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Abstract: We present a comprehensive study of second-order nonlinear 
difference frequency generation in triply resonant cavities using a 
theoretical framework based on coupled-mode theory. We show that 
optimal “quantum-limited” conversion efficiency can be achieved at any 
pump power when the powers at the pump and idler frequencies satisfy a 
critical relationship. We demonstrate the existence of a broad parameter 
range in which all triply-resonant DFG processes exhibit monostable 
conversion. We also demonstrate the existence of a geometry-dependent 
bistable region. 
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1. Introduction 

Cavity resonant enhancement of nonlinear processes has been studied for several decades, and 
intra-cavity nonlinear frequency conversion is now used to generate coherent light across 
much of the electromagnetic spectrum from a small number of primary laser sources [1–7]. In 
the last decade, there has been renewed interest in applications of nonlinear frequency 
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conversion with the emergence of nanoscale photonic structures, which can confine light to 
ultra-small volumes for long periods of time, allowing for the strong interaction of light with 
matter [8–29]. For example, nonlinear processes have been considered recently for the 
generation of coherent radiation in the THz frequency range [9–12,25,26,30,31]. There has 
been some prior theoretical work on nonlinear frequency conversion in resonant systems [5,9–
11,13–21,32–37]; however, these processes are generally treated in the undepleted pump 
limit, in which reverse processes are neglected, and which lead to incorrect results in the limit 
of high conversion efficiency. A theoretical framework based on coupled-mode theory has 
been developed for second (χ(2)) and third (χ(3)) harmonic generation in doubly resonant 
cavities, which remains valid in the high-efficiency limit and the validity of which is not 
restricted to a specific geometry [21,23,24]. This type of self-consistent treatment is possible 
in nonlinear mixing where all relevant modes are resonant (e.g. fundamental and second-
harmonic) because the resonant enhancement of the density of optical modes at each 
frequency causes the nonlinear interaction of these modes to be strongly favored over other 
processes [21,23,24]. In particular [21],  proved the existence of a critical power (that depends 
on the cavity parameters, e.g. frequencies, Quality (Q) factors, mode-overlap) at which 100% 
conversion is possible, and beyond which efficiency decreases [21]. In addition, in the case of 
χ(3) harmonic generation, it was shown that the inclusion of self-phase modulation and cross-
phase modulation allow for a rich diversity of dynamics, including limit cycles and multi-
stable solutions [24]. 

In this paper we extend the framework of [21,22,38,39] to the case of difference-frequency 
generation (DFG) caused by a second-order (χ(2)) nonlinear polarization in a resonant photonic 
structure. In contrast to [9,11,12,26], we consider the case where both the input pump (highest 
frequency) and idler waves are resonant, as well as the generated signal wave at the difference 
frequency. We show that CW conversion from pump to signal with quantum-limited 
efficiency (complete depletion of the pump) is possible in such a system for any power at the 
pump frequency, provided there is a critical input power at the idler frequency. The steady-
state solutions to the coupled wave Eqs. and their corresponding conversion efficiencies are 
shown to depend only on universal dimensionless parameters, indicating that their structure is 
qualitatively the same in all geometries. While the stability of these solutions is the only 
feature that is geometry-dependent, we demonstrate that in a certain region of the pump-idler 
power-space, there is only one steady-state solution to the coupled-wave Eqs. that is stable in 
all geometries. Within this range, when the pump-idler power relationship necessary for 
quantum-limited conversion is satisfied, quantum-limited conversion is the only stable 
solution for all triply-resonant geometries. Outside of this region, we show that bistability 
exists. We show that the effect of linear losses (e.g. scattering and absorption) results in a 
rescaling of the conversion efficiency and input powers, with the dynamics remaining 
qualitatively the same. The maximum efficiency is attained in the over-coupled limit, when 
the Q-factor is limited by coupling to the input/output port. 

2. Coupled Wave Analysis 

The general framework of our temporal CMT model is shown in Fig. 1. Our cavity has three 
resonant modes at frequencies, ω1 (pump), ω2 (idler), and ωT (signal) which satisfy ωT = ω1 - 
ω2. The electric field in each cavity mode, Ek(r,t) (where k = 1, 2, T), is decomposed into 

Ek(r,t) = Ek,0(r)ak(t)exp(iωkt), where Ek,0 are the normalized mode profiles (∫d3rε|Ek,0|
2 = 1) 

and ak(t) are the slowly varying wave amplitudes, normalized so that |ak|
2 is the energy stored 

in each resonant mode [21]. Energy is coupled in/out of each cavity mode through a 
designated input/output port (e.g. waveguide). The propagating modes in the input/output 
ports are similarly represented. The relevant incoming and outgoing wave amplitudes are 
represented by the variables sk

+(t) and sk
-(t), respectively, where |sk 

± (t)|2 is the power of the 
propagating mode [21]. 
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Fig. 1. - Schematic of the CMT framework of triply-resonant DFG. Three resonant modes, 
ak(t), are coupled through a second order nonlinear interaction (satisfying ωT = ω1 – ω2). All 
three modes leak energy at a rate, γk, into the outgoing waves, sk

-. The monochromatic input 
waves which drive the pump (ω1) and signal (ω2) modes are represented by the amplitudes, sk

+. 
The coupling strength is described by the constant, β. 

Leakage from a cavity mode is described by the loss rate, γk = ωk/2Qk, where Qk is the 
Quality factor of the kth mode. We decompose this cavity loss rate into γk = γk,s + γk,l 
[21,22,38,39], where, γk,l represents intrinsic losses (absorption/scattering), while γk,s 
represents coupling to the input/output port. The incoming and outgoing waves are related by 
[21,38,39] 

 ,2k k k s ks s aγ− += − +   (1) 

A detailed description of the CMT formalism for nonlinear mixing between resonant 
modes is described in [14,21,22,38,39]. The theory assumes that the nonlinear polarizations 
are sufficiently weak to be treated in the perturbative limit (δPk,NL << Pk). By extending the 
formalism in [21] to non-degenerate three-wave mixing, where we assume there is no input at 
the signal frequency (sT

+ = 0), the coupled wave Eqs. can be written as 

 1
1 1 1 1 2 1 1 12T

da
a i a a s

dt
γ ω β γ += − − + Γ   (2) 

 *2
2 2 2 2 1 2 2 22T

da
a i a a s

dt
γ ω β γ += − − + Γ   (3) 

 *

1 2
T

T T T T

da
a i a a

dt
γ ω β= − −   (4) 

where Γk ≡ γk,s/γk is the fraction of power escaping from the cavity that is collected into the 
input/output waveguide. The coupling constants (βk) are determined by first-order perturbation 
theory, with the normalization such that |ak|

2 is the energy stored in each mode to remain 
consistent with Eqs. (1)-(4) [21,22,38,39]. This yields the following expression for the 
coupling coefficients: 

 

3 (2) *

0 1, 2, , , 2,, ,* *

1 2
2 2 2

3 3 3

1 2

( )1

4

ijk i j T k T j ki j k

T

T

d x E E E E E

d x E d x E d x E

ε χ
β β β β

ε ε ε

+
≡ = = =

∑∫
∫ ∫ ∫

!

! ! !! ! !
  (5) 

where ε = εrε0 is the spatially varying dielectric constant at the corresponding resonance 
frequency. The above Eqs. (subject to Kleimann symmetry in χ(2)) satisfy the energy 
conservation condition, β1 = β2* = βT*. Hereafter we will replace the parameters, βk, with the 
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single parameter, β, which is defined in Eq. (5), with β represented in units of J-1/2 [40]. 
Optimization of the mode overlap, β, in Eq. (5) is analogous to satisfying the phase-matching 
condition in the nonlinear mixing of propagating modes. 

3. Quantum-Limited Conversion 

DFG efficiency can be assessed by analyzing the steady state solutions (dak(t)/dt = dsk 
± (t)/dt 

= 0) of Eqs. (2)-(4). In contrast with degenerate nonlinear frequency conversion (e.g. second-
harmonic generation) [21], the non-degenerate case (e.g. DFG) does not allow for 100% 
conversion of power from ω1 to ωT. This arises because the destruction of a photon at ω1 and 
the creation of a photon at ωT is always accompanied by the creation of a second photon at ω2. 
This fundamental constraint is described by the Manley-Rowe relations [1]. Considering also 
losses (Γk), the quantum limit of conversion efficiency is given by: 

 

2

12

11

T T
T

s

s

ω
ω

−

+
≤ Γ Γ   (6) 

This condition can be derived directly from Eqs. (2)-(4) in the steady-state, and will be 
shown once we re-express Eqs. (2)-(4) in dimensionless form. The conversion efficiency is 
maximized by maximizing the ratios, Γ1 and ΓT. This means that over-coupling the cavity 
modes to the input/output waveguide is essential to achieving high conversion efficiency. In 
other words, it is more important that the Q-factors be limited by leakage to the desired output 
port than that they have a higher value but lack a well-defined output channel. This is a well-
known condition for low-loss operation in resonant devices [38,39]. However, notice that the 
loss ratio in the idler, Γ2, does not appear in Eq. (6), i.e. it does not affect the overall 
efficiency. This is because the input wave at ω2 is not down-converted, but rather amplified; 
therefore, losses can be compensated for by pumping in more power at this frequency. One 
can find a critical relationship between the input powers, |s1

+|2 and |s2
+|2 that allows for 

maximum conversion efficiency (complete depletion of the pump) by imposing either of the 
following equivalent constraints: s1

- = 0 or an equality in Eq. (6). This relationship is given 
by: 

 

2
22

2 1 2 1 1
2 1

2 2

1 2 2

4
1

16

T

T

Q Q Q s

s
Q Q Q

ω β
ω

β

+

+

− Γ
=

Γ
  (7) 

Notice that the power coupled into the cavity at the idler frequency, |s2
+|2, depletes the 

signal (ωT) when nonlinearly converted (via sum-frequency generation), and produces power 
at the pump (ω1). Therefore, in the case in which the pump is completely depleted (s1

- = 0), no 
net power from the idler frequency is converted and |s2

-|2 = |s2
+|2 + |s1

+|2Γ1Γ2ω2/ω1. The 

conversion of the total input power, |s1
+|2 + |s2

+|2, is thus maximized in the limit |s2
+|2 → 0, 

|s1
+|2 = ω1/(4|β|2Q1Q2QTΓ1). Note, however, that Eqs. (2)-(4) require a non-zero value (this can 

be arbitrarily small) of |s2
+|2 for non-zero conversion efficiency. Note also that the power at 

which total conversion is optimal decreases with increasing Q-factors and vice-versa. This 
means that lower Q-factors are desirable for high power applications. As an example, consider 
the case where λ1 = 1.000µm, λ2 = 1.111µm, λT = 10.00µm, in a cavity composed of a typical 
III-V semiconductor such as GaAs. Taking the magnitude of the second-order effective 
nonlinear susceptibility to be deff = 274pm/V [41], and assuming a constant field in each 
cavity with an optimal overlap [21], the critical power for optimal total power conversion 

(where |s2
+|2 → 0) would be reached at |s1

+|2 = 4.4 mW for Q1 = Q2 = QT = 104. The actual 
implementation of a triply-resonant system characterized by high Q/V ratios for the three 
frequencies involved in the nonlinear frequency mixing process and high modal overlap is a 
challenging problem and is out of the scope of this paper. This problem will be addressed in 
detail in a separate publication [42]. 
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Equation (7) also allows for quantum-limited conversion for an arbitrarily small value of 

|s1
+|2 as |s2

+|2 → ω2/(16|β|2Q1Q2QTΓ2). This is a unique property of the non-degeneracy of 
DFG, and could prove useful for low power applications [38,43,44]. A similar result was 
found in the quantum limit for doubly resonant DFG, specifically that a single photon could 
be converted with high fidelity from ω1 to ωT, given an appropriate pump power at ω2 [44]. 
Note that in both limits the optimal input power is proportional to 1/Q1Q2QT. A similar result 
was found in the degenerate case of second-harmonic generation, where the critical power 
was shown to scale as 1/Q1Q2

2 [21]. A related enhancement factor was also reported earlier in 
the undepleted-pump limit [19]. In the specific case of THz generation through DFG of 

telecom-band modes (ω1 ≈ω2), assuming the two telecom-band modes have the same mode 

volume (V1 ≈V2), then under the conditions of best possible overlap [21], the overlap would 
scale as β ~ 1/VT

1/2. This means that in triply resonant THz generation, the mode volumes of 
the telecom-band cavities do not affect the strength of the nonlinear coupling as long as they 

match each other (i.e. V1 ≈V2). 

4. Stability and Universal Structure 

We now analyze the structure of Eqs. (2-4) in detail. We aim to identify dynamics that are 
qualitatively universal to all triply-resonant DFG processes; i.e., they do not depend explicitly 
on {Qk,ωk,β}. To do this, it is helpful to redefine our variables {ak, sk 

± } in a dimensionless 
form that removes as many of the parameters, {Qk,ωk,β}, as possible. This is best 
accomplished by rescaling the variables, {t, ak, sk 

± }, as follows: 

 1
1

12

t
T t

Q

ω
γ≡ =   (8) 

 * *1 2
,2 [ ( )]T

k k T k

k

Q Q Q
A i a

Q
β δ β β≡ + − −   (9) 

 *1 24 T k
k k

k

Q Q Q
S sβ

ω
+Γ

≡   (10) 

where δk,T is the Kronecker delta. We will also define a dimensionless parameter that 
quantifies the DFG efficiency: 

 

2

1

2

1 11

4
T T

ff

T T

s U
E

Ps

ω
ω

−

+
≡ =
Γ Γ

  (11) 

where we have introduced the notation, |Ak|
2 ≡ Uk, |Sk|

2 ≡ Pk for the normalized energy and 
power, respectively. In this notation, the quantum limit corresponds to Eff = 1. The 
dimensionless coupled-mode equations are given by 

 1
1 2 1T

dA
A A A S

dT
= − + +   (12) 

 *2
2 2 1 2[ ]T

dA
r A A A S

dT
= − − +   (13) 

 *

1 2[ ]T
T T

dA
r A A A

dT
= − −   (14) 

where rk = γk/γ1. Since S1 and S2 denote amplitudes of waves with different frequencies, the 
time origin can be redefined so that both S1 and S2 are positive real numbers (i.e. the waves are 
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in phase at T = 0), assuming that the waves are not phase-modulated. It follows that the 
normalized mode amplitudes, A1, A2 and AT are purely real in any steady-state solution. In the 
steady state, Eqs. (12)-(14) simplify to, 

 1
1

2(1 )

S
A

U
=

+
  (15) 

 2
2

1(1 )

S
A

U
=

−
  (16) 

 1 2TA A A= −   (17) 

The steady-state solutions (dAk/dT = 0) do not depend on the geometry-specific 
parameters, rk, and thus can be treated in a general form for an arbitrary system. Specifically, 
the conditions for efficient conversion will depend only on the generalized input parameters, 
Sk, whose magnitudes are related to the input wave amplitudes by Eq. (10). However, the 
stability of the steady-state solutions may in general depend on the specific geometry (rk), as 
shown below. An analogous simplification was also found in third-harmonic generation (χ(3)) 
in doubly-resonant systems [24]; however, in this case the competition between frequency 
conversion and self-action processes (self-phase modulation and cross-phase modulation) 
prevented the structure of the steady-state solutions from being completely geometry-
independent. 

 

Fig. 2. – Maximum (a) and minimum (b) normalized efficiency parameter (Eff) for stable CW 
DFG (Eff = 1 corresponds to quantum-limited conversion), plotted as a function of normalized 
powers of the pump (P1) and idler (P2) input waves. The solid line denotes the critical 
relationship between P1 and P2 where Eff = 1 is possible (P2 = (1 – P1/4)2). The dotted line 
(shown in (a), (b) and (c)) denotes the onset of multi-stability (saddle-node bifurcation). To the 
left of the dotted line (in all three plots), there is only one steady state solution to the coupled 
wave equations, which is stable for all geometries (any r2 and rT). To the right of the dotted 
line, there are three steady-state solutions and bistable behavior is observed for small values of 
r2 and rT. The two stable solutions are shown in (a) and (b) (the unstable solution is not shown). 
Stability in this region was assessed using r2 = rT = 0.4 (typical values for a near-degenerate 
coupled cavity system where all the modes have similar Q-factors). The stability of the 

solutions in the multi-stable region depends on the parameters, r2 and rT (see Fig. 3 for 

example). (c) Stable conversion efficiency reached after a step-excitation (Uk(T = 0) = 0, Pk(T ≥ 
0) = constant, Pk(T < 0) = 0) for r2 = rT = 0.4. To the left of the dashed line, this solution is 
stable in all geometries (any r2, rT). 

Using Eqs. (15)-(17), the dimensionless efficiency parameter can be expressed in the 
steady state purely as a function of the energy in the idler cavity, U2: 

 2

2

2

4

(1 )
ff

U
E

U
=

+
  (18) 
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We can now easily verify that the quantum limit is enforced by Eqs. (2)-(4); that is, that Eff ≤ 
1 in the steady state. Further, the quantum-limited conversion is achieved when 

 21 1
2 1 21, , (1 )

4 4
T

P P
U U U P= = = = −   (19) 

Stability of steady-state solutions in a nonlinear dynamical system can be analyzed 
qualitatively based on the eigenvalues of the points’ Jacobian matrices. A steady state is stable 
if all the eigenvalues of its Jacobian have a negative real part [45]. The Jacobian for a steady 
state of Eqs. (12)-(14) can be written as: 

 

2

2 2 2 1

2 1

1 T

T

T T T

A A

J r A r r A

r A r A r

− 
 = − − − 
 − − − 

  (20) 

Figure 2 shows the structure of the steady-state solutions for r2 = rT = 0.4. The stable 
solutions with maximum- and minimum-efficiency are shown in Fig. 2(a) and 2(b), 
respectively. The dotted line in Fig. 2 indicates a saddle-node bifurcation. In the region to the 
left of this line (lower values of P1), there is only one steady-state solution. To the right of this 
line, there are three possible steady states for every combination of CW input powers, two of 
which are stable. 

Given that there exists a large region of the {P1, P2} parameter space with only one 
solution to Eqs. (15)-(17), one would expect there to exist a subset of this region where this 
solution is stable for any geometry {r2, rT}. In fact, it can be shown that in the entire region 
this solution is stable in all geometries (in the region where there is only one solution). This 
can be proven by analyzing the Jacobian’s characteristic polynomial using the Routh-Hurwitz 
algorithm [46]. The characteristic polynomial of Eq. (20) can be written in the form λ3 + Bλ2 
+ Cλ + D = 0. Using Eqs. (15)-(17) to simplify, we find that: 

 21 TB r r= + +   (21) 

 2 1 2 1 2

1
(1 ) (1 ) (1 )

4
T ff TC r r U r E P r U= − + + + +   (22) 

 2 1 2 1

3
(1 )

4
T ffD r r U U E P= − + +   (23) 

Note that all variables in Eqs. (21)-(23) can only have real positive values. The signs of the 
real parts of the Jacobian’s eigenvalues can be determined by analyzing the first column of the 
Routh-Hurwitz matrix. If all entries in the column have the same sign then there are no 
eigenvalues with positive real parts [46]. For our Jacobian, this column is given by 
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1
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=  
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  (24) 

The additional constraint that no eigenvalues have a real part equal to zero imposes the further 

constraints: (BC - D), D ≠ 0. If we require U1 ≤ 1, all the coefficients (B-D) are strictly 
positive. In this case, both constraints are reduced to a single condition, (BC - D) > 0. The 
term, BC – D, can be expressed as 
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1 1

2 2 1 2 2 2[( )(1 ) 2(1 )] (1 )(1 ) (1 )(1 )
4 4

ff ff

T T T T

E P E P
BC D r r r r U r r U r r− = + − + − + + + + + +   (25) 

Therefore, a steady-state solution is stable in all geometries when U1 ≤ 1, P1 ≤ 4/Eff. It follows 

from Eq. (25) that all steady states are stable when P1 ≤ 1. In fact, we find numerically that 
these conditions are satisfied for the steady-state solution everywhere in the region of mono-
stability (Fig. 2, to the left of the dotted line). Thus, we expect universal dynamics in this 
region of {P1, P2} space, with the conversion efficiency stabilizing to a value determined 
purely by the input powers, P1, P2, shown in Fig. 2. Furthermore, for all P1 < 4, the solution 
with quantum-limited efficiency given in Eq. (19) is universally stable (for all r2 and rT). For 
Eq. (19) with P1 > 4, stability is guaranteed by Eqs. (21)-(25) when rT < 0.414 (or 21/2 – 1). 
Figure 3 demonstrates how the stability of the high-efficiency solutions varies with the 
geometric parameters, r2 and rT, for P1 > 4 when P1 and P2 are related by Eq. (19). When r2 
and rT are both large, there remains only one stable solution (shown by the black curve in Fig. 
3) for all P1, which has quantum-limited efficiency for P1 < 4. 

Stability is also independent of the parameters, {r2, rT}, in the limit P2 << 1. We expect 
there to be multiple steady states for P1 > 1 (see Fig. 2). We can analytically determine the 

efficiencies and stabilities of all steady-state solutions in this limit. For any value of P1 ≠ 1, 

there is one solution where U1 → P1, U2 → 0, and Eff → 0 (see Eqs. (15)-(17)). This will be 
the only solution for P1 < 1. In particular, it follows directly from Eqs. (21)-(25) that this 
solution is universally stable for P1 < 1 and universally unstable for P1 > 1. For P1 > 1, there is 

an additional pair of solutions in which U1 → 1+, and U1 → 1-. These solutions differ only by 
the sign of A2 (phase), both having U2 = P1

1/2 - 1, and Eff = 4(P1
1/2 - 1)/P1. It can also be shown 

directly from Eqs. (21)-(25) that both of these solutions are stable for all geometries. This 
means that to a good approximation, all geometries display only one stable conversion 
efficiency as a function of P1 for P2 << 1. 

 

Fig. 3. Plots showing the effect of geometry {r2, rT} on the conversion efficiency and stability 
of steady-state solutions for P2 = (1 - P1/4)2, with (a) r2 = rT = 0.4 and (b) r2 = rT = 2. The onset 

of multiple solutions occurs at P1 ≈2.55. Solid lines indicate stable conversion efficiencies; 
dashed lines indicate unstable conversion. The black line indicates the solution that is 

approached after a step excitation (Uk (T = 0) = 0, Pk (T ≥ 0) = constant, Pk(T < 0) = 0) and red 
lines are used to denote all other solutions. While the conversion efficiency of all solutions is 
geometry-independent, note that the stability of quantum-limited efficiency changes with 
geometry (r2, rT). In (a) the high-efficiency solution is stable everywhere in the plot, but is 
unstable for P1 > ~10 in (b) when r2 and rT are increased from 0.4 to 2. For sufficiently large r2 
and rT, the system approaches mono-stability for all P1 (all solutions denoted in red become 
unstable). 

In addition to verifying the stability of high-conversion-efficiency solutions, it is important 
to assess how these solutions can be excited. In the monostable region, the efficiency will 
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stabilize at the value shown in Fig. 2 for all excitations; however, different excitation patterns 
can lead to different long-time stabilities in the bistable region, as was also shown for multi-
stable conversion in doubly-resonant third-harmonic generation [24]. Figure 2(c) shows the 

asymptotic solution reached after a simple step excitation (Uk (T = 0) = 0, Pk (T ≥ 0) = 
constant, Pk(T < 0) = 0, γ2 = γT = 0.4). For P1 < 4, quantum-limited conversion is achieved 
from a step excitation when P2 is given by Eq. (19), but this is not true for P1 > 4. A more 
complicated excitation scheme would be required to excite the high-efficiency solution in this 
case [24]. The particular class of “easily accessible” steady-state solutions shown in Fig. 2(c) 

has a slightly increased domain of universal stability (U1 ≤ 1, P1 ≤ 4/Eff, indicated by the 
region to the left of the dashed line in Fig. 2(c)) which extends beyond the region of 
monostability. Universal stability is guaranteed in this set of solutions for all P1 < 4. 

5. Validity Limits 

We now consider which regions of the dimensionless parameter space are accessible for a 
given geometry (Qk, ωk, β). Sufficient resonant enhancement of the density of optical modes at 
each of the three frequencies (Qk >> 1) is required in order to effectively suppress coupling to 
other frequencies (e.g. the sum frequency, ω1 + ω2). CMT relies on the slowly-varying 
amplitude approximation (|dak/dt| << |ωkak|). In the steady-state, this condition maps into the 
dimensionless parameter space as follows: 

 1 2

2 1

1, 1
2 2

U U

Q Q
<< <<   (26) 

This places a lower bound on the pump and idler Q-factors for a given steady-state solution to 
be accessible. In the case that Eff = 1, Eq. (26) reduces to, 

 1 28P Q<<   (27) 

When Eqs. (26)-(27) are not satisfied, it implies that the nonlinear terms in Eqs. (2)-(4) are 
sufficiently large that the perturbative treatment of the nonlinearity and the slowly varying 
amplitude approximation are no longer valid. A final consideration is that the energy in the 
cavity must be sufficiently below the threshold for the appearance of higher-order regimes or 
material damage. While Eqs. (26)-(27) ensure that second-order nonlinear effects remain in 
the perturbative limit, the nonlinear coupling strength (quantified by β) must also be 
sufficiently large for high-efficiency conversion to be achievable below the damage threshold. 
Efficiency can be expressed as a function of only the generalized energy in the idler cavity, 
U2. Quantum-limited conversion requires U2 = 1, and optimal total power conversion (P1 = 4, 

P2 → 0) occurs when Uk = 1 for all three modes. When this occurs, the actual mode energies 
are given by |ak|

2 = Qk/4Q1Q2QT|β|2. This energy must be below the material and frequency 
dependent threshold for the appearance of higher-order nonlinear effects or material damage 
(breakdown) in a specific geometry. Increasing the nonlinear mode-overlap, β, reduces the 
energy required for high-efficiency conversion. 

6. Conclusion 

In this paper we have presented a general analysis of nonlinear second-order difference 
frequency generation (DFG) where all three waves are resonant. We have shown that the Eqs. 
governing the system can be scaled into a set of universal dimensionless parameters and that 
the steady-state solutions (corresponding to CW conversion) only depend on the generalized 
parameters, P1 and P2, which are directly proportional to the input powers of the pump and 
idler, respectively. As P1 increases for any fixed P2, a saddle-node bifurcation is reached. 
Below this point, there exists only one steady-state solution with universal stability, and above 
this point, there exist three solutions with geometry-dependent stabilities. In many geometries, 
this results in bistability. We have demonstrated that CW conversion from pump to signal 
with quantum-limited efficiency is possible in such a system for any power of the pump wave, 
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provided a specific input power at the idler frequency. In this case, the pump beam is perfectly 
depleted and the pump:signal conversion ratio is given by the frequency ratio. Quantum-
limited conversion can occur with arbitrarily small idler power – optimizing total power 
conversion - when the pump power approaches the critical value, which scales as the inverse 
of the product of the three cavity mode Q-factors. Thus, optimal conversion occurs at higher 
power with decreased Q-factors and vice-versa. This critical power also acts as a threshold 
below-which quantum-limited conversion is always stable and above-which the stability 
depends on geometry. We have shown that linear losses do not qualitatively change the 
dynamics, but do cause a reduction in conversion efficiency. The efficiency is optimal when 
theoretical Q-factors are limited by coupling to the input/output port (overcoupled). We 
expect a similar universal framework to exist for second-order sum-frequency generation. 

Acknowledgements 

We thank Ken Kamrin, John Joannopoulos and Marin Soljačić for helpful discussions. IBB 
and MWM wish to acknowledge NSERC (Canada) for support from PGS-M and PDF 
fellowships. This work is supported through NSEC at Harvard, by the Army Research Office 
through the ISN under Contract No. W911NF-07-D-0004, and by US DOE Grant No. DE-
FG02-97ER25308 (ARW). 

 

(C) 2009 OSA 25 May 2009 / Vol. 17,  No. 11 / OPTICS EXPRESS  9251
#109063 - $15.00 USD Received 24 Mar 2009; revised 8 May 2009; accepted 11 May 2009; published 18 May 2009


