strategies. Formally, amech-
anism is a specification of possible player strate-
gies and a mapping from the set of played strate-
gies to outcomes. This paper’s initial auction exam-
ple is a mechanism implementation in action: play-
ers choose their bids and the auctioneer computes
the outcome according to the rules of the mecha-
nism. Mechanism design can be thought of asin-
verse game theory – where game theory reasons
about how agents will play a game, MD reasons
about how to design games that produce desired out-
comes. For instance, in the auction problem, we
seek a mechanism that will provide incentives that
result in neighbors forwarding the bids and bid an-
nouncements, and in nodes implementing the appro-
priate auction rules.

MD assumes that the players feed their calcu-
lated strategies to a special obedientcenter that per-
forms the mechanism calculation and declares the

outcome. However, one problem with traditional
MD is that many mechanisms are computationally
infeasible. For instance, it can be hard for a player
to calculate a best strategy. It can be even more dif-
ficult for a mechanism implementation to calculate
the outcome.

An emerging field, borne out of the theoretical
computer science and artificial intelligence commu-
nities, deals withtractable mechanism design. Al-
gorithmic Mechanism Design (AMD) addresses the
computational complexity of the mechanism infras-
tructure and attempts to construct mechanisms that
produce desired outcomes while retaining computa-
tional feasibility [16]. Research in mechanism de-
sign has also focused on the design of mechanisms
that reduce the computational complexity of agent
participation (e.g. [18]).

Distributed Algorithmic Mechanism Design
(DAMD) is an even newer construction [7].
Whereas AMD is concerned with a centralized
implementation, DAMD assumes that a mechanism
is carried out via a distributed computation. This
more accurately models situations like the Internet
and peer to peer networks, where agents and
resources are distributed.

In these settings, using obedient centers might not
be feasible for a number of reasons, including issues
of trust, privacy, and complexity:

� For instance, a node offering to perform a
mechanism computation might have a vested
interest in the outcome and silently change the
result. Distributing a mechanism over many
nodes with vested interest is more realistic in
real-world networks when the presence of obe-
dient nodes cannot be guaranteed. If the pres-
ence ofsome obedient nodes can be assumed,
or when tools outside of mechanism design
like cryptography or redundancy [2, 21] are
available, distributing a mechanism may allow
a robustness to cheating that is not possible in
a centralized mechanism.

� Furthermore, because of network topology, a
node running in a network with a centralized
mechanism may have to reveal its strategy to
the center via other competing nodes. For in-
stance, a point to point transmission between
a node and the center may actually occur via
many hops over strategizing nodes. In dis-
tributed mechanisms, this problem is made ex-
plicit. One way of addressing this problem is
to make truthful revelation be an equilibrium
strategy (e.g. [6]).

� Finally, a centralized mechanism implementa-
tion might be NP-hard. Distributed mecha-
nisms can sometimes achieve better complex-
ity results than centralized mechanisms, and
may even be piggybacked on existing network
protocols [6].

In all forms of mechanism design, the mecha-
nism designer is aiming to create agood mecha-
nism. Mechanisms can be good in different ways:
they can be efficient, strategy proof, incentive com-
patible, budget balanced, etc. (For space consider-
ations, we hope to pique your interest but defer to
other good sources [18] for a complete discussion
of these properties.) A famous example of a good
mechanism (with a center) that you may have used
is the second-price sealed-bid auction.1

A well designed mechanism will incentivize ra-
tional nodes into behaving according to a designer’s
wishes. A poorly designed mechanism will fail to
exact the expected behavior; this paper’s auction
scenario is a trivial example.

A more subtle problem can occur if the mech-
anism designer does not build mechanisms with
strategies that are simple to compute. For instance,
it is reasonable to suppose that different nodes have
different computational capabilities in a peer to peer
network. If a node is constrained by computational
or communication limits, it may fail to pick a strat-
egy that maximizes its expected utility. In game
theory, this node is known as abounded-rational
player.

Finally, mechanisms can be modeled as one-shot
or repeated, and behavior that may not seem rational
in the short term (a starving graduate student slaving
over a paper submission, when sleep would yield
a higher utility) is (hopefully) rational in the long
term.

1If you have used Yahoo! Auctions or Ebay, you have seen
this flavor of mechanism at work. For instance, if the current
bid for an Enron Ethics Manual [22] is 10, and you tell the
auctioneer you are willing to pay 15, your bid will be recorded
as 11 (assuming a minimum bid increment of 1). If only one
other bid for 13 is received before the auction closes, you win
the auction and pay 14 (the second highest price + the mini-
mum bid increment.) The second price sealed-bid auction (for
which William Vickrey won the 1996 Economics Nobel Prize)
has the nice property that the best (dominant) strategy a bidder
can choose is to declare truthfully his/her value for owning the
item. This mechanism also happens to be efficient, individual
rational, and weakly budget balanced, further nice properties
that make Vickrey auctions at least theoretically popular. See
Sandholm [20] for a concise overview of various auction types
and a discussion of why the interesting Vickrey auction is not
used very often in real life.

4 Node Types in Peer to Peer Systems

Mechanism design should be viewed as a tool in
the network designer’s repertoire to help deal with
rational nodes. When additional node types are
present, additional tools are needed. Distributing
the mechanism implementation creates additional
challenges [7] that need to be addressed with out-
side techniques like redundancy or cryptography.

Feigenbaum & Shenker give an enumeration of
node types in a network based on node intention
[7]. Our listing differs slightly in order to stress how
the actual mechanism affects the behavior of strate-
gizing nodes, and to explore techniques for dealing
with these strategizing node types.

First, we should mention two classes of non-
strategizing node types described in the distributed
systems literature:

Correct/Obedient nodes correctly follow a given
protocol.

Faulty nodes have been classified according to
their side effects and severity. Elements in this
classification set include failstop (a node stops
working), send/receive omission (a node drops
messages), and Byzantine failure (a node can
act arbitrarily) [12].

Economic mechanisms do not affect either cor-
rect or faulty nodes, since these node types do not
strategize. Correct nodes need no special handling.
Typical techniques for dealing with faulty nodes in-
clude using redundancy and cryptographic signing
to detect and ignore broken nodes [12]. Second, we
define two classes of nodes that can strategize about
their behavior:

Rational nodes aim to maximize their expected
utility from participation, given their beliefs
about their environment, including the types
of other nodes and the network topology. Ra-
tional nodes can exhibit behaviors normally
attributed to theadversarial nodes found in
cryptographic-protocol theory. Namely, ratio-
nal nodes may use information learned from
participation in a protocol to refine their own
strategy. Rational nodes also can change or
drop messages from other players, and can
change or replace local algorithms as part of
a utility maximizing strategy.

Irrational nodes behave strategically but do not
follow a behavior modeled by the mechanism

designer. They behave irrationally with re-
spect to the mechanism. For example, these
nodes might have utility functions that depend
on more than just their own preferences. Anti-
social nodes [3], for instance, prefer strategies
that hurt other nodes even when it means re-
ducing their own economic utility.2 Alterna-
tively, the bounded-rational nodes introduced
in Section 3 might be unable to act rationally if
the strategy calculation is too onerous.

Both of these node types are affected by the
mechanism. The grand goal of the mechanism de-
signer is to build a mechanism that enables strate-
gizing nodes to act rationally, and incentivizes ra-
tional nodes to behave well. Irrational nodes can
sometimes be brought into the rational node class
by changing a poorly-designed mechanism. For
instance, simplifying a mechanism might allow
nodes that were bounded-rational to compute ratio-
nal strategies in the new mechanism. Other types of
irrational nodes might be made rational by design-
ing repeated mechanisms instead of one-shot mech-
anisms.

5 Mechanism Design for Peer to Peer Net-
works

In this section, we highlight some open problems
in DAMD that are especially apparent in peer to
peer settings. In doing so, we also explore other
techniques that can be used with MD to create sys-
tems that are proactive in dealing with the problems
created by rational nodes.

Open Problem #1: What effect does network
topology have on message passing in a central-
ized mechanism running on a peer to peer net-
work? What about in a decentralized mecha-
nism?

It seems that network topology can have both
positive and negative effects on the ability to im-
plement mechanisms with strategic nodes.

Monderer and Tennenholtz [14] examine the ef-
fects of topology on a centralized mechanism when
nodes are not connected directly to a center, but
instead must pass messages through other ratio-
nal nodes. In this environment, it might be ratio-
nal for infrastructure nodes to drop or change mes-
sages from their neighbors, as in this paper’s ini-
tial auction example. They show that redundant

2In the real world, companies accept lower profits in at-
tempts to drive out competition. While their behavior may
seem irrational in the short term, in the grand scheme of things,
their behavior makes sense.

message passing, weak cryptography, and a bicon-
nected topology can be used to provide incentives
for nodes to forward messages and implement a sug-
gested protocol.

Yet, attempting to apply the same ideas to non-
biconnected network leads to a negative result.
These graphs can contain rational nodes at articu-
lation points. The rational behavior of these nodes
is enough to break the mechanism.

One way to circumvent this negative result when
the network topology is known is to use a digital
signing scheme. The node implementing the cen-
tralized mechanism can send signed messages to all
participants and request signed return receipts. Be-
cause of the strong cryptography, if an articulation
point drops or changes one of these messages, the
bad behavior can be caught and the deviating node
can be punished.

In the distributed setting, rational infrastructure
nodes must pass messagesand perform computa-
tion to determine the outcome of a mechanism.
The problem is identified in Feigenbaum et al. [6]
as “the need to reconcile the strategic model with
the computational model.” As an example, the
authors give a strategyproof incentive compatible
distributed mechanism for computing lowest-cost
paths in an interdomain routing setting. But, the
model assumes that nodes obediently compute their
part of the distributed mechanism. This issue of im-
plementing mechanisms is critical in peer to peer
networks when infrastructure nodes might be re-
quired to participate in the mechanism even when
they are not disinterested in the outcome.

Open Problem #2: What are the bounds on the
guarantees that mechanism design can provide
in a distributed setting, and what is the minimum
set of helper technologies that must be employed
in concert with DAMD ideas in distributed net-
works?

When a mechanism is to be computed by strate-
gic agents, DAMD techniques may need to be aug-
mented to ensure that agents perform computations
correctly. One approach is to use cryptographic
signing techniques [7] to detect cheating. However,
a heavy-handed cryptographic approach may not be
desirable. Are there other techniques that a designer
can use? Another approach may be to use network
redundancy with catch-and-punish techniques to en-
sure compliance [14, 21]. A third approach, men-
tioned earlier, is to assume some obediency in the
network either in the form of specialized hardware
[19] or dedicated designer-trusted nodes. (See Open

Problem #3.) Reputation systems is an economic
area that might be useful in heuristically strengthen-
ing mechanisms. Paralleling Monderer and Tennen-
holtz [14], we are interested in understanding when
clever partitioning of a mechanism across nodes can
be useful.

Are these alternate techniques valid on all topolo-
gies? If one imagines these alternate techniques as
the foundation upon which MD should be built, how
few helper technologies can one employ?

Open Problem #3: How can assumptions
about the distribution (but not the identity) of
various node strategy types help to create mech-
anisms with good properties?

Researchers might take advantage of the fact that
some nodes in a peer to peer system do appear to be
obedient [1]. Designers can use this idea when cre-
ating mechanisms that might need to rely on obedi-
ent nodes. For example, a minimum number of obe-
dient nodes are sometimes required in auction pro-
tocols (e.g. [10]). Alternatively, one could use these
obedient agents to check the behavior of other nodes
if the system implements catch-and-punish schemes
to enforce good behavior. The system designer can
also consider injecting a limited number of obedi-
ent nodes into the system to make the mechanism
design problem easier.

6 Related Work

The last section of Feigenbaum & Shenker [7]
considers applications of DAMD, two of which are
peer to peer systems and overlay networks. They
pose several open questions, including how rational
agents might affect network topology formation. In
this paper, we are additionally concerned about how
network topology affects mechanism implementa-
tion.

There have been some heuristic approaches to
addressing these problems, including the introduc-
tion of a “barter economy” currency [13] to induce
proper node behavior. Mechanism design ideas
may provide a useful toolkit to analyze these barter
economies.

There has been considerable work in auction pro-
tocols. A protocol by Brandt [2] uses costly cryp-
tography to remove the need for either an auctioneer
or any obedient nodes. This is actually a side effect
of work that concentrates on privacy-preservation
in auctions. The work assumes a totally connected
physical graph, which probably is not realistic in
most peer to peer settings.

Finally, there are several topical papers on “peer

to peer auctions” that basically ignore notions of ra-
tionality [17]. Similarly, recent papers on economic
models for resource scheduling in scientific Grid
computing have not explored issues of rationality
[4].

7 Conclusions

Rationality is a concern in peer to peer networks,
where, in a very real sense, the users are the net-
work. The central challenge in turning to ideas from
economics is to provide incentives for nodes to fol-
low protocols that provide the network as a whole
with good system-wide performance. Mechanism
design, while not a silver bullet to address all net-
work implementation problems, is a good tool to use
when designing robust systems.

Our future work in this area will explore the open
problems presented in this paper in an attempt to
minimize the amount of external tools used to suc-
cessfully implement distributed mechanisms. To
this end, our current focus is on how redundancy
helps the mechanism designer [21]. We are explor-
ing how to build a real peer to peer resource alloca-
tion system using mechanism design as inspiration
for dealing with rational nodes.

8 Acknowledgements

We thank Joan Feigenbaum for her continuing
conversations on DAMD and related topics. We also
thank Danni Tang for her assistance while putting
together this paper.

References
[1] Eytan Adar and Bernardo Huberman. Free Riding on

Gnutella.First Monday, 5(10), October 2000.

[2] Felix Brandt. A Verifiable, Bidder-Resolved Auction Pro-
tocol. In Proceedings of the 5th International Workshop
on Deception, Fraud and Trust in Agent Societies, pages
18–25, 2002.

[3] Felix Brandt and Gerhard Weiß. Antisocial Agents and
Vickrey Auctions. InPre-proceedings of the Eighth In-
ternational Workshop on Agent Theories, Architectures,
and Languages (ATAL-2001), pages 120–132, 2001.

[4] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson.
Economic Models for Management of Resources in Peer-
to-Peer and Grid Computing. InProceedings of the SPIE
International Symposium on The Convergence of Infor-
mation Technologies and Communications (ITCOM), Au-
gust 2001.

[5] Prajit K. Dutta. Strategies and Games. The MIT Press,
1999.

[6] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami,
and Scott Shenker. A BGP-based Mechanism for Lowest-
Cost Routing. InProceedings of the 21st Symposium
on Principles of Distributed Computing, pages 173–182,
New York, 2002. ACM Press.

[7] Joan Feigenbaum and Scott Shenker. Distributed Algo-
rithmic Mechanism Design: Recent Results and Future
Directions. InProceedings of the 6th International Work-
shop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pages 1–13, New York,
2002. ACM Press.

[8] Drew Fudenberg and Jean Tirole.Game Theory. The
MIT Press, 1991.

[9] Garrett Hardin. The Tragedy of the Commons.Science,
162:1243–1248, 1968. Alternate Location:http://
dieoff.com/page95.htm.

[10] Michael Harkavy, J. D. Tygar, and Hiroaki Kikuchi. Elec-
tronic Auctions with Private Bids. In3rd USENIX Work-
shop on Electronic Commerce, pages 61–74, September
1998.

[11] Leander Kahney. Cheaters Bow to Peer Pres-
sure, 2001. http://www.wired.com/news/
technology/0,1282,41838,00.html.

[12] Nancy Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, 1996.

[13] Jim McCoy. Mojo Nation Responds. http:
//www.openp2p.com/pub/a/p2p/2001/01/
11/mojo.html.

[14] Dov Monderer and Moshe Tennenholtz. Distributed
Games: From Mechanisms to Protocols. InProceedings
of the 16th National Conference on Artificial Intelligence
(AAAI), pages 32–37, 1999.

[15] Sharman Networks. Kazaa Guide: Supernode FAQ,
2003. http://www.kazaa.com/us/help/faq/
supernodes.htm.

[16] Noam Nisan and Amir Ronen. Algorithmic Mechanism
Design. InProceedings of the 31st ACM Symposium on
Theory of Computing, pages 129–140, 1999.

[17] E. Ogston and S. Vassiliadis. A Peer-to-Peer Agent Auc-
tion. In Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2002.

[18] David C. Parkes. Iterative Combinatorial Auc-
tions: Achieving Economic and Computational Efficiency
(Chapter 2). PhD thesis, Univesity of Pennsylvania,
May 2001. http://www.eecs.harvard.edu/
˜parkes/pubs/ch2.ps.

[19] Adrian Perrig, Sean Smith, Dawn Song, and J. Doug Ty-
gar. SAM: A Flexible and Secure Auction Architecture
Using Trusted Hardware, 1991. Submitted Manuscript.

[20] Tuomas Sandholm. Limitations of the Vickrey Auction
in Computational Multiagent Systems. InProceedings of
the 2nd International Conference on Multi-Agent Systems
(ICMAS). AAAI Press, 1996. Menlo Park, CA.

[21] Jeffrey Shneidman and David C. Parkes. Using Redun-
dancy to Improve Robustness of Distributed Mechanism
Implementations, 2003. Working Paper. Poster version
to appear at ACM Conference on Electronic Commerce
EC’03.

[22] Smithsonian to Enshrine Enron Ethics Manual.
http://ca.news.yahoo.com/020227/5/
k6vd.html.

